| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/common/common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/seg_common.h" |
| |
| // Returns a context number for the given MB prediction signal |
| static InterpFilter get_ref_filter_type(const MB_MODE_INFO *ref_mbmi, |
| const MACROBLOCKD *xd, int dir, |
| MV_REFERENCE_FRAME ref_frame) { |
| (void)xd; |
| |
| return ((ref_mbmi->ref_frame[0] == ref_frame || |
| ref_mbmi->ref_frame[1] == ref_frame) |
| ? av1_extract_interp_filter(ref_mbmi->interp_filters, dir & 0x01) |
| : SWITCHABLE_FILTERS); |
| } |
| |
| int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int ctx_offset = |
| (mbmi->ref_frame[1] > INTRA_FRAME) * INTER_FILTER_COMP_OFFSET; |
| assert(dir == 0 || dir == 1); |
| const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0]; |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET; |
| int left_type = SWITCHABLE_FILTERS; |
| int above_type = SWITCHABLE_FILTERS; |
| |
| if (xd->left_available) |
| left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame); |
| |
| if (xd->up_available) |
| above_type = |
| get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame); |
| |
| if (left_type == above_type) { |
| filter_type_ctx += left_type; |
| } else if (left_type == SWITCHABLE_FILTERS) { |
| assert(above_type != SWITCHABLE_FILTERS); |
| filter_type_ctx += above_type; |
| } else if (above_type == SWITCHABLE_FILTERS) { |
| assert(left_type != SWITCHABLE_FILTERS); |
| filter_type_ctx += left_type; |
| } else { |
| filter_type_ctx += SWITCHABLE_FILTERS; |
| } |
| |
| return filter_type_ctx; |
| } |
| |
| static void palette_add_to_cache(uint16_t *cache, int *n, uint16_t val) { |
| // Do not add an already existing value |
| if (*n > 0 && val == cache[*n - 1]) return; |
| |
| cache[(*n)++] = val; |
| } |
| |
| int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane, |
| uint16_t *cache) { |
| const int row = -xd->mb_to_top_edge >> 3; |
| // Do not refer to above SB row when on SB boundary. |
| const MB_MODE_INFO *const above_mi = |
| (row % (1 << MIN_SB_SIZE_LOG2)) ? xd->above_mbmi : NULL; |
| const MB_MODE_INFO *const left_mi = xd->left_mbmi; |
| int above_n = 0, left_n = 0; |
| if (above_mi) above_n = above_mi->palette_mode_info.palette_size[plane != 0]; |
| if (left_mi) left_n = left_mi->palette_mode_info.palette_size[plane != 0]; |
| if (above_n == 0 && left_n == 0) return 0; |
| int above_idx = plane * PALETTE_MAX_SIZE; |
| int left_idx = plane * PALETTE_MAX_SIZE; |
| int n = 0; |
| const uint16_t *above_colors = |
| above_mi ? above_mi->palette_mode_info.palette_colors : NULL; |
| const uint16_t *left_colors = |
| left_mi ? left_mi->palette_mode_info.palette_colors : NULL; |
| // Merge the sorted lists of base colors from above and left to get |
| // combined sorted color cache. |
| while (above_n > 0 && left_n > 0) { |
| uint16_t v_above = above_colors[above_idx]; |
| uint16_t v_left = left_colors[left_idx]; |
| if (v_left < v_above) { |
| palette_add_to_cache(cache, &n, v_left); |
| ++left_idx, --left_n; |
| } else { |
| palette_add_to_cache(cache, &n, v_above); |
| ++above_idx, --above_n; |
| if (v_left == v_above) ++left_idx, --left_n; |
| } |
| } |
| while (above_n-- > 0) { |
| uint16_t val = above_colors[above_idx++]; |
| palette_add_to_cache(cache, &n, val); |
| } |
| while (left_n-- > 0) { |
| uint16_t val = left_colors[left_idx++]; |
| palette_add_to_cache(cache, &n, val); |
| } |
| assert(n <= 2 * PALETTE_MAX_SIZE); |
| return n; |
| } |
| |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| // 0 - inter/inter, inter/--, --/inter, --/-- |
| // 1 - intra/inter, inter/intra |
| // 2 - intra/--, --/intra |
| // 3 - intra/intra |
| int av1_get_intra_inter_context(const MACROBLOCKD *xd) { |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int has_above = xd->up_available; |
| const int has_left = xd->left_available; |
| |
| if (has_above && has_left) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| return left_intra && above_intra ? 3 : left_intra || above_intra; |
| } else if (has_above || has_left) { // one edge available |
| return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi); |
| } else { |
| return 0; |
| } |
| } |
| |
| #define CHECK_BACKWARD_REFS(ref_frame) \ |
| (((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME)) |
| #define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame) |
| |
| int av1_get_reference_mode_context(const MACROBLOCKD *xd) { |
| int ctx; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int has_above = xd->up_available; |
| const int has_left = xd->left_available; |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| if (has_above && has_left) { // both edges available |
| if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) |
| // neither edge uses comp pred (0/1) |
| ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^ |
| IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]); |
| else if (!has_second_ref(above_mbmi)) |
| // one of two edges uses comp pred (2/3) |
| ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) || |
| !is_inter_block(above_mbmi)); |
| else if (!has_second_ref(left_mbmi)) |
| // one of two edges uses comp pred (2/3) |
| ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) || |
| !is_inter_block(left_mbmi)); |
| else // both edges use comp pred (4) |
| ctx = 4; |
| } else if (has_above || has_left) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; |
| |
| if (!has_second_ref(edge_mbmi)) |
| // edge does not use comp pred (0/1) |
| ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]); |
| else |
| // edge uses comp pred (3) |
| ctx = 3; |
| } else { // no edges available (1) |
| ctx = 1; |
| } |
| assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS); |
| return ctx; |
| } |
| |
| int av1_get_comp_reference_type_context(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int above_in_image = xd->up_available; |
| const int left_in_image = xd->left_available; |
| |
| if (above_in_image && left_in_image) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| |
| if (above_intra && left_intra) { // intra/intra |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter |
| const MB_MODE_INFO *inter_mbmi = above_intra ? left_mbmi : above_mbmi; |
| |
| if (!has_second_ref(inter_mbmi)) // single pred |
| pred_context = 2; |
| else // comp pred |
| pred_context = 1 + 2 * has_uni_comp_refs(inter_mbmi); |
| } else { // inter/inter |
| const int a_sg = !has_second_ref(above_mbmi); |
| const int l_sg = !has_second_ref(left_mbmi); |
| const MV_REFERENCE_FRAME frfa = above_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME frfl = left_mbmi->ref_frame[0]; |
| |
| if (a_sg && l_sg) { // single/single |
| pred_context = 1 + 2 * (!(IS_BACKWARD_REF_FRAME(frfa) ^ |
| IS_BACKWARD_REF_FRAME(frfl))); |
| } else if (l_sg || a_sg) { // single/comp |
| const int uni_rfc = |
| a_sg ? has_uni_comp_refs(left_mbmi) : has_uni_comp_refs(above_mbmi); |
| |
| if (!uni_rfc) // comp bidir |
| pred_context = 1; |
| else // comp unidir |
| pred_context = 3 + (!(IS_BACKWARD_REF_FRAME(frfa) ^ |
| IS_BACKWARD_REF_FRAME(frfl))); |
| } else { // comp/comp |
| const int a_uni_rfc = has_uni_comp_refs(above_mbmi); |
| const int l_uni_rfc = has_uni_comp_refs(left_mbmi); |
| |
| if (!a_uni_rfc && !l_uni_rfc) // bidir/bidir |
| pred_context = 0; |
| else if (!a_uni_rfc || !l_uni_rfc) // unidir/bidir |
| pred_context = 2; |
| else // unidir/unidir |
| pred_context = |
| 3 + (!((frfa == BWDREF_FRAME) ^ (frfl == BWDREF_FRAME))); |
| } |
| } |
| } else if (above_in_image || left_in_image) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; |
| |
| if (!is_inter_block(edge_mbmi)) { // intra |
| pred_context = 2; |
| } else { // inter |
| if (!has_second_ref(edge_mbmi)) // single pred |
| pred_context = 2; |
| else // comp pred |
| pred_context = 4 * has_uni_comp_refs(edge_mbmi); |
| } |
| } else { // no edges available |
| pred_context = 2; |
| } |
| |
| assert(pred_context >= 0 && pred_context < COMP_REF_TYPE_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // |
| // Signal the uni-directional compound reference frame pair as either |
| // (BWDREF, ALTREF), or (LAST, LAST2) / (LAST, LAST3) / (LAST, GOLDEN), |
| // conditioning on the pair is known as uni-directional. |
| // |
| // 3 contexts: Voting is used to compare the count of forward references with |
| // that of backward references from the spatial neighbors. |
| int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of forward references (L, L2, L3, or G) |
| const int frf_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] + |
| ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; |
| // Count of backward references (B or A) |
| const int brf_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] + |
| ref_counts[ALTREF_FRAME]; |
| |
| const int pred_context = |
| (frf_count == brf_count) ? 1 : ((frf_count < brf_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // |
| // Signal the uni-directional compound reference frame pair as |
| // either (LAST, LAST2), or (LAST, LAST3) / (LAST, GOLDEN), |
| // conditioning on the pair is known as one of the above three. |
| // |
| // 3 contexts: Voting is used to compare the count of LAST2_FRAME with the |
| // total count of LAST3/GOLDEN from the spatial neighbors. |
| int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of LAST2 |
| const int last2_count = ref_counts[LAST2_FRAME]; |
| // Count of LAST3 or GOLDEN |
| const int last3_or_gld_count = |
| ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; |
| |
| const int pred_context = (last2_count == last3_or_gld_count) |
| ? 1 |
| : ((last2_count < last3_or_gld_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // |
| // Signal the uni-directional compound reference frame pair as |
| // either (LAST, LAST3) or (LAST, GOLDEN), |
| // conditioning on the pair is known as one of the above two. |
| // |
| // 3 contexts: Voting is used to compare the count of LAST3_FRAME with the |
| // total count of GOLDEN_FRAME from the spatial neighbors. |
| int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of LAST3 |
| const int last3_count = ref_counts[LAST3_FRAME]; |
| // Count of GOLDEN |
| const int gld_count = ref_counts[GOLDEN_FRAME]; |
| |
| const int pred_context = |
| (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // == Common context functions for both comp and single ref == |
| // |
| // Obtain contexts to signal a reference frame to be either LAST/LAST2 or |
| // LAST3/GOLDEN. |
| static int get_pred_context_ll2_or_l3gld(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of LAST + LAST2 |
| const int last_last2_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME]; |
| // Count of LAST3 + GOLDEN |
| const int last3_gld_count = |
| ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; |
| |
| const int pred_context = (last_last2_count == last3_gld_count) |
| ? 1 |
| : ((last_last2_count < last3_gld_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Obtain contexts to signal a reference frame to be either LAST or LAST2. |
| static int get_pred_context_last_or_last2(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of LAST |
| const int last_count = ref_counts[LAST_FRAME]; |
| // Count of LAST2 |
| const int last2_count = ref_counts[LAST2_FRAME]; |
| |
| const int pred_context = |
| (last_count == last2_count) ? 1 : ((last_count < last2_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Obtain contexts to signal a reference frame to be either LAST3 or GOLDEN. |
| static int get_pred_context_last3_or_gld(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of LAST3 |
| const int last3_count = ref_counts[LAST3_FRAME]; |
| // Count of GOLDEN |
| const int gld_count = ref_counts[GOLDEN_FRAME]; |
| |
| const int pred_context = |
| (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Obtain contexts to signal a reference frame be either BWDREF/ALTREF2, or |
| // ALTREF. |
| static int get_pred_context_brfarf2_or_arf(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Counts of BWDREF, ALTREF2, or ALTREF frames (B, A2, or A) |
| const int brfarf2_count = |
| ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME]; |
| const int arf_count = ref_counts[ALTREF_FRAME]; |
| |
| const int pred_context = |
| (brfarf2_count == arf_count) ? 1 : ((brfarf2_count < arf_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Obtain contexts to signal a reference frame be either BWDREF or ALTREF2. |
| static int get_pred_context_brf_or_arf2(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of BWDREF frames (B) |
| const int brf_count = ref_counts[BWDREF_FRAME]; |
| // Count of ALTREF2 frames (A2) |
| const int arf2_count = ref_counts[ALTREF2_FRAME]; |
| |
| const int pred_context = |
| (brf_count == arf2_count) ? 1 : ((brf_count < arf2_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // == Context functions for comp ref == |
| // |
| // Returns a context number for the given MB prediction signal |
| // Signal the first reference frame for a compound mode be either |
| // GOLDEN/LAST3, or LAST/LAST2. |
| int av1_get_pred_context_comp_ref_p(const MACROBLOCKD *xd) { |
| return get_pred_context_ll2_or_l3gld(xd); |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // Signal the first reference frame for a compound mode be LAST, |
| // conditioning on that it is known either LAST/LAST2. |
| int av1_get_pred_context_comp_ref_p1(const MACROBLOCKD *xd) { |
| return get_pred_context_last_or_last2(xd); |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // Signal the first reference frame for a compound mode be GOLDEN, |
| // conditioning on that it is known either GOLDEN or LAST3. |
| int av1_get_pred_context_comp_ref_p2(const MACROBLOCKD *xd) { |
| return get_pred_context_last3_or_gld(xd); |
| } |
| |
| // Signal the 2nd reference frame for a compound mode be either |
| // ALTREF, or ALTREF2/BWDREF. |
| int av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD *xd) { |
| return get_pred_context_brfarf2_or_arf(xd); |
| } |
| |
| // Signal the 2nd reference frame for a compound mode be either |
| // ALTREF2 or BWDREF. |
| int av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD *xd) { |
| return get_pred_context_brf_or_arf2(xd); |
| } |
| |
| // == Context functions for single ref == |
| // |
| // For the bit to signal whether the single reference is a forward reference |
| // frame or a backward reference frame. |
| int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { |
| const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; |
| |
| // Count of forward reference frames |
| const int fwd_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] + |
| ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; |
| // Count of backward reference frames |
| const int bwd_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] + |
| ref_counts[ALTREF_FRAME]; |
| |
| const int pred_context = |
| (fwd_count == bwd_count) ? 1 : ((fwd_count < bwd_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // For the bit to signal whether the single reference is ALTREF_FRAME or |
| // non-ALTREF backward reference frame, knowing that it shall be either of |
| // these 2 choices. |
| int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { |
| return get_pred_context_brfarf2_or_arf(xd); |
| } |
| |
| // For the bit to signal whether the single reference is LAST3/GOLDEN or |
| // LAST2/LAST, knowing that it shall be either of these 2 choices. |
| int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) { |
| return get_pred_context_ll2_or_l3gld(xd); |
| } |
| |
| // For the bit to signal whether the single reference is LAST2_FRAME or |
| // LAST_FRAME, knowing that it shall be either of these 2 choices. |
| int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) { |
| return get_pred_context_last_or_last2(xd); |
| } |
| |
| // For the bit to signal whether the single reference is GOLDEN_FRAME or |
| // LAST3_FRAME, knowing that it shall be either of these 2 choices. |
| int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) { |
| return get_pred_context_last3_or_gld(xd); |
| } |
| |
| // For the bit to signal whether the single reference is ALTREF2_FRAME or |
| // BWDREF_FRAME, knowing that it shall be either of these 2 choices. |
| int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd) { |
| return get_pred_context_brf_or_arf2(xd); |
| } |