|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <tuple> | 
|  | #include <vector> | 
|  |  | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "aom_ports/aom_timer.h" | 
|  | #include "av1/common/av1_inv_txfm1d_cfg.h" | 
|  | #include "av1/common/scan.h" | 
|  | #include "test/acm_random.h" | 
|  | #include "test/av1_txfm_test.h" | 
|  | #include "test/util.h" | 
|  |  | 
|  | using libaom_test::ACMRandom; | 
|  | using libaom_test::bd; | 
|  | using libaom_test::compute_avg_abs_error; | 
|  | using libaom_test::input_base; | 
|  | using libaom_test::InvTxfm2dFunc; | 
|  | using libaom_test::LbdInvTxfm2dFunc; | 
|  | using libaom_test::tx_type_name; | 
|  |  | 
|  | using ::testing::Combine; | 
|  | using ::testing::Range; | 
|  | using ::testing::Values; | 
|  |  | 
|  | using std::vector; | 
|  |  | 
|  | typedef TX_TYPE TxType; | 
|  | typedef TX_SIZE TxSize; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // AV1InvTxfm2dParam argument list: | 
|  | // tx_type_, tx_size_, max_error_, max_avg_error_ | 
|  | typedef std::tuple<TxType, TxSize, int, double> AV1InvTxfm2dParam; | 
|  |  | 
|  | class AV1InvTxfm2d : public ::testing::TestWithParam<AV1InvTxfm2dParam> { | 
|  | public: | 
|  | void SetUp() override { | 
|  | tx_type_ = GET_PARAM(0); | 
|  | tx_size_ = GET_PARAM(1); | 
|  | max_error_ = GET_PARAM(2); | 
|  | max_avg_error_ = GET_PARAM(3); | 
|  | } | 
|  |  | 
|  | void RunRoundtripCheck() { | 
|  | int tx_w = tx_size_wide[tx_size_]; | 
|  | int tx_h = tx_size_high[tx_size_]; | 
|  | int txfm2d_size = tx_w * tx_h; | 
|  | const FwdTxfm2dFunc fwd_txfm_func = libaom_test::fwd_txfm_func_ls[tx_size_]; | 
|  | const InvTxfm2dFunc inv_txfm_func = libaom_test::inv_txfm_func_ls[tx_size_]; | 
|  | double avg_abs_error = 0; | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  |  | 
|  | const int count = 500; | 
|  |  | 
|  | for (int ci = 0; ci < count; ci++) { | 
|  | DECLARE_ALIGNED(16, int16_t, input[64 * 64]) = { 0 }; | 
|  | ASSERT_LE(txfm2d_size, NELEMENTS(input)); | 
|  |  | 
|  | for (int ni = 0; ni < txfm2d_size; ++ni) { | 
|  | if (ci == 0) { | 
|  | int extreme_input = input_base - 1; | 
|  | input[ni] = extreme_input;  // extreme case | 
|  | } else { | 
|  | input[ni] = rnd.Rand16() % input_base; | 
|  | } | 
|  | } | 
|  |  | 
|  | DECLARE_ALIGNED(16, uint16_t, expected[64 * 64]) = { 0 }; | 
|  | ASSERT_LE(txfm2d_size, NELEMENTS(expected)); | 
|  | if (TxfmUsesApproximation()) { | 
|  | // Compare reference forward HT + inverse HT vs forward HT + inverse HT. | 
|  | double ref_input[64 * 64]; | 
|  | ASSERT_LE(txfm2d_size, NELEMENTS(ref_input)); | 
|  | for (int ni = 0; ni < txfm2d_size; ++ni) { | 
|  | ref_input[ni] = input[ni]; | 
|  | } | 
|  | double ref_coeffs[64 * 64] = { 0 }; | 
|  | ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs)); | 
|  | ASSERT_EQ(tx_type_, static_cast<TxType>(DCT_DCT)); | 
|  | libaom_test::reference_hybrid_2d(ref_input, ref_coeffs, tx_type_, | 
|  | tx_size_); | 
|  | DECLARE_ALIGNED(16, int32_t, ref_coeffs_int[64 * 64]) = { 0 }; | 
|  | ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs_int)); | 
|  | for (int ni = 0; ni < txfm2d_size; ++ni) { | 
|  | ref_coeffs_int[ni] = (int32_t)round(ref_coeffs[ni]); | 
|  | } | 
|  | inv_txfm_func(ref_coeffs_int, expected, tx_w, tx_type_, bd); | 
|  | } else { | 
|  | // Compare original input vs forward HT + inverse HT. | 
|  | for (int ni = 0; ni < txfm2d_size; ++ni) { | 
|  | expected[ni] = input[ni]; | 
|  | } | 
|  | } | 
|  |  | 
|  | DECLARE_ALIGNED(16, int32_t, coeffs[64 * 64]) = { 0 }; | 
|  | ASSERT_LE(txfm2d_size, NELEMENTS(coeffs)); | 
|  | fwd_txfm_func(input, coeffs, tx_w, tx_type_, bd); | 
|  |  | 
|  | DECLARE_ALIGNED(16, uint16_t, actual[64 * 64]) = { 0 }; | 
|  | ASSERT_LE(txfm2d_size, NELEMENTS(actual)); | 
|  | inv_txfm_func(coeffs, actual, tx_w, tx_type_, bd); | 
|  |  | 
|  | double actual_max_error = 0; | 
|  | for (int ni = 0; ni < txfm2d_size; ++ni) { | 
|  | const double this_error = abs(expected[ni] - actual[ni]); | 
|  | actual_max_error = AOMMAX(actual_max_error, this_error); | 
|  | } | 
|  | EXPECT_GE(max_error_, actual_max_error) | 
|  | << " tx_w: " << tx_w << " tx_h " << tx_h | 
|  | << " tx_type: " << tx_type_name[tx_type_]; | 
|  | if (actual_max_error > max_error_) {  // exit early. | 
|  | break; | 
|  | } | 
|  | avg_abs_error += compute_avg_abs_error<uint16_t, uint16_t>( | 
|  | expected, actual, txfm2d_size); | 
|  | } | 
|  |  | 
|  | avg_abs_error /= count; | 
|  | EXPECT_GE(max_avg_error_, avg_abs_error) | 
|  | << " tx_w: " << tx_w << " tx_h " << tx_h | 
|  | << " tx_type: " << tx_type_name[tx_type_]; | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool TxfmUsesApproximation() { | 
|  | if (tx_size_wide[tx_size_] == 64 || tx_size_high[tx_size_] == 64) { | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int max_error_; | 
|  | double max_avg_error_; | 
|  | TxType tx_type_; | 
|  | TxSize tx_size_; | 
|  | }; | 
|  |  | 
|  | static int max_error_ls[TX_SIZES_ALL] = { | 
|  | 2,  // 4x4 transform | 
|  | 2,  // 8x8 transform | 
|  | 2,  // 16x16 transform | 
|  | 4,  // 32x32 transform | 
|  | 3,  // 64x64 transform | 
|  | 2,  // 4x8 transform | 
|  | 2,  // 8x4 transform | 
|  | 2,  // 8x16 transform | 
|  | 2,  // 16x8 transform | 
|  | 3,  // 16x32 transform | 
|  | 3,  // 32x16 transform | 
|  | 5,  // 32x64 transform | 
|  | 5,  // 64x32 transform | 
|  | 2,  // 4x16 transform | 
|  | 2,  // 16x4 transform | 
|  | 2,  // 8x32 transform | 
|  | 2,  // 32x8 transform | 
|  | 3,  // 16x64 transform | 
|  | 3,  // 64x16 transform | 
|  | }; | 
|  |  | 
|  | static double avg_error_ls[TX_SIZES_ALL] = { | 
|  | 0.002,  // 4x4 transform | 
|  | 0.05,   // 8x8 transform | 
|  | 0.07,   // 16x16 transform | 
|  | 0.4,    // 32x32 transform | 
|  | 0.3,    // 64x64 transform | 
|  | 0.02,   // 4x8 transform | 
|  | 0.02,   // 8x4 transform | 
|  | 0.04,   // 8x16 transform | 
|  | 0.07,   // 16x8 transform | 
|  | 0.4,    // 16x32 transform | 
|  | 0.5,    // 32x16 transform | 
|  | 0.38,   // 32x64 transform | 
|  | 0.39,   // 64x32 transform | 
|  | 0.2,    // 4x16 transform | 
|  | 0.2,    // 16x4 transform | 
|  | 0.2,    // 8x32 transform | 
|  | 0.2,    // 32x8 transform | 
|  | 0.38,   // 16x64 transform | 
|  | 0.38,   // 64x16 transform | 
|  | }; | 
|  |  | 
|  | vector<AV1InvTxfm2dParam> GetInvTxfm2dParamList() { | 
|  | vector<AV1InvTxfm2dParam> param_list; | 
|  | for (int s = 0; s < TX_SIZES; ++s) { | 
|  | const int max_error = max_error_ls[s]; | 
|  | const double avg_error = avg_error_ls[s]; | 
|  | for (int t = 0; t < TX_TYPES; ++t) { | 
|  | const TxType tx_type = static_cast<TxType>(t); | 
|  | const TxSize tx_size = static_cast<TxSize>(s); | 
|  | if (libaom_test::IsTxSizeTypeValid(tx_size, tx_type)) { | 
|  | param_list.push_back( | 
|  | AV1InvTxfm2dParam(tx_type, tx_size, max_error, avg_error)); | 
|  | } | 
|  | } | 
|  | } | 
|  | return param_list; | 
|  | } | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(C, AV1InvTxfm2d, | 
|  | ::testing::ValuesIn(GetInvTxfm2dParamList())); | 
|  |  | 
|  | TEST_P(AV1InvTxfm2d, RunRoundtripCheck) { RunRoundtripCheck(); } | 
|  |  | 
|  | TEST(AV1InvTxfm2d, CfgTest) { | 
|  | for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) { | 
|  | int bd = libaom_test::bd_arr[bd_idx]; | 
|  | int8_t low_range = libaom_test::low_range_arr[bd_idx]; | 
|  | int8_t high_range = libaom_test::high_range_arr[bd_idx]; | 
|  | for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) { | 
|  | for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { | 
|  | if (libaom_test::IsTxSizeTypeValid(static_cast<TxSize>(tx_size), | 
|  | static_cast<TxType>(tx_type)) == | 
|  | false) { | 
|  | continue; | 
|  | } | 
|  | TXFM_2D_FLIP_CFG cfg; | 
|  | av1_get_inv_txfm_cfg(static_cast<TxType>(tx_type), | 
|  | static_cast<TxSize>(tx_size), &cfg); | 
|  | int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; | 
|  | int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; | 
|  | av1_gen_inv_stage_range(stage_range_col, stage_range_row, &cfg, | 
|  | static_cast<TxSize>(tx_size), bd); | 
|  | libaom_test::txfm_stage_range_check(stage_range_col, cfg.stage_num_col, | 
|  | cfg.cos_bit_col, low_range, | 
|  | high_range); | 
|  | libaom_test::txfm_stage_range_check(stage_range_row, cfg.stage_num_row, | 
|  | cfg.cos_bit_row, low_range, | 
|  | high_range); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef std::tuple<const LbdInvTxfm2dFunc> AV1LbdInvTxfm2dParam; | 
|  | class AV1LbdInvTxfm2d : public ::testing::TestWithParam<AV1LbdInvTxfm2dParam> { | 
|  | public: | 
|  | void SetUp() override { target_func_ = GET_PARAM(0); } | 
|  | void RunAV1InvTxfm2dTest(TxType tx_type, TxSize tx_size, int run_times, | 
|  | int gt_int16 = 0); | 
|  |  | 
|  | private: | 
|  | LbdInvTxfm2dFunc target_func_; | 
|  | }; | 
|  | GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1LbdInvTxfm2d); | 
|  |  | 
|  | void AV1LbdInvTxfm2d::RunAV1InvTxfm2dTest(TxType tx_type, TxSize tx_size, | 
|  | int run_times, int gt_int16) { | 
|  | FwdTxfm2dFunc fwd_func_ = libaom_test::fwd_txfm_func_ls[tx_size]; | 
|  | InvTxfm2dFunc ref_func_ = libaom_test::inv_txfm_func_ls[tx_size]; | 
|  | if (fwd_func_ == nullptr || ref_func_ == nullptr || target_func_ == nullptr) { | 
|  | return; | 
|  | } | 
|  | const int bd = 8; | 
|  | const int BLK_WIDTH = 64; | 
|  | const int BLK_SIZE = BLK_WIDTH * BLK_WIDTH; | 
|  | DECLARE_ALIGNED(16, int16_t, input[BLK_SIZE]) = { 0 }; | 
|  | DECLARE_ALIGNED(32, int32_t, inv_input[BLK_SIZE]) = { 0 }; | 
|  | DECLARE_ALIGNED(16, uint8_t, output[BLK_SIZE]) = { 0 }; | 
|  | DECLARE_ALIGNED(16, uint16_t, ref_output[BLK_SIZE]) = { 0 }; | 
|  | int stride = BLK_WIDTH; | 
|  | int rows = tx_size_high[tx_size]; | 
|  | int cols = tx_size_wide[tx_size]; | 
|  | const int rows_nonezero = AOMMIN(32, rows); | 
|  | const int cols_nonezero = AOMMIN(32, cols); | 
|  | run_times /= (rows * cols); | 
|  | run_times = AOMMAX(1, run_times); | 
|  | const SCAN_ORDER *scan_order = get_default_scan(tx_size, tx_type); | 
|  | const int16_t *scan = scan_order->scan; | 
|  | const int16_t eobmax = rows_nonezero * cols_nonezero; | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | int randTimes = run_times == 1 ? (eobmax + 500) : 1; | 
|  |  | 
|  | for (int cnt = 0; cnt < randTimes; ++cnt) { | 
|  | const int16_t max_in = (1 << (bd)) - 1; | 
|  | for (int r = 0; r < BLK_WIDTH; ++r) { | 
|  | for (int c = 0; c < BLK_WIDTH; ++c) { | 
|  | input[r * cols + c] = (cnt == 0) ? max_in : rnd.Rand8Extremes(); | 
|  | output[r * stride + c] = (cnt == 0) ? 128 : rnd.Rand8(); | 
|  | ref_output[r * stride + c] = output[r * stride + c]; | 
|  | } | 
|  | } | 
|  | fwd_func_(input, inv_input, stride, tx_type, bd); | 
|  |  | 
|  | // produce eob input by setting high freq coeffs to zero | 
|  | const int eob = AOMMIN(cnt + 1, eobmax); | 
|  | for (int i = eob; i < eobmax; i++) { | 
|  | inv_input[scan[i]] = 0; | 
|  | } | 
|  | if (gt_int16) { | 
|  | inv_input[scan[eob - 1]] = ((int32_t)INT16_MAX * 100 / 141); | 
|  | } | 
|  | aom_usec_timer timer; | 
|  | aom_usec_timer_start(&timer); | 
|  | for (int i = 0; i < run_times; ++i) { | 
|  | ref_func_(inv_input, ref_output, stride, tx_type, bd); | 
|  | } | 
|  | aom_usec_timer_mark(&timer); | 
|  | const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer)); | 
|  | aom_usec_timer_start(&timer); | 
|  | for (int i = 0; i < run_times; ++i) { | 
|  | target_func_(inv_input, output, stride, tx_type, tx_size, eob); | 
|  | } | 
|  | aom_usec_timer_mark(&timer); | 
|  | const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer)); | 
|  | if (run_times > 10) { | 
|  | printf("txfm[%d] %3dx%-3d:%7.2f/%7.2fns", tx_type, cols, rows, time1, | 
|  | time2); | 
|  | printf("(%3.2f)\n", time1 / time2); | 
|  | } | 
|  | for (int r = 0; r < rows; ++r) { | 
|  | for (int c = 0; c < cols; ++c) { | 
|  | uint8_t ref_value = static_cast<uint8_t>(ref_output[r * stride + c]); | 
|  | if (ref_value != output[r * stride + c]) { | 
|  | printf(" "); | 
|  | } | 
|  | ASSERT_EQ(ref_value, output[r * stride + c]) | 
|  | << "[" << r << "," << c << "] " << cnt << " tx_size: " << cols | 
|  | << "x" << rows << " tx_type: " << tx_type_name[tx_type] << " eob " | 
|  | << eob; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(AV1LbdInvTxfm2d, match) { | 
|  | for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) { | 
|  | for (int i = 0; i < (int)TX_TYPES; ++i) { | 
|  | if (libaom_test::IsTxSizeTypeValid(static_cast<TxSize>(j), | 
|  | static_cast<TxType>(i))) { | 
|  | RunAV1InvTxfm2dTest(static_cast<TxType>(i), static_cast<TxSize>(j), 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(AV1LbdInvTxfm2d, gt_int16) { | 
|  | static const TxType types[] = { DCT_DCT, ADST_DCT, FLIPADST_DCT, IDTX, | 
|  | V_DCT,   H_DCT,    H_ADST,       H_FLIPADST }; | 
|  | for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) { | 
|  | const TxSize sz = static_cast<TxSize>(j); | 
|  | for (uint8_t i = 0; i < sizeof(types) / sizeof(types[0]); ++i) { | 
|  | const TxType tp = types[i]; | 
|  | if (libaom_test::IsTxSizeTypeValid(sz, tp)) { | 
|  | RunAV1InvTxfm2dTest(tp, sz, 1, 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(AV1LbdInvTxfm2d, DISABLED_Speed) { | 
|  | for (int j = 1; j < (int)(TX_SIZES_ALL); ++j) { | 
|  | for (int i = 0; i < (int)TX_TYPES; ++i) { | 
|  | if (libaom_test::IsTxSizeTypeValid(static_cast<TxSize>(j), | 
|  | static_cast<TxType>(i))) { | 
|  | RunAV1InvTxfm2dTest(static_cast<TxType>(i), static_cast<TxSize>(j), | 
|  | 10000000); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if HAVE_SSSE3 | 
|  | extern "C" void av1_lowbd_inv_txfm2d_add_ssse3(const int32_t *input, | 
|  | uint8_t *output, int stride, | 
|  | TxType tx_type, TxSize tx_size, | 
|  | int eob); | 
|  | INSTANTIATE_TEST_SUITE_P(SSSE3, AV1LbdInvTxfm2d, | 
|  | ::testing::Values(av1_lowbd_inv_txfm2d_add_ssse3)); | 
|  | #endif  // HAVE_SSSE3 | 
|  |  | 
|  | #if HAVE_AVX2 | 
|  | extern "C" void av1_lowbd_inv_txfm2d_add_avx2(const int32_t *input, | 
|  | uint8_t *output, int stride, | 
|  | TxType tx_type, TxSize tx_size, | 
|  | int eob); | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(AVX2, AV1LbdInvTxfm2d, | 
|  | ::testing::Values(av1_lowbd_inv_txfm2d_add_avx2)); | 
|  | #endif  // HAVE_AVX2 | 
|  |  | 
|  | #if HAVE_NEON | 
|  | extern "C" void av1_lowbd_inv_txfm2d_add_neon(const int32_t *input, | 
|  | uint8_t *output, int stride, | 
|  | TX_TYPE tx_type, TX_SIZE tx_size, | 
|  | int eob); | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(NEON, AV1LbdInvTxfm2d, | 
|  | ::testing::Values(av1_lowbd_inv_txfm2d_add_neon)); | 
|  | #endif  // HAVE_NEON | 
|  |  | 
|  | }  // namespace |