blob: 7970b3645aebf9d67706a67de2a4272aed6db474 [file] [log] [blame]
/*
* Copyright (c) 2024, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <arm_neon.h>
#include <stddef.h>
#include <stdint.h>
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/aom_filter.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/transpose_neon.h"
#include "aom_ports/mem.h"
#include "av1/common/arm/convolve_scale_neon.h"
#include "av1/common/convolve.h"
#include "av1/common/enums.h"
#include "av1/common/filter.h"
// clang-format off
DECLARE_ALIGNED(16, static const uint8_t, kScale2DotProdPermuteTbl[32]) = {
0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9,
4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13
};
// clang-format on
static INLINE int16x4_t convolve8_4_h(const uint8x8_t s0, const uint8x8_t s1,
const uint8x8_t s2, const uint8x8_t s3,
const int8x8_t filter,
const int32x4_t horiz_const) {
const int8x16_t filters = vcombine_s8(filter, filter);
uint8x16_t s01 = vcombine_u8(s0, s1);
uint8x16_t s23 = vcombine_u8(s2, s3);
int32x4_t sum01 = vusdotq_s32(horiz_const, s01, filters);
int32x4_t sum23 = vusdotq_s32(horiz_const, s23, filters);
int32x4_t sum = vpaddq_s32(sum01, sum23);
// We halved the filter values so -1 from right shift.
return vshrn_n_s32(sum, ROUND0_BITS - 1);
}
static INLINE int16x8_t convolve8_8_h(const uint8x8_t s0, const uint8x8_t s1,
const uint8x8_t s2, const uint8x8_t s3,
const uint8x8_t s4, const uint8x8_t s5,
const uint8x8_t s6, const uint8x8_t s7,
const int8x8_t filter,
const int32x4_t horiz_const) {
const int8x16_t filters = vcombine_s8(filter, filter);
uint8x16_t s01 = vcombine_u8(s0, s1);
uint8x16_t s23 = vcombine_u8(s2, s3);
uint8x16_t s45 = vcombine_u8(s4, s5);
uint8x16_t s67 = vcombine_u8(s6, s7);
int32x4_t sum01 = vusdotq_s32(horiz_const, s01, filters);
int32x4_t sum23 = vusdotq_s32(horiz_const, s23, filters);
int32x4_t sum45 = vusdotq_s32(horiz_const, s45, filters);
int32x4_t sum67 = vusdotq_s32(horiz_const, s67, filters);
int32x4_t sum0123 = vpaddq_s32(sum01, sum23);
int32x4_t sum4567 = vpaddq_s32(sum45, sum67);
// We halved the filter values so -1 from right shift.
return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
vshrn_n_s32(sum4567, ROUND0_BITS - 1));
}
static INLINE void convolve_horiz_scale_neon_i8mm(const uint8_t *src,
int src_stride, int16_t *dst,
int dst_stride, int w, int h,
const int16_t *x_filter,
const int subpel_x_qn,
const int x_step_qn) {
DECLARE_ALIGNED(16, int16_t, temp[8 * 8]);
const int bd = 8;
// A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// Divide the total by 4: we halved the filter values and will use a pairwise
// add in the convolution kernel.
const int32x4_t horiz_offset = vdupq_n_s32(
((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))) >> 2);
if (w == 4) {
do {
int x_qn = subpel_x_qn;
// Process a 4x4 tile.
for (int r = 0; r < 4; r++) {
const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS];
const ptrdiff_t filter_offset =
SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS);
// Filter values are all even so halve them to fit in int8_t.
const int8x8_t filter =
vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1);
uint8x8_t t0, t1, t2, t3;
load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3);
int16x4_t d0 = convolve8_4_h(t0, t1, t2, t3, filter, horiz_offset);
vst1_s16(&temp[r * 4], d0);
x_qn += x_step_qn;
}
// Transpose the 4x4 result tile and store.
int16x4_t d0, d1, d2, d3;
load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3);
transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3);
store_s16_4x4(dst, dst_stride, d0, d1, d2, d3);
dst += 4 * dst_stride;
src += 4 * src_stride;
h -= 4;
} while (h > 0);
} else {
do {
int x_qn = subpel_x_qn;
int16_t *d = dst;
int width = w;
do {
// Process an 8x8 tile.
for (int r = 0; r < 8; r++) {
const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)];
const ptrdiff_t filter_offset =
SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS);
// Filter values are all even so halve them to fit in int8_t.
const int8x8_t filter =
vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1);
uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7;
load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
int16x8_t d0 = convolve8_8_h(t0, t1, t2, t3, t4, t5, t6, t7, filter,
horiz_offset);
vst1q_s16(&temp[r * 8], d0);
x_qn += x_step_qn;
}
// Transpose the 8x8 result tile and store.
int16x8_t d0, d1, d2, d3, d4, d5, d6, d7;
load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7);
transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7);
store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7);
d += 8;
width -= 8;
} while (width != 0);
dst += 8 * dst_stride;
src += 8 * src_stride;
h -= 8;
} while (h > 0);
}
}
static INLINE int16x4_t convolve8_4_h_scale_2(uint8x16_t samples,
const int8x8_t filters,
const int32x4_t horiz_const,
const uint8x16x2_t permute_tbl) {
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9 }
// { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 }
uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
vqtbl1q_u8(samples, permute_tbl.val[1]) };
int32x4_t sum = vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0);
sum = vusdotq_lane_s32(sum, perm_samples[1], filters, 1);
// We halved the filter values so -1 from right shift.
return vshrn_n_s32(sum, ROUND0_BITS - 1);
}
static INLINE int16x8_t convolve8_8_h_scale_2(uint8x16_t samples[2],
const int8x8_t filters,
const int32x4_t horiz_const,
const uint8x16x2_t permute_tbl) {
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9 }
// { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 }
uint8x16_t perm_samples[4] = { vqtbl1q_u8(samples[0], permute_tbl.val[0]),
vqtbl1q_u8(samples[0], permute_tbl.val[1]),
vqtbl1q_u8(samples[1], permute_tbl.val[0]),
vqtbl1q_u8(samples[1], permute_tbl.val[1]) };
// First 4 output values.
int32x4_t sum0123 =
vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0);
sum0123 = vusdotq_lane_s32(sum0123, perm_samples[1], filters, 1);
// Second 4 output values.
int32x4_t sum4567 =
vusdotq_lane_s32(horiz_const, perm_samples[2], filters, 0);
sum4567 = vusdotq_lane_s32(sum4567, perm_samples[3], filters, 1);
// We halved the filter values so -1 from right shift.
return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
vshrn_n_s32(sum4567, ROUND0_BITS - 1));
}
static INLINE void convolve_horiz_scale_2_neon_i8mm(
const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w,
int h, const int16_t *x_filter) {
const int bd = 8;
// A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// The additional -1 is needed because we are halving the filter values.
const int32x4_t horiz_offset =
vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2)));
const uint8x16x2_t permute_tbl = vld1q_u8_x2(kScale2DotProdPermuteTbl);
// Filter values are all even so halve them to fit in int8_t.
const int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter), 1);
if (w == 4) {
do {
const uint8_t *s = src;
int16_t *d = dst;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
int16x4_t d0 =
convolve8_4_h_scale_2(s0, filter, horiz_offset, permute_tbl);
int16x4_t d1 =
convolve8_4_h_scale_2(s1, filter, horiz_offset, permute_tbl);
int16x4_t d2 =
convolve8_4_h_scale_2(s2, filter, horiz_offset, permute_tbl);
int16x4_t d3 =
convolve8_4_h_scale_2(s3, filter, horiz_offset, permute_tbl);
store_s16_4x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 4;
width -= 4;
} while (width != 0);
dst += 4 * dst_stride;
src += 4 * src_stride;
h -= 4;
} while (h > 0);
} else {
do {
const uint8_t *s = src;
int16_t *d = dst;
int width = w;
do {
uint8x16_t s0[2], s1[2], s2[2], s3[2];
load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]);
load_u8_16x4(s + 8, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]);
int16x8_t d0 =
convolve8_8_h_scale_2(s0, filter, horiz_offset, permute_tbl);
int16x8_t d1 =
convolve8_8_h_scale_2(s1, filter, horiz_offset, permute_tbl);
int16x8_t d2 =
convolve8_8_h_scale_2(s2, filter, horiz_offset, permute_tbl);
int16x8_t d3 =
convolve8_8_h_scale_2(s3, filter, horiz_offset, permute_tbl);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 16;
d += 8;
width -= 8;
} while (width != 0);
dst += 4 * dst_stride;
src += 4 * src_stride;
h -= 4;
} while (h > 0);
}
}
void av1_convolve_2d_scale_neon_i8mm(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int x_step_qn,
const int subpel_y_qn, const int y_step_qn,
ConvolveParams *conv_params) {
if (w < 4 || h < 4) {
av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
x_step_qn, subpel_y_qn, y_step_qn, conv_params);
return;
}
// For the interpolation 8-tap filters are used.
assert(filter_params_y->taps <= 8 && filter_params_x->taps <= 8);
DECLARE_ALIGNED(32, int16_t,
im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
filter_params_y->taps;
int im_stride = MAX_SB_SIZE;
CONV_BUF_TYPE *dst16 = conv_params->dst;
const int dst16_stride = conv_params->dst_stride;
// Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2
// lines post both horizontally and vertically.
const ptrdiff_t horiz_offset = filter_params_x->taps / 2 - 1;
const ptrdiff_t vert_offset = (filter_params_y->taps / 2 - 1) * src_stride;
// Horizontal filter
if (x_step_qn != 2 * (1 << SCALE_SUBPEL_BITS)) {
convolve_horiz_scale_neon_i8mm(
src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w,
im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn);
} else {
assert(subpel_x_qn < (1 << SCALE_SUBPEL_BITS));
// The filter index is calculated using the
// ((subpel_x_qn + x * x_step_qn) & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS
// equation, where the values of x are from 0 to w. If x_step_qn is a
// multiple of SCALE_SUBPEL_MASK we can leave it out of the equation.
const ptrdiff_t filter_offset =
SUBPEL_TAPS * ((subpel_x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS);
const int16_t *x_filter = filter_params_x->filter_ptr + filter_offset;
// The source index is calculated using the (subpel_x_qn + x * x_step_qn) >>
// SCALE_SUBPEL_BITS, where the values of x are from 0 to w. If subpel_x_qn
// < (1 << SCALE_SUBPEL_BITS) and x_step_qn % (1 << SCALE_SUBPEL_BITS) == 0,
// the source index can be determined using the value x * (x_step_qn /
// (1 << SCALE_SUBPEL_BITS)).
convolve_horiz_scale_2_neon_i8mm(src - horiz_offset - vert_offset,
src_stride, im_block, im_stride, w, im_h,
x_filter);
}
// Vertical filter
if (filter_params_y->interp_filter == MULTITAP_SHARP) {
if (UNLIKELY(conv_params->is_compound)) {
if (conv_params->do_average) {
if (conv_params->use_dist_wtd_comp_avg) {
compound_dist_wtd_convolve_vert_scale_8tap_neon(
im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h,
filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn);
} else {
compound_avg_convolve_vert_scale_8tap_neon(
im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h,
filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
}
} else {
compound_convolve_vert_scale_8tap_neon(
im_block, im_stride, dst16, dst16_stride, w, h,
filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
}
} else {
convolve_vert_scale_8tap_neon(im_block, im_stride, dst, dst_stride, w, h,
filter_params_y->filter_ptr, subpel_y_qn,
y_step_qn);
}
} else {
if (UNLIKELY(conv_params->is_compound)) {
if (conv_params->do_average) {
if (conv_params->use_dist_wtd_comp_avg) {
compound_dist_wtd_convolve_vert_scale_6tap_neon(
im_block + im_stride, im_stride, dst, dst_stride, dst16,
dst16_stride, w, h, filter_params_y->filter_ptr, conv_params,
subpel_y_qn, y_step_qn);
} else {
compound_avg_convolve_vert_scale_6tap_neon(
im_block + im_stride, im_stride, dst, dst_stride, dst16,
dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn,
y_step_qn);
}
} else {
compound_convolve_vert_scale_6tap_neon(
im_block + im_stride, im_stride, dst16, dst16_stride, w, h,
filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
}
} else {
convolve_vert_scale_6tap_neon(
im_block + im_stride, im_stride, dst, dst_stride, w, h,
filter_params_y->filter_ptr, subpel_y_qn, y_step_qn);
}
}
}