| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <limits.h> |
| |
| #include "vpx/vpx_encoder.h" |
| #include "vpx_dsp/bitwriter_buffer.h" |
| #include "vpx_dsp/vpx_dsp_common.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_ports/mem_ops.h" |
| #include "vpx_ports/system_state.h" |
| |
| #include "vp10/common/entropy.h" |
| #include "vp10/common/entropymode.h" |
| #include "vp10/common/entropymv.h" |
| #include "vp10/common/mvref_common.h" |
| #include "vp10/common/pred_common.h" |
| #include "vp10/common/reconinter.h" |
| #include "vp10/common/seg_common.h" |
| #include "vp10/common/tile_common.h" |
| |
| #if CONFIG_ANS |
| #include "vp10/encoder/buf_ans.h" |
| #endif // CONFIG_ANS |
| #include "vp10/encoder/cost.h" |
| #include "vp10/encoder/bitstream.h" |
| #include "vp10/encoder/encodemv.h" |
| #include "vp10/encoder/mcomp.h" |
| #include "vp10/encoder/segmentation.h" |
| #include "vp10/encoder/subexp.h" |
| #include "vp10/encoder/tokenize.h" |
| |
| static const struct vp10_token intra_mode_encodings[INTRA_MODES] = { |
| {0, 1}, {6, 3}, {28, 5}, {30, 5}, {58, 6}, {59, 6}, {126, 7}, {127, 7}, |
| {62, 6}, {2, 2}}; |
| #if CONFIG_EXT_INTERP |
| static const struct vp10_token switchable_interp_encodings[SWITCHABLE_FILTERS] = |
| {{0, 1}, {4, 3}, {6, 3}, {5, 3}, {7, 3}}; |
| #else |
| static const struct vp10_token switchable_interp_encodings[SWITCHABLE_FILTERS] = |
| {{0, 1}, {2, 2}, {3, 2}}; |
| #endif // CONFIG_EXT_INTERP |
| #if CONFIG_EXT_PARTITION_TYPES |
| static const struct vp10_token ext_partition_encodings[EXT_PARTITION_TYPES] = |
| {{0, 1}, {4, 3}, {12, 4}, {7, 3}, {10, 4}, {11, 4}, {26, 5}, {27, 5}}; |
| #endif |
| static const struct vp10_token partition_encodings[PARTITION_TYPES] = |
| {{0, 1}, {2, 2}, {6, 3}, {7, 3}}; |
| #if !CONFIG_REF_MV |
| static const struct vp10_token inter_mode_encodings[INTER_MODES] = |
| #if CONFIG_EXT_INTER |
| {{2, 2}, {6, 3}, {0, 1}, {14, 4}, {15, 4}}; |
| #else |
| {{2, 2}, {6, 3}, {0, 1}, {7, 3}}; |
| #endif // CONFIG_EXT_INTER |
| #endif |
| #if CONFIG_EXT_INTER |
| static const struct vp10_token inter_compound_mode_encodings |
| [INTER_COMPOUND_MODES] = { |
| {2, 2}, {50, 6}, {51, 6}, {24, 5}, {52, 6}, {53, 6}, |
| {54, 6}, {55, 6}, {0, 1}, {7, 3} |
| }; |
| #endif // CONFIG_EXT_INTER |
| static const struct vp10_token palette_size_encodings[] = { |
| {0, 1}, {2, 2}, {6, 3}, {14, 4}, {30, 5}, {62, 6}, {63, 6}, |
| }; |
| static const struct vp10_token |
| palette_color_encodings[PALETTE_MAX_SIZE - 1][PALETTE_MAX_SIZE] = { |
| {{0, 1}, {1, 1}}, // 2 colors |
| {{0, 1}, {2, 2}, {3, 2}}, // 3 colors |
| {{0, 1}, {2, 2}, {6, 3}, {7, 3}}, // 4 colors |
| {{0, 1}, {2, 2}, {6, 3}, {14, 4}, {15, 4}}, // 5 colors |
| {{0, 1}, {2, 2}, {6, 3}, {14, 4}, {30, 5}, {31, 5}}, // 6 colors |
| {{0, 1}, {2, 2}, {6, 3}, {14, 4}, {30, 5}, {62, 6}, {63, 6}}, // 7 colors |
| {{0, 1}, {2, 2}, {6, 3}, {14, 4}, |
| {30, 5}, {62, 6}, {126, 7}, {127, 7}}, // 8 colors |
| }; |
| |
| static const struct vp10_token |
| tx_size_encodings[TX_SIZES - 1][TX_SIZES] = { |
| {{0, 1}, {1, 1}}, // Max tx_size is 8X8 |
| {{0, 1}, {2, 2}, {3, 2}}, // Max tx_size is 16X16 |
| {{0, 1}, {2, 2}, {6, 3}, {7, 3}}, // Max tx_size is 32X32 |
| }; |
| |
| static INLINE void write_uniform(vp10_writer *w, int n, int v) { |
| int l = get_unsigned_bits(n); |
| int m = (1 << l) - n; |
| if (l == 0) |
| return; |
| if (v < m) { |
| vp10_write_literal(w, v, l - 1); |
| } else { |
| vp10_write_literal(w, m + ((v - m) >> 1), l - 1); |
| vp10_write_literal(w, (v - m) & 1, 1); |
| } |
| } |
| |
| #if CONFIG_EXT_TX |
| static struct vp10_token ext_tx_inter_encodings[EXT_TX_SETS_INTER][TX_TYPES]; |
| static struct vp10_token ext_tx_intra_encodings[EXT_TX_SETS_INTRA][TX_TYPES]; |
| #else |
| static struct vp10_token ext_tx_encodings[TX_TYPES]; |
| #endif // CONFIG_EXT_TX |
| #if CONFIG_EXT_INTRA |
| static struct vp10_token intra_filter_encodings[INTRA_FILTERS]; |
| #endif // CONFIG_EXT_INTRA |
| #if CONFIG_EXT_INTER |
| static struct vp10_token interintra_mode_encodings[INTERINTRA_MODES]; |
| #endif // CONFIG_EXT_INTER |
| #if CONFIG_OBMC || CONFIG_WARPED_MOTION |
| static struct vp10_token motvar_encodings[MOTION_VARIATIONS]; |
| #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION |
| |
| void vp10_encode_token_init(void) { |
| #if CONFIG_EXT_TX |
| int s; |
| for (s = 1; s < EXT_TX_SETS_INTER; ++s) { |
| vp10_tokens_from_tree(ext_tx_inter_encodings[s], vp10_ext_tx_inter_tree[s]); |
| } |
| for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { |
| vp10_tokens_from_tree(ext_tx_intra_encodings[s], vp10_ext_tx_intra_tree[s]); |
| } |
| #else |
| vp10_tokens_from_tree(ext_tx_encodings, vp10_ext_tx_tree); |
| #endif // CONFIG_EXT_TX |
| #if CONFIG_EXT_INTRA |
| vp10_tokens_from_tree(intra_filter_encodings, vp10_intra_filter_tree); |
| #endif // CONFIG_EXT_INTRA |
| #if CONFIG_EXT_INTER |
| vp10_tokens_from_tree(interintra_mode_encodings, vp10_interintra_mode_tree); |
| #endif // CONFIG_EXT_INTER |
| #if CONFIG_OBMC || CONFIG_WARPED_MOTION |
| vp10_tokens_from_tree(motvar_encodings, vp10_motvar_tree); |
| #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION |
| } |
| |
| static void write_intra_mode(vp10_writer *w, PREDICTION_MODE mode, |
| const vpx_prob *probs) { |
| vp10_write_token(w, vp10_intra_mode_tree, probs, &intra_mode_encodings[mode]); |
| } |
| |
| #if CONFIG_EXT_INTER |
| static void write_interintra_mode(vp10_writer *w, INTERINTRA_MODE mode, |
| const vpx_prob *probs) { |
| vp10_write_token(w, vp10_interintra_mode_tree, probs, |
| &interintra_mode_encodings[mode]); |
| } |
| #endif // CONFIG_EXT_INTER |
| |
| static void write_inter_mode(VP10_COMMON *cm, |
| vp10_writer *w, PREDICTION_MODE mode, |
| #if CONFIG_REF_MV && CONFIG_EXT_INTER |
| int is_compound, |
| #endif // CONFIG_REF_MV && CONFIG_EXT_INTER |
| const int16_t mode_ctx) { |
| #if CONFIG_REF_MV |
| const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; |
| const vpx_prob newmv_prob = cm->fc->newmv_prob[newmv_ctx]; |
| #if CONFIG_EXT_INTER |
| vp10_write(w, mode != NEWMV && mode != NEWFROMNEARMV, newmv_prob); |
| |
| if (!is_compound && (mode == NEWMV || mode == NEWFROMNEARMV)) |
| vp10_write(w, mode == NEWFROMNEARMV, cm->fc->new2mv_prob); |
| |
| if (mode != NEWMV && mode != NEWFROMNEARMV) { |
| #else |
| vp10_write(w, mode != NEWMV, newmv_prob); |
| |
| if (mode != NEWMV) { |
| #endif // CONFIG_EXT_INTER |
| const int16_t zeromv_ctx = (mode_ctx >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK; |
| const vpx_prob zeromv_prob = cm->fc->zeromv_prob[zeromv_ctx]; |
| |
| if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) { |
| assert(mode == ZEROMV); |
| return; |
| } |
| |
| vp10_write(w, mode != ZEROMV, zeromv_prob); |
| |
| if (mode != ZEROMV) { |
| int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| vpx_prob refmv_prob; |
| |
| if (mode_ctx & (1 << SKIP_NEARESTMV_OFFSET)) |
| refmv_ctx = 6; |
| if (mode_ctx & (1 << SKIP_NEARMV_OFFSET)) |
| refmv_ctx = 7; |
| if (mode_ctx & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) |
| refmv_ctx = 8; |
| |
| refmv_prob = cm->fc->refmv_prob[refmv_ctx]; |
| vp10_write(w, mode != NEARESTMV, refmv_prob); |
| } |
| } |
| #else |
| const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx]; |
| assert(is_inter_mode(mode)); |
| vp10_write_token(w, vp10_inter_mode_tree, inter_probs, |
| &inter_mode_encodings[INTER_OFFSET(mode)]); |
| #endif |
| } |
| |
| #if CONFIG_REF_MV |
| static void write_drl_idx(const VP10_COMMON *cm, |
| const MB_MODE_INFO *mbmi, |
| const MB_MODE_INFO_EXT *mbmi_ext, |
| vp10_writer *w) { |
| uint8_t ref_frame_type = vp10_ref_frame_type(mbmi->ref_frame); |
| |
| assert(mbmi->ref_mv_idx < 3); |
| |
| if (mbmi->mode == NEWMV) { |
| int idx; |
| for (idx = 0; idx < 2; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| uint8_t drl_ctx = |
| vp10_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); |
| vpx_prob drl_prob = cm->fc->drl_prob[drl_ctx]; |
| |
| vp10_write(w, mbmi->ref_mv_idx != idx, drl_prob); |
| if (mbmi->ref_mv_idx == idx) |
| return; |
| } |
| } |
| return; |
| } |
| |
| if (mbmi->mode == NEARMV) { |
| int idx; |
| // TODO(jingning): Temporary solution to compensate the NEARESTMV offset. |
| for (idx = 1; idx < 3; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| uint8_t drl_ctx = |
| vp10_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); |
| vpx_prob drl_prob = cm->fc->drl_prob[drl_ctx]; |
| |
| vp10_write(w, mbmi->ref_mv_idx != (idx - 1), drl_prob); |
| if (mbmi->ref_mv_idx == (idx - 1)) |
| return; |
| } |
| } |
| return; |
| } |
| } |
| #endif |
| |
| #if CONFIG_EXT_INTER |
| static void write_inter_compound_mode(VP10_COMMON *cm, vp10_writer *w, |
| PREDICTION_MODE mode, |
| const int16_t mode_ctx) { |
| const vpx_prob *const inter_compound_probs = |
| cm->fc->inter_compound_mode_probs[mode_ctx]; |
| |
| assert(is_inter_compound_mode(mode)); |
| vp10_write_token(w, vp10_inter_compound_mode_tree, inter_compound_probs, |
| &inter_compound_mode_encodings[INTER_COMPOUND_OFFSET(mode)]); |
| } |
| #endif // CONFIG_EXT_INTER |
| |
| static void encode_unsigned_max(struct vpx_write_bit_buffer *wb, |
| int data, int max) { |
| vpx_wb_write_literal(wb, data, get_unsigned_bits(max)); |
| } |
| |
| static void prob_diff_update(const vpx_tree_index *tree, |
| vpx_prob probs[/*n - 1*/], |
| const unsigned int counts[/*n - 1*/], |
| int n, vp10_writer *w) { |
| int i; |
| unsigned int branch_ct[32][2]; |
| |
| // Assuming max number of probabilities <= 32 |
| assert(n <= 32); |
| |
| vp10_tree_probs_from_distribution(tree, branch_ct, counts); |
| for (i = 0; i < n - 1; ++i) |
| vp10_cond_prob_diff_update(w, &probs[i], branch_ct[i]); |
| } |
| |
| static int prob_diff_update_savings(const vpx_tree_index *tree, |
| vpx_prob probs[/*n - 1*/], |
| const unsigned int counts[/*n - 1*/], |
| int n) { |
| int i; |
| unsigned int branch_ct[32][2]; |
| int savings = 0; |
| |
| // Assuming max number of probabilities <= 32 |
| assert(n <= 32); |
| vp10_tree_probs_from_distribution(tree, branch_ct, counts); |
| for (i = 0; i < n - 1; ++i) { |
| savings += vp10_cond_prob_diff_update_savings(&probs[i], |
| branch_ct[i]); |
| } |
| return savings; |
| } |
| |
| #if CONFIG_VAR_TX |
| static void write_tx_size_inter(const VP10_COMMON *cm, |
| const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi, |
| TX_SIZE tx_size, int blk_row, int blk_col, |
| vp10_writer *w) { |
| const int tx_row = blk_row >> 1; |
| const int tx_col = blk_col >> 1; |
| int max_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type]; |
| int max_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type]; |
| int ctx = txfm_partition_context(xd->above_txfm_context + tx_col, |
| xd->left_txfm_context + tx_row, |
| tx_size); |
| |
| if (xd->mb_to_bottom_edge < 0) |
| max_blocks_high += xd->mb_to_bottom_edge >> 5; |
| if (xd->mb_to_right_edge < 0) |
| max_blocks_wide += xd->mb_to_right_edge >> 5; |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) |
| return; |
| |
| if (tx_size == mbmi->inter_tx_size[tx_row][tx_col]) { |
| vp10_write(w, 0, cm->fc->txfm_partition_prob[ctx]); |
| txfm_partition_update(xd->above_txfm_context + tx_col, |
| xd->left_txfm_context + tx_row, tx_size); |
| } else { |
| const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; |
| int bsl = b_width_log2_lookup[bsize]; |
| int i; |
| vp10_write(w, 1, cm->fc->txfm_partition_prob[ctx]); |
| |
| if (tx_size == TX_8X8) { |
| txfm_partition_update(xd->above_txfm_context + tx_col, |
| xd->left_txfm_context + tx_row, TX_4X4); |
| return; |
| } |
| |
| assert(bsl > 0); |
| --bsl; |
| for (i = 0; i < 4; ++i) { |
| int offsetr = blk_row + ((i >> 1) << bsl); |
| int offsetc = blk_col + ((i & 0x01) << bsl); |
| write_tx_size_inter(cm, xd, mbmi, tx_size - 1, offsetr, offsetc, w); |
| } |
| } |
| } |
| |
| static void update_txfm_partition_probs(VP10_COMMON *cm, vp10_writer *w, |
| FRAME_COUNTS *counts) { |
| int k; |
| for (k = 0; k < TXFM_PARTITION_CONTEXTS; ++k) |
| vp10_cond_prob_diff_update(w, &cm->fc->txfm_partition_prob[k], |
| counts->txfm_partition[k]); |
| } |
| #endif |
| |
| static void write_selected_tx_size(const VP10_COMMON *cm, |
| const MACROBLOCKD *xd, vp10_writer *w) { |
| TX_SIZE tx_size = xd->mi[0]->mbmi.tx_size; |
| BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; |
| if (max_tx_size > TX_4X4) { |
| vp10_write_token(w, vp10_tx_size_tree[max_tx_size - TX_8X8], |
| cm->fc->tx_size_probs[max_tx_size - TX_8X8] |
| [get_tx_size_context(xd)], |
| &tx_size_encodings[max_tx_size - TX_8X8][tx_size]); |
| } |
| } |
| |
| #if CONFIG_REF_MV |
| static void update_inter_mode_probs(VP10_COMMON *cm, vp10_writer *w, |
| FRAME_COUNTS *counts) { |
| int i; |
| for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) |
| vp10_cond_prob_diff_update(w, &cm->fc->newmv_prob[i], |
| counts->newmv_mode[i]); |
| for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i) |
| vp10_cond_prob_diff_update(w, &cm->fc->zeromv_prob[i], |
| counts->zeromv_mode[i]); |
| for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) |
| vp10_cond_prob_diff_update(w, &cm->fc->refmv_prob[i], |
| counts->refmv_mode[i]); |
| for (i = 0; i < DRL_MODE_CONTEXTS; ++i) |
| vp10_cond_prob_diff_update(w, &cm->fc->drl_prob[i], |
| counts->drl_mode[i]); |
| #if CONFIG_EXT_INTER |
| vp10_cond_prob_diff_update(w, &cm->fc->new2mv_prob, counts->new2mv_mode); |
| #endif // CONFIG_EXT_INTER |
| } |
| #endif |
| |
| #if CONFIG_EXT_INTER |
| static void update_inter_compound_mode_probs(VP10_COMMON *cm, vp10_writer *w) { |
| const int savings_thresh = vp10_cost_one(GROUP_DIFF_UPDATE_PROB) - |
| vp10_cost_zero(GROUP_DIFF_UPDATE_PROB); |
| int i; |
| int savings = 0; |
| int do_update = 0; |
| for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { |
| savings += prob_diff_update_savings(vp10_inter_compound_mode_tree, |
| cm->fc->inter_compound_mode_probs[i], |
| cm->counts.inter_compound_mode[i], |
| INTER_COMPOUND_MODES); |
| } |
| do_update = savings > savings_thresh; |
| vp10_write(w, do_update, GROUP_DIFF_UPDATE_PROB); |
| if (do_update) { |
| for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { |
| prob_diff_update(vp10_inter_compound_mode_tree, |
| cm->fc->inter_compound_mode_probs[i], |
| cm->counts.inter_compound_mode[i], |
| INTER_COMPOUND_MODES, w); |
| } |
| } |
| } |
| #endif // CONFIG_EXT_INTER |
| |
| static int write_skip(const VP10_COMMON *cm, const MACROBLOCKD *xd, |
| int segment_id, const MODE_INFO *mi, vp10_writer *w) { |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { |
| return 1; |
| } else { |
| const int skip = mi->mbmi.skip; |
| vp10_write(w, skip, vp10_get_skip_prob(cm, xd)); |
| return skip; |
| } |
| } |
| |
| static void update_skip_probs(VP10_COMMON *cm, vp10_writer *w, |
| FRAME_COUNTS *counts) { |
| int k; |
| |
| for (k = 0; k < SKIP_CONTEXTS; ++k) |
| vp10_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]); |
| } |
| |
| static void update_switchable_interp_probs(VP10_COMMON *cm, vp10_writer *w, |
| FRAME_COUNTS *counts) { |
| int j; |
| for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) |
| prob_diff_update(vp10_switchable_interp_tree, |
| cm->fc->switchable_interp_prob[j], |
| counts->switchable_interp[j], SWITCHABLE_FILTERS, w); |
| } |
| |
| |
| #if CONFIG_EXT_TX |
| static void update_ext_tx_probs(VP10_COMMON *cm, vp10_writer *w) { |
| const int savings_thresh = vp10_cost_one(GROUP_DIFF_UPDATE_PROB) - |
| vp10_cost_zero(GROUP_DIFF_UPDATE_PROB); |
| int i, j; |
| int s; |
| for (s = 1; s < EXT_TX_SETS_INTER; ++s) { |
| int savings = 0; |
| int do_update = 0; |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| if (!use_inter_ext_tx_for_txsize[s][i]) continue; |
| savings += prob_diff_update_savings( |
| vp10_ext_tx_inter_tree[s], cm->fc->inter_ext_tx_prob[s][i], |
| cm->counts.inter_ext_tx[s][i], num_ext_tx_set_inter[s]); |
| } |
| do_update = savings > savings_thresh; |
| vp10_write(w, do_update, GROUP_DIFF_UPDATE_PROB); |
| if (do_update) { |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| if (!use_inter_ext_tx_for_txsize[s][i]) continue; |
| prob_diff_update(vp10_ext_tx_inter_tree[s], |
| cm->fc->inter_ext_tx_prob[s][i], |
| cm->counts.inter_ext_tx[s][i], |
| num_ext_tx_set_inter[s], w); |
| } |
| } |
| } |
| |
| for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { |
| int savings = 0; |
| int do_update = 0; |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| if (!use_intra_ext_tx_for_txsize[s][i]) continue; |
| for (j = 0; j < INTRA_MODES; ++j) |
| savings += prob_diff_update_savings( |
| vp10_ext_tx_intra_tree[s], cm->fc->intra_ext_tx_prob[s][i][j], |
| cm->counts.intra_ext_tx[s][i][j], num_ext_tx_set_intra[s]); |
| } |
| do_update = savings > savings_thresh; |
| vp10_write(w, do_update, GROUP_DIFF_UPDATE_PROB); |
| if (do_update) { |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| if (!use_intra_ext_tx_for_txsize[s][i]) continue; |
| for (j = 0; j < INTRA_MODES; ++j) |
| prob_diff_update(vp10_ext_tx_intra_tree[s], |
| cm->fc->intra_ext_tx_prob[s][i][j], |
| cm->counts.intra_ext_tx[s][i][j], |
| num_ext_tx_set_intra[s], w); |
| } |
| } |
| } |
| } |
| |
| #else |
| |
| static void update_ext_tx_probs(VP10_COMMON *cm, vp10_writer *w) { |
| const int savings_thresh = vp10_cost_one(GROUP_DIFF_UPDATE_PROB) - |
| vp10_cost_zero(GROUP_DIFF_UPDATE_PROB); |
| int i, j; |
| |
| int savings = 0; |
| int do_update = 0; |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| for (j = 0; j < TX_TYPES; ++j) |
| savings += prob_diff_update_savings( |
| vp10_ext_tx_tree, cm->fc->intra_ext_tx_prob[i][j], |
| cm->counts.intra_ext_tx[i][j], TX_TYPES); |
| } |
| do_update = savings > savings_thresh; |
| vp10_write(w, do_update, GROUP_DIFF_UPDATE_PROB); |
| if (do_update) { |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| for (j = 0; j < TX_TYPES; ++j) |
| prob_diff_update(vp10_ext_tx_tree, |
| cm->fc->intra_ext_tx_prob[i][j], |
| cm->counts.intra_ext_tx[i][j], |
| TX_TYPES, w); |
| } |
| } |
| savings = 0; |
| do_update = 0; |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| savings += prob_diff_update_savings( |
| vp10_ext_tx_tree, cm->fc->inter_ext_tx_prob[i], |
| cm->counts.inter_ext_tx[i], TX_TYPES); |
| } |
| do_update = savings > savings_thresh; |
| vp10_write(w, do_update, GROUP_DIFF_UPDATE_PROB); |
| if (do_update) { |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| prob_diff_update(vp10_ext_tx_tree, |
| cm->fc->inter_ext_tx_prob[i], |
| cm->counts.inter_ext_tx[i], |
| TX_TYPES, w); |
| } |
| } |
| } |
| #endif // CONFIG_EXT_TX |
| |
| static void pack_palette_tokens(vp10_writer *w, const TOKENEXTRA **tp, |
| int n, int num) { |
| int i; |
| const TOKENEXTRA *p = *tp; |
| |
| for (i = 0; i < num; ++i) { |
| vp10_write_token(w, vp10_palette_color_tree[n - 2], p->context_tree, |
| &palette_color_encodings[n - 2][p->token]); |
| ++p; |
| } |
| |
| *tp = p; |
| } |
| |
| #if CONFIG_SUPERTX |
| static void update_supertx_probs(VP10_COMMON *cm, vp10_writer *w) { |
| const int savings_thresh = vp10_cost_one(GROUP_DIFF_UPDATE_PROB) - |
| vp10_cost_zero(GROUP_DIFF_UPDATE_PROB); |
| int i, j; |
| int savings = 0; |
| int do_update = 0; |
| for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) { |
| for (j = 1; j < TX_SIZES; ++j) { |
| savings += vp10_cond_prob_diff_update_savings(&cm->fc->supertx_prob[i][j], |
| cm->counts.supertx[i][j]); |
| } |
| } |
| do_update = savings > savings_thresh; |
| vp10_write(w, do_update, GROUP_DIFF_UPDATE_PROB); |
| if (do_update) { |
| for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) { |
| for (j = 1; j < TX_SIZES; ++j) { |
| vp10_cond_prob_diff_update(w, &cm->fc->supertx_prob[i][j], |
| cm->counts.supertx[i][j]); |
| } |
| } |
| } |
| } |
| #endif // CONFIG_SUPERTX |
| |
| #if !CONFIG_ANS |
| static void pack_mb_tokens(vp10_writer *w, |
| const TOKENEXTRA **tp, const TOKENEXTRA *const stop, |
| vpx_bit_depth_t bit_depth, const TX_SIZE tx) { |
| const TOKENEXTRA *p = *tp; |
| #if CONFIG_VAR_TX |
| int count = 0; |
| const int seg_eob = 16 << (tx << 1); |
| #endif |
| |
| while (p < stop && p->token != EOSB_TOKEN) { |
| const int t = p->token; |
| const struct vp10_token *const a = &vp10_coef_encodings[t]; |
| int v = a->value; |
| int n = a->len; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const vp10_extra_bit *b; |
| if (bit_depth == VPX_BITS_12) |
| b = &vp10_extra_bits_high12[t]; |
| else if (bit_depth == VPX_BITS_10) |
| b = &vp10_extra_bits_high10[t]; |
| else |
| b = &vp10_extra_bits[t]; |
| #else |
| const vp10_extra_bit *const b = &vp10_extra_bits[t]; |
| (void) bit_depth; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| /* skip one or two nodes */ |
| if (p->skip_eob_node) |
| n -= p->skip_eob_node; |
| else |
| vp10_write(w, t != EOB_TOKEN, p->context_tree[0]); |
| |
| if (t != EOB_TOKEN) { |
| vp10_write(w, t != ZERO_TOKEN, p->context_tree[1]); |
| |
| if (t != ZERO_TOKEN) { |
| vp10_write(w, t != ONE_TOKEN, p->context_tree[2]); |
| |
| if (t != ONE_TOKEN) { |
| int len = UNCONSTRAINED_NODES - p->skip_eob_node; |
| vp10_write_tree(w, vp10_coef_con_tree, |
| vp10_pareto8_full[p->context_tree[PIVOT_NODE] - 1], |
| v, n - len, 0); |
| } |
| } |
| } |
| |
| if (b->base_val) { |
| const int e = p->extra, l = b->len; |
| int skip_bits = |
| (b->base_val == CAT6_MIN_VAL) ? TX_SIZES - 1 - tx : 0; |
| |
| if (l) { |
| const unsigned char *pb = b->prob; |
| int v = e >> 1; |
| int n = l; /* number of bits in v, assumed nonzero */ |
| int i = 0; |
| |
| do { |
| const int bb = (v >> --n) & 1; |
| if (skip_bits) { |
| skip_bits--; |
| assert(!bb); |
| } else { |
| vp10_write(w, bb, pb[i >> 1]); |
| } |
| i = b->tree[i + bb]; |
| } while (n); |
| } |
| |
| vp10_write_bit(w, e & 1); |
| } |
| ++p; |
| |
| #if CONFIG_VAR_TX |
| ++count; |
| if (t == EOB_TOKEN || count == seg_eob) |
| break; |
| #endif |
| } |
| |
| *tp = p; |
| } |
| #else |
| // This function serializes the tokens in forward order using a buffered ans |
| // coder. |
| static void pack_mb_tokens(struct BufAnsCoder *ans, |
| const TOKENEXTRA **tp, |
| const TOKENEXTRA *const stop, |
| vpx_bit_depth_t bit_depth, |
| const TX_SIZE tx) { |
| const TOKENEXTRA *p = *tp; |
| #if CONFIG_VAR_TX |
| int count = 0; |
| const int seg_eob = 16 << (tx << 1); |
| #endif // CONFIG_VAR_TX |
| |
| while (p < stop && p->token != EOSB_TOKEN) { |
| const int t = p->token; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const vp10_extra_bit *b; |
| if (bit_depth == VPX_BITS_12) |
| b = &vp10_extra_bits_high12[t]; |
| else if (bit_depth == VPX_BITS_10) |
| b = &vp10_extra_bits_high10[t]; |
| else |
| b = &vp10_extra_bits[t]; |
| #else |
| const vp10_extra_bit *const b = &vp10_extra_bits[t]; |
| (void)bit_depth; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| /* skip one or two nodes */ |
| if (!p->skip_eob_node) |
| buf_uabs_write(ans, t != EOB_TOKEN, p->context_tree[0]); |
| |
| if (t != EOB_TOKEN) { |
| struct rans_sym s; |
| const rans_dec_lut *token_cdf = p->token_cdf; |
| assert(token_cdf); |
| s.cum_prob = (*token_cdf)[t - ZERO_TOKEN]; |
| s.prob = (*token_cdf)[t - ZERO_TOKEN + 1] - s.cum_prob; |
| buf_rans_write(ans, &s); |
| |
| if (b->base_val) { |
| const int e = p->extra, l = b->len; |
| int skip_bits = (b->base_val == CAT6_MIN_VAL) ? TX_SIZES - 1 - tx : 0; |
| |
| if (l) { |
| const unsigned char *pb = b->prob; |
| int v = e >> 1; |
| int n = l; /* number of bits in v, assumed nonzero */ |
| int i = 0; |
| |
| do { |
| const int bb = (v >> --n) & 1; |
| if (skip_bits) { |
| skip_bits--; |
| assert(!bb); |
| } else { |
| buf_uabs_write(ans, bb, pb[i >> 1]); |
| } |
| i = b->tree[i + bb]; |
| } while (n); |
| } |
| |
| buf_uabs_write(ans, e & 1, 128); |
| } |
| } |
| ++p; |
| |
| #if CONFIG_VAR_TX |
| ++count; |
| if (t == EOB_TOKEN || count == seg_eob) break; |
| #endif // CONFIG_VAR_TX |
| } |
| |
| *tp = p; |
| } |
| #endif // !CONFIG_ANS |
| |
| #if CONFIG_VAR_TX |
| static void pack_txb_tokens(vp10_writer *w, |
| const TOKENEXTRA **tp, |
| const TOKENEXTRA *const tok_end, |
| MACROBLOCKD *xd, MB_MODE_INFO *mbmi, int plane, |
| BLOCK_SIZE plane_bsize, |
| vpx_bit_depth_t bit_depth, |
| int block, |
| int blk_row, int blk_col, TX_SIZE tx_size) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; |
| const int tx_row = blk_row >> (1 - pd->subsampling_y); |
| const int tx_col = blk_col >> (1 - pd->subsampling_x); |
| const TX_SIZE plane_tx_size = plane ? |
| get_uv_tx_size_impl(mbmi->inter_tx_size[tx_row][tx_col], bsize, 0, 0) : |
| mbmi->inter_tx_size[tx_row][tx_col]; |
| int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize]; |
| int max_blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize]; |
| |
| if (xd->mb_to_bottom_edge < 0) |
| max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y); |
| if (xd->mb_to_right_edge < 0) |
| max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) |
| return; |
| |
| if (tx_size == plane_tx_size) { |
| pack_mb_tokens(w, tp, tok_end, bit_depth, tx_size); |
| } else { |
| int bsl = b_width_log2_lookup[bsize]; |
| int i; |
| |
| assert(bsl > 0); |
| --bsl; |
| |
| for (i = 0; i < 4; ++i) { |
| const int offsetr = blk_row + ((i >> 1) << bsl); |
| const int offsetc = blk_col + ((i & 0x01) << bsl); |
| int step = 1 << (2 * (tx_size - 1)); |
| |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) |
| continue; |
| |
| pack_txb_tokens(w, tp, tok_end, xd, mbmi, plane, |
| plane_bsize, bit_depth, block + i * step, |
| offsetr, offsetc, tx_size - 1); |
| } |
| } |
| } |
| #endif |
| |
| static void write_segment_id(vp10_writer *w, const struct segmentation *seg, |
| const struct segmentation_probs *segp, |
| int segment_id) { |
| if (seg->enabled && seg->update_map) |
| vp10_write_tree(w, vp10_segment_tree, segp->tree_probs, segment_id, 3, 0); |
| } |
| |
| // This function encodes the reference frame |
| static void write_ref_frames(const VP10_COMMON *cm, const MACROBLOCKD *xd, |
| vp10_writer *w) { |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const int is_compound = has_second_ref(mbmi); |
| const int segment_id = mbmi->segment_id; |
| |
| // If segment level coding of this signal is disabled... |
| // or the segment allows multiple reference frame options |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { |
| assert(!is_compound); |
| assert(mbmi->ref_frame[0] == |
| get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); |
| } else { |
| // does the feature use compound prediction or not |
| // (if not specified at the frame/segment level) |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| vp10_write(w, is_compound, vp10_get_reference_mode_prob(cm, xd)); |
| } else { |
| assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE)); |
| } |
| |
| if (is_compound) { |
| #if CONFIG_EXT_REFS |
| const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME || |
| mbmi->ref_frame[0] == LAST3_FRAME); |
| const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME; |
| #else // CONFIG_EXT_REFS |
| const int bit = mbmi->ref_frame[0] == GOLDEN_FRAME; |
| #endif // CONFIG_EXT_REFS |
| |
| vp10_write(w, bit, vp10_get_pred_prob_comp_ref_p(cm, xd)); |
| |
| #if CONFIG_EXT_REFS |
| if (!bit) { |
| const int bit1 = mbmi->ref_frame[0] == LAST_FRAME; |
| vp10_write(w, bit1, vp10_get_pred_prob_comp_ref_p1(cm, xd)); |
| } else { |
| const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME; |
| vp10_write(w, bit2, vp10_get_pred_prob_comp_ref_p2(cm, xd)); |
| } |
| vp10_write(w, bit_bwd, vp10_get_pred_prob_comp_bwdref_p(cm, xd)); |
| #endif // CONFIG_EXT_REFS |
| } else { |
| #if CONFIG_EXT_REFS |
| const int bit0 = (mbmi->ref_frame[0] == ALTREF_FRAME || |
| mbmi->ref_frame[0] == BWDREF_FRAME); |
| vp10_write(w, bit0, vp10_get_pred_prob_single_ref_p1(cm, xd)); |
| |
| if (bit0) { |
| const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME; |
| vp10_write(w, bit1, vp10_get_pred_prob_single_ref_p2(cm, xd)); |
| } else { |
| const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME || |
| mbmi->ref_frame[0] == GOLDEN_FRAME); |
| vp10_write(w, bit2, vp10_get_pred_prob_single_ref_p3(cm, xd)); |
| |
| if (!bit2) { |
| const int bit3 = mbmi->ref_frame[0] != LAST_FRAME; |
| vp10_write(w, bit3, vp10_get_pred_prob_single_ref_p4(cm, xd)); |
| } else { |
| const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME; |
| vp10_write(w, bit4, vp10_get_pred_prob_single_ref_p5(cm, xd)); |
| } |
| } |
| #else // CONFIG_EXT_REFS |
| const int bit0 = mbmi->ref_frame[0] != LAST_FRAME; |
| vp10_write(w, bit0, vp10_get_pred_prob_single_ref_p1(cm, xd)); |
| |
| if (bit0) { |
| const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME; |
| vp10_write(w, bit1, vp10_get_pred_prob_single_ref_p2(cm, xd)); |
| } |
| #endif // CONFIG_EXT_REFS |
| } |
| } |
| } |
| |
| #if CONFIG_EXT_INTRA |
| static void write_ext_intra_mode_info(const VP10_COMMON *const cm, |
| const MB_MODE_INFO *const mbmi, |
| vp10_writer *w) { |
| #if !ALLOW_FILTER_INTRA_MODES |
| return; |
| #endif |
| if (mbmi->mode == DC_PRED && |
| mbmi->palette_mode_info.palette_size[0] == 0) { |
| vp10_write(w, mbmi->ext_intra_mode_info.use_ext_intra_mode[0], |
| cm->fc->ext_intra_probs[0]); |
| if (mbmi->ext_intra_mode_info.use_ext_intra_mode[0]) { |
| EXT_INTRA_MODE mode = mbmi->ext_intra_mode_info.ext_intra_mode[0]; |
| write_uniform(w, FILTER_INTRA_MODES, mode); |
| } |
| } |
| |
| if (mbmi->uv_mode == DC_PRED && |
| mbmi->palette_mode_info.palette_size[1] == 0) { |
| vp10_write(w, mbmi->ext_intra_mode_info.use_ext_intra_mode[1], |
| cm->fc->ext_intra_probs[1]); |
| if (mbmi->ext_intra_mode_info.use_ext_intra_mode[1]) { |
| EXT_INTRA_MODE mode = mbmi->ext_intra_mode_info.ext_intra_mode[1]; |
| write_uniform(w, FILTER_INTRA_MODES, mode); |
| } |
| } |
| } |
| |
| static void write_intra_angle_info(const VP10_COMMON *cm, const MACROBLOCKD *xd, |
| vp10_writer *w) { |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int intra_filter_ctx = vp10_get_pred_context_intra_interp(xd); |
| int p_angle; |
| |
| if (bsize < BLOCK_8X8) |
| return; |
| |
| if (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED) { |
| write_uniform(w, 2 * MAX_ANGLE_DELTAS + 1, |
| MAX_ANGLE_DELTAS + mbmi->angle_delta[0]); |
| p_angle = mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; |
| if (vp10_is_intra_filter_switchable(p_angle)) { |
| vp10_write_token(w, vp10_intra_filter_tree, |
| cm->fc->intra_filter_probs[intra_filter_ctx], |
| &intra_filter_encodings[mbmi->intra_filter]); |
| } |
| } |
| |
| if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED) { |
| write_uniform(w, 2 * MAX_ANGLE_DELTAS + 1, |
| MAX_ANGLE_DELTAS + mbmi->angle_delta[1]); |
| } |
| } |
| #endif // CONFIG_EXT_INTRA |
| |
| static void write_switchable_interp_filter(VP10_COMP *cpi, |
| const MACROBLOCKD *xd, |
| vp10_writer *w) { |
| VP10_COMMON *const cm = &cpi->common; |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| #if CONFIG_DUAL_FILTER |
| int dir; |
| #endif |
| if (cm->interp_filter == SWITCHABLE) { |
| #if CONFIG_EXT_INTERP |
| #if CONFIG_DUAL_FILTER |
| if (!vp10_is_interp_needed(xd)) { |
| assert(mbmi->interp_filter[0] == EIGHTTAP_REGULAR); |
| return; |
| } |
| #else |
| if (!vp10_is_interp_needed(xd)) { |
| #if CONFIG_DUAL_FILTER |
| assert(mbmi->interp_filter[0] == EIGHTTAP_REGULAR); |
| assert(mbmi->interp_filter[1] == EIGHTTAP_REGULAR); |
| #else |
| assert(mbmi->interp_filter == EIGHTTAP_REGULAR); |
| #endif |
| return; |
| } |
| #endif // CONFIG_DUAL_FILTER |
| #endif // CONFIG_EXT_INTERP |
| #if CONFIG_DUAL_FILTER |
| for (dir = 0; dir < 2; ++dir) { |
| if (has_subpel_mv_component(xd->mi[0], xd, dir) || |
| (mbmi->ref_frame[1] > INTRA_FRAME && |
| has_subpel_mv_component(xd->mi[0], xd, dir + 2))) { |
| const int ctx = vp10_get_pred_context_switchable_interp(xd, dir); |
| vp10_write_token(w, vp10_switchable_interp_tree, |
| cm->fc->switchable_interp_prob[ctx], |
| &switchable_interp_encodings[mbmi->interp_filter[dir]]); |
| ++cpi->interp_filter_selected[0][mbmi->interp_filter[dir]]; |
| } |
| } |
| #else |
| { |
| const int ctx = vp10_get_pred_context_switchable_interp(xd); |
| vp10_write_token(w, vp10_switchable_interp_tree, |
| cm->fc->switchable_interp_prob[ctx], |
| &switchable_interp_encodings[mbmi->interp_filter]); |
| ++cpi->interp_filter_selected[0][mbmi->interp_filter]; |
| } |
| #endif |
| } |
| } |
| |
| static void write_palette_mode_info(const VP10_COMMON *cm, |
| const MACROBLOCKD *xd, |
| const MODE_INFO *const mi, |
| vp10_writer *w) { |
| const MB_MODE_INFO *const mbmi = &mi->mbmi; |
| const MODE_INFO *const above_mi = xd->above_mi; |
| const MODE_INFO *const left_mi = xd->left_mi; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| int palette_ctx = 0; |
| int n, i; |
| |
| if (mbmi->mode == DC_PRED) { |
| n = pmi->palette_size[0]; |
| if (above_mi) |
| palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0); |
| if (left_mi) |
| palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0); |
| vp10_write(w, n > 0, |
| vp10_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx]); |
| if (n > 0) { |
| vp10_write_token(w, vp10_palette_size_tree, |
| vp10_default_palette_y_size_prob[bsize - BLOCK_8X8], |
| &palette_size_encodings[n - 2]); |
| for (i = 0; i < n; ++i) |
| vp10_write_literal(w, pmi->palette_colors[i], cm->bit_depth); |
| write_uniform(w, n, pmi->palette_first_color_idx[0]); |
| } |
| } |
| |
| if (mbmi->uv_mode == DC_PRED) { |
| n = pmi->palette_size[1]; |
| vp10_write(w, n > 0, |
| vp10_default_palette_uv_mode_prob[pmi->palette_size[0] > 0]); |
| if (n > 0) { |
| vp10_write_token(w, vp10_palette_size_tree, |
| vp10_default_palette_uv_size_prob[bsize - BLOCK_8X8], |
| &palette_size_encodings[n - 2]); |
| for (i = 0; i < n; ++i) { |
| vp10_write_literal(w, pmi->palette_colors[PALETTE_MAX_SIZE + i], |
| cm->bit_depth); |
| vp10_write_literal(w, pmi->palette_colors[2 * PALETTE_MAX_SIZE + i], |
| cm->bit_depth); |
| } |
| write_uniform(w, n, pmi->palette_first_color_idx[1]); |
| } |
| } |
| } |
| |
| static void pack_inter_mode_mvs(VP10_COMP *cpi, const MODE_INFO *mi, |
| #if CONFIG_SUPERTX |
| int supertx_enabled, |
| #endif |
| vp10_writer *w) { |
| VP10_COMMON *const cm = &cpi->common; |
| #if !CONFIG_REF_MV |
| const nmv_context *nmvc = &cm->fc->nmvc; |
| #endif |
| const MACROBLOCK *x = &cpi->td.mb; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const struct segmentation *const seg = &cm->seg; |
| const struct segmentation_probs *const segp = &cm->fc->seg; |
| const MB_MODE_INFO *const mbmi = &mi->mbmi; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const PREDICTION_MODE mode = mbmi->mode; |
| const int segment_id = mbmi->segment_id; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int allow_hp = cm->allow_high_precision_mv; |
| const int is_inter = is_inter_block(mbmi); |
| const int is_compound = has_second_ref(mbmi); |
| int skip, ref; |
| |
| if (seg->update_map) { |
| if (seg->temporal_update) { |
| const int pred_flag = mbmi->seg_id_predicted; |
| vpx_prob pred_prob = vp10_get_pred_prob_seg_id(segp, xd); |
| vp10_write(w, pred_flag, pred_prob); |
| if (!pred_flag) |
| write_segment_id(w, seg, segp, segment_id); |
| } else { |
| write_segment_id(w, seg, segp, segment_id); |
| } |
| } |
| |
| #if CONFIG_SUPERTX |
| if (supertx_enabled) |
| skip = mbmi->skip; |
| else |
| skip = write_skip(cm, xd, segment_id, mi, w); |
| #else |
| skip = write_skip(cm, xd, segment_id, mi, w); |
| #endif // CONFIG_SUPERTX |
| |
| #if CONFIG_SUPERTX |
| if (!supertx_enabled) |
| #endif // CONFIG_SUPERTX |
| if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) |
| vp10_write(w, is_inter, vp10_get_intra_inter_prob(cm, xd)); |
| |
| if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && |
| #if CONFIG_SUPERTX |
| !supertx_enabled && |
| #endif // CONFIG_SUPERTX |
| !(is_inter && skip) && !xd->lossless[segment_id]) { |
| #if CONFIG_VAR_TX |
| if (is_inter) { // This implies skip flag is 0. |
| const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; |
| const int txb_size = txsize_to_bsize[max_tx_size]; |
| const int bs = num_4x4_blocks_wide_lookup[txb_size]; |
| const int width = num_4x4_blocks_wide_lookup[bsize]; |
| const int height = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| for (idy = 0; idy < height; idy += bs) |
| for (idx = 0; idx < width; idx += bs) |
| write_tx_size_inter(cm, xd, mbmi, max_tx_size, idy, idx, w); |
| } else { |
| set_txfm_ctx(xd->left_txfm_context, mbmi->tx_size, xd->n8_h); |
| set_txfm_ctx(xd->above_txfm_context, mbmi->tx_size, xd->n8_w); |
| |
| write_selected_tx_size(cm, xd, w); |
| } |
| } else { |
| set_txfm_ctx(xd->left_txfm_context, mbmi->tx_size, xd->n8_h); |
| set_txfm_ctx(xd->above_txfm_context, mbmi->tx_size, xd->n8_w); |
| #else |
| write_selected_tx_size(cm, xd, w); |
| #endif |
| } |
| |
| if (!is_inter) { |
| if (bsize >= BLOCK_8X8) { |
| write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]); |
| } else { |
| int idx, idy; |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| for (idy = 0; idy < 2; idy += num_4x4_h) { |
| for (idx = 0; idx < 2; idx += num_4x4_w) { |
| const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode; |
| write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]); |
| } |
| } |
| } |
| write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mode]); |
| #if CONFIG_EXT_INTRA |
| write_intra_angle_info(cm, xd, w); |
| #endif // CONFIG_EXT_INTRA |
| if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools) |
| write_palette_mode_info(cm, xd, mi, w); |
| #if CONFIG_EXT_INTRA |
| if (bsize >= BLOCK_8X8) |
| write_ext_intra_mode_info(cm, mbmi, w); |
| #endif // CONFIG_EXT_INTRA |
| } else { |
| int16_t mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]]; |
| write_ref_frames(cm, xd, w); |
| |
| #if CONFIG_REF_MV |
| #if CONFIG_EXT_INTER |
| if (is_compound) |
| mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]]; |
| else |
| #endif // CONFIG_EXT_INTER |
| mode_ctx = vp10_mode_context_analyzer(mbmi_ext->mode_context, |
| mbmi->ref_frame, bsize, -1); |
| #endif |
| |
| // If segment skip is not enabled code the mode. |
| if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { |
| if (bsize >= BLOCK_8X8) { |
| #if CONFIG_EXT_INTER |
| if (is_inter_compound_mode(mode)) |
| write_inter_compound_mode(cm, w, mode, mode_ctx); |
| else if (is_inter_singleref_mode(mode)) |
| #endif // CONFIG_EXT_INTER |
| write_inter_mode(cm, w, mode, |
| #if CONFIG_REF_MV && CONFIG_EXT_INTER |
| is_compound, |
| #endif // CONFIG_REF_MV && CONFIG_EXT_INTER |
| mode_ctx); |
| |
| #if CONFIG_REF_MV |
| if (mode == NEARMV || mode == NEWMV) |
| write_drl_idx(cm, mbmi, mbmi_ext, w); |
| #endif |
| } |
| } |
| |
| #if !CONFIG_EXT_INTERP && !CONFIG_DUAL_FILTER |
| write_switchable_interp_filter(cpi, xd, w); |
| #endif // !CONFIG_EXT_INTERP |
| |
| if (bsize < BLOCK_8X8) { |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| for (idy = 0; idy < 2; idy += num_4x4_h) { |
| for (idx = 0; idx < 2; idx += num_4x4_w) { |
| const int j = idy * 2 + idx; |
| const PREDICTION_MODE b_mode = mi->bmi[j].as_mode; |
| #if CONFIG_REF_MV |
| #if CONFIG_EXT_INTER |
| if (!is_compound) |
| #endif // CONFIG_EXT_INTER |
| mode_ctx = vp10_mode_context_analyzer(mbmi_ext->mode_context, |
| mbmi->ref_frame, bsize, j); |
| #endif |
| #if CONFIG_EXT_INTER |
| if (is_inter_compound_mode(b_mode)) |
| write_inter_compound_mode(cm, w, b_mode, mode_ctx); |
| else if (is_inter_singleref_mode(b_mode)) |
| #endif // CONFIG_EXT_INTER |
| write_inter_mode(cm, w, b_mode, |
| #if CONFIG_REF_MV && CONFIG_EXT_INTER |
| has_second_ref(mbmi), |
| #endif // CONFIG_REF_MV && CONFIG_EXT_INTER |
| mode_ctx); |
| |
| #if CONFIG_EXT_INTER |
| if (b_mode == NEWMV || b_mode == NEWFROMNEARMV || |
| b_mode == NEW_NEWMV) { |
| #else |
| if (b_mode == NEWMV) { |
| #endif // CONFIG_EXT_INTER |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| #if CONFIG_REF_MV |
| int nmv_ctx = |
| vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[ref]], |
| mbmi_ext->ref_mv_stack[mbmi->ref_frame[ref]]); |
| const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx]; |
| #endif |
| vp10_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv, |
| #if CONFIG_EXT_INTER |
| &mi->bmi[j].ref_mv[ref].as_mv, |
| #if CONFIG_REF_MV |
| is_compound, |
| #endif |
| #else |
| #if CONFIG_REF_MV |
| &mi->bmi[j].pred_mv_s8[ref].as_mv, |
| is_compound, |
| #else |
| &mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, |
| #endif // CONFIG_REF_MV |
| #endif // CONFIG_EXT_INTER |
| nmvc, allow_hp); |
| } |
| } |
| #if CONFIG_EXT_INTER |
| else if (b_mode == NEAREST_NEWMV || b_mode == NEAR_NEWMV) { |
| #if CONFIG_REF_MV |
| int nmv_ctx = |
| vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[1]], |
| mbmi_ext->ref_mv_stack[mbmi->ref_frame[1]]); |
| const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx]; |
| #endif |
| vp10_encode_mv(cpi, w, &mi->bmi[j].as_mv[1].as_mv, |
| &mi->bmi[j].ref_mv[1].as_mv, |
| #if CONFIG_REF_MV |
| is_compound, |
| #endif |
| nmvc, allow_hp); |
| } else if (b_mode == NEW_NEARESTMV || b_mode == NEW_NEARMV) { |
| #if CONFIG_REF_MV |
| int nmv_ctx = |
| vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[0]], |
| mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]]); |
| const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx]; |
| #endif |
| vp10_encode_mv(cpi, w, &mi->bmi[j].as_mv[0].as_mv, |
| &mi->bmi[j].ref_mv[0].as_mv, |
| #if CONFIG_REF_MV |
| is_compound, |
| #endif |
| nmvc, allow_hp); |
| } |
| #endif // CONFIG_EXT_INTER |
| } |
| } |
| } else { |
| #if CONFIG_EXT_INTER |
| if (mode == NEWMV || mode == NEWFROMNEARMV || mode == NEW_NEWMV) { |
| #else |
| if (mode == NEWMV) { |
| #endif // CONFIG_EXT_INTER |
| int_mv ref_mv; |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| #if CONFIG_REF_MV |
| int nmv_ctx = |
| vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[ref]], |
| mbmi_ext->ref_mv_stack[mbmi->ref_frame[ref]]); |
| const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx]; |
| #endif |
| ref_mv = mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0]; |
| #if CONFIG_EXT_INTER |
| if (mode == NEWFROMNEARMV) |
| vp10_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, |
| &mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][1].as_mv, |
| #if CONFIG_REF_MV |
| is_compound, |
| #endif |
| nmvc, allow_hp); |
| else |
| #endif // CONFIG_EXT_INTER |
| vp10_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, |
| &ref_mv.as_mv, |
| #if CONFIG_REF_MV |
| is_compound, |
| #endif |
| nmvc, allow_hp); |
| } |
| #if CONFIG_EXT_INTER |
| } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) { |
| #if CONFIG_REF_MV |
| int nmv_ctx = |
| vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[1]], |
| mbmi_ext->ref_mv_stack[mbmi->ref_frame[1]]); |
| const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx]; |
| #endif |
| vp10_encode_mv(cpi, w, &mbmi->mv[1].as_mv, |
| &mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_mv, |
| #if CONFIG_REF_MV |
| is_compound, |
| #endif |
| nmvc, allow_hp); |
| } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) { |
| #if CONFIG_REF_MV |
| int nmv_ctx = |
| vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[0]], |
| mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]]); |
| const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx]; |
| #endif |
| vp10_encode_mv(cpi, w, &mbmi->mv[0].as_mv, |
| &mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_mv, |
| #if CONFIG_REF_MV |
| is_compound, |
| #endif |
| nmvc, allow_hp); |
| #endif // CONFIG_EXT_INTER |
| } |
| } |
| |
| #if CONFIG_EXT_INTER |
| if (cpi->common.reference_mode != COMPOUND_REFERENCE && |
| #if CONFIG_SUPERTX |
| !supertx_enabled && |
| #endif // CONFIG_SUPERTX |
| is_interintra_allowed(mbmi)) { |
| const int interintra = mbmi->ref_frame[1] == INTRA_FRAME; |
| const int bsize_group = size_group_lookup[bsize]; |
| vp10_write(w, interintra, cm->fc->interintra_prob[bsize_group]); |
| if (interintra) { |
| write_interintra_mode( |
| w, mbmi->interintra_mode, |
| cm->fc->interintra_mode_prob[bsize_group]); |
| if (is_interintra_wedge_used(bsize)) { |
| vp10_write(w, mbmi->use_wedge_interintra, |
| cm->fc->wedge_interintra_prob[bsize]); |
| if (mbmi->use_wedge_interintra) { |
| vp10_write_literal(w, mbmi->interintra_wedge_index, |
| get_wedge_bits_lookup(bsize)); |
| assert(mbmi->interintra_wedge_sign == 0); |
| } |
| } |
| } |
| } |
| #endif // CONFIG_EXT_INTER |
| |
| #if CONFIG_OBMC || CONFIG_WARPED_MOTION |
| #if CONFIG_SUPERTX |
| if (!supertx_enabled) |
| #endif // CONFIG_SUPERTX |
| #if CONFIG_EXT_INTER |
| if (mbmi->ref_frame[1] != INTRA_FRAME) |
| #endif // CONFIG_EXT_INTER |
| if (is_motvar_allowed(mbmi)) { |
| // TODO(debargha): Might want to only emit this if SEG_LVL_SKIP |
| // is not active, and assume SIMPLE_TRANSLATION in the decoder if |
| // it is active. |
| assert(mbmi->motion_variation < MOTION_VARIATIONS); |
| vp10_write_token(w, vp10_motvar_tree, cm->fc->motvar_prob[bsize], |
| &motvar_encodings[mbmi->motion_variation]); |
| } |
| #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION |
| |
| #if CONFIG_EXT_INTER |
| if (cpi->common.reference_mode != SINGLE_REFERENCE && |
| is_inter_compound_mode(mbmi->mode) && |
| #if CONFIG_OBMC |
| !(is_motvar_allowed(mbmi) && |
| mbmi->motion_variation != SIMPLE_TRANSLATION) && |
| #endif // CONFIG_OBMC |
| is_interinter_wedge_used(bsize)) { |
| vp10_write(w, mbmi->use_wedge_interinter, |
| cm->fc->wedge_interinter_prob[bsize]); |
| if (mbmi->use_wedge_interinter) { |
| vp10_write_literal(w, mbmi->interinter_wedge_index, |
| get_wedge_bits_lookup(bsize)); |
| vp10_write_bit(w, mbmi->interinter_wedge_sign); |
| } |
| } |
| #endif // CONFIG_EXT_INTER |
| |
| #if CONFIG_EXT_INTERP || CONFIG_DUAL_FILTER |
| write_switchable_interp_filter(cpi, xd, w); |
| #endif // CONFIG_EXT_INTERP |
| } |
| |
| if (!FIXED_TX_TYPE) { |
| #if CONFIG_EXT_TX |
| if (get_ext_tx_types(mbmi->tx_size, bsize, is_inter) > 1 && |
| cm->base_qindex > 0 && !mbmi->skip && |
| #if CONFIG_SUPERTX |
| !supertx_enabled && |
| #endif // CONFIG_SUPERTX |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| int eset = get_ext_tx_set(mbmi->tx_size, bsize, is_inter); |
| if (is_inter) { |
| if (eset > 0) |
| vp10_write_token(w, vp10_ext_tx_inter_tree[eset], |
| cm->fc->inter_ext_tx_prob[eset][mbmi->tx_size], |
| &ext_tx_inter_encodings[eset][mbmi->tx_type]); |
| } else if (ALLOW_INTRA_EXT_TX) { |
| if (eset > 0) |
| vp10_write_token( |
| w, vp10_ext_tx_intra_tree[eset], |
| cm->fc->intra_ext_tx_prob[eset][mbmi->tx_size][mbmi->mode], |
| &ext_tx_intra_encodings[eset][mbmi->tx_type]); |
| } |
| } |
| #else |
| if (mbmi->tx_size < TX_32X32 && |
| cm->base_qindex > 0 && !mbmi->skip && |
| #if CONFIG_SUPERTX |
| !supertx_enabled && |
| #endif // CONFIG_SUPERTX |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| if (is_inter) { |
| vp10_write_token( |
| w, vp10_ext_tx_tree, |
| cm->fc->inter_ext_tx_prob[mbmi->tx_size], |
| &ext_tx_encodings[mbmi->tx_type]); |
| } else { |
| vp10_write_token( |
| w, vp10_ext_tx_tree, |
| cm->fc->intra_ext_tx_prob[mbmi->tx_size] |
| [intra_mode_to_tx_type_context[mbmi->mode]], |
| &ext_tx_encodings[mbmi->tx_type]); |
| } |
| } else { |
| if (!mbmi->skip) { |
| #if CONFIG_SUPERTX |
| if (!supertx_enabled) |
| #endif // CONFIG_SUPERTX |
| assert(mbmi->tx_type == DCT_DCT); |
| } |
| } |
| #endif // CONFIG_EXT_TX |
| } |
| } |
| |
| static void write_mb_modes_kf(const VP10_COMMON *cm, const MACROBLOCKD *xd, |
| MODE_INFO **mi_8x8, vp10_writer *w) { |
| const struct segmentation *const seg = &cm->seg; |
| const struct segmentation_probs *const segp = &cm->fc->seg; |
| const MODE_INFO *const mi = mi_8x8[0]; |
| const MODE_INFO *const above_mi = xd->above_mi; |
| const MODE_INFO *const left_mi = xd->left_mi; |
| const MB_MODE_INFO *const mbmi = &mi->mbmi; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| |
| if (seg->update_map) |
| write_segment_id(w, seg, segp, mbmi->segment_id); |
| |
| write_skip(cm, xd, mbmi->segment_id, mi, w); |
| |
| if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && |
| !xd->lossless[mbmi->segment_id]) |
| write_selected_tx_size(cm, xd, w); |
| |
| if (bsize >= BLOCK_8X8) { |
| write_intra_mode(w, mbmi->mode, |
| get_y_mode_probs(cm, mi, above_mi, left_mi, 0)); |
| } else { |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| |
| for (idy = 0; idy < 2; idy += num_4x4_h) { |
| for (idx = 0; idx < 2; idx += num_4x4_w) { |
| const int block = idy * 2 + idx; |
| write_intra_mode(w, mi->bmi[block].as_mode, |
| get_y_mode_probs(cm, mi, above_mi, left_mi, block)); |
| } |
| } |
| } |
| |
| write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mbmi->mode]); |
| #if CONFIG_EXT_INTRA |
| write_intra_angle_info(cm, xd, w); |
| #endif // CONFIG_EXT_INTRA |
| if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools) |
| write_palette_mode_info(cm, xd, mi, w); |
| #if CONFIG_EXT_INTRA |
| if (bsize >= BLOCK_8X8) |
| write_ext_intra_mode_info(cm, mbmi, w); |
| #endif // CONFIG_EXT_INTRA |
| |
| if (!FIXED_TX_TYPE) { |
| #if CONFIG_EXT_TX |
| if (get_ext_tx_types(mbmi->tx_size, bsize, 0) > 1 && |
| cm->base_qindex > 0 && !mbmi->skip && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) && |
| ALLOW_INTRA_EXT_TX) { |
| int eset = get_ext_tx_set(mbmi->tx_size, bsize, 0); |
| if (eset > 0) |
| vp10_write_token( |
| w, vp10_ext_tx_intra_tree[eset], |
| cm->fc->intra_ext_tx_prob[eset][mbmi->tx_size][mbmi->mode], |
| &ext_tx_intra_encodings[eset][mbmi->tx_type]); |
| } |
| #else |
| if (mbmi->tx_size < TX_32X32 && |
| cm->base_qindex > 0 && !mbmi->skip && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| vp10_write_token( |
| w, vp10_ext_tx_tree, |
| cm->fc->intra_ext_tx_prob[mbmi->tx_size] |
| [intra_mode_to_tx_type_context[mbmi->mode]], |
| &ext_tx_encodings[mbmi->tx_type]); |
| } |
| #endif // CONFIG_EXT_TX |
| } |
| } |
| |
| #if CONFIG_SUPERTX |
| #define write_modes_b_wrapper(cpi, tile, w, tok, tok_end, \ |
| supertx_enabled, mi_row, mi_col) \ |
| write_modes_b(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col) |
| #else |
| #define write_modes_b_wrapper(cpi, tile, w, tok, tok_end, \ |
| supertx_enabled, mi_row, mi_col) \ |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col) |
| #endif // CONFIG_ANS && CONFIG_SUPERTX |
| |
| static void write_modes_b(VP10_COMP *cpi, const TileInfo *const tile, |
| vp10_writer *w, |
| const TOKENEXTRA **tok, |
| const TOKENEXTRA *const tok_end, |
| #if CONFIG_SUPERTX |
| int supertx_enabled, |
| #endif |
| int mi_row, int mi_col) { |
| VP10_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| MODE_INFO *m; |
| int plane; |
| int bh, bw; |
| #if CONFIG_ANS |
| (void) tok; |
| (void) tok_end; |
| (void) plane; |
| #endif // !CONFIG_ANS |
| |
| xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); |
| m = xd->mi[0]; |
| |
| assert(m->mbmi.sb_type <= cm->sb_size); |
| |
| bh = num_8x8_blocks_high_lookup[m->mbmi.sb_type]; |
| bw = num_8x8_blocks_wide_lookup[m->mbmi.sb_type]; |
| |
| cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); |
| |
| set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); |
| if (frame_is_intra_only(cm)) { |
| write_mb_modes_kf(cm, xd, xd->mi, w); |
| } else { |
| #if CONFIG_VAR_TX |
| xd->above_txfm_context = cm->above_txfm_context + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| #endif |
| #if CONFIG_EXT_INTERP |
| // vp10_is_interp_needed needs the ref frame buffers set up to look |
| // up if they are scaled. vp10_is_interp_needed is in turn needed by |
| // write_switchable_interp_filter, which is called by pack_inter_mode_mvs. |
| set_ref_ptrs(cm, xd, m->mbmi.ref_frame[0], m->mbmi.ref_frame[1]); |
| #endif // CONFIG_EXT_INTERP |
| #if 0 |
| // NOTE(zoeliu): For debug |
| if (cm->current_video_frame == FRAME_TO_CHECK && cm->show_frame == 1) { |
| const PREDICTION_MODE mode = m->mbmi.mode; |
| const int segment_id = m->mbmi.segment_id; |
| const BLOCK_SIZE bsize = m->mbmi.sb_type; |
| |
| // For sub8x8, simply dump out the first sub8x8 block info |
| const PREDICTION_MODE b_mode = |
| (bsize < BLOCK_8X8) ? m->bmi[0].as_mode : -1; |
| const int mv_x = (bsize < BLOCK_8X8) ? |
| m->bmi[0].as_mv[0].as_mv.row : m->mbmi.mv[0].as_mv.row; |
| const int mv_y = (bsize < BLOCK_8X8) ? |
| m->bmi[0].as_mv[0].as_mv.col : m->mbmi.mv[0].as_mv.col; |
| |
| printf("Before pack_inter_mode_mvs(): " |
| "Frame=%d, (mi_row,mi_col)=(%d,%d), " |
| "mode=%d, segment_id=%d, bsize=%d, b_mode=%d, " |
| "mv[0]=(%d, %d), ref[0]=%d, ref[1]=%d\n", |
| cm->current_video_frame, mi_row, mi_col, |
| mode, segment_id, bsize, b_mode, mv_x, mv_y, |
| m->mbmi.ref_frame[0], m->mbmi.ref_frame[1]); |
| } |
| #endif // 0 |
| pack_inter_mode_mvs(cpi, m, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif |
| w); |
| } |
| |
| for (plane = 0; plane <= 1; ++plane) { |
| if (m->mbmi.palette_mode_info.palette_size[plane] > 0) { |
| const int rows = (4 * num_4x4_blocks_high_lookup[m->mbmi.sb_type]) >> |
| (xd->plane[plane].subsampling_y); |
| const int cols = (4 * num_4x4_blocks_wide_lookup[m->mbmi.sb_type]) >> |
| (xd->plane[plane].subsampling_x); |
| assert(*tok < tok_end); |
| pack_palette_tokens(w, tok, m->mbmi.palette_mode_info.palette_size[plane], |
| rows * cols - 1); |
| assert(*tok < tok_end + m->mbmi.skip); |
| } |
| } |
| |
| #if CONFIG_SUPERTX |
| if (supertx_enabled) return; |
| #endif // CONFIG_SUPERTX |
| |
| if (!m->mbmi.skip) { |
| assert(*tok < tok_end); |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| #if CONFIG_VAR_TX |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| MB_MODE_INFO *mbmi = &m->mbmi; |
| BLOCK_SIZE bsize = mbmi->sb_type; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), pd); |
| |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; |
| int row, col; |
| |
| if (is_inter_block(mbmi)) { |
| const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize]; |
| const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; |
| int bw = num_4x4_blocks_wide_lookup[txb_size]; |
| int block = 0; |
| const int step = 1 << (max_tx_size << 1); |
| for (row = 0; row < num_4x4_h; row += bw) { |
| for (col = 0; col < num_4x4_w; col += bw) { |
| pack_txb_tokens(w, tok, tok_end, xd, mbmi, plane, plane_bsize, |
| cm->bit_depth, block, row, col, max_tx_size); |
| block += step; |
| } |
| } |
| } else { |
| TX_SIZE tx = plane ? get_uv_tx_size(&m->mbmi, &xd->plane[plane]) |
| : m->mbmi.tx_size; |
| BLOCK_SIZE txb_size = txsize_to_bsize[tx]; |
| int bw = num_4x4_blocks_wide_lookup[txb_size]; |
| |
| for (row = 0; row < num_4x4_h; row += bw) |
| for (col = 0; col < num_4x4_w; col += bw) |
| pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx); |
| } |
| #else |
| TX_SIZE tx = plane ? get_uv_tx_size(&m->mbmi, &xd->plane[plane]) |
| : m->mbmi.tx_size; |
| pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx); |
| #endif // CONFIG_VAR_TX |
| assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN); |
| (*tok)++; |
| } |
| } |
| } |
| |
| static void write_partition(const VP10_COMMON *const cm, |
| const MACROBLOCKD *const xd, |
| int hbs, int mi_row, int mi_col, |
| PARTITION_TYPE p, BLOCK_SIZE bsize, |
| vp10_writer *w) { |
| const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); |
| const vpx_prob *const probs = cm->fc->partition_prob[ctx]; |
| const int has_rows = (mi_row + hbs) < cm->mi_rows; |
| const int has_cols = (mi_col + hbs) < cm->mi_cols; |
| |
| if (has_rows && has_cols) { |
| #if CONFIG_EXT_PARTITION_TYPES |
| if (bsize <= BLOCK_8X8) |
| vp10_write_token(w, vp10_partition_tree, probs, &partition_encodings[p]); |
| else |
| vp10_write_token(w, vp10_ext_partition_tree, probs, |
| &ext_partition_encodings[p]); |
| #else |
| vp10_write_token(w, vp10_partition_tree, probs, &partition_encodings[p]); |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| } else if (!has_rows && has_cols) { |
| assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); |
| vp10_write(w, p == PARTITION_SPLIT, probs[1]); |
| } else if (has_rows && !has_cols) { |
| assert(p == PARTITION_SPLIT || p == PARTITION_VERT); |
| vp10_write(w, p == PARTITION_SPLIT, probs[2]); |
| } else { |
| assert(p == PARTITION_SPLIT); |
| } |
| } |
| |
| #if CONFIG_SUPERTX |
| #define write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, \ |
| supertx_enabled, mi_row, mi_col, bsize) \ |
| write_modes_sb(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col, \ |
| bsize) |
| #else |
| #define write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, \ |
| supertx_enabled, mi_row, mi_col, bsize) \ |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, bsize) |
| #endif // CONFIG_ANS && CONFIG_SUPERTX |
| |
| static void write_modes_sb(VP10_COMP *const cpi, |
| const TileInfo *const tile, |
| vp10_writer *const w, |
| const TOKENEXTRA **tok, |
| const TOKENEXTRA *const tok_end, |
| #if CONFIG_SUPERTX |
| int supertx_enabled, |
| #endif |
| int mi_row, int mi_col, BLOCK_SIZE bsize) { |
| const VP10_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2; |
| const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); |
| const BLOCK_SIZE subsize = get_subsize(bsize, partition); |
| #if CONFIG_SUPERTX |
| const int mi_offset = mi_row * cm->mi_stride + mi_col; |
| MB_MODE_INFO *mbmi; |
| const int pack_token = !supertx_enabled; |
| TX_SIZE supertx_size; |
| int plane; |
| #endif |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
| return; |
| |
| write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w); |
| #if CONFIG_SUPERTX |
| mbmi = &cm->mi_grid_visible[mi_offset]->mbmi; |
| xd->mi = cm->mi_grid_visible + mi_offset; |
| set_mi_row_col(xd, tile, |
| mi_row, num_8x8_blocks_high_lookup[bsize], |
| mi_col, num_8x8_blocks_wide_lookup[bsize], |
| cm->mi_rows, cm->mi_cols); |
| if (!supertx_enabled && |
| !frame_is_intra_only(cm) && |
| partition != PARTITION_NONE && bsize <= MAX_SUPERTX_BLOCK_SIZE && |
| !xd->lossless[0]) { |
| vpx_prob prob; |
| supertx_size = max_txsize_lookup[bsize]; |
| prob = cm->fc->supertx_prob[partition_supertx_context_lookup[partition]] |
| [supertx_size]; |
| supertx_enabled = (xd->mi[0]->mbmi.tx_size == supertx_size); |
| vp10_write(w, supertx_enabled, prob); |
| } |
| #endif // CONFIG_SUPERTX |
| if (subsize < BLOCK_8X8) { |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row, mi_col); |
| } else { |
| switch (partition) { |
| case PARTITION_NONE: |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row, mi_col); |
| break; |
| case PARTITION_HORZ: |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row, mi_col); |
| if (mi_row + hbs < cm->mi_rows) |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, |
| supertx_enabled, mi_row + hbs, mi_col); |
| break; |
| case PARTITION_VERT: |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row, mi_col); |
| if (mi_col + hbs < cm->mi_cols) |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, |
| supertx_enabled, mi_row, mi_col + hbs); |
| break; |
| case PARTITION_SPLIT: |
| write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row, mi_col, subsize); |
| write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row, mi_col + hbs, subsize); |
| write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row + hbs, mi_col, subsize); |
| write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row + hbs, mi_col + hbs, subsize); |
| break; |
| #if CONFIG_EXT_PARTITION_TYPES |
| case PARTITION_HORZ_A: |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row, mi_col); |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row, mi_col + hbs); |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row + hbs, mi_col); |
| break; |
| case PARTITION_HORZ_B: |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row, mi_col); |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row + hbs, mi_col); |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row + hbs, mi_col + hbs); |
| break; |
| case PARTITION_VERT_A: |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row, mi_col); |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row + hbs, mi_col); |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row, mi_col + hbs); |
| break; |
| case PARTITION_VERT_B: |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row, mi_col); |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row, mi_col + hbs); |
| write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, |
| mi_row + hbs, mi_col + hbs); |
| break; |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| default: |
| assert(0); |
| } |
| } |
| #if CONFIG_SUPERTX |
| if (partition != PARTITION_NONE && supertx_enabled && pack_token) { |
| int skip; |
| xd->mi = cm->mi_grid_visible + mi_offset; |
| supertx_size = mbmi->tx_size; |
| set_mi_row_col(xd, tile, |
| mi_row, num_8x8_blocks_high_lookup[bsize], |
| mi_col, num_8x8_blocks_wide_lookup[bsize], |
| cm->mi_rows, cm->mi_cols); |
| |
| assert(IMPLIES(!cm->seg.enabled, mbmi->segment_id_supertx == 0)); |
| assert(mbmi->segment_id_supertx < MAX_SEGMENTS); |
| |
| skip = write_skip(cm, xd, mbmi->segment_id_supertx, xd->mi[0], w); |
| #if CONFIG_EXT_TX |
| if (get_ext_tx_types(supertx_size, bsize, 1) > 1 && !skip) { |
| int eset = get_ext_tx_set(supertx_size, bsize, 1); |
| if (eset > 0) { |
| vp10_write_token( |
| w, vp10_ext_tx_inter_tree[eset], |
| cm->fc->inter_ext_tx_prob[eset][supertx_size], |
| &ext_tx_inter_encodings[eset][mbmi->tx_type]); |
| } |
| } |
| #else |
| if (supertx_size < TX_32X32 && !skip) { |
| vp10_write_token( |
| w, vp10_ext_tx_tree, |
| cm->fc->inter_ext_tx_prob[supertx_size], |
| &ext_tx_encodings[mbmi->tx_type]); |
| } |
| #endif // CONFIG_EXT_TX |
| |
| if (!skip) { |
| assert(*tok < tok_end); |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const int mbmi_txb_size = txsize_to_bsize[mbmi->tx_size]; |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[mbmi_txb_size]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[mbmi_txb_size]; |
| int row, col; |
| TX_SIZE tx = plane ? get_uv_tx_size(mbmi, &xd->plane[plane]) |
| : mbmi->tx_size; |
| BLOCK_SIZE txb_size = txsize_to_bsize[tx]; |
| int bw = num_4x4_blocks_wide_lookup[txb_size]; |
| |
| for (row = 0; row < num_4x4_h; row += bw) |
| for (col = 0; col < num_4x4_w; col += bw) |
| pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx); |
| assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN); |
| (*tok)++; |
| } |
| } |
| } |
| #endif // CONFIG_SUPERTX |
| |
| // update partition context |
| #if CONFIG_EXT_PARTITION_TYPES |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); |
| #else |
| if (bsize >= BLOCK_8X8 && |
| (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| } |
| |
| static void write_modes(VP10_COMP *const cpi, |
| const TileInfo *const tile, |
| vp10_writer *const w, |
| const TOKENEXTRA **tok, |
| const TOKENEXTRA *const tok_end) { |
| VP10_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| const int mi_row_start = tile->mi_row_start; |
| const int mi_row_end = tile->mi_row_end; |
| const int mi_col_start = tile->mi_col_start; |
| const int mi_col_end = tile->mi_col_end; |
| int mi_row, mi_col; |
| |
| vp10_zero_above_context(cm, mi_col_start, mi_col_end); |
| |
| for (mi_row = mi_row_start; mi_row < mi_row_end; mi_row += cm->mib_size) { |
| vp10_zero_left_context(xd); |
| |
| for (mi_col = mi_col_start; mi_col < mi_col_end; mi_col += cm->mib_size) { |
| write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, 0, |
| mi_row, mi_col, cm->sb_size); |
| } |
| } |
| } |
| |
| static void build_tree_distribution(VP10_COMP *cpi, TX_SIZE tx_size, |
| vp10_coeff_stats *coef_branch_ct, |
| vp10_coeff_probs_model *coef_probs) { |
| vp10_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size]; |
| unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] = |
| cpi->common.counts.eob_branch[tx_size]; |
| int i, j, k, l, m; |
| |
| for (i = 0; i < PLANE_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { |
| vp10_tree_probs_from_distribution(vp10_coef_tree, |
| coef_branch_ct[i][j][k][l], |
| coef_counts[i][j][k][l]); |
| coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] - |
| coef_branch_ct[i][j][k][l][0][0]; |
| for (m = 0; m < UNCONSTRAINED_NODES; ++m) |
| coef_probs[i][j][k][l][m] = get_binary_prob( |
| coef_branch_ct[i][j][k][l][m][0], |
| coef_branch_ct[i][j][k][l][m][1]); |
| } |
| } |
| } |
| } |
| } |
| |
| static void update_coef_probs_common(vp10_writer* const bc, VP10_COMP *cpi, |
| TX_SIZE tx_size, |
| vp10_coeff_stats *frame_branch_ct, |
| vp10_coeff_probs_model *new_coef_probs) { |
| vp10_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size]; |
| const vpx_prob upd = DIFF_UPDATE_PROB; |
| const int entropy_nodes_update = UNCONSTRAINED_NODES; |
| int i, j, k, l, t; |
| int stepsize = cpi->sf.coeff_prob_appx_step; |
| |
| switch (cpi->sf.use_fast_coef_updates) { |
| case TWO_LOOP: { |
| /* dry run to see if there is any update at all needed */ |
| int savings = 0; |
| int update[2] = {0, 0}; |
| for (i = 0; i < PLANE_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { |
| for (t = 0; t < entropy_nodes_update; ++t) { |
| vpx_prob newp = new_coef_probs[i][j][k][l][t]; |
| const vpx_prob oldp = old_coef_probs[i][j][k][l][t]; |
| int s; |
| int u = 0; |
| if (t == PIVOT_NODE) |
| s = vp10_prob_diff_update_savings_search_model( |
| frame_branch_ct[i][j][k][l][0], |
| old_coef_probs[i][j][k][l], &newp, upd, stepsize); |
| else |
| s = vp10_prob_diff_update_savings_search( |
| frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); |
| if (s > 0 && newp != oldp) |
| u = 1; |
| if (u) |
| savings += s - (int)(vp10_cost_zero(upd)); |
| else |
| savings -= (int)(vp10_cost_zero(upd)); |
| update[u]++; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Is coef updated at all */ |
| if (update[1] == 0 || savings < 0) { |
| vp10_write_bit(bc, 0); |
| return; |
| } |
| vp10_write_bit(bc, 1); |
| for (i = 0; i < PLANE_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { |
| // calc probs and branch cts for this frame only |
| for (t = 0; t < entropy_nodes_update; ++t) { |
| vpx_prob newp = new_coef_probs[i][j][k][l][t]; |
| vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; |
| const vpx_prob upd = DIFF_UPDATE_PROB; |
| int s; |
| int u = 0; |
| if (t == PIVOT_NODE) |
| s = vp10_prob_diff_update_savings_search_model( |
| frame_branch_ct[i][j][k][l][0], |
| old_coef_probs[i][j][k][l], &newp, upd, stepsize); |
| else |
| s = vp10_prob_diff_update_savings_search( |
| frame_branch_ct[i][j][k][l][t], |
| *oldp, &newp, upd); |
| if (s > 0 && newp != *oldp) |
| u = 1; |
| vp10_write(bc, u, upd); |
| if (u) { |
| /* send/use new probability */ |
| vp10_write_prob_diff_update(bc, newp, *oldp); |
| *oldp = newp; |
| } |
| } |
| } |
| } |
| } |
| } |
| return; |
| } |
| |
| case ONE_LOOP_REDUCED: { |
| int updates = 0; |
| int noupdates_before_first = 0; |
| for (i = 0; i < PLANE_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { |
| // calc probs and branch cts for this frame only |
| for (t = 0; t < entropy_nodes_update; ++t) { |
| vpx_prob newp = new_coef_probs[i][j][k][l][t]; |
| vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; |
| int s; |
| int u = 0; |
| |
| if (t == PIVOT_NODE) { |
| s = vp10_prob_diff_update_savings_search_model( |
| frame_branch_ct[i][j][k][l][0], |
| old_coef_probs[i][j][k][l], &newp, upd, stepsize); |
| } else { |
| s = vp10_prob_diff_update_savings_search( |
| frame_branch_ct[i][j][k][l][t], |
| *oldp, &newp, upd); |
| } |
| |
| if (s > 0 && newp != *oldp) |
| u = 1; |
| updates += u; |
| if (u == 0 && updates == 0) { |
| noupdates_before_first++; |
| continue; |
| } |
| if (u == 1 && updates == 1) { |
| int v; |
| // first update |
| vp10_write_bit(bc, 1); |
| for (v = 0; v < noupdates_before_first; ++v) |
| vp10_write(bc, 0, upd); |
| } |
| vp10_write(bc, u, upd); |
| if (u) { |
| /* send/use new probability */ |
| vp10_write_prob_diff_update(bc, newp, *oldp); |
| *oldp = newp; |
| } |
| } |
| } |
| } |
| } |
| } |
| if (updates == 0) { |
| vp10_write_bit(bc, 0); // no updates |
| } |
| return; |
| } |
| default: |
| assert(0); |
| } |
| } |
| |
| #if CONFIG_ENTROPY |
| // Calculate the token counts between subsequent subframe updates. |
| static void get_coef_counts_diff(VP10_COMP *cpi, int index, |
| vp10_coeff_count |
| coef_counts[TX_SIZES][PLANE_TYPES], |
| unsigned int eob_counts[TX_SIZES] |
| [PLANE_TYPES][REF_TYPES][COEF_BANDS] |
| [COEFF_CONTEXTS]) { |
| int i, j, k, l, m, tx_size, val; |
| const int max_idx = cpi->common.coef_probs_update_idx; |
| const TX_MODE tx_mode = cpi->common.tx_mode; |
| const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; |
| const SUBFRAME_STATS *subframe_stats = &cpi->subframe_stats; |
| |
| assert(max_idx < COEF_PROBS_BUFS); |
| |
| for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) |
| for (i = 0; i < PLANE_TYPES; ++i) |
| for (j = 0; j < REF_TYPES; ++j) |
| for (k = 0; k < COEF_BANDS; ++k) |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { |
| if (index == max_idx) { |
| val = cpi->common.counts.eob_branch[tx_size][i][j][k][l] - |
| subframe_stats->eob_counts_buf[max_idx][tx_size][i][j][k][l]; |
| } else { |
| val = subframe_stats->eob_counts_buf[index + 1][tx_size] |
| [i][j][k][l] - |
| subframe_stats->eob_counts_buf[index][tx_size][i][j][k][l]; |
| } |
| assert(val >= 0); |
| eob_counts[tx_size][i][j][k][l] = val; |
| |
| for (m = 0; m < ENTROPY_TOKENS; ++m) { |
| if (index == max_idx) { |
| val = cpi->td.rd_counts.coef_counts[tx_size][i][j][k][l][m] - |
| subframe_stats->coef_counts_buf[max_idx][tx_size] |
| [i][j][k][l][m]; |
| } else { |
| val = subframe_stats->coef_counts_buf[index + 1] |
| [tx_size][i][j][k][l][m] - |
| subframe_stats->coef_counts_buf[index][tx_size] |
| [i][j][k][l][m]; |
| } |
| assert(val >= 0); |
| coef_counts[tx_size][i][j][k][l][m] = val; |
| } |
| } |
| } |
| |
| static void update_coef_probs_subframe(vp10_writer* const bc, VP10_COMP *cpi, |
| TX_SIZE tx_size, |
| vp10_coeff_stats |
| branch_ct[COEF_PROBS_BUFS][TX_SIZES] |
| [PLANE_TYPES], |
| vp10_coeff_probs_model *new_coef_probs) { |
| vp10_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size]; |
| const vpx_prob upd = DIFF_UPDATE_PROB; |
| const int entropy_nodes_update = UNCONSTRAINED_NODES; |
| int i, j, k, l, t; |
| int stepsize = cpi->sf.coeff_prob_appx_step; |
| const int max_idx = cpi->common.coef_probs_update_idx; |
| int idx; |
| unsigned int this_branch_ct[ENTROPY_NODES][COEF_PROBS_BUFS][2]; |
| |
| switch (cpi->sf.use_fast_coef_updates) { |
| case TWO_LOOP: { |
| /* dry run to see if there is any update at all needed */ |
| int savings = 0; |
| int update[2] = {0, 0}; |
| for (i = 0; i < PLANE_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { |
| for (t = 0; t < ENTROPY_NODES; ++t) { |
| for (idx = 0; idx <= max_idx; ++idx) { |
| memcpy(this_branch_ct[t][idx], |
| branch_ct[idx][tx_size][i][j][k][l][t], |
| 2 * sizeof(this_branch_ct[t][idx][0])); |
| } |
| } |
| for (t = 0; t < entropy_nodes_update; ++t) { |
| vpx_prob newp = new_coef_probs[i][j][k][l][t]; |
| const vpx_prob oldp = old_coef_probs[i][j][k][l][t]; |
| int s, u = 0; |
| |
| if (t == PIVOT_NODE) |
| s = vp10_prob_update_search_model_subframe(this_branch_ct, |
| old_coef_probs[i][j][k][l], &newp, upd, |
| stepsize, max_idx); |
| else |
| s = vp10_prob_update_search_subframe(this_branch_ct[t], |
| oldp, &newp, upd, |
| max_idx); |
| if (s > 0 && newp != oldp) |
| u = 1; |
| if (u) |
| savings += s - (int)(vp10_cost_zero(upd)); |
| else |
| savings -= (int)(vp10_cost_zero(upd)); |
| update[u]++; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Is coef updated at all */ |
| if (update[1] == 0 || savings < 0) { |
| vp10_write_bit(bc, 0); |
| return; |
| } |
| vp10_write_bit(bc, 1); |
| for (i = 0; i < PLANE_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { |
| for (t = 0; t < ENTROPY_NODES; ++t) { |
| for (idx = 0; idx <= max_idx; ++idx) { |
| memcpy(this_branch_ct[t][idx], |
| branch_ct[idx][tx_size][i][j][k][l][t], |
| 2 * sizeof(this_branch_ct[t][idx][0])); |
| } |
| } |
| for (t = 0; t < entropy_nodes_update; ++t) { |
| vpx_prob newp = new_coef_probs[i][j][k][l][t]; |
| vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; |
| const vpx_prob upd = DIFF_UPDATE_PROB; |
| int s; |
| int u = 0; |
| |
| if (t == PIVOT_NODE) |
| s = vp10_prob_update_search_model_subframe(this_branch_ct, |
| old_coef_probs[i][j][k][l], &newp, upd, |
| stepsize, max_idx); |
| else |
| s = vp10_prob_update_search_subframe(this_branch_ct[t], |
| *oldp, &newp, upd, |
| max_idx); |
| if (s > 0 && newp != *oldp) |
| u = 1; |
| vp10_write(bc, u, upd); |
| if (u) { |
| /* send/use new probability */ |
| vp10_write_prob_diff_update(bc, newp, *oldp); |
| *oldp = newp; |
| } |
| } |
| } |
| } |
| } |
| } |
| return; |
| } |
| |
| case ONE_LOOP_REDUCED: { |
| int updates = 0; |
| int noupdates_before_first = 0; |
| for (i = 0; i < PLANE_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { |
| for (t = 0; t < ENTROPY_NODES; ++t) { |
| for (idx = 0; idx <= max_idx; ++idx) { |
| memcpy(this_branch_ct[t][idx], |
| branch_ct[idx][tx_size][i][j][k][l][t], |
| 2 * sizeof(this_branch_ct[t][idx][0])); |
| } |
| } |
| for (t = 0; t < entropy_nodes_update; ++t) { |
| vpx_prob newp = new_coef_probs[i][j][k][l][t]; |
| vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; |
| int s; |
| int u = 0; |
| |
| if (t == PIVOT_NODE) |
| s = vp10_prob_update_search_model_subframe(this_branch_ct, |
| old_coef_probs[i][j][k][l], &newp, upd, |
| stepsize, max_idx); |
| else |
| s = vp10_prob_update_search_subframe(this_branch_ct[t], |
| *oldp, &newp, upd, |
| max_idx); |
| if (s > 0 && newp != *oldp) |
| u = 1; |
| updates += u; |
| if (u == 0 && updates == 0) { |
| noupdates_before_first++; |
| continue; |
| } |
| if (u == 1 && updates == 1) { |
| int v; |
| // first update |
| vp10_write_bit(bc, 1); |
| for (v = 0; v < noupdates_before_first; ++v) |
| vp10_write(bc, 0, upd); |
| } |
| vp10_write(bc, u, upd); |
| if (u) { |
| /* send/use new probability */ |
| vp10_write_prob_diff_update(bc, newp, *oldp); |
| *oldp = newp; |
| } |
| } |
| } |
| } |
| } |
| } |
| if (updates == 0) { |
| vp10_write_bit(bc, 0); // no updates |
| } |
| return; |
| } |
| default: |
| assert(0); |
| } |
| } |
| #endif // CONFIG_ENTROPY |
| |
| static void update_coef_probs(VP10_COMP *cpi, vp10_writer* w) { |
| const TX_MODE tx_mode = cpi->common.tx_mode; |
| const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; |
| TX_SIZE tx_size; |
| #if CONFIG_ANS |
| int update = 0; |
| #endif // CONFIG_ANS |
| #if CONFIG_ENTROPY |
| VP10_COMMON *cm = &cpi->common; |
| SUBFRAME_STATS *subframe_stats = &cpi->subframe_stats; |
| unsigned int eob_counts_copy[TX_SIZES][PLANE_TYPES][REF_TYPES] |
| [COEF_BANDS][COEFF_CONTEXTS]; |
| int i; |
| vp10_coeff_probs_model dummy_frame_coef_probs[PLANE_TYPES]; |
| |
| if (cm->do_subframe_update && |
| cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { |
| vp10_copy(cpi->common.fc->coef_probs, |
| subframe_stats->enc_starting_coef_probs); |
| for (i = 0; i <= cpi->common.coef_probs_update_idx; ++i) { |
| get_coef_counts_diff(cpi, i, |
| cpi->wholeframe_stats.coef_counts_buf[i], |
| cpi->wholeframe_stats.eob_counts_buf[i]); |
| } |
| } |
| #endif // CONFIG_ENTROPY |
| |
| for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) { |
| vp10_coeff_stats frame_branch_ct[PLANE_TYPES]; |
| vp10_coeff_probs_model frame_coef_probs[PLANE_TYPES]; |
| if (cpi->td.counts->tx_size_totals[tx_size] <= 20 || |
| (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) { |
| vp10_write_bit(w, 0); |
| } else { |
| #if CONFIG_ENTROPY |
| if (cm->do_subframe_update && |
| cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { |
| unsigned int eob_counts_copy[PLANE_TYPES][REF_TYPES] |
| [COEF_BANDS][COEFF_CONTEXTS]; |
| vp10_coeff_count coef_counts_copy[PLANE_TYPES]; |
| vp10_copy(eob_counts_copy, cpi->common.counts.eob_branch[tx_size]); |
| vp10_copy(coef_counts_copy, cpi->td.rd_counts.coef_counts[tx_size]); |
| build_tree_distribution(cpi, tx_size, frame_branch_ct, |
| frame_coef_probs); |
| for (i = 0; i <= cpi->common.coef_probs_update_idx; ++i) { |
| vp10_copy(cpi->common.counts.eob_branch[tx_size], |
| cpi->wholeframe_stats.eob_counts_buf[i][tx_size]); |
| vp10_copy(cpi->td.rd_counts.coef_counts[tx_size], |
| cpi->wholeframe_stats.coef_counts_buf[i][tx_size]); |
| build_tree_distribution(cpi, tx_size, |
| cpi->branch_ct_buf[i][tx_size], |
| dummy_frame_coef_probs); |
| } |
| vp10_copy(cpi->common.counts.eob_branch[tx_size], eob_counts_copy); |
| vp10_copy(cpi->td.rd_counts.coef_counts[tx_size], coef_counts_copy); |
| |
| update_coef_probs_subframe(w, cpi, tx_size, cpi->branch_ct_buf, |
| frame_coef_probs); |
| #if CONFIG_ANS |
| update = 1; |
| #endif // CONFIG_ANS |
| } else { |
| #endif // CONFIG_ENTROPY |
| build_tree_distribution(cpi, tx_size, frame_branch_ct, |
| frame_coef_probs); |
| update_coef_probs_common(w, cpi, tx_size, frame_branch_ct, |
| frame_coef_probs); |
| #if CONFIG_ANS |
| update = 1; |
| #endif // CONFIG_ANS |
| #if CONFIG_ENTROPY |
| } |
| #endif // CONFIG_ENTROPY |
| } |
| } |
| |
| #if CONFIG_ENTROPY |
| vp10_copy(cm->starting_coef_probs, cm->fc->coef_probs); |
| vp10_copy(subframe_stats->coef_probs_buf[0], cm->fc->coef_probs); |
| if (cm->do_subframe_update && |
| cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { |
| vp10_copy(eob_counts_copy, cm->counts.eob_branch); |
| for (i = 1; i <= cpi->common.coef_probs_update_idx; ++i) { |
| for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) |
| vp10_full_to_model_counts(cm->counts.coef[tx_size], |
| subframe_stats->coef_counts_buf[i][tx_size]); |
| vp10_copy(cm->counts.eob_branch, subframe_stats->eob_counts_buf[i]); |
| vp10_partial_adapt_probs(cm, 0, 0); |
| vp10_copy(subframe_stats->coef_probs_buf[i], cm->fc->coef_probs); |
| } |
| vp10_copy(cm->fc->coef_probs, subframe_stats->coef_probs_buf[0]); |
| vp10_copy(cm->counts.eob_branch, eob_counts_copy); |
| } |
| #endif // CONFIG_ENTROPY |
| #if CONFIG_ANS |
| if (update) vp10_coef_pareto_cdfs(cpi->common.fc); |
| #endif // CONFIG_ANS |
| } |
| |
| #if CONFIG_LOOP_RESTORATION |
| static void encode_restoration(VP10_COMMON *cm, |
| struct vpx_write_bit_buffer *wb) { |
| RestorationInfo *rst = &cm->rst_info; |
| vpx_wb_write_bit(wb, rst->restoration_type != RESTORE_NONE); |
| if (rst->restoration_type != RESTORE_NONE) { |
| if (rst->restoration_type == RESTORE_BILATERAL) { |
| vpx_wb_write_bit(wb, 1); |
| vpx_wb_write_literal(wb, rst->restoration_level, |
| vp10_restoration_level_bits(cm)); |
| } else { |
| vpx_wb_write_bit(wb, 0); |
| vpx_wb_write_literal( |
| wb, rst->vfilter[0] - WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_BITS); |
| vpx_wb_write_literal( |
| wb, rst->vfilter[1] - WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_BITS); |
| vpx_wb_write_literal( |
| wb, rst->vfilter[2] - WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_BITS); |
| vpx_wb_write_literal( |
| wb, rst->hfilter[0] - WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_BITS); |
| vpx_wb_write_literal( |
| wb, rst->hfilter[1] - WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_BITS); |
| vpx_wb_write_literal( |
| wb, rst->hfilter[2] - WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_BITS); |
| } |
| } |
| } |
| #endif // CONFIG_LOOP_RESTORATION |
| |
| static void encode_loopfilter(VP10_COMMON *cm, |
| struct vpx_write_bit_buffer *wb) { |
| int i; |
| struct loopfilter *lf = &cm->lf; |
| |
| // Encode the loop filter level and type |
| vpx_wb_write_literal(wb, lf->filter_level, 6); |
| vpx_wb_write_literal(wb, lf->sharpness_level, 3); |
| |
| // Write out loop filter deltas applied at the MB level based on mode or |
| // ref frame (if they are enabled). |
| vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled); |
| |
| if (lf->mode_ref_delta_enabled) { |
| vpx_wb_write_bit(wb, lf->mode_ref_delta_update); |
| if (lf->mode_ref_delta_update) { |
| for (i = 0; i < MAX_REF_FRAMES; i++) { |
| const int delta = lf->ref_deltas[i]; |
| const int changed = delta != lf->last_ref_deltas[i]; |
| vpx_wb_write_bit(wb, changed); |
| if (changed) { |
| lf->last_ref_deltas[i] = delta; |
| vpx_wb_write_inv_signed_literal(wb, delta, 6); |
| } |
| } |
| |
| for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { |
| const int delta = lf->mode_deltas[i]; |
| const int changed = delta != lf->last_mode_deltas[i]; |
| vpx_wb_write_bit(wb, changed); |
| if (changed) { |
| lf->last_mode_deltas[i] = delta; |
| vpx_wb_write_inv_signed_literal(wb, delta, 6); |
| } |
| } |
| } |
| } |
| } |
| |
| static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) { |
| if (delta_q != 0) { |
| vpx_wb_write_bit(wb, 1); |
| vpx_wb_write_inv_signed_literal(wb, delta_q, 6); |
| } else { |
| vpx_wb_write_bit(wb, 0); |
| } |
| } |
| |
| static void encode_quantization(const VP10_COMMON *const cm, |
| struct vpx_write_bit_buffer *wb) { |
| vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); |
| write_delta_q(wb, cm->y_dc_delta_q); |
| write_delta_q(wb, cm->uv_dc_delta_q); |
| write_delta_q(wb, cm->uv_ac_delta_q); |
| } |
| |
| static void encode_segmentation(VP10_COMMON *cm, MACROBLOCKD *xd, |
| struct vpx_write_bit_buffer *wb) { |
| int i, j; |
| const struct segmentation *seg = &cm->seg; |
| |
| vpx_wb_write_bit(wb, seg->enabled); |
| if (!seg->enabled) |
| return; |
| |
| // Segmentation map |
| if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) { |
| vpx_wb_write_bit(wb, seg->update_map); |
| } else { |
| assert(seg->update_map == 1); |
| } |
| if (seg->update_map) { |
| // Select the coding strategy (temporal or spatial) |
| vp10_choose_segmap_coding_method(cm, xd); |
| |
| // Write out the chosen coding method. |
| if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) { |
| vpx_wb_write_bit(wb, seg->temporal_update); |
| } else { |
| assert(seg->temporal_update == 0); |
| } |
| } |
| |
| // Segmentation data |
| vpx_wb_write_bit(wb, seg->update_data); |
| if (seg->update_data) { |
| vpx_wb_write_bit(wb, seg->abs_delta); |
| |
| for (i = 0; i < MAX_SEGMENTS; i++) { |
| for (j = 0; j < SEG_LVL_MAX; j++) { |
| const int active = segfeature_active(seg, i, j); |
| vpx_wb_write_bit(wb, active); |
| if (active) { |
| const int data = get_segdata(seg, i, j); |
| const int data_max = vp10_seg_feature_data_max(j); |
| |
| if (vp10_is_segfeature_signed(j)) { |
| encode_unsigned_max(wb, abs(data), data_max); |
| vpx_wb_write_bit(wb, data < 0); |
| } else { |
| encode_unsigned_max(wb, data, data_max); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static void update_seg_probs(VP10_COMP *cpi, vp10_writer *w) { |
| VP10_COMMON *cm = &cpi->common; |
| |
| if (!cpi->common.seg.enabled) |
| return; |
| |
| if (cpi->common.seg.temporal_update) { |
| int i; |
| |
| for (i = 0; i < PREDICTION_PROBS; i++) |
| vp10_cond_prob_diff_update(w, &cm->fc->seg.pred_probs[i], |
| cm->counts.seg.pred[i]); |
| |
| prob_diff_update(vp10_segment_tree, cm->fc->seg.tree_probs, |
| cm->counts.seg.tree_mispred, MAX_SEGMENTS, w); |
| } else { |
| prob_diff_update(vp10_segment_tree, cm->fc->seg.tree_probs, |
| cm->counts.seg.tree_total, MAX_SEGMENTS, w); |
| } |
| } |
| |
| static void write_txfm_mode(TX_MODE mode, struct vpx_write_bit_buffer *wb) { |
| vpx_wb_write_bit(wb, mode == TX_MODE_SELECT); |
| if (mode != TX_MODE_SELECT) |
| vpx_wb_write_literal(wb, mode, 2); |
| } |
| |
| |
| static void update_txfm_probs(VP10_COMMON *cm, vp10_writer *w, |
| FRAME_COUNTS *counts) { |
| if (cm->tx_mode == TX_MODE_SELECT) { |
| int i, j; |
| for (i = 0; i < TX_SIZES - 1; ++i) |
| for (j = 0; j < TX_SIZE_CONTEXTS; ++j) |
| prob_diff_update(vp10_tx_size_tree[i], |
| cm->fc->tx_size_probs[i][j], |
| counts->tx_size[i][j], i + 2, w); |
| } |
| } |
| |
| static void write_interp_filter(INTERP_FILTER filter, |
| struct vpx_write_bit_buffer *wb) { |
| vpx_wb_write_bit(wb, filter == SWITCHABLE); |
| if (filter != SWITCHABLE) |
| vpx_wb_write_literal(wb, filter, 2 + CONFIG_EXT_INTERP); |
| } |
| |
| static void fix_interp_filter(VP10_COMMON *cm, FRAME_COUNTS *counts) { |
| if (cm->interp_filter == SWITCHABLE) { |
| // Check to see if only one of the filters is actually used |
| int count[SWITCHABLE_FILTERS]; |
| int i, j, c = 0; |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| count[i] = 0; |
| for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) |
| count[i] += counts->switchable_interp[j][i]; |
| c += (count[i] > 0); |
| } |
| if (c == 1) { |
| // Only one filter is used. So set the filter at frame level |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| if (count[i]) { |
| cm->interp_filter = i; |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| static void write_tile_info(const VP10_COMMON *const cm, |
| struct vpx_write_bit_buffer *wb) { |
| #if CONFIG_EXT_TILE |
| const int tile_width = |
| ALIGN_POWER_OF_TWO(cm->tile_width, cm->mib_size_log2) >> cm->mib_size_log2; |
| const int tile_height = |
| ALIGN_POWER_OF_TWO(cm->tile_height, cm->mib_size_log2) >> cm->mib_size_log2; |
| |
| assert(tile_width > 0); |
| assert(tile_height > 0); |
| |
| // Write the tile sizes |
| #if CONFIG_EXT_PARTITION |
| if (cm->sb_size == BLOCK_128X128) { |
| assert(tile_width <= 32); |
| assert(tile_height <= 32); |
| vpx_wb_write_literal(wb, tile_width - 1, 5); |
| vpx_wb_write_literal(wb, tile_height - 1, 5); |
| } else |
| #endif // CONFIG_EXT_PARTITION |
| { |
| assert(tile_width <= 64); |
| assert(tile_height <= 64); |
| vpx_wb_write_literal(wb, tile_width - 1, 6); |
| vpx_wb_write_literal(wb, tile_height - 1, 6); |
| } |
| #else |
| int min_log2_tile_cols, max_log2_tile_cols, ones; |
| vp10_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); |
| |
| // columns |
| ones = cm->log2_tile_cols - min_log2_tile_cols; |
| while (ones--) |
| vpx_wb_write_bit(wb, 1); |
| |
| if (cm->log2_tile_cols < max_log2_tile_cols) |
| vpx_wb_write_bit(wb, 0); |
| |
| // rows |
| vpx_wb_write_bit(wb, cm->log2_tile_rows != 0); |
| if (cm->log2_tile_rows != 0) |
| vpx_wb_write_bit(wb, cm->log2_tile_rows != 1); |
| #endif // CONFIG_EXT_TILE |
| } |
| |
| static int get_refresh_mask(VP10_COMP *cpi) { |
| int refresh_mask = 0; |
| |
| #if CONFIG_EXT_REFS |
| // NOTE(zoeliu): When LAST_FRAME is to get refreshed, the decoder will be |
| // notified to get LAST3_FRAME refreshed and then the virtual indexes for all |
| // the 3 LAST reference frames will be updated accordingly, i.e.: |
| // (1) The original virtual index for LAST3_FRAME will become the new virtual |
| // index for LAST_FRAME; and |
| // (2) The original virtual indexes for LAST_FRAME and LAST2_FRAME will be |
| // shifted and become the new virtual indexes for LAST2_FRAME and |
| // LAST3_FRAME. |
| refresh_mask |= |
| (cpi->refresh_last_frame << cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]); |
| |
| refresh_mask |= (cpi->refresh_bwd_ref_frame << cpi->bwd_fb_idx); |
| #else |
| refresh_mask |= (cpi->refresh_last_frame << cpi->lst_fb_idx); |
| #endif // CONFIG_EXT_REFS |
| |
| if (vp10_preserve_existing_gf(cpi)) { |
| // We have decided to preserve the previously existing golden frame as our |
| // new ARF frame. However, in the short term we leave it in the GF slot and, |
| // if we're updating the GF with the current decoded frame, we save it |
| // instead to the ARF slot. |
| // Later, in the function vp10_encoder.c:vp10_update_reference_frames() we |
| // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it |
| // there so that it can be done outside of the recode loop. |
| // Note: This is highly specific to the use of ARF as a forward reference, |
| // and this needs to be generalized as other uses are implemented |
| // (like RTC/temporal scalability). |
| return refresh_mask | (cpi->refresh_golden_frame << cpi->alt_fb_idx); |
| } else { |
| int arf_idx = cpi->alt_fb_idx; |
| if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) { |
| const GF_GROUP *const gf_group = &cpi->twopass.gf_group; |
| arf_idx = gf_group->arf_update_idx[gf_group->index]; |
| } |
| return refresh_mask | |
| (cpi->refresh_golden_frame << cpi->gld_fb_idx) | |
| (cpi->refresh_alt_ref_frame << arf_idx); |
| } |
| } |
| |
| #if CONFIG_EXT_TILE |
| static INLINE int find_identical_tile( |
| const int tile_row, const int tile_col, |
| TileBufferEnc (*const tile_buffers)[1024]) { |
| const MV32 candidate_offset[1] = {{1, 0}}; |
| const uint8_t *const cur_tile_data = |
| tile_buffers[tile_row][tile_col].data + 4; |
| const unsigned int cur_tile_size = tile_buffers[tile_row][tile_col].size; |
| |
| int i; |
| |
| if (tile_row == 0) |
| return 0; |
| |
| // (TODO: yunqingwang) For now, only above tile is checked and used. |
| // More candidates such as left tile can be added later. |
| for (i = 0; i < 1; i++) { |
| int row_offset = candidate_offset[0].row; |
| int col_offset = candidate_offset[0].col; |
| int row = tile_row - row_offset; |
| int col = tile_col - col_offset; |
| uint8_t tile_hdr; |
| const uint8_t *tile_data; |
| TileBufferEnc *candidate; |
| |
| if (row < 0 || col < 0) |
| continue; |
| |
| tile_hdr = *(tile_buffers[row][col].data); |
| |
| // Read out tcm bit |
| if ((tile_hdr >> 7) == 1) { |
| // The candidate is a copy tile itself |
| row_offset += tile_hdr & 0x7f; |
| row = tile_row - row_offset; |
| } |
| |
| candidate = &tile_buffers[row][col]; |
| |
| if (row_offset >= 128 || candidate->size != cur_tile_size) |
| continue; |
| |
| tile_data = candidate->data + 4; |
| |
| if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) |
| continue; |
| |
| // Identical tile found |
| assert(row_offset > 0); |
| return row_offset; |
| } |
| |
| // No identical tile found |
| return 0; |
| } |
| #endif // CONFIG_EXT_TILE |
| |
| static uint32_t write_tiles(VP10_COMP *const cpi, |
| uint8_t *const dst, |
| unsigned int *max_tile_size, |
| unsigned int *max_tile_col_size) { |
| const VP10_COMMON *const cm = &cpi->common; |
| #if CONFIG_ANS |
| struct AnsCoder token_ans; |
| #else |
| vp10_writer mode_bc; |
| #endif // CONFIG_ANS |
| int tile_row, tile_col; |
| TOKENEXTRA *(*const tok_buffers)[MAX_TILE_COLS] = cpi->tile_tok; |
| TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS] = cpi->tile_buffers; |
| size_t total_size = 0; |
| const int tile_cols = cm->tile_cols; |
| const int tile_rows = cm->tile_rows; |
| #if CONFIG_EXT_TILE |
| const int have_tiles = tile_cols * tile_rows > 1; |
| #endif // CONFIG_EXT_TILE |
| #if CONFIG_ANS |
| BufAnsCoder *buf_ans = &cpi->buf_ans; |
| #endif // CONFIG_ANS |
| |
| *max_tile_size = 0; |
| *max_tile_col_size = 0; |
| |
| // All tile size fields are output on 4 bytes. A call to remux_tiles will |
| // later compact the data if smaller headers are adequate. |
| |
| #if CONFIG_EXT_TILE |
| for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
| TileInfo tile_info; |
| const int is_last_col = (tile_col == tile_cols - 1); |
| const size_t col_offset = total_size; |
| |
| vp10_tile_set_col(&tile_info, cm, tile_col); |
| |
| // The last column does not have a column header |
| if (!is_last_col) |
| total_size += 4; |
| |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; |
| unsigned int tile_size; |
| const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col]; |
| const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col]; |
| const int data_offset = have_tiles ? 4 : 0; |
| |
| vp10_tile_set_row(&tile_info, cm, tile_row); |
| |
| buf->data = dst + total_size; |
| |
| // Is CONFIG_EXT_TILE = 1, every tile in the row has a header, |
| // even for the last one, unless no tiling is used at all. |
| total_size += data_offset; |
| #if !CONFIG_ANS |
| vpx_start_encode(&mode_bc, buf->data + data_offset); |
| write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); |
| assert(tok == tok_end); |
| vpx_stop_encode(&mode_bc); |
| tile_size = mode_bc.pos; |
| #else |
| buf_ans_write_reset(buf_ans); |
| write_modes(cpi, &tile_info, buf_ans, &tok, tok_end); |
| assert(tok == tok_end); |
| ans_write_init(&token_ans, buf->data + data_offset); |
| buf_ans_flush(buf_ans, &token_ans); |
| tile_size = ans_write_end(&token_ans); |
| #endif // !CONFIG_ANS |
| |
| buf->size = tile_size; |
| |
| // Record the maximum tile size we see, so we can compact headers later. |
| *max_tile_size = VPXMAX(*max_tile_size, tile_size); |
| |
| if (have_tiles) { |
| // tile header: size of this tile, or copy offset |
| uint32_t tile_header = tile_size; |
| |
| // Check if this tile is a copy tile. |
| // Very low chances to have copy tiles on the key frames, so don't |
| // search on key frames to reduce unnecessary search. |
| if (cm->frame_type != KEY_FRAME) { |
| const int idendical_tile_offset = |
| find_identical_tile(tile_row, tile_col, tile_buffers); |
| |
| if (idendical_tile_offset > 0) { |
| tile_size = 0; |
| tile_header = idendical_tile_offset | 0x80; |
| tile_header <<= 24; |
| } |
| } |
| |
| mem_put_le32(buf->data, tile_header); |
| } |
| |
| total_size += tile_size; |
| } |
| |
| if (!is_last_col) { |
| size_t col_size = total_size - col_offset - 4; |
| mem_put_le32(dst + col_offset, col_size); |
| |
| // If it is not final packing, record the maximum tile column size we see, |
| // otherwise, check if the tile size is out of the range. |
| *max_tile_col_size = VPXMAX(*max_tile_col_size, col_size); |
| } |
| } |
| #else |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| TileInfo tile_info; |
| const int is_last_row = (tile_row == tile_rows - 1); |
| |
| vp10_tile_set_row(&tile_info, cm, tile_row); |
| |
| for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
| TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; |
| const int is_last_col = (tile_col == tile_cols - 1); |
| const int is_last_tile = is_last_col && is_last_row; |
| unsigned int tile_size; |
| const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col]; |
| const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col]; |
| |
| vp10_tile_set_col(&tile_info, cm, tile_col); |
| |
| buf->data = dst + total_size; |
| |
| // The last tile does not have a header. |
| if (!is_last_tile) |
| total_size += 4; |
| |
| #if !CONFIG_ANS |
| vpx_start_encode(&mode_bc, dst + total_size); |
| write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); |
| assert(tok == tok_end); |
| vpx_stop_encode(&mode_bc); |
| tile_size = mode_bc.pos; |
| #else |
| buf_ans_write_reset(buf_ans); |
| write_modes(cpi, &tile_info, buf_ans, &tok, tok_end); |
| assert(tok == tok_end); |
| ans_write_init(&token_ans, dst + total_size); |
| buf_ans_flush(buf_ans, &token_ans); |
| tile_size = ans_write_end(&token_ans); |
| #endif // !CONFIG_ANS |
| |
| assert(tile_size > 0); |
| |
| buf->size = tile_size; |
| |
| if (!is_last_tile) { |
| *max_tile_size = VPXMAX(*max_tile_size, tile_size); |
| // size of this tile |
| mem_put_le32(buf->data, tile_size); |
| } |
| |
| total_size += tile_size; |
| } |
| } |
| #endif // CONFIG_EXT_TILE |
| return (uint32_t)total_size; |
| } |
| |
| static void write_render_size(const VP10_COMMON *cm, |
| struct vpx_write_bit_buffer *wb) { |
| const int scaling_active = cm->width != cm->render_width || |
| cm->height != cm->render_height; |
| vpx_wb_write_bit(wb, scaling_active); |
| if (scaling_active) { |
| vpx_wb_write_literal(wb, cm->render_width - 1, 16); |
| vpx_wb_write_literal(wb, cm->render_height - 1, 16); |
| } |
| } |
| |
| static void write_frame_size(const VP10_COMMON *cm, |
| struct vpx_write_bit_buffer *wb) { |
| vpx_wb_write_literal(wb, cm->width - 1, 16); |
| vpx_wb_write_literal(wb, cm->height - 1, 16); |
| |
| write_render_size(cm, wb); |
| } |
| |
| static void write_frame_size_with_refs(VP10_COMP *cpi, |
| struct vpx_write_bit_buffer *wb) { |
| VP10_COMMON *const cm = &cpi->common; |
| int found = 0; |
| |
| MV_REFERENCE_FRAME ref_frame; |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame); |
| |
| if (cfg != NULL) { |
| found = cm->width == cfg->y_crop_width && |
| cm->height == cfg->y_crop_height; |
| found &= cm->render_width == cfg->render_width && |
| cm->render_height == cfg->render_height; |
| } |
| vpx_wb_write_bit(wb, found); |
| if (found) { |
| break; |
| } |
| } |
| |
| if (!found) { |
| vpx_wb_write_literal(wb, cm->width - 1, 16); |
| vpx_wb_write_literal(wb, cm->height - 1, 16); |
| write_render_size(cm, wb); |
| } |
| } |
| |
| static void write_sync_code(struct vpx_write_bit_buffer *wb) { |
| vpx_wb_write_literal(wb, VP10_SYNC_CODE_0, 8); |
| vpx_wb_write_literal(wb, VP10_SYNC_CODE_1, 8); |
| vpx_wb_write_literal(wb, VP10_SYNC_CODE_2, 8); |
| } |
| |
| static void write_profile(BITSTREAM_PROFILE profile, |
| struct vpx_write_bit_buffer *wb) { |
| switch (profile) { |
| case PROFILE_0: |
| vpx_wb_write_literal(wb, 0, 2); |
| break; |
| case PROFILE_1: |
| vpx_wb_write_literal(wb, 2, 2); |
| break; |
| case PROFILE_2: |
| vpx_wb_write_literal(wb, 1, 2); |
| break; |
| case PROFILE_3: |
| vpx_wb_write_literal(wb, 6, 3); |
| break; |
| default: |
| assert(0); |
| } |
| } |
| |
| static void write_bitdepth_colorspace_sampling( |
| VP10_COMMON *const cm, struct vpx_write_bit_buffer *wb) { |
| if (cm->profile >= PROFILE_2) { |
| assert(cm->bit_depth > VPX_BITS_8); |
| vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1); |
| } |
| vpx_wb_write_literal(wb, cm->color_space, 3); |
| if (cm->color_space != VPX_CS_SRGB) { |
| // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] |
| vpx_wb_write_bit(wb, cm->color_range); |
| if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { |
| assert(cm->subsampling_x != 1 || cm->subsampling_y != 1); |
| vpx_wb_write_bit(wb, cm->subsampling_x); |
| vpx_wb_write_bit(wb, cm->subsampling_y); |
| vpx_wb_write_bit(wb, 0); // unused |
| } else { |
| assert(cm->subsampling_x == 1 && cm->subsampling_y == 1); |
| } |
| } else { |
| assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3); |
| vpx_wb_write_bit(wb, 0); // unused |
| } |
| } |
| |
| static void write_uncompressed_header(VP10_COMP *cpi, |
| struct vpx_write_bit_buffer *wb) { |
| VP10_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| |
| vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2); |
| |
| write_profile(cm->profile, wb); |
| |
| #if CONFIG_EXT_REFS |
| // NOTE: By default all coded frames to be used as a reference |
| cm->is_reference_frame = 1; |
| |
| if (cm->show_existing_frame) { |
| RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; |
| const int frame_to_show = |
| cm->ref_frame_map[cpi->existing_fb_idx_to_show]; |
| |
| if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { |
| vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, |
| "Buffer %d does not contain a reconstructed frame", |
| frame_to_show); |
| } |
| ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); |
| |
| vpx_wb_write_bit(wb, 1); // show_existing_frame |
| vpx_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3); |
| |
| return; |
| } else { |
| #endif // CONFIG_EXT_REFS |
| vpx_wb_write_bit(wb, 0); // show_existing_frame |
| #if CONFIG_EXT_REFS |
| } |
| #endif // CONFIG_EXT_REFS |
| |
| vpx_wb_write_bit(wb, cm->frame_type); |
| vpx_wb_write_bit(wb, cm->show_frame); |
| vpx_wb_write_bit(wb, cm->error_resilient_mode); |
| |
| if (cm->frame_type == KEY_FRAME) { |
| write_sync_code(wb); |
| write_bitdepth_colorspace_sampling(cm, wb); |
| write_frame_size(cm, wb); |
| if (frame_is_intra_only(cm)) |
| vpx_wb_write_bit(wb, cm->allow_screen_content_tools); |
| } else { |
| if (!cm->show_frame) |
| vpx_wb_write_bit(wb, cm->intra_only); |
| |
| if (!cm->error_resilient_mode) { |
| if (cm->intra_only) { |
| vpx_wb_write_bit(wb, |
| cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL); |
| } else { |
| vpx_wb_write_bit(wb, |
| cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE); |
| if (cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE) |
| vpx_wb_write_bit(wb, |
| cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL); |
| } |
| } |
| |
| #if CONFIG_EXT_REFS |
| cpi->refresh_frame_mask = get_refresh_mask(cpi); |
| #endif // CONFIG_EXT_REFS |
| |
| if (cm->intra_only) { |
| write_sync_code(wb); |
| write_bitdepth_colorspace_sampling(cm, wb); |
| |
| #if CONFIG_EXT_REFS |
| vpx_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); |
| #else |
| vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES); |
| #endif // CONFIG_EXT_REFS |
| write_frame_size(cm, wb); |
| } else { |
| MV_REFERENCE_FRAME ref_frame; |
| |
| #if CONFIG_EXT_REFS |
| vpx_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); |
| #else |
| vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES); |
| #endif // CONFIG_EXT_REFS |
| |
| #if CONFIG_EXT_REFS |
| if (!cpi->refresh_frame_mask) { |
| // NOTE: "cpi->refresh_frame_mask == 0" indicates that the coded frame |
| // will not be used as a reference |
| cm->is_reference_frame = 0; |
| } |
| #endif // CONFIG_EXT_REFS |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); |
| vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), |
| REF_FRAMES_LOG2); |
| vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]); |
| } |
| |
| write_frame_size_with_refs(cpi, wb); |
| |
| vpx_wb_write_bit(wb, cm->allow_high_precision_mv); |
| |
| fix_interp_filter(cm, cpi->td.counts); |
| write_interp_filter(cm->interp_filter, wb); |
| } |
| } |
| |
| if (!cm->error_resilient_mode) { |
| vpx_wb_write_bit(wb, |
| cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD); |
| } |
| |
| vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2); |
| |
| assert(cm->mib_size == num_8x8_blocks_wide_lookup[cm->sb_size]); |
| assert(cm->mib_size == 1 << cm->mib_size_log2); |
| #if CONFIG_EXT_PARTITION |
| assert(cm->sb_size == BLOCK_128X128 || cm->sb_size == BLOCK_64X64); |
| vpx_wb_write_bit(wb, cm->sb_size == BLOCK_128X128 ? 1 : 0); |
| #else |
| assert(cm->sb_size == BLOCK_64X64); |
| #endif // CONFIG_EXT_PARTITION |
| |
| encode_loopfilter(cm, wb); |
| #if CONFIG_LOOP_RESTORATION |
| encode_restoration(cm, wb); |
| #endif // CONFIG_LOOP_RESTORATION |
| encode_quantization(cm, wb); |
| encode_segmentation(cm, xd, wb); |
| if (!cm->seg.enabled && xd->lossless[0]) |
| cm->tx_mode = TX_4X4; |
| else |
| write_txfm_mode(cm->tx_mode, wb); |
| |
| if (cpi->allow_comp_inter_inter) { |
| const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; |
| const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE; |
| |
| vpx_wb_write_bit(wb, use_hybrid_pred); |
| if (!use_hybrid_pred) |
| vpx_wb_write_bit(wb, use_compound_pred); |
| } |
| |
| write_tile_info(cm, wb); |
| } |
| |
| static uint32_t write_compressed_header(VP10_COMP *cpi, uint8_t *data) { |
| VP10_COMMON *const cm = &cpi->common; |
| #if CONFIG_SUPERTX |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| #endif // CONFIG_SUPERTX |
| FRAME_CONTEXT *const fc = cm->fc; |
| FRAME_COUNTS *counts = cpi->td.counts; |
| vp10_writer *header_bc; |
| int i, j; |
| |
| #if CONFIG_ANS |
| struct AnsCoder header_ans; |
| int header_size; |
| header_bc = &cpi->buf_ans; |
| buf_ans_write_reset(header_bc); |
| #else |
| vp10_writer real_header_bc; |
| header_bc = &real_header_bc; |
| vpx_start_encode(header_bc, data); |
| #endif |
| update_txfm_probs(cm, header_bc, counts); |
| update_coef_probs(cpi, header_bc); |
| |
| #if CONFIG_VAR_TX |
| update_txfm_partition_probs(cm, header_bc, counts); |
| #endif |
| |
| update_skip_probs(cm, header_bc, counts); |
| update_seg_probs(cpi, header_bc); |
| |
| for (i = 0; i < INTRA_MODES; ++i) |
| prob_diff_update(vp10_intra_mode_tree, fc->uv_mode_prob[i], |
| counts->uv_mode[i], INTRA_MODES, header_bc); |
| |
| #if CONFIG_EXT_PARTITION_TYPES |
| prob_diff_update(vp10_partition_tree, fc->partition_prob[0], |
| counts->partition[0], PARTITION_TYPES, header_bc); |
| for (i = 1; i < PARTITION_CONTEXTS; ++i) |
| prob_diff_update(vp10_ext_partition_tree, fc->partition_prob[i], |
| counts->partition[i], EXT_PARTITION_TYPES, |
| header_bc); |
| #else |
| for (i = 0; i < PARTITION_CONTEXTS; ++i) |
| prob_diff_update(vp10_partition_tree, fc->partition_prob[i], |
| counts->partition[i], PARTITION_TYPES, header_bc); |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| |
| #if CONFIG_EXT_INTRA |
| for (i = 0; i < INTRA_FILTERS + 1; ++i) |
| prob_diff_update(vp10_intra_filter_tree, fc->intra_filter_probs[i], |
| counts->intra_filter[i], INTRA_FILTERS, header_bc); |
| #endif // CONFIG_EXT_INTRA |
| |
| if (frame_is_intra_only(cm)) { |
| vp10_copy(cm->kf_y_prob, vp10_kf_y_mode_prob); |
| for (i = 0; i < INTRA_MODES; ++i) |
| for (j = 0; j < INTRA_MODES; ++j) |
| prob_diff_update(vp10_intra_mode_tree, cm->kf_y_prob[i][j], |
| counts->kf_y_mode[i][j], INTRA_MODES, header_bc); |
| } else { |
| #if CONFIG_REF_MV |
| update_inter_mode_probs(cm, header_bc, counts); |
| #else |
| for (i = 0; i < INTER_MODE_CONTEXTS; ++i) |
| prob_diff_update(vp10_inter_mode_tree, cm->fc->inter_mode_probs[i], |
| counts->inter_mode[i], INTER_MODES, header_bc); |
| #endif |
| |
| #if CONFIG_EXT_INTER |
| update_inter_compound_mode_probs(cm, header_bc); |
| |
| if (cm->reference_mode != COMPOUND_REFERENCE) { |
| for (i = 0; i < BLOCK_SIZE_GROUPS; i++) { |
| if (is_interintra_allowed_bsize_group(i)) { |
| vp10_cond_prob_diff_update(header_bc, |
| &fc->interintra_prob[i], |
| cm->counts.interintra[i]); |
| } |
| } |
| for (i = 0; i < BLOCK_SIZE_GROUPS; i++) { |
| prob_diff_update(vp10_interintra_mode_tree, |
| cm->fc->interintra_mode_prob[i], |
| counts->interintra_mode[i], |
| INTERINTRA_MODES, header_bc); |
| } |
| for (i = 0; i < BLOCK_SIZES; i++) { |
| if (is_interintra_allowed_bsize(i) && is_interintra_wedge_used(i)) |
| vp10_cond_prob_diff_update(header_bc, |
| &fc->wedge_interintra_prob[i], |
| cm->counts.wedge_interintra[i]); |
| } |
| } |
| if (cm->reference_mode != SINGLE_REFERENCE) { |
| for (i = 0; i < BLOCK_SIZES; i++) |
| if (is_interinter_wedge_used(i)) |
| vp10_cond_prob_diff_update(header_bc, |
| &fc->wedge_interinter_prob[i], |
| cm->counts.wedge_interinter[i]); |
| } |
| #endif // CONFIG_EXT_INTER |
| |
| #if CONFIG_OBMC || CONFIG_WARPED_MOTION |
| for (i = BLOCK_8X8; i < BLOCK_SIZES; ++i) |
| prob_diff_update(vp10_motvar_tree, fc->motvar_prob[i], |
| counts->motvar[i], MOTION_VARIATIONS, header_bc); |
| #endif // CONFIG_OBMC || CONFIG_WARPED_MOTION |
| |
| if (cm->interp_filter == SWITCHABLE) |
| update_switchable_interp_probs(cm, header_bc, counts); |
| |
| for (i = 0; i < INTRA_INTER_CONTEXTS; i++) |
| vp10_cond_prob_diff_update(header_bc, &fc->intra_inter_prob[i], |
| counts->intra_inter[i]); |
| |
| if (cpi->allow_comp_inter_inter) { |
| const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; |
| if (use_hybrid_pred) |
| for (i = 0; i < COMP_INTER_CONTEXTS; i++) |
| vp10_cond_prob_diff_update(header_bc, &fc->comp_inter_prob[i], |
| counts->comp_inter[i]); |
| } |
| |
| if (cm->reference_mode != COMPOUND_REFERENCE) { |
| for (i = 0; i < REF_CONTEXTS; i++) { |
| for (j = 0; j < (SINGLE_REFS - 1); j ++) { |
| vp10_cond_prob_diff_update(header_bc, &fc->single_ref_prob[i][j], |
| counts->single_ref[i][j]); |
| } |
| } |
| } |
| |
| if (cm->reference_mode != SINGLE_REFERENCE) { |
| for (i = 0; i < REF_CONTEXTS; i++) { |
| #if CONFIG_EXT_REFS |
| for (j = 0; j < (FWD_REFS - 1); j++) { |
| vp10_cond_prob_diff_update(header_bc, &fc->comp_ref_prob[i][j], |
| counts->comp_ref[i][j]); |
| } |
| for (j = 0; j < (BWD_REFS - 1); j++) { |
| vp10_cond_prob_diff_update(header_bc, &fc->comp_bwdref_prob[i][j], |
| counts->comp_bwdref[i][j]); |
| } |
| #else |
| for (j = 0; j < (COMP_REFS - 1); j++) { |
| vp10_cond_prob_diff_update(header_bc, &fc->comp_ref_prob[i][j], |
| counts->comp_ref[i][j]); |
| } |
| #endif // CONFIG_EXT_REFS |
| } |
| } |
| |
| for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) |
| prob_diff_update(vp10_intra_mode_tree, cm->fc->y_mode_prob[i], |
| counts->y_mode[i], INTRA_MODES, header_bc); |
| |
| vp10_write_nmv_probs(cm, cm->allow_high_precision_mv, header_bc, |
| #if CONFIG_REF_MV |
| counts->mv); |
| #else |
| &counts->mv); |
| #endif |
| update_ext_tx_probs(cm, header_bc); |
| #if CONFIG_SUPERTX |
| if (!xd->lossless[0]) |
| update_supertx_probs(cm, header_bc); |
| #endif // CONFIG_SUPERTX |
| } |
| |
| #if CONFIG_ANS |
| ans_write_init(&header_ans, data); |
| buf_ans_flush(header_bc, &header_ans); |
| header_size = ans_write_end(&header_ans); |
| assert(header_size <= 0xffff); |
| return header_size; |
| #else |
| vpx_stop_encode(header_bc); |
| assert(header_bc->pos <= 0xffff); |
| return header_bc->pos; |
| #endif // CONFIG_ANS |
| } |
| |
| static int choose_size_bytes(uint32_t size, int spare_msbs) { |
| // Choose the number of bytes required to represent size, without |
| // using the 'spare_msbs' number of most significant bits. |
| |
| // Make sure we will fit in 4 bytes to start with.. |
| if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) |
| return -1; |
| |
| // Normalise to 32 bits |
| size <<= spare_msbs; |
| |
| if (size >> 24 != 0) |
| return 4; |
| else if (size >> 16 != 0) |
| return 3; |
| else if (size >> 8 != 0) |
| return 2; |
| else |
| return 1; |
| } |
| |
| static void mem_put_varsize(uint8_t *const dst, const int sz, const int val) { |
| switch (sz) { |
| case 1: |
| dst[0] = (uint8_t)(val & 0xff); |
| break; |
| case 2: |
| mem_put_le16(dst, val); |
| break; |
| case 3: |
| mem_put_le24(dst, val); |
| break; |
| case 4: |
| mem_put_le32(dst, val); |
| break; |
| default: |
| assert("Invalid size" && 0); |
| break; |
| } |
| } |
| |
| static int remux_tiles(const VP10_COMMON *const cm, |
| uint8_t *dst, |
| const uint32_t data_size, |
| const uint32_t max_tile_size, |
| const uint32_t max_tile_col_size, |
| int *const tile_size_bytes, |
| int *const tile_col_size_bytes) { |
| // Choose the tile size bytes (tsb) and tile column size bytes (tcsb) |
| #if CONFIG_EXT_TILE |
| // The top bit in the tile size field indicates tile copy mode, so we |
| // have 1 less bit to code the tile size |
| const int tsb = choose_size_bytes(max_tile_size, 1); |
| const int tcsb = choose_size_bytes(max_tile_col_size, 0); |
| #else |
| const int tsb = choose_size_bytes(max_tile_size, 0); |
| const int tcsb = 4; // This is ignored |
| (void) max_tile_col_size; |
| #endif // CONFIG_EXT_TILE |
| |
| assert(tsb > 0); |
| assert(tcsb > 0); |
| |
| *tile_size_bytes = tsb; |
| *tile_col_size_bytes = tcsb; |
| |
| if (tsb == 4 && tcsb == 4) { |
| return data_size; |
| } else { |
| uint32_t wpos = 0; |
| uint32_t rpos = 0; |
| |
| #if CONFIG_EXT_TILE |
| int tile_row; |
| int tile_col; |
| |
| for (tile_col = 0 ; tile_col < cm->tile_cols ; tile_col++) { |
| // All but the last column has a column header |
| if (tile_col < cm->tile_cols - 1) { |
| uint32_t tile_col_size = mem_get_le32(dst + rpos); |
| rpos += 4; |
| |
| // Adjust the tile column size by the number of bytes removed |
| // from the tile size fields. |
| tile_col_size -= (4-tsb) * cm->tile_rows; |
| |
| mem_put_varsize(dst + wpos, tcsb, tile_col_size); |
| wpos += tcsb; |
| } |
| |
| for (tile_row = 0 ; tile_row < cm->tile_rows ; tile_row++) { |
| // All, including the last row has a header |
| uint32_t tile_header = mem_get_le32(dst + rpos); |
| rpos += 4; |
| |
| // If this is a copy tile, we need to shift the MSB to the |
| // top bit of the new width, and there is no data to copy. |
| if (tile_header >> 31 != 0) { |
| if (tsb < 4) |
| tile_header >>= 32 - 8 * tsb; |
| mem_put_varsize(dst + wpos, tsb, tile_header); |
| wpos += tsb; |
| } else { |
| mem_put_varsize(dst + wpos, tsb, tile_header); |
| wpos += tsb; |
| |
| memmove(dst + wpos, dst + rpos, tile_header); |
| rpos += tile_header; |
| wpos += tile_header; |
| } |
| } |
| } |
| #else |
| const int n_tiles = cm->tile_cols * cm->tile_rows; |
| int n; |
| |
| for (n = 0; n < n_tiles; n++) { |
| int tile_size; |
| |
| if (n == n_tiles - 1) { |
| tile_size = data_size - rpos; |
| } else { |
| tile_size = mem_get_le32(dst + rpos); |
| rpos += 4; |
| mem_put_varsize(dst + wpos, tsb, tile_size); |
| wpos += tsb; |
| } |
| |
| memmove(dst + wpos, dst + rpos, tile_size); |
| |
| rpos += tile_size; |
| wpos += tile_size; |
| } |
| #endif // CONFIG_EXT_TILE |
| |
| assert(rpos > wpos); |
| assert(rpos == data_size); |
| |
| return wpos; |
| } |
| } |
| |
| void vp10_pack_bitstream(VP10_COMP *const cpi, uint8_t *dst, size_t *size) { |
| uint8_t *data = dst; |
| uint32_t compressed_header_size; |
| uint32_t uncompressed_header_size; |
| uint32_t data_size; |
| struct vpx_write_bit_buffer wb = {data, 0}; |
| struct vpx_write_bit_buffer saved_wb; |
| unsigned int max_tile_size; |
| unsigned int max_tile_col_size; |
| int tile_size_bytes; |
| int tile_col_size_bytes; |
| |
| VP10_COMMON *const cm = &cpi->common; |
| const int have_tiles = cm->tile_cols * cm->tile_rows > 1; |
| |
| // Write the uncompressed header |
| write_uncompressed_header(cpi, &wb); |
| |
| #if CONFIG_EXT_REFS |
| if (cm->show_existing_frame) { |
| *size = vpx_wb_bytes_written(&wb); |
| return; |
| } |
| #endif // CONFIG_EXT_REFS |
| |
| // We do not know these in advance. Output placeholder bit. |
| saved_wb = wb; |
| // Write tile size magnitudes |
| if (have_tiles) { |
| // Note that the last item in the uncompressed header is the data |
| // describing tile configuration. |
| #if CONFIG_EXT_TILE |
| // Number of bytes in tile column size - 1 |
| vpx_wb_write_literal(&wb, 0, 2); |
| #endif // CONFIG_EXT_TILE |
| // Number of bytes in tile size - 1 |
| vpx_wb_write_literal(&wb, 0, 2); |
| } |
| // Size of compressed header |
| vpx_wb_write_literal(&wb, 0, 16); |
| |
| uncompressed_header_size = (uint32_t)vpx_wb_bytes_written(&wb); |
| data += uncompressed_header_size; |
| |
| vpx_clear_system_state(); |
| |
| // Write the compressed header |
| compressed_header_size = write_compressed_header(cpi, data); |
| data += compressed_header_size; |
| |
| // Write the encoded tile data |
| data_size = write_tiles(cpi, data, &max_tile_size, &max_tile_col_size); |
| |
| if (have_tiles) { |
| data_size = remux_tiles(cm, data, data_size, |
| max_tile_size, max_tile_col_size, |
| &tile_size_bytes, &tile_col_size_bytes); |
| } |
| |
| data += data_size; |
| |
| // Now fill in the gaps in the uncompressed header. |
| if (have_tiles) { |
| #if CONFIG_EXT_TILE |
| assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4); |
| vpx_wb_write_literal(&saved_wb, tile_col_size_bytes - 1, 2); |
| #endif // CONFIG_EXT_TILE |
| assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); |
| vpx_wb_write_literal(&saved_wb, tile_size_bytes - 1, 2); |
| } |
| // TODO(jbb): Figure out what to do if compressed_header_size > 16 bits. |
| assert(compressed_header_size <= 0xffff); |
| vpx_wb_write_literal(&saved_wb, compressed_header_size, 16); |
| |
| *size = data - dst; |
| } |