blob: ef9521b2db200943f48da764e6f2e3e3478be23b [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "av1/common/enums.h"
#include "av1/common/av1_txfm.h"
#include "av1/common/av1_inv_txfm1d.h"
#include "av1/common/av1_inv_txfm1d_cfg.h"
void av1_highbd_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bd) {
/* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds,
0.5 shifts per pixel. */
int i;
tran_low_t output[16];
tran_low_t a1, b1, c1, d1, e1;
const tran_low_t *ip = input;
tran_low_t *op = output;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
for (i = 0; i < 4; i++) {
a1 = ip[4 * 0] >> UNIT_QUANT_SHIFT;
c1 = ip[4 * 1] >> UNIT_QUANT_SHIFT;
d1 = ip[4 * 2] >> UNIT_QUANT_SHIFT;
b1 = ip[4 * 3] >> UNIT_QUANT_SHIFT;
a1 += c1;
d1 -= b1;
e1 = (a1 - d1) >> 1;
b1 = e1 - b1;
c1 = e1 - c1;
a1 -= b1;
d1 += c1;
op[4 * 0] = a1;
op[4 * 1] = b1;
op[4 * 2] = c1;
op[4 * 3] = d1;
ip++;
op++;
}
ip = output;
for (i = 0; i < 4; i++) {
a1 = ip[0];
c1 = ip[1];
d1 = ip[2];
b1 = ip[3];
a1 += c1;
d1 -= b1;
e1 = (a1 - d1) >> 1;
b1 = e1 - b1;
c1 = e1 - c1;
a1 -= b1;
d1 += c1;
range_check_value(a1, bd + 1);
range_check_value(b1, bd + 1);
range_check_value(c1, bd + 1);
range_check_value(d1, bd + 1);
dest[stride * 0] = highbd_clip_pixel_add(dest[stride * 0], a1, bd);
dest[stride * 1] = highbd_clip_pixel_add(dest[stride * 1], b1, bd);
dest[stride * 2] = highbd_clip_pixel_add(dest[stride * 2], c1, bd);
dest[stride * 3] = highbd_clip_pixel_add(dest[stride * 3], d1, bd);
ip += 4;
dest++;
}
}
void av1_highbd_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest8,
int dest_stride, int bd) {
int i;
tran_low_t a1, e1;
tran_low_t tmp[4];
const tran_low_t *ip = in;
tran_low_t *op = tmp;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
(void)bd;
a1 = ip[0 * 4] >> UNIT_QUANT_SHIFT;
e1 = a1 >> 1;
a1 -= e1;
op[0] = a1;
op[1] = op[2] = op[3] = e1;
ip = tmp;
for (i = 0; i < 4; i++) {
e1 = ip[0] >> 1;
a1 = ip[0] - e1;
dest[dest_stride * 0] =
highbd_clip_pixel_add(dest[dest_stride * 0], a1, bd);
dest[dest_stride * 1] =
highbd_clip_pixel_add(dest[dest_stride * 1], e1, bd);
dest[dest_stride * 2] =
highbd_clip_pixel_add(dest[dest_stride * 2], e1, bd);
dest[dest_stride * 3] =
highbd_clip_pixel_add(dest[dest_stride * 3], e1, bd);
ip++;
dest++;
}
}
static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) {
switch (txfm_type) {
case TXFM_TYPE_DCT4: return av1_idct4;
case TXFM_TYPE_DCT8: return av1_idct8;
case TXFM_TYPE_DCT16: return av1_idct16;
case TXFM_TYPE_DCT32: return av1_idct32;
case TXFM_TYPE_DCT64: return av1_idct64;
case TXFM_TYPE_ADST4: return av1_iadst4;
case TXFM_TYPE_ADST8: return av1_iadst8;
case TXFM_TYPE_ADST16: return av1_iadst16;
case TXFM_TYPE_IDENTITY4: return av1_iidentity4_c;
case TXFM_TYPE_IDENTITY8: return av1_iidentity8_c;
case TXFM_TYPE_IDENTITY16: return av1_iidentity16_c;
case TXFM_TYPE_IDENTITY32: return av1_iidentity32_c;
default: assert(0); return NULL;
}
}
static const int8_t inv_shift_4x4[2] = { 0, -4 };
static const int8_t inv_shift_8x8[2] = { -1, -4 };
static const int8_t inv_shift_16x16[2] = { -2, -4 };
static const int8_t inv_shift_32x32[2] = { -2, -4 };
static const int8_t inv_shift_64x64[2] = { -2, -4 };
static const int8_t inv_shift_4x8[2] = { 0, -4 };
static const int8_t inv_shift_8x4[2] = { 0, -4 };
static const int8_t inv_shift_8x16[2] = { -1, -4 };
static const int8_t inv_shift_16x8[2] = { -1, -4 };
static const int8_t inv_shift_16x32[2] = { -1, -4 };
static const int8_t inv_shift_32x16[2] = { -1, -4 };
static const int8_t inv_shift_32x64[2] = { -1, -4 };
static const int8_t inv_shift_64x32[2] = { -1, -4 };
static const int8_t inv_shift_4x16[2] = { -1, -4 };
static const int8_t inv_shift_16x4[2] = { -1, -4 };
static const int8_t inv_shift_8x32[2] = { -2, -4 };
static const int8_t inv_shift_32x8[2] = { -2, -4 };
static const int8_t inv_shift_16x64[2] = { -2, -4 };
static const int8_t inv_shift_64x16[2] = { -2, -4 };
const int8_t *av1_inv_txfm_shift_ls[TX_SIZES_ALL] = {
inv_shift_4x4, inv_shift_8x8, inv_shift_16x16, inv_shift_32x32,
inv_shift_64x64, inv_shift_4x8, inv_shift_8x4, inv_shift_8x16,
inv_shift_16x8, inv_shift_16x32, inv_shift_32x16, inv_shift_32x64,
inv_shift_64x32, inv_shift_4x16, inv_shift_16x4, inv_shift_8x32,
inv_shift_32x8, inv_shift_16x64, inv_shift_64x16,
};
static const int8_t iadst4_range[7] = { 0, 1, 0, 0, 0, 0, 0 };
void av1_get_inv_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size,
TXFM_2D_FLIP_CFG *cfg) {
assert(cfg != NULL);
cfg->tx_size = tx_size;
av1_zero(cfg->stage_range_col);
av1_zero(cfg->stage_range_row);
set_flip_cfg(tx_type, cfg);
const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type];
const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type];
cfg->shift = av1_inv_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
cfg->cos_bit_col = INV_COS_BIT;
cfg->cos_bit_row = INV_COS_BIT;
cfg->txfm_type_col = av1_txfm_type_ls[txh_idx][tx_type_1d_col];
if (cfg->txfm_type_col == TXFM_TYPE_ADST4) {
memcpy(cfg->stage_range_col, iadst4_range, sizeof(iadst4_range));
}
cfg->txfm_type_row = av1_txfm_type_ls[txw_idx][tx_type_1d_row];
if (cfg->txfm_type_row == TXFM_TYPE_ADST4) {
memcpy(cfg->stage_range_row, iadst4_range, sizeof(iadst4_range));
}
cfg->stage_num_col = av1_txfm_stage_num_list[cfg->txfm_type_col];
cfg->stage_num_row = av1_txfm_stage_num_list[cfg->txfm_type_row];
}
void av1_gen_inv_stage_range(int8_t *stage_range_col, int8_t *stage_range_row,
const TXFM_2D_FLIP_CFG *cfg, TX_SIZE tx_size,
int bd) {
const int fwd_shift = inv_start_range[tx_size];
const int8_t *shift = cfg->shift;
int8_t opt_range_row, opt_range_col;
if (bd == 8) {
opt_range_row = 16;
opt_range_col = 16;
} else if (bd == 10) {
opt_range_row = 18;
opt_range_col = 16;
} else {
assert(bd == 12);
opt_range_row = 20;
opt_range_col = 18;
}
// i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
for (int i = 0; i < cfg->stage_num_row && i < MAX_TXFM_STAGE_NUM; ++i) {
int real_range_row = cfg->stage_range_row[i] + fwd_shift + bd + 1;
(void)real_range_row;
if (cfg->txfm_type_row == TXFM_TYPE_ADST4 && i == 1) {
// the adst4 may use 1 extra bit on top of opt_range_row at stage 1
// so opt_range_row >= real_range_row will not hold
stage_range_row[i] = opt_range_row;
} else {
assert(opt_range_row >= real_range_row);
stage_range_row[i] = opt_range_row;
}
}
// i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
for (int i = 0; i < cfg->stage_num_col && i < MAX_TXFM_STAGE_NUM; ++i) {
int real_range_col =
cfg->stage_range_col[i] + fwd_shift + shift[0] + bd + 1;
(void)real_range_col;
if (cfg->txfm_type_col == TXFM_TYPE_ADST4 && i == 1) {
// the adst4 may use 1 extra bit on top of opt_range_col at stage 1
// so opt_range_col >= real_range_col will not hold
stage_range_col[i] = opt_range_col;
} else {
assert(opt_range_col >= real_range_col);
stage_range_col[i] = opt_range_col;
}
}
}
static INLINE void inv_txfm2d_add_c(const int32_t *input, uint16_t *output,
int stride, TXFM_2D_FLIP_CFG *cfg,
int32_t *txfm_buf, TX_SIZE tx_size,
int bd) {
// Note when assigning txfm_size_col, we use the txfm_size from the
// row configuration and vice versa. This is intentionally done to
// accurately perform rectangular transforms. When the transform is
// rectangular, the number of columns will be the same as the
// txfm_size stored in the row cfg struct. It will make no difference
// for square transforms.
const int txfm_size_col = tx_size_wide[cfg->tx_size];
const int txfm_size_row = tx_size_high[cfg->tx_size];
// Take the shift from the larger dimension in the rectangular case.
const int8_t *shift = cfg->shift;
const int rect_type = get_rect_tx_log_ratio(txfm_size_col, txfm_size_row);
int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
assert(cfg->stage_num_row <= MAX_TXFM_STAGE_NUM);
assert(cfg->stage_num_col <= MAX_TXFM_STAGE_NUM);
av1_gen_inv_stage_range(stage_range_col, stage_range_row, cfg, tx_size, bd);
const int8_t cos_bit_col = cfg->cos_bit_col;
const int8_t cos_bit_row = cfg->cos_bit_row;
const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->txfm_type_col);
const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->txfm_type_row);
// txfm_buf's length is txfm_size_row * txfm_size_col + 2 *
// AOMMAX(txfm_size_row, txfm_size_col)
// it is used for intermediate data buffering
const int buf_offset = AOMMAX(txfm_size_row, txfm_size_col);
int32_t *temp_in = txfm_buf;
int32_t *temp_out = temp_in + buf_offset;
int32_t *buf = temp_out + buf_offset;
int32_t *buf_ptr = buf;
int c, r;
// Rows
for (r = 0; r < txfm_size_row; ++r) {
if (abs(rect_type) == 1) {
for (c = 0; c < txfm_size_col; ++c) {
temp_in[c] = round_shift(
(int64_t)input[c * txfm_size_row + r] * NewInvSqrt2, NewSqrt2Bits);
}
clamp_buf(temp_in, txfm_size_col, bd + 8);
txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row);
} else {
for (c = 0; c < txfm_size_col; ++c) {
temp_in[c] = input[c * txfm_size_row + r];
}
clamp_buf(temp_in, txfm_size_col, bd + 8);
txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row);
}
av1_round_shift_array(buf_ptr, txfm_size_col, -shift[0]);
buf_ptr += txfm_size_col;
}
// Columns
for (c = 0; c < txfm_size_col; ++c) {
if (cfg->lr_flip == 0) {
for (r = 0; r < txfm_size_row; ++r)
temp_in[r] = buf[r * txfm_size_col + c];
} else {
// flip left right
for (r = 0; r < txfm_size_row; ++r)
temp_in[r] = buf[r * txfm_size_col + (txfm_size_col - c - 1)];
}
clamp_buf(temp_in, txfm_size_row, AOMMAX(bd + 6, 16));
txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col);
av1_round_shift_array(temp_out, txfm_size_row, -shift[1]);
if (cfg->ud_flip == 0) {
for (r = 0; r < txfm_size_row; ++r) {
output[r * stride + c] =
highbd_clip_pixel_add(output[r * stride + c], temp_out[r], bd);
}
} else {
// flip upside down
for (r = 0; r < txfm_size_row; ++r) {
output[r * stride + c] = highbd_clip_pixel_add(
output[r * stride + c], temp_out[txfm_size_row - r - 1], bd);
}
}
}
}
static INLINE void inv_txfm2d_add_facade(const int32_t *input, uint16_t *output,
int stride, int32_t *txfm_buf,
TX_TYPE tx_type, TX_SIZE tx_size,
int bd) {
TXFM_2D_FLIP_CFG cfg;
av1_get_inv_txfm_cfg(tx_type, tx_size, &cfg);
// Forward shift sum uses larger square size, to be consistent with what
// av1_gen_inv_stage_range() does for inverse shifts.
inv_txfm2d_add_c(input, output, stride, &cfg, txfm_buf, tx_size, bd);
}
void av1_inv_txfm2d_add_4x8_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[4 * 8 + 8 + 8]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X8, bd);
}
void av1_inv_txfm2d_add_8x4_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 4 + 8 + 8]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X4, bd);
}
void av1_inv_txfm2d_add_8x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 16 + 16 + 16]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X16, bd);
}
void av1_inv_txfm2d_add_16x8_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[16 * 8 + 16 + 16]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X8, bd);
}
void av1_inv_txfm2d_add_16x32_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[16 * 32 + 32 + 32]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X32, bd);
}
void av1_inv_txfm2d_add_32x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[32 * 16 + 32 + 32]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X16, bd);
}
void av1_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[4 * 4 + 4 + 4]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X4, bd);
}
void av1_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 8 + 8 + 8]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X8, bd);
}
void av1_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[16 * 16 + 16 + 16]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X16, bd);
}
void av1_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[32 * 32 + 32 + 32]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X32, bd);
}
void av1_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// TODO(urvang): Can the same array be reused, instead of using a new array?
// Remap 32x32 input into a modified 64x64 by:
// - Copying over these values in top-left 32x32 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[64 * 64];
for (int col = 0; col < 32; ++col) {
memcpy(mod_input + col * 64, input + col * 32, 32 * sizeof(*mod_input));
memset(mod_input + col * 64 + 32, 0, 32 * sizeof(*mod_input));
}
memset(mod_input + 32 * 64, 0, 32 * 64 * sizeof(*mod_input));
DECLARE_ALIGNED(32, int, txfm_buf[64 * 64 + 64 + 64]);
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X64,
bd);
}
void av1_inv_txfm2d_add_64x32_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// Remap 32x32 input into a modified 64x32 by:
// - Copying over these values in top-left 32x32 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[32 * 64];
memcpy(mod_input, input, 32 * 32 * sizeof(*mod_input));
memset(mod_input + 32 * 32, 0, 32 * 32 * sizeof(*mod_input));
DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]);
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X32,
bd);
}
void av1_inv_txfm2d_add_32x64_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// Remap 32x32 input into a modified 32x64 input by:
// - Copying over these values in top-left 32x32 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[64 * 32];
for (int col = 0; col < 32; ++col) {
memcpy(mod_input + col * 64, input + col * 32, 32 * sizeof(*mod_input));
memset(mod_input + col * 64 + 32, 0, 32 * sizeof(*mod_input));
}
DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]);
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_32X64,
bd);
}
void av1_inv_txfm2d_add_16x64_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// Remap 16x32 input into a modified 16x64 input by:
// - Copying over these values in top-left 16x32 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[64 * 16];
for (int col = 0; col < 16; ++col) {
memcpy(mod_input + col * 64, input + col * 32, 32 * sizeof(*mod_input));
memset(mod_input + col * 64 + 32, 0, 32 * sizeof(*mod_input));
}
DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]);
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_16X64,
bd);
}
void av1_inv_txfm2d_add_64x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// Remap 32x16 input into a modified 64x16 by:
// - Copying over these values in top-left 32x16 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[16 * 64];
memcpy(mod_input, input, 16 * 32 * sizeof(*mod_input));
memset(mod_input + 16 * 32, 0, 16 * 32 * sizeof(*mod_input));
DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]);
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X16,
bd);
}
void av1_inv_txfm2d_add_4x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X16, bd);
}
void av1_inv_txfm2d_add_16x4_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X4, bd);
}
void av1_inv_txfm2d_add_8x32_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X32, bd);
}
void av1_inv_txfm2d_add_32x8_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X8, bd);
}