blob: 9c0d3bf77748fdd83bf586b547c489e5058ec033 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include "aom/aom_encoder.h"
#include "aom_dsp/bitwriter_buffer.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem_ops.h"
#include "aom_ports/system_state.h"
#if CONFIG_BITSTREAM_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG
#if CONFIG_CLPF
#include "av1/common/clpf.h"
#endif
#if CONFIG_DERING
#include "av1/common/dering.h"
#endif // CONFIG_DERING
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/odintrin.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#if CONFIG_EXT_INTRA
#include "av1/common/reconintra.h"
#endif // CONFIG_EXT_INTRA
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#if CONFIG_ANS
#include "aom_dsp/buf_ans.h"
#endif // CONFIG_ANS
#include "av1/encoder/bitstream.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/subexp.h"
#include "av1/encoder/tokenize.h"
#if CONFIG_PVQ
#include "av1/encoder/pvq_encoder.h"
#endif
static struct av1_token intra_mode_encodings[INTRA_MODES];
static struct av1_token switchable_interp_encodings[SWITCHABLE_FILTERS];
#if CONFIG_EXT_PARTITION_TYPES
static const struct av1_token ext_partition_encodings[EXT_PARTITION_TYPES] = {
{ 0, 1 }, { 4, 3 }, { 12, 4 }, { 7, 3 },
{ 10, 4 }, { 11, 4 }, { 26, 5 }, { 27, 5 }
};
#endif
static struct av1_token partition_encodings[PARTITION_TYPES];
#if !CONFIG_REF_MV
static struct av1_token inter_mode_encodings[INTER_MODES];
#endif
#if CONFIG_EXT_INTER
static const struct av1_token
inter_compound_mode_encodings[INTER_COMPOUND_MODES] = {
{ 2, 2 }, { 50, 6 }, { 51, 6 }, { 24, 5 }, { 52, 6 },
{ 53, 6 }, { 54, 6 }, { 55, 6 }, { 0, 1 }, { 7, 3 }
};
#endif // CONFIG_EXT_INTER
#if CONFIG_PALETTE
static struct av1_token palette_size_encodings[PALETTE_MAX_SIZE - 1];
static struct av1_token palette_color_encodings[PALETTE_MAX_SIZE - 1]
[PALETTE_MAX_SIZE];
#endif // CONFIG_PALETTE
static const struct av1_token tx_size_encodings[MAX_TX_DEPTH][TX_SIZES] = {
{ { 0, 1 }, { 1, 1 } }, // Max tx_size is 8X8
{ { 0, 1 }, { 2, 2 }, { 3, 2 } }, // Max tx_size is 16X16
{ { 0, 1 }, { 2, 2 }, { 6, 3 }, { 7, 3 } }, // Max tx_size is 32X32
#if CONFIG_TX64X64
{ { 0, 1 }, { 2, 2 }, { 6, 3 }, { 14, 4 }, { 15, 4 } }, // Max tx_size 64X64
#endif // CONFIG_TX64X64
};
#if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA || CONFIG_PALETTE
static INLINE void write_uniform(aom_writer *w, int n, int v) {
int l = get_unsigned_bits(n);
int m = (1 << l) - n;
if (l == 0) return;
if (v < m) {
aom_write_literal(w, v, l - 1);
} else {
aom_write_literal(w, m + ((v - m) >> 1), l - 1);
aom_write_literal(w, (v - m) & 1, 1);
}
}
#endif // CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA || CONFIG_PALETTE
#if CONFIG_EXT_TX
static struct av1_token ext_tx_inter_encodings[EXT_TX_SETS_INTER][TX_TYPES];
static struct av1_token ext_tx_intra_encodings[EXT_TX_SETS_INTRA][TX_TYPES];
#else
static struct av1_token ext_tx_encodings[TX_TYPES];
#endif // CONFIG_EXT_TX
#if CONFIG_GLOBAL_MOTION
static struct av1_token global_motion_types_encodings[GLOBAL_TRANS_TYPES];
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_EXT_INTRA
#if CONFIG_INTRA_INTERP
static struct av1_token intra_filter_encodings[INTRA_FILTERS];
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA
#if CONFIG_EXT_INTER
static struct av1_token interintra_mode_encodings[INTERINTRA_MODES];
static struct av1_token compound_type_encodings[COMPOUND_TYPES];
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
static struct av1_token motion_mode_encodings[MOTION_MODES];
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_LOOP_RESTORATION
static struct av1_token switchable_restore_encodings[RESTORE_SWITCHABLE_TYPES];
#endif // CONFIG_LOOP_RESTORATION
static void write_uncompressed_header(AV1_COMP *cpi,
struct aom_write_bit_buffer *wb);
static uint32_t write_compressed_header(AV1_COMP *cpi, uint8_t *data);
void av1_encode_token_init(void) {
#if CONFIG_EXT_TX || CONFIG_PALETTE
int s;
#endif // CONFIG_EXT_TX || CONFIG_PALETTE
#if CONFIG_EXT_TX
for (s = 1; s < EXT_TX_SETS_INTER; ++s) {
av1_tokens_from_tree(ext_tx_inter_encodings[s], av1_ext_tx_inter_tree[s]);
}
for (s = 1; s < EXT_TX_SETS_INTRA; ++s) {
av1_tokens_from_tree(ext_tx_intra_encodings[s], av1_ext_tx_intra_tree[s]);
}
#else
av1_tokens_from_tree(ext_tx_encodings, av1_ext_tx_tree);
#endif // CONFIG_EXT_TX
av1_tokens_from_tree(intra_mode_encodings, av1_intra_mode_tree);
av1_tokens_from_tree(switchable_interp_encodings, av1_switchable_interp_tree);
av1_tokens_from_tree(partition_encodings, av1_partition_tree);
#if !CONFIG_REF_MV
av1_tokens_from_tree(inter_mode_encodings, av1_inter_mode_tree);
#endif
#if CONFIG_PALETTE
av1_tokens_from_tree(palette_size_encodings, av1_palette_size_tree);
for (s = 0; s < PALETTE_MAX_SIZE - 1; ++s) {
av1_tokens_from_tree(palette_color_encodings[s], av1_palette_color_tree[s]);
}
#endif // CONFIG_PALETTE
#if CONFIG_EXT_INTRA
#if CONFIG_INTRA_INTERP
av1_tokens_from_tree(intra_filter_encodings, av1_intra_filter_tree);
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA
#if CONFIG_EXT_INTER
av1_tokens_from_tree(interintra_mode_encodings, av1_interintra_mode_tree);
av1_tokens_from_tree(compound_type_encodings, av1_compound_type_tree);
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
av1_tokens_from_tree(motion_mode_encodings, av1_motion_mode_tree);
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_GLOBAL_MOTION
av1_tokens_from_tree(global_motion_types_encodings,
av1_global_motion_types_tree);
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_LOOP_RESTORATION
av1_tokens_from_tree(switchable_restore_encodings,
av1_switchable_restore_tree);
#endif // CONFIG_LOOP_RESTORATION
#if CONFIG_EC_MULTISYMBOL
/* This hack is necessary when CONFIG_DUAL_FILTER is enabled because the five
SWITCHABLE_FILTERS are not consecutive, e.g., 0, 1, 2, 3, 4, when doing
an in-order traversal of the av1_switchable_interp_tree structure. */
av1_indices_from_tree(av1_switchable_interp_ind, av1_switchable_interp_inv,
SWITCHABLE_FILTERS, av1_switchable_interp_tree);
/* This hack is necessary because the four TX_TYPES are not consecutive,
e.g., 0, 1, 2, 3, when doing an in-order traversal of the av1_ext_tx_tree
structure. */
#if !CONFIG_EXT_TX
av1_indices_from_tree(av1_ext_tx_ind, av1_ext_tx_inv, TX_TYPES,
av1_ext_tx_tree);
#endif
av1_indices_from_tree(av1_intra_mode_ind, av1_intra_mode_inv, INTRA_MODES,
av1_intra_mode_tree);
av1_indices_from_tree(av1_inter_mode_ind, av1_inter_mode_inv, INTER_MODES,
av1_inter_mode_tree);
#endif
}
#if !CONFIG_DAALA_EC
static void write_intra_mode(aom_writer *w, PREDICTION_MODE mode,
const aom_prob *probs) {
av1_write_token(w, av1_intra_mode_tree, probs, &intra_mode_encodings[mode]);
}
#endif
#if CONFIG_EXT_INTER
static void write_interintra_mode(aom_writer *w, INTERINTRA_MODE mode,
const aom_prob *probs) {
av1_write_token(w, av1_interintra_mode_tree, probs,
&interintra_mode_encodings[mode]);
}
#endif // CONFIG_EXT_INTER
static void write_inter_mode(AV1_COMMON *cm, aom_writer *w,
PREDICTION_MODE mode,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
int is_compound,
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
const int16_t mode_ctx) {
#if CONFIG_REF_MV
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
const aom_prob newmv_prob = cm->fc->newmv_prob[newmv_ctx];
#if CONFIG_EXT_INTER
aom_write(w, mode != NEWMV && mode != NEWFROMNEARMV, newmv_prob);
if (!is_compound && (mode == NEWMV || mode == NEWFROMNEARMV))
aom_write(w, mode == NEWFROMNEARMV, cm->fc->new2mv_prob);
if (mode != NEWMV && mode != NEWFROMNEARMV) {
#else
aom_write(w, mode != NEWMV, newmv_prob);
if (mode != NEWMV) {
#endif // CONFIG_EXT_INTER
const int16_t zeromv_ctx = (mode_ctx >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
const aom_prob zeromv_prob = cm->fc->zeromv_prob[zeromv_ctx];
if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) {
assert(mode == ZEROMV);
return;
}
aom_write(w, mode != ZEROMV, zeromv_prob);
if (mode != ZEROMV) {
int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
aom_prob refmv_prob;
if (mode_ctx & (1 << SKIP_NEARESTMV_OFFSET)) refmv_ctx = 6;
if (mode_ctx & (1 << SKIP_NEARMV_OFFSET)) refmv_ctx = 7;
if (mode_ctx & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) refmv_ctx = 8;
refmv_prob = cm->fc->refmv_prob[refmv_ctx];
aom_write(w, mode != NEARESTMV, refmv_prob);
}
}
#else
assert(is_inter_mode(mode));
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(w, av1_inter_mode_ind[INTER_OFFSET(mode)],
cm->fc->inter_mode_cdf[mode_ctx], INTER_MODES);
#else
{
const aom_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx];
av1_write_token(w, av1_inter_mode_tree, inter_probs,
&inter_mode_encodings[INTER_OFFSET(mode)]);
}
#endif
#endif
}
#if CONFIG_REF_MV
static void write_drl_idx(const AV1_COMMON *cm, const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT *mbmi_ext, aom_writer *w) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
assert(mbmi->ref_mv_idx < 3);
if (mbmi->mode == NEWMV) {
int idx;
for (idx = 0; idx < 2; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
aom_prob drl_prob = cm->fc->drl_prob[drl_ctx];
aom_write(w, mbmi->ref_mv_idx != idx, drl_prob);
if (mbmi->ref_mv_idx == idx) return;
}
}
return;
}
if (mbmi->mode == NEARMV) {
int idx;
// TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
for (idx = 1; idx < 3; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
aom_prob drl_prob = cm->fc->drl_prob[drl_ctx];
aom_write(w, mbmi->ref_mv_idx != (idx - 1), drl_prob);
if (mbmi->ref_mv_idx == (idx - 1)) return;
}
}
return;
}
}
#endif
#if CONFIG_EXT_INTER
static void write_inter_compound_mode(AV1_COMMON *cm, aom_writer *w,
PREDICTION_MODE mode,
const int16_t mode_ctx) {
const aom_prob *const inter_compound_probs =
cm->fc->inter_compound_mode_probs[mode_ctx];
assert(is_inter_compound_mode(mode));
av1_write_token(w, av1_inter_compound_mode_tree, inter_compound_probs,
&inter_compound_mode_encodings[INTER_COMPOUND_OFFSET(mode)]);
}
#endif // CONFIG_EXT_INTER
static void encode_unsigned_max(struct aom_write_bit_buffer *wb, int data,
int max) {
aom_wb_write_literal(wb, data, get_unsigned_bits(max));
}
static void prob_diff_update(const aom_tree_index *tree,
aom_prob probs[/*n - 1*/],
const unsigned int counts[/*n - 1*/], int n,
int probwt, aom_writer *w) {
int i;
unsigned int branch_ct[32][2];
// Assuming max number of probabilities <= 32
assert(n <= 32);
av1_tree_probs_from_distribution(tree, branch_ct, counts);
for (i = 0; i < n - 1; ++i)
av1_cond_prob_diff_update(w, &probs[i], branch_ct[i], probwt);
}
#if CONFIG_EXT_INTER || CONFIG_EXT_TX || !CONFIG_EC_ADAPT
static int prob_diff_update_savings(const aom_tree_index *tree,
aom_prob probs[/*n - 1*/],
const unsigned int counts[/*n - 1*/], int n,
int probwt) {
int i;
unsigned int branch_ct[32][2];
int savings = 0;
// Assuming max number of probabilities <= 32
assert(n <= 32);
av1_tree_probs_from_distribution(tree, branch_ct, counts);
for (i = 0; i < n - 1; ++i) {
savings +=
av1_cond_prob_diff_update_savings(&probs[i], branch_ct[i], probwt);
}
return savings;
}
#endif // CONFIG_EXT_INTER || CONFIG_EXT_TX || !CONFIG_EC_ADAPT
#if CONFIG_VAR_TX
static void write_tx_size_vartx(const AV1_COMMON *cm, const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi, TX_SIZE tx_size,
int depth, int blk_row, int blk_col,
aom_writer *w) {
const int tx_row = blk_row >> 1;
const int tx_col = blk_col >> 1;
const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0);
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0);
int ctx = txfm_partition_context(xd->above_txfm_context + tx_col,
xd->left_txfm_context + tx_row,
mbmi->sb_type, tx_size);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (depth == MAX_VARTX_DEPTH) {
txfm_partition_update(xd->above_txfm_context + tx_col,
xd->left_txfm_context + tx_row, tx_size, tx_size);
return;
}
if (tx_size == mbmi->inter_tx_size[tx_row][tx_col]) {
aom_write(w, 0, cm->fc->txfm_partition_prob[ctx]);
txfm_partition_update(xd->above_txfm_context + tx_col,
xd->left_txfm_context + tx_row, tx_size, tx_size);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsl = tx_size_wide_unit[sub_txs];
int i;
aom_write(w, 1, cm->fc->txfm_partition_prob[ctx]);
if (tx_size == TX_8X8) {
txfm_partition_update(xd->above_txfm_context + tx_col,
xd->left_txfm_context + tx_row, TX_4X4, tx_size);
return;
}
assert(bsl > 0);
for (i = 0; i < 4; ++i) {
int offsetr = blk_row + (i >> 1) * bsl;
int offsetc = blk_col + (i & 0x01) * bsl;
write_tx_size_vartx(cm, xd, mbmi, sub_txs, depth + 1, offsetr, offsetc,
w);
}
}
}
static void update_txfm_partition_probs(AV1_COMMON *cm, aom_writer *w,
FRAME_COUNTS *counts, int probwt) {
int k;
for (k = 0; k < TXFM_PARTITION_CONTEXTS; ++k)
av1_cond_prob_diff_update(w, &cm->fc->txfm_partition_prob[k],
counts->txfm_partition[k], probwt);
}
#endif
static void write_selected_tx_size(const AV1_COMMON *cm, const MACROBLOCKD *xd,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
// For sub8x8 blocks the tx_size symbol does not need to be sent
if (bsize >= BLOCK_8X8) {
const TX_SIZE tx_size = mbmi->tx_size;
const int is_inter = is_inter_block(mbmi);
const int tx_size_ctx = get_tx_size_context(xd);
const int tx_size_cat = is_inter ? inter_tx_size_cat_lookup[bsize]
: intra_tx_size_cat_lookup[bsize];
const TX_SIZE coded_tx_size = txsize_sqr_up_map[tx_size];
const int depth = tx_size_to_depth(coded_tx_size);
#if CONFIG_EXT_TX && CONFIG_RECT_TX
assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
assert(
IMPLIES(is_rect_tx(tx_size), tx_size == max_txsize_rect_lookup[bsize]));
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
av1_write_token(w, av1_tx_size_tree[tx_size_cat],
cm->fc->tx_size_probs[tx_size_cat][tx_size_ctx],
&tx_size_encodings[tx_size_cat][depth]);
}
}
#if CONFIG_REF_MV
static void update_inter_mode_probs(AV1_COMMON *cm, aom_writer *w,
FRAME_COUNTS *counts) {
int i;
#if CONFIG_TILE_GROUPS
const int probwt = cm->num_tg;
#else
const int probwt = 1;
#endif
for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i)
av1_cond_prob_diff_update(w, &cm->fc->newmv_prob[i], counts->newmv_mode[i],
probwt);
for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i)
av1_cond_prob_diff_update(w, &cm->fc->zeromv_prob[i],
counts->zeromv_mode[i], probwt);
for (i = 0; i < REFMV_MODE_CONTEXTS; ++i)
av1_cond_prob_diff_update(w, &cm->fc->refmv_prob[i], counts->refmv_mode[i],
probwt);
for (i = 0; i < DRL_MODE_CONTEXTS; ++i)
av1_cond_prob_diff_update(w, &cm->fc->drl_prob[i], counts->drl_mode[i],
probwt);
#if CONFIG_EXT_INTER
av1_cond_prob_diff_update(w, &cm->fc->new2mv_prob, counts->new2mv_mode,
probwt);
#endif // CONFIG_EXT_INTER
}
#endif
#if CONFIG_EXT_INTER
static void update_inter_compound_mode_probs(AV1_COMMON *cm, int probwt,
aom_writer *w) {
const int savings_thresh = av1_cost_one(GROUP_DIFF_UPDATE_PROB) -
av1_cost_zero(GROUP_DIFF_UPDATE_PROB);
int i;
int savings = 0;
int do_update = 0;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
savings += prob_diff_update_savings(
av1_inter_compound_mode_tree, cm->fc->inter_compound_mode_probs[i],
cm->counts.inter_compound_mode[i], INTER_COMPOUND_MODES, probwt);
}
do_update = savings > savings_thresh;
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
prob_diff_update(
av1_inter_compound_mode_tree, cm->fc->inter_compound_mode_probs[i],
cm->counts.inter_compound_mode[i], INTER_COMPOUND_MODES, probwt, w);
}
}
}
#endif // CONFIG_EXT_INTER
static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, const MODE_INFO *mi, aom_writer *w) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int skip = mi->mbmi.skip;
aom_write(w, skip, av1_get_skip_prob(cm, xd));
return skip;
}
}
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
static void write_motion_mode(const AV1_COMMON *cm, const MB_MODE_INFO *mbmi,
aom_writer *w) {
MOTION_MODE last_motion_mode_allowed = motion_mode_allowed(mbmi);
if (last_motion_mode_allowed == SIMPLE_TRANSLATION) return;
#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
if (last_motion_mode_allowed == OBMC_CAUSAL) {
aom_write(w, mbmi->motion_mode == OBMC_CAUSAL,
cm->fc->obmc_prob[mbmi->sb_type]);
} else {
#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
av1_write_token(w, av1_motion_mode_tree,
cm->fc->motion_mode_prob[mbmi->sb_type],
&motion_mode_encodings[mbmi->motion_mode]);
#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
}
#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
}
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_DELTA_Q
static void write_delta_qindex(const AV1_COMMON *cm, int delta_qindex,
aom_writer *w) {
int sign = delta_qindex < 0;
int abs = sign ? -delta_qindex : delta_qindex;
int rem_bits, thr, i = 0;
int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
while (i < DELTA_Q_SMALL && i <= abs) {
int bit = (i < abs);
aom_write(w, bit, cm->fc->delta_q_prob[i]);
i++;
}
if (!smallval) {
rem_bits = OD_ILOG_NZ(abs - 1) - 1;
thr = (1 << rem_bits) + 1;
aom_write_literal(w, rem_bits, 3);
aom_write_literal(w, abs - thr, rem_bits);
}
if (abs > 0) {
aom_write_bit(w, sign);
}
}
static void update_delta_q_probs(AV1_COMMON *cm, aom_writer *w,
FRAME_COUNTS *counts) {
int k;
#if CONFIG_TILE_GROUPS
const int probwt = cm->num_tg;
#else
const int probwt = 1;
#endif
for (k = 0; k < DELTA_Q_CONTEXTS; ++k) {
av1_cond_prob_diff_update(w, &cm->fc->delta_q_prob[k], counts->delta_q[k],
probwt);
}
}
#endif
static void update_skip_probs(AV1_COMMON *cm, aom_writer *w,
FRAME_COUNTS *counts) {
int k;
#if CONFIG_TILE_GROUPS
const int probwt = cm->num_tg;
#else
const int probwt = 1;
#endif
for (k = 0; k < SKIP_CONTEXTS; ++k) {
av1_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k],
probwt);
}
}
#if !CONFIG_EC_ADAPT
static void update_switchable_interp_probs(AV1_COMMON *cm, aom_writer *w,
FRAME_COUNTS *counts) {
int j;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) {
#if CONFIG_TILE_GROUPS
const int probwt = cm->num_tg;
#else
const int probwt = 1;
#endif
prob_diff_update(
av1_switchable_interp_tree, cm->fc->switchable_interp_prob[j],
counts->switchable_interp[j], SWITCHABLE_FILTERS, probwt, w);
}
}
#endif
#if CONFIG_EXT_TX
static void update_ext_tx_probs(AV1_COMMON *cm, aom_writer *w) {
const int savings_thresh = av1_cost_one(GROUP_DIFF_UPDATE_PROB) -
av1_cost_zero(GROUP_DIFF_UPDATE_PROB);
int i, j;
int s;
#if CONFIG_TILE_GROUPS
const int probwt = cm->num_tg;
#else
const int probwt = 1;
#endif
for (s = 1; s < EXT_TX_SETS_INTER; ++s) {
int savings = 0;
int do_update = 0;
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
if (!use_inter_ext_tx_for_txsize[s][i]) continue;
savings += prob_diff_update_savings(
av1_ext_tx_inter_tree[s], cm->fc->inter_ext_tx_prob[s][i],
cm->counts.inter_ext_tx[s][i], num_ext_tx_set_inter[s], probwt);
}
do_update = savings > savings_thresh;
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
if (!use_inter_ext_tx_for_txsize[s][i]) continue;
prob_diff_update(
av1_ext_tx_inter_tree[s], cm->fc->inter_ext_tx_prob[s][i],
cm->counts.inter_ext_tx[s][i], num_ext_tx_set_inter[s], probwt, w);
}
}
}
for (s = 1; s < EXT_TX_SETS_INTRA; ++s) {
int savings = 0;
int do_update = 0;
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
if (!use_intra_ext_tx_for_txsize[s][i]) continue;
for (j = 0; j < INTRA_MODES; ++j)
savings += prob_diff_update_savings(
av1_ext_tx_intra_tree[s], cm->fc->intra_ext_tx_prob[s][i][j],
cm->counts.intra_ext_tx[s][i][j], num_ext_tx_set_intra[s], probwt);
}
do_update = savings > savings_thresh;
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
if (!use_intra_ext_tx_for_txsize[s][i]) continue;
for (j = 0; j < INTRA_MODES; ++j)
prob_diff_update(av1_ext_tx_intra_tree[s],
cm->fc->intra_ext_tx_prob[s][i][j],
cm->counts.intra_ext_tx[s][i][j],
num_ext_tx_set_intra[s], probwt, w);
}
}
}
}
#else
#if !CONFIG_EC_ADAPT
static void update_ext_tx_probs(AV1_COMMON *cm, aom_writer *w) {
const int savings_thresh = av1_cost_one(GROUP_DIFF_UPDATE_PROB) -
av1_cost_zero(GROUP_DIFF_UPDATE_PROB);
int i, j;
int savings = 0;
int do_update = 0;
#if CONFIG_TILE_GROUPS
const int probwt = cm->num_tg;
#else
const int probwt = 1;
#endif
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (j = 0; j < TX_TYPES; ++j)
savings += prob_diff_update_savings(
av1_ext_tx_tree, cm->fc->intra_ext_tx_prob[i][j],
cm->counts.intra_ext_tx[i][j], TX_TYPES, probwt);
}
do_update = savings > savings_thresh;
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (j = 0; j < TX_TYPES; ++j) {
prob_diff_update(av1_ext_tx_tree, cm->fc->intra_ext_tx_prob[i][j],
cm->counts.intra_ext_tx[i][j], TX_TYPES, probwt, w);
}
}
}
savings = 0;
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
savings +=
prob_diff_update_savings(av1_ext_tx_tree, cm->fc->inter_ext_tx_prob[i],
cm->counts.inter_ext_tx[i], TX_TYPES, probwt);
}
do_update = savings > savings_thresh;
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
prob_diff_update(av1_ext_tx_tree, cm->fc->inter_ext_tx_prob[i],
cm->counts.inter_ext_tx[i], TX_TYPES, probwt, w);
}
}
}
#endif // CONFIG_EXT_TX
#endif
#if CONFIG_PALETTE
static void pack_palette_tokens(aom_writer *w, const TOKENEXTRA **tp, int n,
int num) {
int i;
const TOKENEXTRA *p = *tp;
for (i = 0; i < num; ++i) {
av1_write_token(w, av1_palette_color_tree[n - 2], p->context_tree,
&palette_color_encodings[n - 2][p->token]);
++p;
}
*tp = p;
}
#endif // CONFIG_PALETTE
#if !CONFIG_PVQ
#if CONFIG_SUPERTX
static void update_supertx_probs(AV1_COMMON *cm, int probwt, aom_writer *w) {
const int savings_thresh = av1_cost_one(GROUP_DIFF_UPDATE_PROB) -
av1_cost_zero(GROUP_DIFF_UPDATE_PROB);
int i, j;
int savings = 0;
int do_update = 0;
for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) {
for (j = TX_8X8; j < TX_SIZES; ++j) {
savings += av1_cond_prob_diff_update_savings(
&cm->fc->supertx_prob[i][j], cm->counts.supertx[i][j], probwt);
}
}
do_update = savings > savings_thresh;
aom_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) {
for (j = TX_8X8; j < TX_SIZES; ++j) {
av1_cond_prob_diff_update(w, &cm->fc->supertx_prob[i][j],
cm->counts.supertx[i][j], probwt);
}
}
}
}
#endif // CONFIG_SUPERTX
static void pack_mb_tokens(aom_writer *w, const TOKENEXTRA **tp,
const TOKENEXTRA *const stop,
aom_bit_depth_t bit_depth, const TX_SIZE tx_size,
TOKEN_STATS *token_stats) {
const TOKENEXTRA *p = *tp;
#if CONFIG_VAR_TX
int count = 0;
const int seg_eob = tx_size_2d[tx_size];
#endif
#if CONFIG_AOM_HIGHBITDEPTH
const av1_extra_bit *const extra_bits_table =
(bit_depth == AOM_BITS_12)
? av1_extra_bits_high12
: (bit_depth == AOM_BITS_10) ? av1_extra_bits_high10 : av1_extra_bits;
#else
const av1_extra_bit *const extra_bits_table = av1_extra_bits;
(void)bit_depth;
#endif // CONFIG_AOM_HIGHBITDEPTH
while (p < stop && p->token != EOSB_TOKEN) {
const int token = p->token;
aom_tree_index index = 0;
#if !CONFIG_EC_MULTISYMBOL
const struct av1_token *const coef_encoding = &av1_coef_encodings[token];
int coef_value = coef_encoding->value;
int coef_length = coef_encoding->len;
#endif // !CONFIG_EC_MULTISYMBOL
const av1_extra_bit *const extra_bits = &extra_bits_table[token];
#if CONFIG_EC_MULTISYMBOL
/* skip one or two nodes */
if (!p->skip_eob_node)
aom_write_record(w, token != EOB_TOKEN, p->context_tree[0], token_stats);
if (token != EOB_TOKEN) {
aom_write_record(w, token != ZERO_TOKEN, p->context_tree[1], token_stats);
if (token != ZERO_TOKEN) {
aom_write_symbol(w, token - ONE_TOKEN, *p->token_cdf,
CATEGORY6_TOKEN - ONE_TOKEN + 1);
}
}
#else
/* skip one or two nodes */
if (p->skip_eob_node)
coef_length -= p->skip_eob_node;
else
aom_write_record(w, token != EOB_TOKEN, p->context_tree[0], token_stats);
if (token != EOB_TOKEN) {
aom_write_record(w, token != ZERO_TOKEN, p->context_tree[1], token_stats);
if (token != ZERO_TOKEN) {
aom_write_record(w, token != ONE_TOKEN, p->context_tree[2],
token_stats);
if (token != ONE_TOKEN) {
const int unconstrained_len = UNCONSTRAINED_NODES - p->skip_eob_node;
aom_write_tree_record(
w, av1_coef_con_tree,
av1_pareto8_full[p->context_tree[PIVOT_NODE] - 1], coef_value,
coef_length - unconstrained_len, 0, token_stats);
}
}
}
#endif // CONFIG_EC_MULTISYMBOL
if (extra_bits->base_val) {
const int bit_string = p->extra;
const int bit_string_length = extra_bits->len; // Length of extra bits to
// be written excluding
// the sign bit.
int skip_bits = (extra_bits->base_val == CAT6_MIN_VAL)
? TX_SIZES - 1 - txsize_sqr_up_map[tx_size]
: 0;
if (bit_string_length > 0) {
const unsigned char *pb = extra_bits->prob;
const int value = bit_string >> 1;
const int num_bits = bit_string_length; // number of bits in value
assert(num_bits > 0);
for (index = 0; index < num_bits; ++index) {
const int shift = num_bits - index - 1;
const int bb = (value >> shift) & 1;
if (skip_bits) {
--skip_bits;
assert(!bb);
} else {
aom_write_record(w, bb, pb[index], token_stats);
}
}
}
aom_write_bit_record(w, bit_string & 1, token_stats);
}
++p;
#if CONFIG_VAR_TX
++count;
if (token == EOB_TOKEN || count == seg_eob) break;
#endif
}
*tp = p;
}
#endif // !CONFIG_PVG
#if CONFIG_VAR_TX
static void pack_txb_tokens(aom_writer *w, const TOKENEXTRA **tp,
const TOKENEXTRA *const tok_end, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, int plane,
BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth,
int block, int blk_row, int blk_col,
TX_SIZE tx_size, TOKEN_STATS *token_stats) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
TX_SIZE plane_tx_size;
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
plane_tx_size =
plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
: mbmi->inter_tx_size[tx_row][tx_col];
if (tx_size == plane_tx_size) {
TOKEN_STATS tmp_token_stats;
init_token_stats(&tmp_token_stats);
pack_mb_tokens(w, tp, tok_end, bit_depth, tx_size, &tmp_token_stats);
#if CONFIG_RD_DEBUG
token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost;
token_stats->cost += tmp_token_stats.cost;
#endif
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsl = tx_size_wide_unit[sub_txs];
int i;
assert(bsl > 0);
for (i = 0; i < 4; ++i) {
const int offsetr = blk_row + (i >> 1) * bsl;
const int offsetc = blk_col + (i & 0x01) * bsl;
const int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs];
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
pack_txb_tokens(w, tp, tok_end, xd, mbmi, plane, plane_bsize, bit_depth,
block, offsetr, offsetc, sub_txs, token_stats);
block += step;
}
}
}
#endif
static void write_segment_id(aom_writer *w, const struct segmentation *seg,
struct segmentation_probs *segp, int segment_id) {
if (seg->enabled && seg->update_map) {
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(w, segment_id, segp->tree_cdf, MAX_SEGMENTS);
#else
aom_write_tree(w, av1_segment_tree, segp->tree_probs, segment_id, 3, 0);
#endif
}
}
// This function encodes the reference frame
static void write_ref_frames(const AV1_COMMON *cm, const MACROBLOCKD *xd,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const int is_compound = has_second_ref(mbmi);
const int segment_id = mbmi->segment_id;
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
assert(!is_compound);
assert(mbmi->ref_frame[0] ==
get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
} else {
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
aom_write(w, is_compound, av1_get_reference_mode_prob(cm, xd));
} else {
assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE));
}
if (is_compound) {
#if CONFIG_EXT_REFS
const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
mbmi->ref_frame[0] == LAST3_FRAME);
const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
#else // CONFIG_EXT_REFS
const int bit = mbmi->ref_frame[0] == GOLDEN_FRAME;
#endif // CONFIG_EXT_REFS
aom_write(w, bit, av1_get_pred_prob_comp_ref_p(cm, xd));
#if CONFIG_EXT_REFS
if (!bit) {
const int bit1 = mbmi->ref_frame[0] == LAST_FRAME;
aom_write(w, bit1, av1_get_pred_prob_comp_ref_p1(cm, xd));
} else {
const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
aom_write(w, bit2, av1_get_pred_prob_comp_ref_p2(cm, xd));
}
aom_write(w, bit_bwd, av1_get_pred_prob_comp_bwdref_p(cm, xd));
#endif // CONFIG_EXT_REFS
} else {
#if CONFIG_EXT_REFS
const int bit0 = (mbmi->ref_frame[0] == ALTREF_FRAME ||
mbmi->ref_frame[0] == BWDREF_FRAME);
aom_write(w, bit0, av1_get_pred_prob_single_ref_p1(cm, xd));
if (bit0) {
const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
aom_write(w, bit1, av1_get_pred_prob_single_ref_p2(cm, xd));
} else {
const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
mbmi->ref_frame[0] == GOLDEN_FRAME);
aom_write(w, bit2, av1_get_pred_prob_single_ref_p3(cm, xd));
if (!bit2) {
const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
aom_write(w, bit3, av1_get_pred_prob_single_ref_p4(cm, xd));
} else {
const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
aom_write(w, bit4, av1_get_pred_prob_single_ref_p5(cm, xd));
}
}
#else // CONFIG_EXT_REFS
const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
aom_write(w, bit0, av1_get_pred_prob_single_ref_p1(cm, xd));
if (bit0) {
const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
aom_write(w, bit1, av1_get_pred_prob_single_ref_p2(cm, xd));
}
#endif // CONFIG_EXT_REFS
}
}
}
#if CONFIG_FILTER_INTRA
static void write_filter_intra_mode_info(const AV1_COMMON *const cm,
const MB_MODE_INFO *const mbmi,
aom_writer *w) {
if (mbmi->mode == DC_PRED
#if CONFIG_PALETTE
&& mbmi->palette_mode_info.palette_size[0] == 0
#endif // CONFIG_PALETTE
) {
aom_write(w, mbmi->filter_intra_mode_info.use_filter_intra_mode[0],
cm->fc->filter_intra_probs[0]);
if (mbmi->filter_intra_mode_info.use_filter_intra_mode[0]) {
const FILTER_INTRA_MODE mode =
mbmi->filter_intra_mode_info.filter_intra_mode[0];
write_uniform(w, FILTER_INTRA_MODES, mode);
}
}
if (mbmi->uv_mode == DC_PRED
#if CONFIG_PALETTE
&& mbmi->palette_mode_info.palette_size[1] == 0
#endif // CONFIG_PALETTE
) {
aom_write(w, mbmi->filter_intra_mode_info.use_filter_intra_mode[1],
cm->fc->filter_intra_probs[1]);
if (mbmi->filter_intra_mode_info.use_filter_intra_mode[1]) {
const FILTER_INTRA_MODE mode =
mbmi->filter_intra_mode_info.filter_intra_mode[1];
write_uniform(w, FILTER_INTRA_MODES, mode);
}
}
}
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
static void write_intra_angle_info(const AV1_COMMON *cm, const MACROBLOCKD *xd,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
#if CONFIG_INTRA_INTERP
const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd);
int p_angle;
#endif // CONFIG_INTRA_INTERP
(void)cm;
if (bsize < BLOCK_8X8) return;
if (av1_is_directional_mode(mbmi->mode, bsize)) {
const int max_angle_delta = av1_get_max_angle_delta(mbmi->sb_type, 0);
write_uniform(w, 2 * max_angle_delta + 1,
max_angle_delta + mbmi->angle_delta[0]);
#if CONFIG_INTRA_INTERP
p_angle = mode_to_angle_map[mbmi->mode] +
mbmi->angle_delta[0] * av1_get_angle_step(mbmi->sb_type, 0);
if (av1_is_intra_filter_switchable(p_angle)) {
av1_write_token(w, av1_intra_filter_tree,
cm->fc->intra_filter_probs[intra_filter_ctx],
&intra_filter_encodings[mbmi->intra_filter]);
}
#endif // CONFIG_INTRA_INTERP
}
if (av1_is_directional_mode(mbmi->uv_mode, bsize)) {
write_uniform(w, 2 * MAX_ANGLE_DELTA_UV + 1,
MAX_ANGLE_DELTA_UV + mbmi->angle_delta[1]);
}
}
#endif // CONFIG_EXT_INTRA
static void write_mb_interp_filter(AV1_COMP *cpi, const MACROBLOCKD *xd,
aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
#if CONFIG_DUAL_FILTER
int dir;
#endif
if (cm->interp_filter == SWITCHABLE) {
#if CONFIG_DUAL_FILTER
if (!av1_is_interp_needed(xd)) {
assert(mbmi->interp_filter[0] == EIGHTTAP_REGULAR);
return;
}
#endif // CONFIG_DUAL_FILTER
#if CONFIG_DUAL_FILTER
for (dir = 0; dir < 2; ++dir) {
if (has_subpel_mv_component(xd->mi[0], xd, dir) ||
(mbmi->ref_frame[1] > INTRA_FRAME &&
has_subpel_mv_component(xd->mi[0], xd, dir + 2))) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
av1_write_token(w, av1_switchable_interp_tree,
cm->fc->switchable_interp_prob[ctx],
&switchable_interp_encodings[mbmi->interp_filter[dir]]);
++cpi->interp_filter_selected[0][mbmi->interp_filter[dir]];
}
}
#else
{
const int ctx = av1_get_pred_context_switchable_interp(xd);
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(w, av1_switchable_interp_ind[mbmi->interp_filter],
cm->fc->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS);
#else
av1_write_token(w, av1_switchable_interp_tree,
cm->fc->switchable_interp_prob[ctx],
&switchable_interp_encodings[mbmi->interp_filter]);
#endif
++cpi->interp_filter_selected[0][mbmi->interp_filter];
}
#endif
}
}
#if CONFIG_PALETTE
static void write_palette_mode_info(const AV1_COMMON *cm, const MACROBLOCKD *xd,
const MODE_INFO *const mi, aom_writer *w) {
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const MODE_INFO *const above_mi = xd->above_mi;
const MODE_INFO *const left_mi = xd->left_mi;
const BLOCK_SIZE bsize = mbmi->sb_type;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
int palette_ctx = 0;
int n, i;
if (mbmi->mode == DC_PRED) {
n = pmi->palette_size[0];
if (above_mi)
palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0);
if (left_mi)
palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0);
aom_write(w, n > 0,
av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx]);
if (n > 0) {
av1_write_token(w, av1_palette_size_tree,
av1_default_palette_y_size_prob[bsize - BLOCK_8X8],
&palette_size_encodings[n - 2]);
for (i = 0; i < n; ++i)
aom_write_literal(w, pmi->palette_colors[i], cm->bit_depth);
write_uniform(w, n, pmi->palette_first_color_idx[0]);
}
}
if (mbmi->uv_mode == DC_PRED) {
n = pmi->palette_size[1];
aom_write(w, n > 0,
av1_default_palette_uv_mode_prob[pmi->palette_size[0] > 0]);
if (n > 0) {
av1_write_token(w, av1_palette_size_tree,
av1_default_palette_uv_size_prob[bsize - BLOCK_8X8],
&palette_size_encodings[n - 2]);
for (i = 0; i < n; ++i) {
aom_write_literal(w, pmi->palette_colors[PALETTE_MAX_SIZE + i],
cm->bit_depth);
aom_write_literal(w, pmi->palette_colors[2 * PALETTE_MAX_SIZE + i],
cm->bit_depth);
}
write_uniform(w, n, pmi->palette_first_color_idx[1]);
}
}
}
#endif // CONFIG_PALETTE
static void write_tx_type(const AV1_COMMON *const cm,
const MB_MODE_INFO *const mbmi,
#if CONFIG_SUPERTX
const int supertx_enabled,
#endif
aom_writer *w) {
const int is_inter = is_inter_block(mbmi);
#if CONFIG_VAR_TX
const TX_SIZE tx_size = is_inter ? mbmi->min_tx_size : mbmi->tx_size;
#else
const TX_SIZE tx_size = mbmi->tx_size;
#endif
if (!FIXED_TX_TYPE) {
#if CONFIG_EXT_TX
const BLOCK_SIZE bsize = mbmi->sb_type;
if (get_ext_tx_types(tx_size, bsize, is_inter) > 1 && cm->base_qindex > 0 &&
!mbmi->skip &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif // CONFIG_SUPERTX
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
int eset = get_ext_tx_set(tx_size, bsize, is_inter);
if (is_inter) {
assert(ext_tx_used_inter[eset][mbmi->tx_type]);
if (eset > 0)
av1_write_token(
w, av1_ext_tx_inter_tree[eset],
cm->fc->inter_ext_tx_prob[eset][txsize_sqr_map[tx_size]],
&ext_tx_inter_encodings[eset][mbmi->tx_type]);
} else if (ALLOW_INTRA_EXT_TX) {
if (eset > 0)
av1_write_token(w, av1_ext_tx_intra_tree[eset],
cm->fc->intra_ext_tx_prob[eset][tx_size][mbmi->mode],
&ext_tx_intra_encodings[eset][mbmi->tx_type]);
}
}
#else
if (tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif // CONFIG_SUPERTX
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
if (is_inter) {
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(w, av1_ext_tx_ind[mbmi->tx_type],
cm->fc->inter_ext_tx_cdf[tx_size], TX_TYPES);
#else
av1_write_token(w, av1_ext_tx_tree, cm->fc->inter_ext_tx_prob[tx_size],
&ext_tx_encodings[mbmi->tx_type]);
#endif
} else {
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(
w, av1_ext_tx_ind[mbmi->tx_type],
cm->fc->intra_ext_tx_cdf[tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]],
TX_TYPES);
#else
av1_write_token(
w, av1_ext_tx_tree,
cm->fc
->intra_ext_tx_prob[tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]],
&ext_tx_encodings[mbmi->tx_type]);
#endif
}
}
#endif // CONFIG_EXT_TX
}
}
static void pack_inter_mode_mvs(AV1_COMP *cpi, const MODE_INFO *mi,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
#if !CONFIG_REF_MV
nmv_context *nmvc = &cm->fc->nmvc;
#endif
#if CONFIG_DELTA_Q
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
#else
const MACROBLOCK *x = &cpi->td.mb;
const MACROBLOCKD *xd = &x->e_mbd;
#endif
const struct segmentation *const seg = &cm->seg;
struct segmentation_probs *const segp = &cm->fc->seg;
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const PREDICTION_MODE mode = mbmi->mode;
const int segment_id = mbmi->segment_id;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int allow_hp = cm->allow_high_precision_mv;
const int is_inter = is_inter_block(mbmi);
const int is_compound = has_second_ref(mbmi);
int skip, ref;
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
#endif
if (seg->update_map) {
if (seg->temporal_update) {
const int pred_flag = mbmi->seg_id_predicted;
aom_prob pred_prob = av1_get_pred_prob_seg_id(segp, xd);
aom_write(w, pred_flag, pred_prob);
if (!pred_flag) write_segment_id(w, seg, segp, segment_id);
} else {
write_segment_id(w, seg, segp, segment_id);
}
}
#if CONFIG_SUPERTX
if (supertx_enabled)
skip = mbmi->skip;
else
skip = write_skip(cm, xd, segment_id, mi, w);
#else
skip = write_skip(cm, xd, segment_id, mi, w);
#endif // CONFIG_SUPERTX
#if CONFIG_DELTA_Q
if (cm->delta_q_present_flag) {
int mi_row = (-xd->mb_to_top_edge) >> (MI_SIZE_LOG2 + 3);
int mi_col = (-xd->mb_to_left_edge) >> (MI_SIZE_LOG2 + 3);
int super_block_upper_left =
((mi_row & MAX_MIB_MASK) == 0) && ((mi_col & MAX_MIB_MASK) == 0);
if ((bsize != BLOCK_64X64 || skip == 0) && super_block_upper_left) {
int reduced_delta_qindex =
(mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res;
write_delta_qindex(cm, reduced_delta_qindex, w);
xd->prev_qindex = mbmi->current_q_index;
}
}
#endif
#if CONFIG_SUPERTX
if (!supertx_enabled)
#endif // CONFIG_SUPERTX
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
aom_write(w, is_inter, av1_get_intra_inter_prob(cm, xd));
if (cm->tx_mode == TX_MODE_SELECT &&
#if CONFIG_CB4X4 && CONFIG_VAR_TX
(bsize >= BLOCK_8X8 || (bsize >= BLOCK_4X4 && is_inter && !skip)) &&
#else
bsize >= BLOCK_8X8 &&
#endif
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif // CONFIG_SUPERTX
!(is_inter && skip) && !xd->lossless[segment_id]) {
#if CONFIG_VAR_TX
if (is_inter) { // This implies skip flag is 0.
const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
const int width = block_size_wide[bsize] >> tx_size_wide_log2[0];
const int height = block_size_high[bsize] >> tx_size_wide_log2[0];
int idx, idy;
for (idy = 0; idy < height; idy += bh)
for (idx = 0; idx < width; idx += bw)
write_tx_size_vartx(cm, xd, mbmi, max_tx_size, height != width, idy,
idx, w);
} else {
set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, skip, xd);
write_selected_tx_size(cm, xd, w);
}
} else {
set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, skip, xd);
#else
write_selected_tx_size(cm, xd, w);
#endif
}
if (!is_inter) {
if (bsize >= BLOCK_8X8 || unify_bsize) {
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(w, av1_intra_mode_ind[mode],
cm->fc->y_mode_cdf[size_group_lookup[bsize]],
INTRA_MODES);
#else
write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]);
#endif
} else {
int idx, idy;
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(w, av1_intra_mode_ind[b_mode], cm->fc->y_mode_cdf[0],
INTRA_MODES);
#else
write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]);
#endif
}
}
}
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(w, av1_intra_mode_ind[mbmi->uv_mode],
cm->fc->uv_mode_cdf[mode], INTRA_MODES);
#else
write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mode]);
#endif
#if CONFIG_EXT_INTRA
write_intra_angle_info(cm, xd, w);
#endif // CONFIG_EXT_INTRA
#if CONFIG_PALETTE
if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools)
write_palette_mode_info(cm, xd, mi, w);
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
if (bsize >= BLOCK_8X8) write_filter_intra_mode_info(cm, mbmi, w);
#endif // CONFIG_FILTER_INTRA
} else {
int16_t mode_ctx;
write_ref_frames(cm, xd, w);
#if CONFIG_REF_MV
#if CONFIG_EXT_INTER
if (is_compound)
mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]];
else
#endif // CONFIG_EXT_INTER
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame, bsize, -1);
#else // CONFIG_REF_MV
mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
#endif // CONFIG_REF_MV
// If segment skip is not enabled code the mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
if (bsize >= BLOCK_8X8 || unify_bsize) {
#if CONFIG_EXT_INTER
if (is_inter_compound_mode(mode))
write_inter_compound_mode(cm, w, mode, mode_ctx);
else if (is_inter_singleref_mode(mode))
#endif // CONFIG_EXT_INTER
write_inter_mode(cm, w, mode,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
is_compound,
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
mode_ctx);
#if CONFIG_REF_MV
if (mode == NEARMV || mode == NEWMV)
write_drl_idx(cm, mbmi, mbmi_ext, w);
#endif
}
}
#if !CONFIG_DUAL_FILTER && !CONFIG_WARPED_MOTION
write_mb_interp_filter(cpi, xd, w);
#endif // !CONFIG_DUAL_FILTER && !CONFIG_WARPED_MOTION
if (bsize < BLOCK_8X8 && !unify_bsize) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
#if CONFIG_REF_MV
#if CONFIG_EXT_INTER
if (!is_compound)
#endif // CONFIG_EXT_INTER
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame, bsize, j);
#endif
#if CONFIG_EXT_INTER
if (is_inter_compound_mode(b_mode))
write_inter_compound_mode(cm, w, b_mode, mode_ctx);
else if (is_inter_singleref_mode(b_mode))
#endif // CONFIG_EXT_INTER
write_inter_mode(cm, w, b_mode,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
has_second_ref(mbmi),
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
mode_ctx);
#if CONFIG_EXT_INTER
if (b_mode == NEWMV || b_mode == NEWFROMNEARMV ||
b_mode == NEW_NEWMV) {
#else
if (b_mode == NEWMV) {
#endif // CONFIG_EXT_INTER
for (ref = 0; ref < 1 + is_compound; ++ref) {
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], ref,
mbmi->ref_mv_idx);
nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
av1_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
#if CONFIG_EXT_INTER
&mi->bmi[j].ref_mv[ref].as_mv,
#if CONFIG_REF_MV
is_compound,
#endif
#else
#if CONFIG_REF_MV
&mi->bmi[j].pred_mv[ref].as_mv, is_compound,
#else
&mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
#endif // CONFIG_REF_MV
#endif // CONFIG_EXT_INTER
nmvc, allow_hp);
}
}
#if CONFIG_EXT_INTER
else if (b_mode == NEAREST_NEWMV || b_mode == NEAR_NEWMV) {
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], 1,
mbmi->ref_mv_idx);
nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
av1_encode_mv(cpi, w, &mi->bmi[j].as_mv[1].as_mv,
&mi->bmi[j].ref_mv[1].as_mv,
#if CONFIG_REF_MV
is_compound,
#endif
nmvc, allow_hp);
} else if (b_mode == NEW_NEARESTMV || b_mode == NEW_NEARMV) {
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], 0,
mbmi->ref_mv_idx);
nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
av1_encode_mv(cpi, w, &mi->bmi[j].as_mv[0].as_mv,
&mi->bmi[j].ref_mv[0].as_mv,
#if CONFIG_REF_MV
is_compound,
#endif
nmvc, allow_hp);
}
#endif // CONFIG_EXT_INTER
}
}
} else {
#if CONFIG_EXT_INTER
if (mode == NEWMV || mode == NEWFROMNEARMV || mode == NEW_NEWMV) {
#else
if (mode == NEWMV) {
#endif // CONFIG_EXT_INTER
int_mv ref_mv;
for (ref = 0; ref < 1 + is_compound; ++ref) {
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], ref,
mbmi->ref_mv_idx);
nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
ref_mv = mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0];
#if CONFIG_EXT_INTER
if (mode == NEWFROMNEARMV)
av1_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
&mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][1].as_mv,
#if CONFIG_REF_MV
is_compound,
#endif
nmvc, allow_hp);
else
#endif // CONFIG_EXT_INTER
av1_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &ref_mv.as_mv,
#if CONFIG_REF_MV
is_compound,
#endif
nmvc, allow_hp);
}
#if CONFIG_EXT_INTER
} else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], 1, mbmi->ref_mv_idx);
nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
av1_encode_mv(cpi, w, &mbmi->mv[1].as_mv,
&mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_mv,
#if CONFIG_REF_MV
is_compound,
#endif
nmvc, allow_hp);
} else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx);
nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx];
#endif
av1_encode_mv(cpi, w, &mbmi->mv[0].as_mv,
&mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_mv,
#if CONFIG_REF_MV
is_compound,
#endif
nmvc, allow_hp);
#endif // CONFIG_EXT_INTER
}
}
#if CONFIG_EXT_INTER
if (cpi->common.reference_mode != COMPOUND_REFERENCE &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif // CONFIG_SUPERTX
is_interintra_allowed(mbmi)) {
const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
const int bsize_group = size_group_lookup[bsize];
aom_write(w, interintra, cm->fc->interintra_prob[bsize_group]);
if (interintra) {
write_interintra_mode(w, mbmi->interintra_mode,
cm->fc->interintra_mode_prob[bsize_group]);
if (is_interintra_wedge_used(bsize)) {
aom_write(w, mbmi->use_wedge_interintra,
cm->fc->wedge_interintra_prob[bsize]);
if (mbmi->use_wedge_interintra) {
aom_write_literal(w, mbmi->interintra_wedge_index,
get_wedge_bits_lookup(bsize));
assert(mbmi->interintra_wedge_sign == 0);
}
}
}
}
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_SUPERTX
if (!supertx_enabled)
#endif // CONFIG_SUPERTX
#if CONFIG_EXT_INTER
if (mbmi->ref_frame[1] != INTRA_FRAME)
#endif // CONFIG_EXT_INTER
write_motion_mode(cm, mbmi, w);
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_EXT_INTER
if (cpi->common.reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode)
#if CONFIG_MOTION_VAR
&& mbmi->motion_mode == SIMPLE_TRANSLATION
#endif // CONFIG_MOTION_VAR
) {
av1_write_token(
w, av1_compound_type_tree, cm->fc->compound_type_prob[bsize],
&compound_type_encodings[mbmi->interinter_compound_data.type]);
if (mbmi->interinter_compound_data.type == COMPOUND_WEDGE) {
aom_write_literal(w, mbmi->interinter_compound_data.wedge_index,
get_wedge_bits_lookup(bsize));
aom_write_bit(w, mbmi->interinter_compound_data.wedge_sign);
}
#if CONFIG_COMPOUND_SEGMENT
else if (mbmi->interinter_compound_data.type == COMPOUND_SEG) {
aom_write_bit(w, mbmi->interinter_compound_data.which);
}
#endif // CONFIG_COMPOUND_SEGMENT
}
#endif // CONFIG_EXT_INTER
#if CONFIG_WARPED_MOTION
if (mbmi->motion_mode != WARPED_CAUSAL)
#endif // CONFIG_WARPED_MOTION
#if CONFIG_DUAL_FILTER || CONFIG_WARPED_MOTION
write_mb_interp_filter(cpi, xd, w);
#endif // CONFIG_DUAL_FILTE || CONFIG_WARPED_MOTION
}
write_tx_type(cm, mbmi,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
w);
}
#if CONFIG_DELTA_Q
static void write_mb_modes_kf(AV1_COMMON *cm, MACROBLOCKD *xd,
MODE_INFO **mi_8x8, aom_writer *w) {
int skip;
#else
static void write_mb_modes_kf(AV1_COMMON *cm, const MACROBLOCKD *xd,
MODE_INFO **mi_8x8, aom_writer *w) {
#endif
const struct segmentation *const seg = &cm->seg;
struct segmentation_probs *const segp = &cm->fc->seg;
const MODE_INFO *const mi = mi_8x8[0];
const MODE_INFO *const above_mi = xd->above_mi;
const MODE_INFO *const left_mi = xd->left_mi;
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
#endif
if (seg->update_map) write_segment_id(w, seg, segp, mbmi->segment_id);
#if CONFIG_DELTA_Q
skip = write_skip(cm, xd, mbmi->segment_id, mi, w);
if (cm->delta_q_present_flag) {
int mi_row = (-xd->mb_to_top_edge) >> 6;
int mi_col = (-xd->mb_to_left_edge) >> 6;
int super_block_upper_left = ((mi_row & 7) == 0) && ((mi_col & 7) == 0);
if ((bsize != BLOCK_64X64 || skip == 0) && super_block_upper_left) {
int reduced_delta_qindex =
(mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res;
write_delta_qindex(cm, reduced_delta_qindex, w);
xd->prev_qindex = mbmi->current_q_index;
}
}
#else
write_skip(cm, xd, mbmi->segment_id, mi, w);
#endif
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
!xd->lossless[mbmi->segment_id])
write_selected_tx_size(cm, xd, w);
if (bsize >= BLOCK_8X8 || unify_bsize) {
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(w, av1_intra_mode_ind[mbmi->mode],
get_y_mode_cdf(cm, mi, above_mi, left_mi, 0), INTRA_MODES);
#else
write_intra_mode(w, mbmi->mode,
get_y_mode_probs(cm, mi, above_mi, left_mi, 0));
#endif
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int block = idy * 2 + idx;
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(w, av1_intra_mode_ind[mi->bmi[block].as_mode],
get_y_mode_cdf(cm, mi, above_mi, left_mi, block),
INTRA_MODES);
#else
write_intra_mode(w, mi->bmi[block].as_mode,
get_y_mode_probs(cm, mi, above_mi, left_mi, block));
#endif
}
}
}
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(w, av1_intra_mode_ind[mbmi->uv_mode],
cm->fc->uv_mode_cdf[mbmi->mode], INTRA_MODES);
#else
write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mbmi->mode]);
#endif
#if CONFIG_EXT_INTRA
write_intra_angle_info(cm, xd, w);
#endif // CONFIG_EXT_INTRA
#if CONFIG_PALETTE
if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools)
write_palette_mode_info(cm, xd, mi, w);
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
if (bsize >= BLOCK_8X8) write_filter_intra_mode_info(cm, mbmi, w);
#endif // CONFIG_FILTER_INTRA
write_tx_type(cm, mbmi,
#if CONFIG_SUPERTX
0,
#endif
w);
}
#if CONFIG_SUPERTX
#define write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, \
mi_row, mi_col) \
write_modes_b(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col)
#else
#define write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, \
mi_row, mi_col) \
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col)
#endif // CONFIG_SUPERTX
#if CONFIG_RD_DEBUG
static void dump_mode_info(MODE_INFO *mi) {
printf("\nmi->mbmi.mi_row == %d\n", mi->mbmi.mi_row);
printf("&& mi->mbmi.mi_col == %d\n", mi->mbmi.mi_col);
printf("&& mi->mbmi.sb_type == %d\n", mi->mbmi.sb_type);
printf("&& mi->mbmi.tx_size == %d\n", mi->mbmi.tx_size);
if (mi->mbmi.sb_type >= BLOCK_8X8) {
printf("&& mi->mbmi.mode == %d\n", mi->mbmi.mode);
} else {
printf("&& mi->bmi[0].as_mode == %d\n", mi->bmi[0].as_mode);
}
}
static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
int plane) {
if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
#if CONFIG_VAR_TX
int r, c;
#endif
printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
#if CONFIG_VAR_TX
printf("rd txb_coeff_cost_map\n");
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) {
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]);
}
printf("\n");
}
printf("pack txb_coeff_cost_map\n");
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) {
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
printf("%d ", token_stats->txb_coeff_cost_map[r][c]);
}
printf("\n");
}
#endif
return 1;
}
return 0;
}
#endif
#if CONFIG_PVQ
PVQ_INFO *get_pvq_block(PVQ_QUEUE *pvq_q) {
PVQ_INFO *pvq;
assert(pvq_q->curr_pos <= pvq_q->last_pos);
assert(pvq_q->curr_pos < pvq_q->buf_len);
pvq = pvq_q->buf + pvq_q->curr_pos;
++pvq_q->curr_pos;
return pvq;
}
#endif
static void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile,
aom_writer *w, const TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
MODE_INFO *m;
int plane;
int bh, bw;
#if CONFIG_PVQ
MB_MODE_INFO *mbmi;
BLOCK_SIZE bsize;
od_adapt_ctx *adapt;
(void)tok;
(void)tok_end;
#endif
xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
m = xd->mi[0];
assert(m->mbmi.sb_type <= cm->sb_size);
bh = mi_size_high[m->mbmi.sb_type];
bw = mi_size_wide[m->mbmi.sb_type];
cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
#if CONFIG_PVQ
mbmi = &m->mbmi;
bsize = mbmi->sb_type;
adapt = &cpi->td.mb.daala_enc.state.adapt;
#endif
if (frame_is_intra_only(cm)) {
write_mb_modes_kf(cm, xd, xd->mi, w);
} else {
#if CONFIG_VAR_TX
xd->above_txfm_context = cm->above_txfm_context + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
#endif
#if CONFIG_DUAL_FILTER
// av1_is_interp_needed needs the ref frame buffers set up to look
// up if they are scaled. av1_is_interp_needed is in turn needed by
// write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
set_ref_ptrs(cm, xd, m->mbmi.ref_frame[0], m->mbmi.ref_frame[1]);
#endif // CONFIG_DUAL_FILTER
#if 0
// NOTE(zoeliu): For debug
if (cm->current_video_frame == FRAME_TO_CHECK && cm->show_frame == 1) {
const PREDICTION_MODE mode = m->mbmi.mode;
const int segment_id = m->mbmi.segment_id;
const BLOCK_SIZE bsize = m->mbmi.sb_type;
// For sub8x8, simply dump out the first sub8x8 block info
const PREDICTION_MODE b_mode =
(bsize < BLOCK_8X8) ? m->bmi[0].as_mode : -1;
const int mv_x = (bsize < BLOCK_8X8) ?
m->bmi[0].as_mv[0].as_mv.row : m->mbmi.mv[0].as_mv.row;
const int mv_y = (bsize < BLOCK_8X8) ?
m->bmi[0].as_mv[0].as_mv.col : m->mbmi.mv[0].as_mv.col;
printf("Before pack_inter_mode_mvs(): "
"Frame=%d, (mi_row,mi_col)=(%d,%d), "
"mode=%d, segment_id=%d, bsize=%d, b_mode=%d, "
"mv[0]=(%d, %d), ref[0]=%d, ref[1]=%d\n",
cm->current_video_frame, mi_row, mi_col,
mode, segment_id, bsize, b_mode, mv_x, mv_y,
m->mbmi.ref_frame[0], m->mbmi.ref_frame[1]);
}
#endif // 0
pack_inter_mode_mvs(cpi, m,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
w);
}
#if CONFIG_PALETTE
for (plane = 0; plane <= 1; ++plane) {
if (m->mbmi.palette_mode_info.palette_size[plane] > 0) {
const int rows =
block_size_high[m->mbmi.sb_type] >> (xd->plane[plane].subsampling_y);
const int cols =
block_size_wide[m->mbmi.sb_type] >> (xd->plane[plane].subsampling_x);
assert(*tok < tok_end);
pack_palette_tokens(w, tok, m->mbmi.palette_mode_info.palette_size[plane],
rows * cols - 1);
assert(*tok < tok_end + m->mbmi.skip);
}
}
#endif // CONFIG_PALETTE
#if !CONFIG_PVQ
#if CONFIG_SUPERTX
if (supertx_enabled) return;
#endif // CONFIG_SUPERTX
#if CONFIG_COEF_INTERLEAVE
if (!m->mbmi.skip) {
const struct macroblockd_plane *const pd_y = &xd->plane[0];
const struct macroblockd_plane *const pd_c = &xd->plane[1];
const TX_SIZE tx_log2_y = m->mbmi.tx_size;
const TX_SIZE tx_log2_c = get_uv_tx_size(&m->mbmi, pd_c);
const int tx_sz_y = (1 << tx_log2_y);
const int tx_sz_c = (1 << tx_log2_c);
const BLOCK_SIZE plane_bsize_y =
get_plane_block_size(AOMMAX(m->mbmi.sb_type, 3), pd_y);
const BLOCK_SIZE plane_bsize_c =
get_plane_block_size(AOMMAX(m->mbmi.sb_type, 3), pd_c);
const int num_4x4_w_y = num_4x4_blocks_wide_lookup[plane_bsize_y];
const int num_4x4_w_c = num_4x4_blocks_wide_lookup[plane_bsize_c];
const int num_4x4_h_y = num_4x4_blocks_high_lookup[plane_bsize_y];
const int num_4x4_h_c = num_4x4_blocks_high_lookup[plane_bsize_c];
const int max_4x4_w_y = get_max_4x4_size(num_4x4_w_y, xd->mb_to_right_edge,
pd_y->subsampling_x);
const int max_4x4_h_y = get_max_4x4_size(num_4x4_h_y, xd->mb_to_bottom_edge,
pd_y->subsampling_y);
const int max_4x4_w_c = get_max_4x4_size(num_4x4_w_c, xd->mb_to_right_edge,
pd_c->subsampling_x);
const int max_4x4_h_c = get_max_4x4_size(num_4x4_h_c, xd->mb_to_bottom_edge,
pd_c->subsampling_y);
// The max_4x4_w/h may be smaller than tx_sz under some corner cases,
// i.e. when the SB is splitted by tile boundaries.
const int tu_num_w_y = (max_4x4_w_y + tx_sz_y - 1) / tx_sz_y;
const int tu_num_h_y = (max_4x4_h_y + tx_sz_y - 1) / tx_sz_y;
const int tu_num_w_c = (max_4x4_w_c + tx_sz_c - 1) / tx_sz_c;
const int tu_num_h_c = (max_4x4_h_c + tx_sz_c - 1) / tx_sz_c;
const int tu_num_y = tu_num_w_y * tu_num_h_y;
const int tu_num_c = tu_num_w_c * tu_num_h_c;
int tu_idx_y = 0, tu_idx_c = 0;
TOKEN_STATS token_stats;
init_token_stats(&token_stats);
assert(*tok < tok_end);
while (tu_idx_y < tu_num_y) {
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx_log2_y, &token_stats);
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
(*tok)++;
tu_idx_y++;
if (tu_idx_c < tu_num_c) {
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx_log2_c, &token_stats);
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
(*tok)++;
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx_log2_c, &token_stats);
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
(*tok)++;
tu_idx_c++;
}
}
// In 422 case, it's possilbe that Chroma has more TUs than Luma
while (tu_idx_c < tu_num_c) {
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx_log2_c, &token_stats);
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
(*tok)++;
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx_log2_c, &token_stats);
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
(*tok)++;
tu_idx_c++;
}
}
#else // CONFIG_COEF_INTERLEAVE
if (!m->mbmi.skip) {
assert(*tok < tok_end);
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
MB_MODE_INFO *mbmi = &m->mbmi;
#if CONFIG_VAR_TX
const struct macroblockd_plane *const pd = &xd->plane[plane];
BLOCK_SIZE bsize = mbmi->sb_type;
#if CONFIG_CB4X4
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
#else
const BLOCK_SIZE plane_bsize =
get_plane_block_size(AOMMAX(bsize, BLOCK_8X8), pd);
#endif
const int num_4x4_w =
block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int num_4x4_h =
block_size_high[plane_bsize] >> tx_size_wide_log2[0];
int row, col;
TOKEN_STATS token_stats;
init_token_stats(&token_stats);
if (is_inter_block(mbmi)) {
const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize];
int block = 0;
const int step =
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
const int bkw = tx_size_wide_unit[max_tx_size];
const int bkh = tx_size_high_unit[max_tx_size];
for (row = 0; row < num_4x4_h; row += bkh) {
for (col = 0; col < num_4x4_w; col += bkw) {
pack_txb_tokens(w, tok, tok_end, xd, mbmi, plane, plane_bsize,
cm->bit_depth, block, row, col, max_tx_size,
&token_stats);
block += step;
}
}
#if CONFIG_RD_DEBUG
if (mbmi->sb_type >= BLOCK_8X8 &&
rd_token_stats_mismatch(&m->mbmi.rd_stats, &token_stats, plane)) {
dump_mode_info(m);
assert(0);
}
#endif // CONFIG_RD_DEBUG
} else {
TX_SIZE tx = plane ? get_uv_tx_size(&m->mbmi, &xd->plane[plane])
: m->mbmi.tx_size;
const int bkw = tx_size_wide_unit[tx];
const int bkh = tx_size_high_unit[tx];
for (row = 0; row < num_4x4_h; row += bkh)
for (col = 0; col < num_4x4_w; col += bkw)
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx, &token_stats);
}
#else
TX_SIZE tx =
plane ? get_uv_tx_size(&m->mbmi, &xd->plane[plane]) : m->mbmi.tx_size;
TOKEN_STATS token_stats;
init_token_stats(&token_stats);
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx, &token_stats);
#if CONFIG_RD_DEBUG
if (is_inter_block(mbmi) && mbmi->sb_type >= BLOCK_8X8 &&
rd_token_stats_mismatch(&m->mbmi.rd_stats, &token_stats, plane)) {
dump_mode_info(m);
assert(0);
}
#else
(void)mbmi;
#endif // CONFIG_RD_DEBUG
#endif // CONFIG_VAR_TX
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
(*tok)++;
}
}
#endif // CONFIG_COEF_INTERLEAVE
#else
// PVQ writes its tokens (i.e. symbols) here.
if (!m->mbmi.skip) {
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
PVQ_INFO *pvq;
TX_SIZE tx_size =
plane ? get_uv_tx_size(&m->mbmi, &xd->plane[plane]) : m->mbmi.tx_size;
int idx, idy;
const struct macroblockd_plane *const pd = &xd->plane[plane];
int num_4x4_w;
int num_4x4_h;
int max_blocks_wide;
int max_blocks_high;
int step = (1 << tx_size);
const int step_xy = 1 << (tx_size << 1);
int block = 0;
if (tx_size == TX_4X4 && bsize <= BLOCK_8X8) {
num_4x4_w = 2 >> xd->plane[plane].subsampling_x;
num_4x4_h = 2 >> xd->plane[plane].subsampling_y;
} else {
num_4x4_w =
num_4x4_blocks_wide_lookup[bsize] >> xd->plane[plane].subsampling_x;
num_4x4_h =
num_4x4_blocks_high_lookup[bsize] >> xd->plane[plane].subsampling_y;
}
// TODO: Do we need below for 4x4,4x8,8x4 cases as well?
max_blocks_wide =
num_4x4_w + (xd->mb_to_right_edge >= 0
? 0
: xd->mb_to_right_edge >> (5 + pd->subsampling_x));
max_blocks_high =
num_4x4_h + (xd->mb_to_bottom_edge >= 0
? 0
: xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
// TODO(yushin) Try to use av1_foreach_transformed_block_in_plane().
// Logic like the mb_to_right_edge/mb_to_bottom_edge stuff should
// really be centralized in one place.
for (idy = 0; idy < max_blocks_high; idy += step) {
for (idx = 0; idx < max_blocks_wide; idx += step) {
const int is_keyframe = 0;
const int encode_flip = 0;
const int flip = 0;
const int robust = 1;
int i;
const int has_dc_skip = 1;
int *exg = &adapt->pvq.pvq_exg[plane][tx_size][0];
int *ext = adapt->pvq.pvq_ext + tx_size * PVQ_MAX_PARTITIONS;
generic_encoder *model = adapt->pvq.pvq_param_model;
pvq = get_pvq_block(cpi->td.mb.pvq_q);
// encode block skip info
od_encode_cdf_adapt(&w->ec, pvq->ac_dc_coded,
adapt->skip_cdf[2 * tx_size + (plane != 0)], 4,
adapt->skip_increment);
// AC coeffs coded?
if (pvq->ac_dc_coded & 0x02) {
assert(pvq->bs <= tx_size);
for (i = 0; i < pvq->nb_bands; i++) {
if (i == 0 || (!pvq->skip_rest &&
!(pvq->skip_dir & (1 << ((i - 1) % 3))))) {
pvq_encode_partition(
w, pvq->qg[i], pvq->theta[i], pvq->max_theta[i],
pvq->y + pvq->off[i], pvq->size[i], pvq->k[i], model, adapt,
exg + i, ext + i, robust || is_keyframe,
(plane != 0) * OD_TXSIZES * PVQ_MAX_PARTITIONS +
pvq->bs * PVQ_MAX_PARTITIONS + i,
is_keyframe, i == 0 && (i < pvq->nb_bands - 1),
pvq->skip_rest, encode_flip, flip);
}
if (i == 0 && !pvq->skip_rest && pvq->bs > 0) {
od_encode_cdf_adapt(
&w->ec, pvq->skip_dir,
&adapt->pvq
.pvq_skip_dir_cdf[(plane != 0) + 2 * (pvq->bs - 1)][0],
7, adapt->pvq.pvq_skip_dir_increment);
}
}
}
// Encode residue of DC coeff, if exist.
if (!has_dc_skip || (pvq->ac_dc_coded & 1)) { // DC coded?
generic_encode(w, &adapt->model_dc[plane],
abs(pvq->dq_dc_residue) - has_dc_skip, -1,
&adapt->ex_dc[plane][pvq->bs][0], 2);
}
if ((pvq->ac_dc_coded & 1)) { // DC coded?
aom_write_bit(w, pvq->dq_dc_residue < 0);
}
block += step_xy;
}
} // for (idy = 0;
} // for (plane =
} // if (!m->mbmi.skip)
#endif
}
static void write_partition(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, int hbs, int mi_row,
int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize,
aom_writer *w) {
const int is_partition_point = bsize >= BLOCK_8X8;
const int ctx = is_partition_point
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
const aom_prob *const probs = cm->fc->partition_prob[ctx];
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
if (!is_partition_point) return;
if (has_rows && has_cols) {
#if CONFIG_EXT_PARTITION_TYPES
if (bsize <= BLOCK_8X8)
av1_write_token(w, av1_partition_tree, probs, &partition_encodings[p]);
else
av1_write_token(w, av1_ext_partition_tree, probs,
&ext_partition_encodings[p]);
#else
#if CONFIG_EC_MULTISYMBOL
aom_write_symbol(w, p, cm->fc->partition_cdf[ctx], PARTITION_TYPES);
#else
av1_write_token(w, av1_partition_tree, probs, &partition_encodings[p]);
#endif
#endif // CONFIG_EXT_PARTITION_TYPES
} else if (!has_rows && has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
aom_write(w, p == PARTITION_SPLIT, probs[1]);
} else if (has_rows && !has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
aom_write(w, p == PARTITION_SPLIT, probs[2]);
} else {
assert(p == PARTITION_SPLIT);
}
}
#if CONFIG_SUPERTX
#define write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, \
mi_row, mi_col, bsize) \
write_modes_sb(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col, \
bsize)
#else
#define write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, \
mi_row, mi_col, bsize) \
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, bsize)
#endif // CONFIG_SUPERTX
static void write_modes_sb(AV1_COMP *const cpi, const TileInfo *const tile,
aom_writer *const w, const TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col, BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
const int hbs = mi_size_wide[bsize] / 2;
const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
#endif
#if CONFIG_SUPERTX
const int mi_offset = mi_row * cm->mi_stride + mi_col;
MB_MODE_INFO *mbmi;
const int pack_token = !supertx_enabled;
TX_SIZE supertx_size;
int plane;
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
#if CONFIG_SUPERTX
mbmi = &cm->mi_grid_visible[mi_offset]->mbmi;
xd->mi = cm->mi_grid_visible + mi_offset;
set_mi_row_col(xd, tile, mi_row, mi_size_high[bsize], mi_col,
mi_size_wide[bsize], cm->mi_rows, cm->mi_cols);
if (!supertx_enabled && !frame_is_intra_only(cm) &&
partition != PARTITION_NONE && bsize <= MAX_SUPERTX_BLOCK_SIZE &&
!xd->lossless[0]) {
aom_prob prob;
supertx_size = max_txsize_lookup[bsize];
prob = cm->fc->supertx_prob[partition_supertx_context_lookup[partition]]
[supertx_size];
supertx_enabled = (xd->mi[0]->mbmi.tx_size == supertx_size);
aom_write(w, supertx_enabled, prob);
}
#endif // CONFIG_SUPERTX
if (subsize < BLOCK_8X8 && !unify_bsize) {
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row,
mi_col);
} else {
switch (partition) {
case PARTITION_NONE:
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row, mi_col);
break;
case PARTITION_HORZ:
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row, mi_col);
if (mi_row + hbs < cm->mi_rows)
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row + hbs, mi_col);
break;
case PARTITION_VERT:
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row, mi_col);
if (mi_col + hbs < cm->mi_cols)
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row, mi_col + hbs);
break;
case PARTITION_SPLIT:
write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row, mi_col, subsize);
write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row, mi_col + hbs, subsize);
write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row + hbs, mi_col, subsize);
write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row + hbs, mi_col + hbs, subsize);
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row, mi_col);
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row, mi_col + hbs);
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row + hbs, mi_col);
break;
case PARTITION_HORZ_B:
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row, mi_col);
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row + hbs, mi_col);
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row + hbs, mi_col + hbs);
break;
case PARTITION_VERT_A:
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row, mi_col);
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row + hbs, mi_col);
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row, mi_col + hbs);
break;
case PARTITION_VERT_B:
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row, mi_col);
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row, mi_col + hbs);
write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled,
mi_row + hbs, mi_col + hbs);
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0);
}
}
#if CONFIG_SUPERTX
if (partition != PARTITION_NONE && supertx_enabled && pack_token) {
int skip;
const int bsw = mi_size_wide[bsize];
const int bsh = mi_size_high[bsize];
xd->mi = cm->mi_grid_visible + mi_offset;
supertx_size = mbmi->tx_size;
set_mi_row_col(xd, tile, mi_row, bsh, mi_col, bsw, cm->mi_rows,
cm->mi_cols);
assert(IMPLIES(!cm->seg.enabled, mbmi->segment_id_supertx == 0));
assert(mbmi->segment_id_supertx < MAX_SEGMENTS);
skip = write_skip(cm, xd, mbmi->segment_id_supertx, xd->mi[0], w);
#if CONFIG_EXT_TX
if (get_ext_tx_types(supertx_size, bsize, 1) > 1 && !skip) {
int eset = get_ext_tx_set(supertx_size, bsize, 1);
if (eset > 0) {
av1_write_token(w, av1_ext_tx_inter_tree[eset],
cm->fc->inter_ext_tx_prob[eset][supertx_size],
&ext_tx_inter_encodings[eset][mbmi->tx_type]);
}
}
#else
if (supertx_size < TX_32X32 && !skip) {
av1_write_token(w, av1_ext_tx_tree,
cm->fc->inter_ext_tx_prob[supertx_size],
&ext_tx_encodings[mbmi->tx_type]);
}
#endif // CONFIG_EXT_TX
if (!skip) {
assert(*tok < tok_end);
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int mbmi_txb_size = txsize_to_bsize[mbmi->tx_size];
const BLOCK_SIZE plane_bsize = get_plane_block_size(mbmi_txb_size, pd);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
int row, col;
TX_SIZE tx =
plane ? get_uv_tx_size(mbmi, &xd->plane[plane]) : mbmi->tx_size;
BLOCK_SIZE txb_size = txsize_to_bsize[tx];
const int stepr = tx_size_high_unit[txb_size];
const int stepc = tx_size_wide_unit[txb_size];
TOKEN_STATS token_stats;
token_stats.cost = 0;
for (row = 0; row < max_blocks_high; row += stepr)
for (col = 0; col < max_blocks_wide; col += stepc)
pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx, &token_stats);
assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN);
(*tok)++;
}
}
#if CONFIG_VAR_TX
xd->above_txfm_context = cm->above_txfm_context + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
set_txfm_ctxs(xd->mi[0]->mbmi.tx_size, bsw, bsh, skip, xd);
#endif
}
#endif // CONFIG_SUPERTX
// update partition context
#if CONFIG_EXT_PARTITION_TYPES
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
#else
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
#endif // CONFIG_EXT_PARTITION_TYPES
#if CONFIG_DERING
#if CONFIG_EXT_PARTITION
if (cm->sb_size == BLOCK_128X128 && bsize == BLOCK_128X128 &&
cm->dering_level != 0 && !sb_all_skip(cm, mi_row, mi_col)) {
aom_write_literal(
w,
cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain,
DERING_REFINEMENT_BITS);
} else if (cm->sb_size == BLOCK_64X64 && bsize == BLOCK_64X64 &&
#else
if (bsize == BLOCK_64X64 &&
#endif // CONFIG_EXT_PARTITION
cm->dering_level != 0 && !sb_all_skip(cm, mi_row, mi_col)) {
aom_write_literal(
w,
cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain,
DERING_REFINEMENT_BITS);
}
#endif
#if CONFIG_CLPF
#if CONFIG_EXT_PARTITION
if (cm->sb_size == BLOCK_128X128 && bsize == BLOCK_128X128 &&
cm->clpf_blocks && cm->clpf_strength_y && cm->clpf_size != CLPF_NOSIZE) {
const int tl = mi_row * MI_SIZE / MIN_FB_SIZE * cm->clpf_stride +
mi_col * MI_SIZE / MIN_FB_SIZE;
if (cm->clpf_size == CLPF_128X128 && cm->clpf_blocks[tl] != CLPF_NOFLAG) {
aom_write_literal(w, cm->clpf_blocks[tl], 1);
} else if (cm->clpf_size == CLPF_64X64) {
const int tr = tl + 2;
const int bl = tl + 2 * cm->clpf_stride;
const int br = tr + 2 * cm->clpf_stride;
// Up to four bits per SB.
if (cm->clpf_blocks[tl] != CLPF_NOFLAG)
aom_write_literal(w, cm->clpf_blocks[tl], 1);
if (mi_col + MI_SIZE < cm->mi_cols && cm->clpf_blocks[tr] != CLPF_NOFLAG)
aom_write_literal(w, cm->clpf_blocks[tr], 1);
if (mi_row + MI_SIZE < cm->mi_rows && cm->clpf_blocks[bl] != CLPF_NOFLAG)
aom_write_literal(w, cm->clpf_blocks[bl], 1);
if (mi_row + MI_SIZE < cm->mi_rows && mi_col + MI_SIZE < cm->mi_cols &&
cm->clpf_blocks[br] != CLPF_NOFLAG)
aom_write_literal(w, cm->clpf_blocks[br], 1);
} else if (cm->clpf_size == CLPF_32X32) {
int i, j;
const int size = 32 / MI_SIZE;
// Up to sixteen bits per SB.
for (i = 0; i < 4; ++i)
for (j = 0; j < 4; ++j) {
const int index = tl + i * cm->clpf_stride + j;
if (mi_row + i * size < cm->mi_rows &&
mi_col + j * size < cm->mi_cols &&
cm->clpf_blocks[index] != CLPF_NOFLAG)
aom_write_literal(w, cm->clpf_blocks[index], 1);
}
}
} else if (cm->sb_size == BLOCK_64X64 && bsize == BLOCK_64X64 &&
#else
if (bsize == BLOCK_64X64 &&
#endif // CONFIG_EXT_PARTITION
cm->clpf_blocks && cm->clpf_strength_y &&
cm->clpf_size != CLPF_NOSIZE) {
const int tl = mi_row * MI_SIZE / MIN_FB_SIZE * cm->clpf_stride +
mi_col * MI_SIZE / MIN_FB_SIZE;
const int tr = tl + 1;
const int bl = tl + cm->clpf_stride;
const int br = tr + cm->clpf_stride;
// Up to four bits per SB.
// When clpf_size indicates a size larger than the SB size
// (CLPF_128X128), one bit for every fourth SB will be transmitted
// regardless of skip blocks.
if (cm->clpf_blocks[tl] != CLPF_NOFLAG)
aom_write_literal(w, cm->clpf_blocks[tl], 1);
if (mi_col + MI_SIZE / 2 < cm->mi_cols &&
cm->clpf_blocks[tr] != CLPF_NOFLAG)
aom_write_literal(w, cm->clpf_blocks[tr], 1);
if (mi_row + MI_SIZE / 2 < cm->mi_rows &&
cm->clpf_blocks[bl] != CLPF_NOFLAG)
aom_write_literal(w, cm->clpf_blocks[bl], 1);
if (mi_row + MI_SIZE / 2 < cm->mi_rows &&
mi_col + MI_SIZE / 2 < cm->mi_cols &&
cm->clpf_blocks[br] != CLPF_NOFLAG)
aom_write_literal(w, cm->clpf_blocks[br], 1);
}
#endif // CONFIG_CLPF
}
static void write_modes(AV1_COMP *const cpi, const TileInfo *const tile,
aom_writer *const w, const TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
const int mi_row_start = tile->mi_row_start;
const int mi_row_end = tile->mi_row_end;
const int mi_col_start = tile->mi_col_start;
const int mi_col_end = tile->mi_col_end;
int mi_row, mi_col;
av1_zero_above_context(cm, mi_col_start, mi_col_end);
#if CONFIG_PVQ
assert(cpi->td.mb.pvq_q->curr_pos == 0);
#endif
#if CONFIG_DELTA_Q
if (cpi->common.delta_q_present_flag) {
xd->prev_qindex = cpi->common.base_qindex;
}
#endif
for (mi_row = mi_row_start; mi_row < mi_row_end; mi_row += cm->mib_size) {
av1_zero_left_context(xd);
for (mi_col = mi_col_start; mi_col < mi_col_end; mi_col += cm->mib_size) {
write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, 0, mi_row, mi_col,
cm->sb_size);
}
}
#if CONFIG_PVQ
// Check that the number of PVQ blocks encoded and written to the bitstream
// are the same
assert(cpi->td.mb.pvq_q->curr_pos == cpi->td.mb.pvq_q->last_pos);
// Reset curr_pos in case we repack the bitstream
cpi->td.mb.pvq_q->curr_pos = 0;
#endif
}
#if !CONFIG_PVQ
static void build_tree_distribution(AV1_COMP *cpi, TX_SIZE tx_size,
av1_coeff_stats *coef_branch_ct,
av1_coeff_probs_model *coef_probs) {
av1_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size];
unsigned int(*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
cpi->common.counts.eob_branch[tx_size];
int i, j, k, l, m;
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
av1_tree_probs_from_distribution(av1_coef_tree,
coef_branch_ct[i][j][k][l],
coef_counts[i][j][k][l]);
coef_branch_ct[i][j][k][l][0][1] =
eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0];
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
coef_probs[i][j][k][l][m] =
get_binary_prob(coef_branch_ct[i][j][k][l][m][0],
coef_branch_ct[i][j][k][l][m][1]);
}
}
}
}
}
static void update_coef_probs_common(aom_writer *const bc, AV1_COMP *cpi,
TX_SIZE tx_size,
av1_coeff_stats *frame_branch_ct,
av1_coeff_probs_model *new_coef_probs) {
av1_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size];
const aom_prob upd = DIFF_UPDATE_PROB;
#if CONFIG_EC_ADAPT
const int entropy_nodes_update = UNCONSTRAINED_NODES - 1;
#else
const int entropy_nodes_update = UNCONSTRAINED_NODES;
#endif
int i, j, k, l, t;
int stepsize = cpi->sf.coeff_prob_appx_step;
#if CONFIG_TILE_GROUPS
const int probwt = cpi->common.num_tg;
#else
const int probwt = 1;
#endif
switch (cpi->sf.use_fast_coef_updates) {
case TWO_LOOP: {
/* dry run to see if there is any update at all needed */
int savings = 0;
int update[2] = { 0, 0 };
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
for (t = 0; t < entropy_nodes_update; ++t) {
aom_prob newp = new_coef_probs[i][j][k][l][t];
const aom_prob oldp = old_coef_probs[i][j][k][l][t];
int s;
int u = 0;
if (t == PIVOT_NODE)
s = av1_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0], oldp, &newp, upd,
stepsize, probwt);
else
s = av1_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t], oldp, &newp, upd, probwt);
if (s > 0 && newp != oldp) u = 1;
if (u)
savings += s - (int)(av1_cost_zero(upd));
else
savings -= (int)(av1_cost_zero(upd));
update[u]++;
}
}
}
}
}
/* Is coef updated at all */
if (update[1] == 0 || savings < 0) {
aom_write_bit(bc, 0);
return;
}
aom_write_bit(bc, 1);
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
aom_prob newp = new_coef_probs[i][j][k][l][t];
aom_prob *oldp = old_coef_probs[i][j][k][l] + t;
int s;
int u = 0;
if (t == PIVOT_NODE)
s = av1_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd,
stepsize, probwt);
else
s = av1_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd,
probwt);
if (s > 0 && newp != *oldp) u = 1;
aom_write(bc, u, upd);
if (u) {
/* send/use new probability */
av1_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
return;
}
case ONE_LOOP_REDUCED: {
int updates = 0;
int noupdates_before_first = 0;
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
aom_prob newp = new_coef_probs[i][j][k][l][t];
aom_prob *oldp = old_coef_probs[i][j][k][l] + t;
int s;
int u = 0;
if (t == PIVOT_NODE) {
s = av1_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd,
stepsize, probwt);
} else {
s = av1_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd,
probwt);
}
if (s > 0 && newp != *oldp) u = 1;
updates += u;
if (u == 0 && updates == 0) {
noupdates_before_first++;
continue;
}
if (u == 1 && updates == 1) {
int v;
// first update
aom_write_bit(bc, 1);
for (v = 0; v < noupdates_before_first; ++v)
aom_write(bc, 0, upd);
}
aom_write(bc, u, upd);
if (u) {
/* send/use new probability */
av1_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
if (updates == 0) {
aom_write_bit(bc, 0); // no updates
}
return;
}
default: assert(0);
}
}
#if CONFIG_ENTROPY
// Calculate the token counts between subsequent subframe updates.
static void get_coef_counts_diff(AV1_COMP *cpi, int index,
av1_coeff_count coef_counts[TX_SIZES]
[PLANE_TYPES],
unsigned int eob_counts[TX_SIZES][PLANE_TYPES]
[REF_TYPES][COEF_BANDS]
[COEFF_CONTEXTS]) {
int i, j, k, l, m, tx_size, val;
const int max_idx = cpi->common.coef_probs_update_idx;
const TX_MODE tx_mode = cpi->common.tx_mode;
const int max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
const SUBFRAME_STATS *subframe_stats = &cpi->subframe_stats;
assert(max_idx < COEF_PROBS_BUFS);
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
if (index == max_idx) {
val =
cpi->common.counts.eob_branch[tx_size][i][j][k][l] -
subframe_stats->eob_counts_buf[max_idx][tx_size][i][j][k][l];
} else {
val = subframe_stats->eob_counts_buf[index + 1][tx_size][i][j][k]
[l] -
subframe_stats->eob_counts_buf[index][tx_size][i][j][k][l];
}
assert(val >= 0);
eob_counts[tx_size][i][j][k][l] = val;
for (m = 0; m < ENTROPY_TOKENS; ++m) {
if (index == max_idx) {
val = cpi->td.rd_counts.coef_counts[tx_size][i][j][k][l][m] -
subframe_stats->coef_counts_buf[max_idx][tx_size][i][j][k]
[l][m];
} else {
val = subframe_stats->coef_counts_buf[index + 1][tx_size][i][j]
[k][l][m] -
subframe_stats->coef_counts_buf[index][tx_size][i][j][k]
[l][m];
}
assert(val >= 0);
coef_counts[tx_size][i][j][k][l][m] = val;
}
}
}
static void update_coef_probs_subframe(
aom_writer *const bc, AV1_COMP *cpi, TX_SIZE tx_size,
av1_coeff_stats branch_ct[COEF_PROBS_BUFS][TX_SIZES][PLANE_TYPES],
av1_coeff_probs_model *new_coef_probs) {
av1_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size];
const aom_prob upd = DIFF_UPDATE_PROB;
const int entropy_nodes_update = UNCONSTRAINED_NODES;
int i, j, k, l, t;
int stepsize = cpi->sf.coeff_prob_appx_step;
const int max_idx = cpi->common.coef_probs_update_idx;
int idx;
unsigned int this_branch_ct[ENTROPY_NODES][COEF_PROBS_BUFS][2];
switch (cpi->sf.use_fast_coef_updates) {
case TWO_LOOP: {
/* dry run to see if there is any update at all needed */
int savings = 0;
int update[2] = { 0, 0 };
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
for (t = 0; t < ENTROPY_NODES; ++t) {
for (idx = 0; idx <= max_idx; ++idx) {
memcpy(this_branch_ct[t][idx],
branch_ct[idx][tx_size][i][j][k][l][t],
2 * sizeof(this_branch_ct[t][idx][0]));
}
}
for (t = 0; t < entropy_nodes_update; ++t) {
aom_prob newp = new_coef_probs[i][j][k][l][t];
const aom_prob oldp = old_coef_probs[i][j][k][l][t];
int s, u = 0;
if (t == PIVOT_NODE)
s = av1_prob_update_search_model_subframe(
this_branch_ct, old_coef_probs[i][j][k][l], &newp, upd,
stepsize, max_idx);
else
s = av1_prob_update_search_subframe(this_branch_ct[t], oldp,
&newp, upd, max_idx);
if (s > 0 && newp != oldp) u = 1;
if (u)
savings += s - (int)(av1_cost_zero(upd));
else
savings -= (int)(av1_cost_zero(upd));
update[u]++;
}
}
}
}
}
/* Is coef updated at all */
if (update[1] == 0 || savings < 0) {
aom_write_bit(bc, 0);
return;
}
aom_write_bit(bc, 1);
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
for (t = 0; t < ENTROPY_NODES; ++t) {
for (idx = 0; idx <= max_idx; ++idx) {
memcpy(this_branch_ct[t][idx],
branch_ct[idx][tx_size][i][j][k][l][t],
2 * sizeof(this_branch_ct[t][idx][0]));
}
}
for (t = 0; t < entropy_nodes_update; ++t) {
aom_prob newp = new_coef_probs[i][j][k][l][t];
aom_prob *oldp = old_coef_probs[i][j][k][l] + t;
int s;
int u = 0;
if (t == PIVOT_NODE)
s = av1_prob_update_search_model_subframe(
this_branch_ct, old_coef_probs[i][j][k][l], &newp, upd,
stepsize, max_idx);
else
s = av1_prob_update_search_subframe(this_branch_ct[t], *oldp,
&newp, upd, max_idx);
if (s > 0 && newp != *oldp) u = 1;
aom_write(bc, u, upd);
if (u) {
/* send/use new probability */
av1_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
return;
}
case ONE_LOOP_REDUCED: {
int updates = 0;
int noupdates_before_first = 0;
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
for (t = 0; t < ENTROPY_NODES; ++t) {
for (idx = 0; idx <= max_idx; ++idx) {
memcpy(this_branch_ct[t][idx],
branch_ct[idx][tx_size][i][j][k][l][t],
2 * sizeof(this_branch_ct[t][idx][0]));
}
}
for (t = 0; t < entropy_nodes_update; ++t) {
aom_prob newp = new_coef_probs[i][j][k][l][t];
aom_prob *oldp = old_coef_probs[i][j][k][l] + t;
int s;
int u = 0;
if (t == PIVOT_NODE)
s = av1_prob_update_search_model_subframe(
this_branch_ct, old_coef_probs[i][j][k][l], &newp, upd,
stepsize, max_idx);
else
s = av1_prob_update_search_subframe(this_branch_ct[t], *oldp,
&newp, upd, max_idx);
if (s > 0 && newp != *oldp) u = 1;
updates += u;
if (u == 0 && updates == 0) {
noupdates_before_first++;
continue;
}
if (u == 1 && updates == 1) {
int v;
// first update
aom_write_bit(bc, 1);
for (v = 0; v < noupdates_before_first; ++v)
aom_write(bc, 0, upd);
}
aom_write(bc, u, upd);
if (u) {
/* send/use new probability */
av1_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
if (updates == 0) {
aom_write_bit(bc, 0); // no updates
}
return;
}
default: assert(0);
}
}
#endif // CONFIG_ENTROPY
static void update_coef_probs(AV1_COMP *cpi, aom_writer *w) {
const TX_MODE tx_mode = cpi->common.tx_mode;
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
TX_SIZE tx_size;
#if CONFIG_EC_MULTISYMBOL
int update = 0;
#endif // CONFIG_EC_MULTISYMBOL
#if CONFIG_ENTROPY
AV1_COMMON *cm = &cpi->common;
SUBFRAME_STATS *subframe_stats = &cpi->subframe_stats;
int i;
av1_coeff_probs_model dummy_frame_coef_probs[PLANE_TYPES];
if (cm->do_subframe_update &&
cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
av1_copy(cpi->common.fc->coef_probs,
subframe_stats->enc_starting_coef_probs);
for (i = 0; i <= cpi->common.coef_probs_update_idx; ++i) {
get_coef_counts_diff(cpi, i, cpi->wholeframe_stats.coef_counts_buf[i],
cpi->wholeframe_stats.eob_counts_buf[i]);
}
}
#endif // CONFIG_ENTROPY
for (tx_size = 0; tx_size <= max_tx_size; ++tx_size) {
av1_coeff_stats frame_branch_ct[PLANE_TYPES];
av1_coeff_probs_model frame_coef_probs[PLANE_TYPES];
if (cpi->td.counts->tx_size_totals[tx_size] <= 20 ||
(tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) {
aom_write_bit(w, 0);
} else {
#if CONFIG_ENTROPY
if (cm->do_subframe_update &&
cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
unsigned int this_eob_counts_copy[PLANE_TYPES][REF_TYPES][COEF_BANDS]
[COEFF_CONTEXTS];
av1_coeff_count coef_counts_copy[PLANE_TYPES];
av1_copy(this_eob_counts_copy, cpi->common.counts.eob_branch[tx_size]);
av1_copy(coef_counts_copy, cpi->td.rd_counts.coef_counts[tx_size]);
build_tree_distribution(cpi, tx_size, frame_branch_ct,
frame_coef_probs);
for (i = 0; i <= cpi->common.coef_probs_update_idx; ++i) {
av1_copy(cpi->common.counts.eob_branch[tx_size],
cpi->wholeframe_stats.eob_counts_buf[i][tx_size]);
av1_copy(cpi->td.rd_counts.coef_counts[tx_size],
cpi->wholeframe_stats.coef_counts_buf[i][tx_size]);
build_tree_distribution(cpi, tx_size, cpi->branch_ct_buf[i][tx_size],
dummy_frame_coef_probs);
}
av1_copy(cpi->common.counts.eob_branch[tx_size], this_eob_counts_copy);
av1_copy(cpi->td.rd_counts.coef_counts[tx_size], coef_counts_copy);
update_coef_probs_subframe(w, cpi, tx_size, cpi->branch_ct_buf,
frame_coef_probs);
#if CONFIG_EC_MULTISYMBOL
update = 1;
#endif // CONFIG_EC_MULTISYMBOL
} else {
#endif // CONFIG_ENTROPY
build_tree_distribution(cpi, tx_size, frame_branch_ct,
frame_coef_probs);
update_coef_probs_common(w, cpi, tx_size, frame_branch_ct,
frame_coef_probs);
#if CONFIG_EC_MULTISYMBOL
update = 1;
#endif // CONFIG_EC_MULTISYMBOL
#if CONFIG_ENTROPY
}
#endif // CONFIG_ENTROPY
}
}
#if CONFIG_ENTROPY
av1_copy(cm->starting_coef_probs, cm->fc->coef_probs);
av1_copy(subframe_stats->coef_probs_buf[0], cm->fc->coef_probs);
if (cm->do_subframe_update &&
cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
unsigned int eob_counts_copy[TX_SIZES][PLANE_TYPES][REF_TYPES][COEF_BANDS]
[COEFF_CONTEXTS];
av1_copy(eob_counts_copy, cm->counts.eob_branch);
for (i = 1; i <= cpi->common.coef_probs_update_idx; ++i) {
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
av1_full_to_model_counts(cm->counts.coef[tx_size],
subframe_stats->coef_counts_buf[i][tx_size]);
av1_copy(cm->counts.eob_branch, subframe_stats->eob_counts_buf[i]);
av1_partial_adapt_probs(cm, 0, 0);
av1_copy(subframe_stats->coef_probs_buf[i], cm->fc->coef_probs);
}
av1_copy(cm->fc->coef_probs, subframe_stats->coef_probs_buf[0]);
av1_copy(cm->counts.eob_branch, eob_counts_copy);
}
#endif // CONFIG_ENTROPY
#if CONFIG_EC_MULTISYMBOL
if (update) av1_coef_pareto_cdfs(cpi->common.fc);
#endif // CONFIG_EC_MULTISYMBOL
}
#endif
#if CONFIG_LOOP_RESTORATION
static void encode_restoration_mode(AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
int p;
RestorationInfo *rsi = &cm->rst_info[0];
switch (rsi->frame_restoration_type) {
case RESTORE_NONE:
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, 0);
break;
case RESTORE_WIENER:
aom_wb_write_bit(wb, 1);
aom_wb_write_bit(wb, 0);
break;
case RESTORE_SGRPROJ:
aom_wb_write_bit(wb, 1);
aom_wb_write_bit(wb, 1);
aom_wb_write_bit(wb, 0);
break;
case RESTORE_DOMAINTXFMRF:
aom_wb_write_bit(wb, 1);
aom_wb_write_bit(wb, 1);
aom_wb_write_bit(wb, 1);
break;
case RESTORE_SWITCHABLE:
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, 1);
break;
default: assert(0);
}
for (p = 1; p < MAX_MB_PLANE; ++p) {
rsi = &cm->rst_info[p];
switch (rsi->frame_restoration_type) {
case RESTORE_NONE: aom_wb_write_bit(wb, 0); break;
case RESTORE_WIENER: aom_wb_write_bit(wb, 1); break;
default: assert(0);
}
}
}
static void write_wiener_filter(WienerInfo *wiener_info, aom_writer *wb) {
aom_write_literal(wb, wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
WIENER_FILT_TAP0_BITS);
aom_write_literal(wb, wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
WIENER_FILT_TAP1_BITS);
aom_write_literal(wb, wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
WIENER_FILT_TAP2_BITS);
aom_write_literal(wb, wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
WIENER_FILT_TAP0_BITS);
aom_write_literal(wb, wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
WIENER_FILT_TAP1_BITS);
aom_write_literal(wb, wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
WIENER_FILT_TAP2_BITS);
}
static void write_sgrproj_filter(SgrprojInfo *sgrproj_info, aom_writer *wb) {
aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
aom_write_literal(wb, sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
SGRPROJ_PRJ_BITS);
aom_write_literal(wb, sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
SGRPROJ_PRJ_BITS);
}
static void write_domaintxfmrf_filter(DomaintxfmrfInfo *domaintxfmrf_info,
aom_writer *wb) {
aom_write_literal(wb, domaintxfmrf_info->sigma_r, DOMAINTXFMRF_PARAMS_BITS);
}
static void encode_restoration(AV1_COMMON *cm, aom_writer *wb) {
int i, p;
RestorationInfo *rsi = &cm->rst_info[0];
if (rsi->frame_restoration_type != RESTORE_NONE) {
if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) {
// RESTORE_SWITCHABLE
for (i = 0; i < cm->rst_internal.ntiles; ++i) {
av1_write_token(
wb, av1_switchable_restore_tree, cm->fc->switchable_restore_prob,
&switchable_restore_encodings[rsi->restoration_type[i]]);
if (rsi->restoration_type[i] == RESTORE_WIENER) {
write_wiener_filter(&rsi->wiener_info[i], wb);
} else if (rsi->restoration_type[i] == RESTORE_SGRPROJ) {
write_sgrproj_filter(&rsi->sgrproj_info[i], wb);
} else if (rsi->restoration_type[i] == RESTORE_DOMAINTXFMRF) {
write_domaintxfmrf_filter(&rsi->domaintxfmrf_info[i], wb);
}
}
} else if (rsi->frame_restoration_type == RESTORE_WIENER) {
for (i = 0; i < cm->rst_internal.ntiles; ++i) {
aom_write(wb, rsi->wiener_info[i].level != 0, RESTORE_NONE_WIENER_PROB);
if (rsi->wiener_info[i].level) {
write_wiener_filter(&rsi->wiener_info[i], wb);
}
}
} else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) {
for (i = 0; i < cm->rst_internal.ntiles; ++i) {
aom_write(wb, rsi->sgrproj_info[i].level != 0,
RESTORE_NONE_SGRPROJ_PROB);
if (rsi->sgrproj_info[i].level) {
write_sgrproj_filter(&rsi->sgrproj_info[i], wb);
}
}
} else if (rsi->frame_restoration_type == RESTORE_DOMAINTXFMRF) {
for (i = 0; i < cm->rst_internal.ntiles; ++i) {
aom_write(wb, rsi->domaintxfmrf_info[i].level != 0,
RESTORE_NONE_DOMAINTXFMRF_PROB);
if (rsi->domaintxfmrf_info[i].level) {
write_domaintxfmrf_filter(&rsi->domaintxfmrf_info[i], wb);
}
}
}
}
for (p = 1; p < MAX_MB_PLANE; ++p) {
rsi = &cm->rst_info[p];
if (rsi->frame_restoration_type == RESTORE_WIENER) {
write_wiener_filter(&rsi->wiener_info[0], wb);
} else if (rsi->frame_restoration_type != RESTORE_NONE) {
assert(0);
}
}
}
#endif // CONFIG_LOOP_RESTORATION
static void encode_loopfilter(AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
int i;
struct loopfilter *lf = &cm->lf;
// Encode the loop filter level and type
aom_wb_write_literal(wb, lf->filter_level, 6);
aom_wb_write_literal(wb, lf->sharpness_level, 3);
// Write out loop filter deltas applied at the MB level based on mode or
// ref frame (if they are enabled).
aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
if (lf->mode_ref_delta_enabled) {
aom_wb_write_bit(wb, lf->mode_ref_delta_update);
if (lf->mode_ref_delta_update) {
for (i = 0; i < TOTAL_REFS_PER_FRAME; i++) {
const int delta = lf->ref_deltas[i];
const int changed = delta != lf->last_ref_deltas[i];
aom_wb_write_bit(wb, changed);
if (changed) {
lf->last_ref_deltas[i] = delta;
aom_wb_write_inv_signed_literal(wb, delta, 6);
}
}
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
const int delta = lf->mode_deltas[i];
const int changed = delta != lf->last_mode_deltas[i];
aom_wb_write_bit(wb, changed);
if (changed) {
lf->last_mode_deltas[i] = delta;
aom_wb_write_inv_signed_literal(wb, delta, 6);
}
}
}
}
}
#if CONFIG_CLPF
static void encode_clpf(const AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, cm->clpf_strength_y, 2);
aom_wb_write_literal(wb, cm->clpf_strength_u, 2);
aom_wb_write_literal(wb, cm->clpf_strength_v, 2);
if (cm->clpf_strength_y) {
aom_wb_write_literal(wb, cm->clpf_size, 2);
}
}
#endif
#if CONFIG_DERING
static void encode_dering(int level, struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, level, DERING_LEVEL_BITS);
}
#endif // CONFIG_DERING
static void write_delta_q(struct aom_write_bit_buffer *wb, int delta_q) {
if (delta_q != 0) {
aom_wb_write_bit(wb, 1);
aom_wb_write_inv_signed_literal(wb, delta_q, 6);
} else {
aom_wb_write_bit(wb, 0);
}
}
static void encode_quantization(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
write_delta_q(wb, cm->y_dc_delta_q);
write_delta_q(wb, cm->uv_dc_delta_q);
write_delta_q(wb, cm->uv_ac_delta_q);
#if CONFIG_AOM_QM
aom_wb_write_bit(wb, cm->using_qmatrix);
if (cm->using_qmatrix) {
aom_wb_write_literal(wb, cm->min_qmlevel, QM_LEVEL_BITS);
aom_wb_write_literal(wb, cm->max_qmlevel, QM_LEVEL_BITS);
}
#endif
}
static void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd,
struct aom_write_bit_buffer *wb) {
int i, j;
const struct segmentation *seg = &cm->seg;
aom_wb_write_bit(wb, seg->enabled);
if (!seg->enabled) return;
// Segmentation map
if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
aom_wb_write_bit(wb, seg->update_map);
} else {
assert(seg->update_map == 1);
}
if (seg->update_map) {
// Select the coding strategy (temporal or spatial)
av1_choose_segmap_coding_method(cm, xd);
// Write out the chosen coding method.
if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
aom_wb_write_bit(wb, seg->temporal_update);
} else {
assert(seg->temporal_update == 0);
}
}
// Segmentation data
aom_wb_write_bit(wb, seg->update_data);
if (seg->update_data) {
aom_wb_write_bit(wb, seg->abs_delta);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
const int active = segfeature_active(seg, i, j);
aom_wb_write_bit(wb, active);
if (active) {
const int data = get_segdata(seg, i, j);
const int data_max = av1_seg_feature_data_max(j);
if (av1_is_segfeature_signed(j)) {
encode_unsigned_max(wb, abs(data), data_max);
aom_wb_write_bit(wb, data < 0);
} else {
encode_unsigned_max(wb, data, data_max);
}
}
}
}
}
}
#if !CONFIG_EC_ADAPT
static void update_seg_probs(AV1_COMP *cpi, aom_writer *w) {
AV1_COMMON *cm = &cpi->common;
#if CONFIG_TILE_GROUPS
const int probwt = cm->num_tg;
#else
const int probwt = 1;
#endif
if (!cm->seg.enabled || !cm->seg.update_map) return;
if (cm->seg.temporal_update) {
int i;
for (i = 0; i < PREDICTION_PROBS; i++)
av1_cond_prob_diff_update(w, &cm->fc->seg.pred_probs[i],
cm->counts.seg.pred[i], probwt);
prob_diff_update(av1_segment_tree, cm->fc->seg.tree_probs,
cm->counts.seg.tree_mispred, MAX_SEGMENTS, probwt, w);
} else {
prob_diff_update(av1_segment_tree, cm->fc->seg.tree_probs,
cm->counts.seg.tree_total, MAX_SEGMENTS, probwt, w);
}
}
#endif
static void write_tx_mode(TX_MODE mode, struct aom_write_bit_buffer *wb) {
#if CONFIG_TX64X64
aom_wb_write_bit(wb, mode == TX_MODE_SELECT);
if (mode != TX_MODE_SELECT) {
aom_wb_write_literal(wb, AOMMIN(mode, ALLOW_32X32), 2);
if (mode >= ALLOW_32X32) aom_wb_write_bit(wb, mode == ALLOW_64X64);
}
#else
aom_wb_write_bit(wb, mode == TX_MODE_SELECT);
if (mode != TX_MODE_SELECT) aom_wb_write_literal(wb, mode, 2);
#endif // CONFIG_TX64X64
}
static void update_txfm_probs(AV1_COMMON *cm, aom_writer *w,
FRAME_COUNTS *counts) {
#if CONFIG_TILE_GROUPS
const int probwt = cm->num_tg;
#else
const int probwt = 1;
#endif
if (cm->tx_mode == TX_MODE_SELECT) {
int i, j;
for (i = 0; i < MAX_TX_DEPTH; ++i)
for (j = 0; j < TX_SIZE_CONTEXTS; ++j)
prob_diff_update(av1_tx_size_tree[i], cm->fc->tx_size_probs[i][j],
counts->tx_size[i][j], i + 2, probwt, w);
}
}
static void write_frame_interp_filter(InterpFilter filter,
struct aom_write_bit_buffer *wb) {
aom_wb_write_bit(wb, filter == SWITCHABLE);
if (filter != SWITCHABLE)
aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
}
static void fix_interp_filter(AV1_COMMON *cm, FRAME_COUNTS *counts) {
if (cm->interp_filter == SWITCHABLE) {
// Check to see if only one of the filters is actually used
int count[SWITCHABLE_FILTERS];
int i, j, c = 0;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
count[i] = 0;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
count[i] += counts->switchable_interp[j][i];
c += (count[i] > 0);
}
if (c == 1) {
// Only one filter is used. So set the filter at frame level
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
if (count[i]) {
cm->interp_filter = i;
break;
}
}
}
}
}
static void write_tile_info(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
#if CONFIG_EXT_TILE
const int tile_width =
ALIGN_POWER_OF_TWO(cm->tile_width, cm->mib_size_log2) >>
cm->mib_size_log2;
const int tile_height =
ALIGN_POWER_OF_TWO(cm->tile_height, cm->mib_size_log2) >>
cm->mib_size_log2;
assert(tile_width > 0);
assert(tile_height > 0);
// Write the tile sizes
#if CONFIG_EXT_PARTITION
if (cm->sb_size == BLOCK_128X128) {
assert(tile_width <= 32);
assert(tile_height <= 32);
aom_wb_write_literal(wb, tile_width - 1, 5);
aom_wb_write_literal(wb, tile_height - 1, 5);
} else
#endif // CONFIG_EXT_PARTITION
{
assert(tile_width <= 64);
assert(tile_height <= 64);
aom_wb_write_literal(wb, tile_width - 1, 6);
aom_wb_write_literal(wb, tile_height - 1, 6);
}
#else
int min_log2_tile_cols, max_log2_tile_cols, ones;
av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
// columns
ones = cm->log2_tile_cols - min_log2_tile_cols;
while (ones--) aom_wb_write_bit(wb, 1);
if (cm->log2_tile_cols < max_log2_tile_cols) aom_wb_write_bit(wb, 0);
// rows
aom_wb_write_bit(wb, cm->log2_tile_rows != 0);
if (cm->log2_tile_rows != 0) aom_wb_write_bit(wb, cm->log2_tile_rows != 1);
#endif // CONFIG_EXT_TILE
#if CONFIG_DEBLOCKING_ACROSS_TILES
aom_wb_write_bit(wb, cm->loop_filter_across_tiles_enabled);
#endif // CONFIG_DEBLOCKING_ACROSS_TILES
}
static int get_refresh_mask(AV1_COMP *cpi) {
int refresh_mask = 0;
#if CONFIG_EXT_REFS
// NOTE(zoeliu): When LAST_FRAME is to get refreshed, the decoder will be
// notified to get LAST3_FRAME refreshed and then the virtual indexes for all
// the 3 LAST reference frames will be updated accordingly, i.e.:
// (1) The original virtual index for LAST3_FRAME will become the new virtual
// index for LAST_FRAME; and
// (2) The original virtual indexes for LAST_FRAME and LAST2_FRAME will be
// shifted and become the new virtual indexes for LAST2_FRAME and
// LAST3_FRAME.
refresh_mask |=
(cpi->refresh_last_frame << cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]);
if (cpi->rc.is_bwd_ref_frame && cpi->num_extra_arfs) {
// We have swapped the virtual indices
refresh_mask |= (cpi->refresh_bwd_ref_frame << cpi->arf_map[0]);
} else {
refresh_mask |= (cpi->refresh_bwd_ref_frame << cpi->bwd_fb_idx);
}
#else
refresh_mask |= (cpi->refresh_last_frame << cpi->lst_fb_idx);
#endif // CONFIG_EXT_REFS
if (av1_preserve_existing_gf(cpi)) {
// We have decided to preserve the previously existing golden frame as our
// new ARF frame. However, in the short term we leave it in the GF slot and,
// if we're updating the GF with the current decoded frame, we save it
// instead to the ARF slot.
// Later, in the function av1_encoder.c:av1_update_reference_frames() we
// will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
// there so that it can be done outside of the recode loop.
// Note: This is highly specific to the use of ARF as a forward reference,
// and this needs to be generalized as other uses are implemented
// (like RTC/temporal scalability).
return refresh_mask | (cpi->refresh_golden_frame << cpi->alt_fb_idx);
} else {
int arf_idx = cpi->alt_fb_idx;
#if CONFIG_EXT_REFS
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = cpi->arf_map[gf_group->arf_update_idx[gf_group->index]];
#else
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = gf_group->arf_update_idx[gf_group->index];
}
#endif // CONFIG_EXT_REFS
return refresh_mask | (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
(cpi->refresh_alt_ref_frame << arf_idx);
}
}
#if CONFIG_EXT_TILE
static INLINE int find_identical_tile(
const int tile_row, const int tile_col,
TileBufferEnc (*const tile_buffers)[1024]) {
const MV32 candidate_offset[1] = { { 1, 0 } };
const uint8_t *const cur_tile_data =
tile_buffers[tile_row][tile_col].data + 4;
const unsigned int cur_tile_size = tile_buffers[tile_row][tile_col].size;
int i;
if (tile_row == 0) return 0;
// (TODO: yunqingwang) For now, only above tile is checked and used.
// More candidates such as left tile can be added later.
for (i = 0; i < 1; i++) {
int row_offset = candidate_offset[0].row;
int col_offset = candidate_offset[0].col;
int row = tile_row - row_offset;
int col = tile_col - col_offset;
uint8_t tile_hdr;
const uint8_t *tile_data;
TileBufferEnc *candidate;
if (row < 0 || col < 0) continue;
tile_hdr = *(tile_buffers[row][col].data);
// Read out tcm bit
if ((tile_hdr >> 7) == 1) {
// The candidate is a copy tile itself
row_offset += tile_hdr & 0x7f;
row = tile_row - row_offset;
}
candidate = &tile_buffers[row][col];
if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
tile_data = candidate->data + 4;
if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
// Identical tile found
assert(row_offset > 0);
return row_offset;
}
// No identical tile found
return 0;
}
#endif // CONFIG_EXT_TILE
#if CONFIG_TILE_GROUPS
static uint32_t write_tiles(AV1_COMP *const cpi,
struct aom_write_bit_buffer *wb,
unsigned int *max_tile_size,
unsigned int *max_tile_col_size) {
#else
static uint32_t write_tiles(AV1_COMP *const cpi, uint8_t *const dst,
unsigned int *max_tile_size,
unsigned int *max_tile_col_size) {
#endif
const AV1_COMMON *const cm = &cpi->common;
#if CONFIG_ANS
struct BufAnsCoder *buf_ans = &cpi->buf_ans;
#else
aom_writer mode_bc;
#endif // CONFIG_ANS
int tile_row, tile_col;
TOKENEXTRA *(*const tok_buffers)[MAX_TILE_COLS] = cpi->tile_tok;
TileBufferEnc(*const tile_buffers)[MAX_TILE_COLS] = cpi->tile_buffers;
size_t total_size = 0;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
unsigned int tile_size = 0;
#if CONFIG_TILE_GROUPS
const int n_log2_tiles = cm->log2_tile_rows + cm->log2_tile_cols;
const int have_tiles = n_log2_tiles > 0;
size_t comp_hdr_size;
// Fixed size tile groups for the moment
const int num_tg_hdrs = cm->num_tg;
const int tg_size = (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
int tile_count = 0;
int uncompressed_hdr_size = 0;
uint8_t *dst = NULL;
struct aom_write_bit_buffer comp_hdr_len_wb;
struct aom_write_bit_buffer tg_params_wb;
int saved_offset;
int mtu_size = cpi->oxcf.mtu;
int curr_tg_data_size = 0;
int hdr_size;
#endif
#if CONFIG_EXT_TILE
const int have_tiles = tile_cols * tile_rows > 1;
#endif // CONFIG_EXT_TILE
*max_tile_size = 0;
*max_tile_col_size = 0;
// All tile size fields are output on 4 bytes. A call to remux_tiles will
// later compact the data if smaller headers are adequate.
#if CONFIG_EXT_TILE
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
TileInfo tile_info;
const int is_last_col = (tile_col == tile_cols - 1);
const size_t col_offset = total_size;
av1_tile_set_col(&tile_info, cm, tile_col);
// The last column does not have a column header
if (!is_last_col) total_size += 4;
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col];
const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col];
const int data_offset = have_tiles ? 4 : 0;
av1_tile_set_row(&tile_info, cm, tile_row);
buf->data = dst + total_size;
// Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
// even for the last one, unless no tiling is used at all.
total_size += data_offset;
#if !CONFIG_ANS
aom_start_encode(&mode_bc, buf->data + data_offset);
write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end);
assert(tok == tok_end);
aom_stop_encode(&mode_bc);
tile_size = mode_bc.pos;
#else
buf_ans_write_init(buf_ans, buf->data + data_offset);
write_modes(cpi, &tile_info, buf_ans, &tok, tok_end);
assert(tok == tok_end);
aom_buf_ans_flush(buf_ans);
tile_size = buf_ans_write_end(buf_ans);
#endif // !CONFIG_ANS
buf->size = tile_size;
// Record the maximum tile size we see, so we can compact headers later.
*max_tile_size = AOMMAX(*max_tile_size, tile_size);
if (have_tiles) {
// tile header: size of this tile, or copy offset
uint32_t tile_header = tile_size;
// Check if this tile is a copy tile.
// Very low chances to have copy tiles on the key frames, so don't
// search on key frames to reduce unnecessary search.
if (cm->frame_type != KEY_FRAME) {
const int idendical_tile_offset =
find_identical_tile(tile_row, tile_col, tile_buffers);
if (idendical_tile_offset > 0) {
tile_size = 0;
tile_header = idendical_tile_offset | 0x80;
tile_header <<= 24;
}
}
mem_put_le32(buf->data, tile_header);
}
total_size += tile_size;
}
if (!is_last_col) {
size_t col_size = total_size - col_offset - 4;
mem_put_le32(dst + col_offset, col_size);
// If it is not final packing, record the maximum tile column size we see,
// otherwise, check if the tile size is out of the range.
*max_tile_col_size = AOMMAX(*max_tile_col_size, col_size);
}
}
#else
#if CONFIG_TILE_GROUPS
write_uncompressed_header(cpi, wb);
// Write the tile length code. Use full 32 bit length fields for the moment
aom_wb_write_literal(wb, 3, 2);
/* Write a placeholder for the number of tiles in each tile group */
tg_params_wb = *wb;
saved_offset = wb->bit_offset;
if (have_tiles) aom_wb_write_literal(wb, 0, n_log2_tiles * 2);
/* Write a placeholder for the compressed header length */
comp_hdr_len_wb = *wb;
aom_wb_write_literal(wb, 0, 16);
uncompressed_hdr_size = aom_wb_bytes_written(wb);
dst = wb->bit_buffer;
comp_hdr_size = write_compressed_header(cpi, dst + uncompressed_hdr_size);
aom_wb_overwrite_literal(&comp_hdr_len_wb, (int)(comp_hdr_size), 16);
hdr_size = uncompressed_hdr_size + comp_hdr_size;
total_size += hdr_size;
#endif
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
TileInfo tile_info;
#if !CONFIG_TILE_GROUPS
const int is_last_row = (tile_row == tile_rows - 1);
#endif
av1_tile_set_row(&tile_info, cm, tile_row);
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
const int tile_idx = tile_row * tile_cols + tile_col;
TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
#if CONFIG_PVQ
TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
#endif
const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col];
const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col];
#if !CONFIG_TILE_GROUPS
const int is_last_col = (tile_col == tile_cols - 1);
const int is_last_tile = is_last_col && is_last_row;
(void)tile_idx;
#else
// All tiles in a tile group have a length
const int is_last_tile = 0;
if ((!mtu_size && tile_count > tg_size) ||
(mtu_size && tile_count && curr_tg_data_size >= mtu_size)) {
// We've exceeded the packet size
if (tile_count > 1) {
/* The last tile exceeded the packet size. The tile group size
should therefore be tile_count-1.
Move the last tile and insert headers before it
*/
int old_total_size = total_size - tile_size - 4;
memmove(dst + old_total_size + hdr_size, dst + old_total_size,
(tile_size + 4) * sizeof(uint8_t));
// Copy uncompressed header
memmove(dst + old_total_size, dst,
uncompressed_hdr_size * sizeof(uint8_t));
// Write the number of tiles in the group into the last uncompressed
// header before the one we've just inserted
aom_wb_overwrite_literal(&tg_params_wb, tile_idx - tile_count,
n_log2_tiles);
aom_wb_overwrite_literal(&tg_params_wb, tile_count - 2, n_log2_tiles);
// Update the pointer to the last TG params
tg_params_wb.bit_offset = saved_offset + 8 * old_total_size;
// Copy compressed header
memmove(dst + old_total_size + uncompressed_hdr_size,
dst + uncompressed_hdr_size, comp_hdr_size * sizeof(uint8_t));
total_size += hdr_size;
tile_count = 1;
curr_tg_data_size = hdr_size + tile_size + 4;
} else {
// We exceeded the packet size in just one tile
// Copy uncompressed header
memmove(dst + total_size, dst,
uncompressed_hdr_size * sizeof(uint8_t));
// Write the number of tiles in the group into the last uncompressed
// header
aom_wb_overwrite_literal(&tg_params_wb, tile_idx - tile_count,
n_log2_tiles);
aom_wb_overwrite_literal(&tg_params_wb, tile_count - 1, n_log2_tiles);
tg_params_wb.bit_offset = saved_offset + 8 * total_size;
// Copy compressed header
memmove(dst + total_size + uncompressed_hdr_size,
dst + uncompressed_hdr_size, comp_hdr_size * sizeof(uint8_t));
total_size += hdr_size;
tile_count = 0;
curr_tg_data_size = hdr_size;
}
}
tile_count++;
#endif
av1_tile_set_col(&tile_info, cm, tile_col);
buf->data = dst + total_size;
// The last tile does not have a header.
if (!is_last_tile) total_size += 4;
#if CONFIG_ANS
buf_ans_write_init(buf_ans, dst + total_size);
write_modes(cpi, &tile_info, buf_ans, &tok, tok_end);
assert(tok == tok_end);
aom_buf_ans_flush(buf_ans);
tile_size = buf_ans_write_end(buf_ans);
#else
aom_start_encode(&mode_bc, dst + total_size);
#if CONFIG_PVQ
// NOTE: This will not work with CONFIG_ANS turned on.
od_adapt_ctx_reset(&cpi->td.mb.daala_enc.state.adapt, 0);
cpi->td.mb.pvq_q = &this_tile->pvq_q;
#endif
write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end);
assert(tok == tok_end);
aom_stop_encode(&mode_bc);
tile_size = mode_bc.pos;
#endif // CONFIG_ANS
#if CONFIG_PVQ
cpi->td.mb.pvq_q = NULL;
#endif
assert(tile_size > 0);
#if CONFIG_TILE_GROUPS
curr_tg_data_size += tile_size + 4;
#endif
buf->size = tile_size;
if (!is_last_tile) {
*max_tile_size = AOMMAX(*max_tile_size, tile_size);
// size of this tile
mem_put_le32(buf->data, tile_size);
}
total_size += tile_size;
}
}
#if CONFIG_TILE_GROUPS
// Write the final tile group size
if (n_log2_tiles) {
aom_wb_write_literal(&tg_params_wb, (1 << n_log2_tiles) - tile_count,
n_log2_tiles);
aom_wb_write_literal(&tg_params_wb, tile_count - 1, n_log2_tiles);
}
#endif
#endif // CONFIG_EXT_TILE
return (uint32_t)total_size;
}
static void write_render_size(const AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
const int scaling_active =
cm->width != cm->render_width || cm->height != cm->render_height;
aom_wb_write_bit(wb, scaling_active);
if (scaling_active) {
aom_wb_write_literal(wb, cm->render_width - 1, 16);
aom_wb_write_literal(wb, cm->render_height - 1, 16);
}
}
static void write_frame_size(const AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, cm->width - 1, 16);
aom_wb_write_literal(wb, cm->height - 1, 16);
write_render_size(cm, wb);
}
static void write_frame_size_with_refs(AV1_COMP *cpi,
struct aom_write_bit_buffer *wb) {
AV1_COMMON *const cm = &cpi->common;
int found = 0;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
if (cfg != NULL) {
found =
cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height;
found &= cm->render_width == cfg->render_width &&
cm->render_height == cfg->render_height;
}
aom_wb_write_bit(wb, found);
if (found) {
break;
}
}
if (!found) {
aom_wb_write_literal(wb, cm->width - 1, 16);
aom_wb_write_literal(wb, cm->height - 1, 16);
write_render_size(cm, wb);
}
}
static void write_sync_code(struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, AV1_SYNC_CODE_0, 8);
aom_wb_write_literal(wb, AV1_SYNC_CODE_1, 8);
aom_wb_write_literal(wb, AV1_SYNC_CODE_2, 8);
}
static void write_profile(BITSTREAM_PROFILE profile,
struct aom_write_bit_buffer *wb) {
switch (profile) {
case PROFILE_0: aom_wb_write_literal(wb, 0, 2); break;
case PROFILE_1: aom_wb_write_literal(wb, 2, 2); break;
case PROFILE_2: aom_wb_write_literal(wb, 1, 2); break;
case PROFILE_3: aom_wb_write_literal(wb, 6, 3); break;
default: assert(0);
}
}
static void write_bitdepth_colorspace_sampling(
AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
if (cm->profile >= PROFILE_2) {
assert(cm->bit_depth > AOM_BITS_8);
aom_wb_write_bit(wb, cm->bit_depth == AOM_BITS_10 ? 0 : 1);
}
aom_wb_write_literal(wb, cm->color_space, 3);
if (cm->color_space != AOM_CS_SRGB) {
// 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
aom_wb_write_bit(wb, cm->color_range);
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
aom_wb_write_bit(wb, cm->subsampling_x);
aom_wb_write_bit(wb, cm->subsampling_y);
aom_wb_write_bit(wb, 0); // unused
} else {
assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
}
} else {
assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
aom_wb_write_bit(wb, 0); // unused
}
}
#if CONFIG_REFERENCE_BUFFER
void write_sequence_header(SequenceHeader *seq_params) {
/* Placeholder for actually writing to the bitstream */
seq_params->frame_id_numbers_present_flag = FRAME_ID_NUMBERS_PRESENT_FLAG;
seq_params->frame_id_length_minus7 = FRAME_ID_LENGTH_MINUS7;
seq_params->delta_frame_id_length_minus2 = DELTA_FRAME_ID_LENGTH_MINUS2;
}
#endif
static void write_uncompressed_header(AV1_COMP *cpi,
struct aom_write_bit_buffer *wb) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
#if CONFIG_REFERENCE_BUFFER
/* TODO: Move outside frame loop or inside key-frame branch */
write_sequence_header(&cpi->seq_params);
#endif
aom_wb_write_literal(wb, AOM_FRAME_MARKER, 2);
write_profile(cm->profile, wb);
#if CONFIG_EXT_REFS
// NOTE: By default all coded frames to be used as a reference
cm->is_reference_frame = 1;
if (cm->show_existing_frame) {
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
const int frame_to_show = cm->ref_frame_map[cpi->existing_fb_idx_to_show];
if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Buffer %d does not contain a reconstructed frame",
frame_to_show);
}
ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
aom_wb_write_bit(wb, 1); // show_existing_frame
aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
#if CONFIG_REFERENCE_BUFFER
if (cpi->seq_params.frame_id_numbers_present_flag) {
int frame_id_len = cpi->seq_params.frame_id_length_minus7 + 7;
int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
aom_wb_write_literal(wb, display_frame_id, frame_id_len);
/* Add a zero byte to prevent emulation of superframe marker */
/* Same logic as when when terminating the entropy coder */
/* Consider to have this logic only one place */
aom_wb_write_literal(wb, 0, 8);
}
#endif
return;
} else {
#endif // CONFIG_EXT_REFS
aom_wb_write_bit(wb, 0); // show_existing_frame
#if CONFIG_EXT_REFS
}
#endif // CONFIG_EXT_REFS
aom_wb_write_bit(wb, cm->frame_type);
aom_wb_write_bit(wb, cm->show_frame);
aom_wb_write_bit(wb, cm->error_resilient_mode);
#if CONFIG_REFERENCE_BUFFER
cm->invalid_delta_frame_id_minus1 = 0;
if (cpi->seq_params.frame_id_numbers_present_flag) {
int frame_id_len = cpi->seq_params.frame_id_length_minus7 + 7;
aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
}
#endif
if (cm->frame_type == KEY_FRAME) {
write_sync_code(wb);
write_bitdepth_colorspace_sampling(cm, wb);
write_frame_size(cm, wb);
#if CONFIG_PALETTE
aom_wb_write_bit(wb, cm->allow_screen_content_tools);
#endif // CONFIG_PALETTE
} else {
if (!cm->show_frame) aom_wb_write_bit(wb, cm->intra_only);
#if CONFIG_PALETTE
if (cm->intra_only) aom_wb_write_bit(wb, cm->allow_screen_content_tools);
#endif // CONFIG_PALETTE
if (!cm->error_resilient_mode) {
if (cm->intra_only) {
aom_wb_write_bit(wb,
cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL);
} else {
aom_wb_write_bit(wb,
cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE);
if (cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE)
aom_wb_write_bit(wb,
cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL);
}
}
#if CONFIG_EXT_REFS
cpi->refresh_frame_mask = get_refresh_mask(cpi);
#endif // CONFIG_EXT_REFS
if (cm->intra_only) {
write_sync_code(wb);
write_bitdepth_colorspace_sampling(cm, wb);
#if CONFIG_EXT_REFS
aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES);
#else
aom_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
#endif // CONFIG_EXT_REFS
write_frame_size(cm, wb);
} else {
MV_REFERENCE_FRAME ref_frame;
#if CONFIG_EXT_REFS
aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES);
#else
aom_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
#endif // CONFIG_EXT_REFS
#if CONFIG_EXT_REFS
if (!cpi->refresh_frame_mask) {
// NOTE: "cpi->refresh_frame_mask == 0" indicates that the coded frame
// will not be used as a reference
cm->is_reference_frame = 0;
}
#endif // CONFIG_EXT_REFS
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
REF_FRAMES_LOG2);
aom_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
#if CONFIG_REFERENCE_BUFFER
if (cpi->seq_params.frame_id_numbers_present_flag) {
int i = get_ref_frame_map_idx(cpi, ref_frame);
int frame_id_len = cpi->seq_params.frame_id_length_minus7 + 7;
int diff_len = cpi->seq_params.delta_frame_id_length_minus2 + 2;
int delta_frame_id_minus1 =
((cm->current_frame_id - cm->ref_frame_id[i] +
(1 << frame_id_len)) %
(1 << frame_id_len)) -
1;
if (delta_frame_id_minus1 < 0 ||
delta_frame_id_minus1 >= (1 << diff_len))
cm->invalid_delta_frame_id_minus1 = 1;
aom_wb_write_literal(wb, delta_frame_id_minus1, diff_len);
}
#endif
}
#if CONFIG_FRAME_SIZE
if (cm->error_resilient_mode == 0) {
write_frame_size_with_refs(cpi, wb);
} else {
write_frame_size(cm, wb);
}
#else
write_frame_size_with_refs(cpi, wb);
#endif
aom_wb_write_bit(wb, cm->allow_high_precision_mv);
fix_interp_filter(cm, cpi->td.counts);
write_frame_interp_filter(cm->interp_filter, wb);
}
}
#if CONFIG_REFERENCE_BUFFER
cm->refresh_mask = cm->frame_type == KEY_FRAME ? 0xFF : get_refresh_mask(cpi);
#endif
if (!cm->error_resilient_mode) {
aom_wb_write_bit(
wb, cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD);
}
aom_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
assert(cm->mib_size == mi_size_wide[cm->sb_size]);
assert(cm->mib_size == 1 << cm->mib_size_log2);
#if CONFIG_EXT_PARTITION
assert(cm->sb_size == BLOCK_128X128 || cm->sb_size == BLOCK_64X64);
aom_wb_write_bit(wb, cm->sb_size == BLOCK_128X128 ? 1 : 0);
#else
assert(cm->sb_size == BLOCK_64X64);
#endif // CONFIG_EXT_PARTITION
encode_loopfilter(cm, wb);
#if CONFIG_DERING
encode_dering(cm->dering_level, wb);
#endif // CONFIG_DERING
#if CONFIG_CLPF
encode_clpf(cm, wb);
#endif
#if CONFIG_LOOP_RESTORATION
encode_restoration_mode(cm, wb);
#endif // CONFIG_LOOP_RESTORATION
encode_quantization(cm, wb);
encode_segmentation(cm, xd, wb);
#if CONFIG_DELTA_Q
{
int i;
struct segmentation *const seg = &cm->seg;
int segment_quantizer_active = 0;
for (i = 0; i < MAX_SEGMENTS; i++) {
if (segfeature_active(seg, i, SEG_LVL_ALT_Q)) {
segment_quantizer_active = 1;
}
}
if (segment_quantizer_active == 0) {
cm->delta_q_present_flag = cpi->oxcf.aq_mode == DELTA_AQ;
aom_wb_write_bit(wb, cm->delta_q_present_flag);
if (cm->delta_q_present_flag) {
aom_wb_write_literal(wb, OD_ILOG_NZ(cm->delta_q_res) - 1, 2);
xd->prev_qindex = cm->base_qindex;
}
}
}
#endif
if (!cm->seg.enabled && xd->lossless[0])
cm->tx_mode = ONLY_4X4;
else
write_tx_mode(cm->tx_mode, wb);
if (cpi->allow_comp_inter_inter) {
const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
aom_wb_write_bit(wb, use_hybrid_pred);
if (!use_hybrid_pred) aom_wb_write_bit(wb, use_compound_pred);
}
write_tile_info(cm, wb);
}
#if CONFIG_GLOBAL_MOTION
static void write_global_motion_params(WarpedMotionParams *params,
aom_prob *probs, aom_writer *w) {
TransformationType type = params->wmtype;
av1_write_token(w, av1_global_motion_types_tree, probs,
&global_motion_types_encodings[type]);
switch (type) {
case HOMOGRAPHY:
aom_write_primitive_symmetric(
w, (params->wmmat[6] >> GM_ROW3HOMO_PREC_DIFF), GM_ABS_ROW3HOMO_BITS);
aom_write_primitive_symmetric(
w, (params->wmmat[7] >> GM_ROW3HOMO_PREC_DIFF), GM_ABS_ROW3HOMO_BITS);
// fallthrough intended
case AFFINE:
case ROTZOOM:
aom_write_primitive_symmetric(
w,
(params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS),
GM_ABS_ALPHA_BITS);
aom_write_primitive_symmetric(w, (params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
GM_ABS_ALPHA_BITS);
if (type == AFFINE || type == HOMOGRAPHY) {
aom_write_primitive_symmetric(
w, (params->wmmat[4] >> GM_ALPHA_PREC_DIFF), GM_ABS_ALPHA_BITS);
aom_write_primitive_symmetric(w,
(params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS),
GM_ABS_ALPHA_BITS);
}
// fallthrough intended
case TRANSLATION:
aom_write_primitive_symmetric(w, (params->wmmat[0] >> GM_TRANS_PREC_DIFF),
GM_ABS_TRANS_BITS);
aom_write_primitive_symmetric(w, (params->wmmat[1] >> GM_TRANS_PREC_DIFF),
GM_ABS_TRANS_BITS);
break;
case IDENTITY: break;
default: assert(0);
}
}
static void write_global_motion(AV1_COMP *cpi, aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
int frame;
for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
#if !CONFIG_REF_MV
// With ref-mv, clearing unused global motion models here is
// unsafe, and we need to rely on the recode loop to do it
// instead. See av1_find_mv_refs for details.
if (!cpi->global_motion_used[frame][0]) {
set_default_gmparams(&cm->global_motion[frame]);
}
#endif
write_global_motion_params(&cm->global_motion[frame],
cm->fc->global_motion_types_prob, w);
/*
printf("Frame %d/%d: Enc Ref %d (used %d/%d): %d %d %d %d\n",
cm->current_video_frame, cm->show_frame, frame,
cpi->global_motion_used[frame][0], cpi->global_motion_used[frame][1],
cm->global_motion[frame].wmmat[0], cm->global_motion[frame].wmmat[1],
cm->global_motion[frame].wmmat[2],
cm->global_motion[frame].wmmat[3]);
*/
}
}
#endif
static uint32_t write_compressed_header(AV1_COMP *cpi, uint8_t *data) {
AV1_COMMON *const cm = &cpi->common;
#if CONFIG_SUPERTX
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
#endif // CONFIG_SUPERTX
FRAME_CONTEXT *const fc = cm->fc;
FRAME_COUNTS *counts = cpi->td.counts;
aom_writer *header_bc;
int i, j;
#if CONFIG_TILE_GROUPS
const int probwt = cm->num_tg;
#else
const int probwt = 1;
#endif
#if CONFIG_ANS
int header_size;
header_bc = &cpi->buf_ans;
buf_ans_write_init(header_bc, data);
#else
aom_writer real_header_bc;
header_bc = &real_header_bc;
aom_start_encode(header_bc, data);
#endif
#if CONFIG_LOOP_RESTORATION
encode_restoration(cm, header_bc);
#endif // CONFIG_LOOP_RESTORATION
update_txfm_probs(cm, header_bc, counts);
#if !CONFIG_PVQ
update_coef_probs(cpi, header_bc);
#endif
#if CONFIG_VAR_TX
update_txfm_partition_probs(cm, header_bc, counts, probwt);
#endif
update_skip_probs(cm, header_bc, counts);
#if CONFIG_DELTA_Q
update_delta_q_probs(cm, header_bc, counts);
#endif
#if !CONFIG_EC_ADAPT
update_seg_probs(cpi, header_bc);
for (i = 0; i < INTRA_MODES; ++i) {
prob_diff_update(av1_intra_mode_tree, fc->uv_mode_prob[i],
counts->uv_mode[i], INTRA_MODES, probwt, header_bc);
}
#if CONFIG_EXT_PARTITION_TYPES
prob_diff_update(av1_partition_tree, fc->partition_prob[0],
counts->partition[0], PARTITION_TYPES, probwt, header_bc);
for (i = 1; i < PARTITION_CONTEXTS; ++i)
prob_diff_update(av1_ext_partition_tree, fc->partition_prob[i],
counts->partition[i], EXT_PARTITION_TYPES, probwt,
header_bc);
#else
for (i = 0; i < PARTITION_CONTEXTS; ++i) {
prob_diff_update(av1_partition_tree, fc->partition_prob[i],
counts->partition[i], PARTITION_TYPES, probwt, header_bc);
}
#endif // CONFIG_EC_ADAPT, CONFIG_DAALA_EC
#if CONFIG_EXT_INTRA
#if CONFIG_INTRA_INTERP
for (i = 0; i < INTRA_FILTERS + 1; ++i)
prob_diff_update(av1_intra_filter_tree, fc->intra_filter_probs[i],
counts->intra_filter[i], INTRA_FILTERS, probwt, header_bc);
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA
#endif // CONFIG_EC_ADAPT, CONFIG_DAALA_EC
if (frame_is_intra_only(cm)) {
av1_copy(cm->kf_y_prob, av1_kf_y_mode_prob);
#if CONFIG_EC_MULTISYMBOL
av1_copy(cm->kf_y_cdf, av1_kf_y_mode_cdf);
#endif
#if !CONFIG_EC_ADAPT
for (i = 0; i < INTRA_MODES; ++i)
for (j = 0; j < INTRA_MODES; ++j)
prob_diff_update(av1_intra_mode_tree, cm->kf_y_prob[i][j],
counts->kf_y_mode[i][j], INTRA_MODES, probwt,
header_bc);
#endif // CONFIG_EC_ADAPT
} else {
#if CONFIG_REF_MV
update_inter_mode_probs(cm, header_bc, counts);
#else
#if !CONFIG_EC_ADAPT
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
prob_diff_update(av1_inter_mode_tree, cm->fc->inter_mode_probs[i],
counts->inter_mode[i], INTER_MODES, probwt, header_bc);
}
#endif
#endif
#if CONFIG_EXT_INTER
update_inter_compound_mode_probs(cm, probwt, header_bc);
if (cm->reference_mode != COMPOUND_REFERENCE) {
for (i = 0; i < BLOCK_SIZE_GROUPS; i++) {
if (is_interintra_allowed_bsize_group(i)) {
av1_cond_prob_diff_update(header_bc, &fc->interintra_prob[i],
cm->counts.interintra[i], probwt);
}
}
for (i = 0; i < BLOCK_SIZE_GROUPS; i++) {
prob_diff_update(
av1_interintra_mode_tree, cm->fc->interintra_mode_prob[i],
counts->interintra_mode[i], INTERINTRA_MODES, probwt, header_bc);
}
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed_bsize(i) && is_interintra_wedge_used(i))
av1_cond_prob_diff_update(header_bc, &fc->wedge_interintra_prob[i],
cm->counts.wedge_interintra[i], probwt);
}
}
if (cm->reference_mode != SINGLE_REFERENCE) {
for (i = 0; i < BLOCK_SIZES; i++)
prob_diff_update(av1_compound_type_tree, fc->compound_type_prob[i],
cm->counts.compound_interinter[i], COMPOUND_TYPES,
probwt, header_bc);
}
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
for (i = BLOCK_8X8; i < BLOCK_SIZES; ++i)
prob_diff_update(av1_motion_mode_tree, fc->motion_mode_prob[i],
counts->motion_mode[i], MOTION_MODES, probwt, header_bc);
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if !CONFIG_EC_ADAPT
if (cm->interp_filter == SWITCHABLE)
update_switchable_interp_probs(cm, header_bc, counts);
#endif
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
av1_cond_prob_diff_update(header_bc, &fc->intra_inter_prob[i],
counts->intra_inter[i], probwt);
if (cpi->allow_comp_inter_inter) {
const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
if (use_hybrid_pred)
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
av1_cond_prob_diff_update(header_bc, &fc->comp_inter_prob[i],
counts->comp_inter[i], probwt);
}
if (cm->reference_mode != COMPOUND_REFERENCE) {
for (i = 0; i < REF_CONTEXTS; i++) {
for (j = 0; j < (SINGLE_REFS - 1); j++) {
av1_cond_prob_diff_update(header_bc, &fc->single_ref_prob[i][j],
counts->single_ref[i][j], probwt);
}
}
}
if (cm->reference_mode != SINGLE_REFERENCE) {
for (i = 0; i < REF_CONTEXTS; i++) {
#if CONFIG_EXT_REFS
for (j = 0; j < (FWD_REFS - 1); j++) {
av1_cond_prob_diff_update(header_bc, &fc->comp_ref_prob[i][j],
counts->comp_ref[i][j], probwt);
}
for (j = 0; j < (BWD_REFS - 1); j++) {
av1_cond_prob_diff_update(header_bc, &fc->comp_bwdref_prob[i][j],
counts->comp_bwdref[i][j], probwt);
}
#else
for (j = 0; j < (COMP_REFS - 1); j++) {
av1_cond_prob_diff_update(header_bc, &fc->comp_ref_prob[i][j],
counts->comp_ref[i][j], probwt);
}
#endif // CONFIG_EXT_REFS
}
}
#if !CONFIG_EC_ADAPT
for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) {
prob_diff_update(av1_intra_mode_tree, cm->fc->y_mode_prob[i],
counts->y_mode[i], INTRA_MODES, probwt, header_bc);
}
#endif
av1_write_nmv_probs(cm, cm->allow_high_precision_mv, header_bc,
#if CONFIG_REF_MV
counts->mv);
#else
&counts->mv);
#endif
#if !CONFIG_EC_ADAPT
update_ext_tx_probs(cm, header_bc);
#endif
#if CONFIG_SUPERTX
if (!xd->lossless[0]) update_supertx_probs(cm, probwt, header_bc);
#endif // CONFIG_SUPERTX
#if CONFIG_GLOBAL_MOTION
write_global_motion(cpi, header_bc);
#endif // CONFIG_GLOBAL_MOTION
}
#if CONFIG_EC_MULTISYMBOL
av1_coef_pareto_cdfs(fc);
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) av1_set_mv_cdfs(&fc->nmvc[i]);
#else
av1_set_mv_cdfs(&fc->nmvc);
#endif
#if CONFIG_EC_MULTISYMBOL
av1_set_mode_cdfs(cm);
#endif
#endif
#if CONFIG_ANS
aom_buf_ans_flush(header_bc);
header_size = buf_ans_write_end(header_bc);
assert(header_size <= 0xffff);
return header_size;
#else
aom_stop_encode(header_bc);
assert(header_bc->pos <= 0xffff);
return header_bc->pos;
#endif // CONFIG_ANS
}
#if !CONFIG_TILE_GROUPS
static int choose_size_bytes(uint32_t size, int spare_msbs) {
// Choose the number of bytes required to represent size, without
// using the 'spare_msbs' number of most significant bits.
// Make sure we will fit in 4 bytes to start with..
if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
// Normalise to 32 bits
size <<= spare_msbs;
if (size >> 24 != 0)
return 4;
else if (size >> 16 != 0)
return 3;
else if (size >> 8 != 0)
return 2;
else
return 1;
}
static void mem_put_varsize(uint8_t *const dst, const int sz, const int val) {
switch (sz) {
case 1: dst[0] = (uint8_t)(val & 0xff); break;
case 2: mem_put_le16(dst, val); break;
case 3: mem_put_le24(dst, val); break;
case 4: mem_put_le32(dst, val); break;
default: assert("Invalid size" && 0); break;
}
}
static int remux_tiles(const AV1_COMMON *const cm, uint8_t *dst,
const uint32_t data_size, const uint32_t max_tile_size,
const uint32_t max_tile_col_size,
int *const tile_size_bytes,
int *const tile_col_size_bytes) {
// Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
#if CONFIG_EXT_TILE
// The top bit in the tile size field indicates tile copy mode, so we
// have 1 less bit to code the tile size
const int tsb = choose_size_bytes(max_tile_size, 1);
const int tcsb = choose_size_bytes(max_tile_col_size, 0);
#else
const int tsb = choose_size_bytes(max_tile_size, 0);
const int tcsb = 4; // This is ignored
(void)max_tile_col_size;
#endif // CONFIG_EXT_TILE
assert(tsb > 0);
assert(tcsb > 0);
*tile_size_bytes = tsb;
*tile_col_size_bytes = tcsb;
if (tsb == 4 && tcsb == 4) {
return data_size;
} else {
uint32_t wpos = 0;
uint32_t rpos = 0;
#if CONFIG_EXT_TILE
int tile_row;
int tile_col;
for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) {
// All but the last column has a column header
if (tile_col < cm->tile_cols - 1) {
uint32_t tile_col_size = mem_get_le32(dst + rpos);
rpos += 4;
// Adjust the tile column size by the number of bytes removed
// from the tile size fields.
tile_col_size -= (4 - tsb) * cm->tile_rows;
mem_put_varsize(dst + wpos, tcsb, tile_col_size);
wpos += tcsb;
}
for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) {
// All, including the last row has a header
uint32_t tile_header = mem_get_le32(dst + rpos);
rpos += 4;
// If this is a copy tile, we need to shift the MSB to the
// top bit of the new width, and there is no data to copy.
if (tile_header >> 31 != 0) {
if (tsb < 4) tile_header >>= 32 - 8 * tsb;
mem_put_varsize(dst + wpos, tsb, tile_header);
wpos += tsb;
} else {
mem_put_varsize(dst + wpos, tsb, tile_header);
wpos += tsb;
memmove(dst + wpos, dst + rpos, tile_header);
rpos += tile_header;
wpos += tile_header;
}
}
}
#else
const int n_tiles = cm->tile_cols * cm->tile_rows;
int n;
for (n = 0; n < n_tiles; n++) {
int tile_size;
if (n == n_tiles - 1) {
tile_size = data_size - rpos;
} else {
tile_size = mem_get_le32(dst + rpos);
rpos += 4;
mem_put_varsize(dst + wpos, tsb, tile_size);
wpos += tsb;
}
memmove(dst + wpos, dst + rpos, tile_size);
rpos += tile_size;
wpos += tile_size;
}
#endif // CONFIG_EXT_TILE
assert(rpos > wpos);
assert(rpos == data_size);
return wpos;
}
}
#endif // CONFIG_TILE_GROUPS
void av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size) {
uint8_t *data = dst;
#if !CONFIG_TILE_GROUPS
uint32_t compressed_header_size;
uint32_t uncompressed_header_size;
struct aom_write_bit_buffer saved_wb;
#endif
uint32_t data_size;
struct aom_write_bit_buffer wb = { data, 0 };
unsigned int max_tile_size;
unsigned int max_tile_col_size;
#if !CONFIG_TILE_GROUPS
int tile_size_bytes;
int tile_col_size_bytes;
AV1_COMMON *const cm = &cpi->common;
const int have_tiles = cm->tile_cols * cm->tile_rows > 1;
#if CONFIG_BITSTREAM_DEBUG
bitstream_queue_reset_write();
#endif
// Write the uncompressed header
write_uncompressed_header(cpi, &wb);
#if CONFIG_EXT_REFS
if (cm->show_existing_frame) {
*size = aom_wb_bytes_written(&wb);
return;
}
#endif // CONFIG_EXT_REFS
// We do not know these in advance. Output placeholder bit.
saved_wb = wb;
// Write tile size magnitudes
if (have_tiles) {
// Note that the last item in the uncompressed header is the data
// describing tile configuration.
#if CONFIG_EXT_TILE
// Number of bytes in tile column size - 1
aom_wb_write_literal(&wb, 0, 2);
#endif // CONFIG_EXT_TILE
// Number of bytes in tile size - 1
aom_wb_write_literal(&wb, 0, 2);
}
// Size of compressed header
aom_wb_write_literal(&wb, 0, 16);
uncompressed_header_size = (uint32_t)aom_wb_bytes_written(&wb);
data += uncompressed_header_size;
aom_clear_system_state();
// Write the compressed header
compressed_header_size = write_compressed_header(cpi, data);
data += compressed_header_size;
// Write the encoded tile data
data_size = write_tiles(cpi, data, &max_tile_size, &max_tile_col_size);
#else
data_size = write_tiles(cpi, &wb, &max_tile_size, &max_tile_col_size);
#endif
#if !CONFIG_TILE_GROUPS
if (have_tiles) {
data_size =
remux_tiles(cm, data, data_size, max_tile_size, max_tile_col_size,
&tile_size_bytes, &tile_col_size_bytes);
}
data += data_size;
// Now fill in the gaps in the uncompressed header.
if (have_tiles) {
#if CONFIG_EXT_TILE
assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
aom_wb_write_literal(&saved_wb, tile_col_size_bytes - 1, 2);
#endif // CONFIG_EXT_TILE
assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
aom_wb_write_literal(&saved_wb, tile_size_bytes - 1, 2);
}
// TODO(jbb): Figure out what to do if compressed_header_size > 16 bits.
assert(compressed_header_size <= 0xffff);
aom_wb_write_literal(&saved_wb, compressed_header_size, 16);
#else
data += data_size;
#endif
#if CONFIG_ANS && ANS_REVERSE
// Avoid aliasing the superframe index
*data++ = 0;
#endif
*size = data - dst;
}