blob: ce440abfeb8ef56fb2304c2ef69ca30bef423c80 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
// Returns a context number for the given MB prediction signal
static InterpFilter get_ref_filter_type(const MB_MODE_INFO *ref_mbmi,
const MACROBLOCKD *xd, int dir,
MV_REFERENCE_FRAME ref_frame) {
(void)xd;
return ((ref_mbmi->ref_frame[0] == ref_frame ||
ref_mbmi->ref_frame[1] == ref_frame)
? av1_extract_interp_filter(ref_mbmi->interp_filters, dir & 0x01)
: SWITCHABLE_FILTERS);
}
int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const int ctx_offset =
(mbmi->ref_frame[1] > INTRA_FRAME) * INTER_FILTER_COMP_OFFSET;
assert(dir == 0 || dir == 1);
const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0];
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET;
int left_type = SWITCHABLE_FILTERS;
int above_type = SWITCHABLE_FILTERS;
if (xd->left_available)
left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame);
if (xd->up_available)
above_type =
get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame);
if (left_type == above_type) {
filter_type_ctx += left_type;
} else if (left_type == SWITCHABLE_FILTERS) {
assert(above_type != SWITCHABLE_FILTERS);
filter_type_ctx += above_type;
} else if (above_type == SWITCHABLE_FILTERS) {
assert(left_type != SWITCHABLE_FILTERS);
filter_type_ctx += left_type;
} else {
filter_type_ctx += SWITCHABLE_FILTERS;
}
return filter_type_ctx;
}
static void palette_add_to_cache(uint16_t *cache, int *n, uint16_t val) {
// Do not add an already existing value
if (*n > 0 && val == cache[*n - 1]) return;
cache[(*n)++] = val;
}
int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane,
uint16_t *cache) {
const int row = -xd->mb_to_top_edge >> 3;
// Do not refer to above SB row when on SB boundary.
const MB_MODE_INFO *const above_mi =
(row % (1 << MIN_SB_SIZE_LOG2)) ? xd->above_mbmi : NULL;
const MB_MODE_INFO *const left_mi = xd->left_mbmi;
int above_n = 0, left_n = 0;
if (above_mi) above_n = above_mi->palette_mode_info.palette_size[plane != 0];
if (left_mi) left_n = left_mi->palette_mode_info.palette_size[plane != 0];
if (above_n == 0 && left_n == 0) return 0;
int above_idx = plane * PALETTE_MAX_SIZE;
int left_idx = plane * PALETTE_MAX_SIZE;
int n = 0;
const uint16_t *above_colors =
above_mi ? above_mi->palette_mode_info.palette_colors : NULL;
const uint16_t *left_colors =
left_mi ? left_mi->palette_mode_info.palette_colors : NULL;
// Merge the sorted lists of base colors from above and left to get
// combined sorted color cache.
while (above_n > 0 && left_n > 0) {
uint16_t v_above = above_colors[above_idx];
uint16_t v_left = left_colors[left_idx];
if (v_left < v_above) {
palette_add_to_cache(cache, &n, v_left);
++left_idx, --left_n;
} else {
palette_add_to_cache(cache, &n, v_above);
++above_idx, --above_n;
if (v_left == v_above) ++left_idx, --left_n;
}
}
while (above_n-- > 0) {
uint16_t val = above_colors[above_idx++];
palette_add_to_cache(cache, &n, val);
}
while (left_n-- > 0) {
uint16_t val = left_colors[left_idx++];
palette_add_to_cache(cache, &n, val);
}
assert(n <= 2 * PALETTE_MAX_SIZE);
return n;
}
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
// 0 - inter/inter, inter/--, --/inter, --/--
// 1 - intra/inter, inter/intra
// 2 - intra/--, --/intra
// 3 - intra/intra
int av1_get_intra_inter_context(const MACROBLOCKD *xd) {
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int has_above = xd->up_available;
const int has_left = xd->left_available;
if (has_above && has_left) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
return left_intra && above_intra ? 3 : left_intra || above_intra;
} else if (has_above || has_left) { // one edge available
return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi);
} else {
return 0;
}
}
#define CHECK_BACKWARD_REFS(ref_frame) \
(((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME))
#define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame)
int av1_get_reference_mode_context(const MACROBLOCKD *xd) {
int ctx;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int has_above = xd->up_available;
const int has_left = xd->left_available;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
if (has_above && has_left) { // both edges available
if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi))
// neither edge uses comp pred (0/1)
ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^
IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]);
else if (!has_second_ref(above_mbmi))
// one of two edges uses comp pred (2/3)
ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ||
!is_inter_block(above_mbmi));
else if (!has_second_ref(left_mbmi))
// one of two edges uses comp pred (2/3)
ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) ||
!is_inter_block(left_mbmi));
else // both edges use comp pred (4)
ctx = 4;
} else if (has_above || has_left) { // one edge available
const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi;
if (!has_second_ref(edge_mbmi))
// edge does not use comp pred (0/1)
ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]);
else
// edge uses comp pred (3)
ctx = 3;
} else { // no edges available (1)
ctx = 1;
}
assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS);
return ctx;
}
int av1_get_comp_reference_type_context(const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int above_in_image = xd->up_available;
const int left_in_image = xd->left_available;
if (above_in_image && left_in_image) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) { // intra/intra
pred_context = 2;
} else if (above_intra || left_intra) { // intra/inter
const MB_MODE_INFO *inter_mbmi = above_intra ? left_mbmi : above_mbmi;
if (!has_second_ref(inter_mbmi)) // single pred
pred_context = 2;
else // comp pred
pred_context = 1 + 2 * has_uni_comp_refs(inter_mbmi);
} else { // inter/inter
const int a_sg = !has_second_ref(above_mbmi);
const int l_sg = !has_second_ref(left_mbmi);
const MV_REFERENCE_FRAME frfa = above_mbmi->ref_frame[0];
const MV_REFERENCE_FRAME frfl = left_mbmi->ref_frame[0];
if (a_sg && l_sg) { // single/single
pred_context = 1 + 2 * (!(IS_BACKWARD_REF_FRAME(frfa) ^
IS_BACKWARD_REF_FRAME(frfl)));
} else if (l_sg || a_sg) { // single/comp
const int uni_rfc =
a_sg ? has_uni_comp_refs(left_mbmi) : has_uni_comp_refs(above_mbmi);
if (!uni_rfc) // comp bidir
pred_context = 1;
else // comp unidir
pred_context = 3 + (!(IS_BACKWARD_REF_FRAME(frfa) ^
IS_BACKWARD_REF_FRAME(frfl)));
} else { // comp/comp
const int a_uni_rfc = has_uni_comp_refs(above_mbmi);
const int l_uni_rfc = has_uni_comp_refs(left_mbmi);
if (!a_uni_rfc && !l_uni_rfc) // bidir/bidir
pred_context = 0;
else if (!a_uni_rfc || !l_uni_rfc) // unidir/bidir
pred_context = 2;
else // unidir/unidir
pred_context =
3 + (!((frfa == BWDREF_FRAME) ^ (frfl == BWDREF_FRAME)));
}
}
} else if (above_in_image || left_in_image) { // one edge available
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
if (!is_inter_block(edge_mbmi)) { // intra
pred_context = 2;
} else { // inter
if (!has_second_ref(edge_mbmi)) // single pred
pred_context = 2;
else // comp pred
pred_context = 4 * has_uni_comp_refs(edge_mbmi);
}
} else { // no edges available
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < COMP_REF_TYPE_CONTEXTS);
return pred_context;
}
// Returns a context number for the given MB prediction signal
//
// Signal the uni-directional compound reference frame pair as either
// (BWDREF, ALTREF), or (LAST, LAST2) / (LAST, LAST3) / (LAST, GOLDEN),
// conditioning on the pair is known as uni-directional.
//
// 3 contexts: Voting is used to compare the count of forward references with
// that of backward references from the spatial neighbors.
int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd) {
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
// Count of forward references (L, L2, L3, or G)
const int frf_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] +
ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
// Count of backward references (B or A)
const int brf_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] +
ref_counts[ALTREF_FRAME];
const int pred_context =
(frf_count == brf_count) ? 1 : ((frf_count < brf_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
return pred_context;
}
// Returns a context number for the given MB prediction signal
//
// Signal the uni-directional compound reference frame pair as
// either (LAST, LAST2), or (LAST, LAST3) / (LAST, GOLDEN),
// conditioning on the pair is known as one of the above three.
//
// 3 contexts: Voting is used to compare the count of LAST2_FRAME with the
// total count of LAST3/GOLDEN from the spatial neighbors.
int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd) {
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
// Count of LAST2
const int last2_count = ref_counts[LAST2_FRAME];
// Count of LAST3 or GOLDEN
const int last3_or_gld_count =
ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
const int pred_context = (last2_count == last3_or_gld_count)
? 1
: ((last2_count < last3_or_gld_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
return pred_context;
}
// Returns a context number for the given MB prediction signal
//
// Signal the uni-directional compound reference frame pair as
// either (LAST, LAST3) or (LAST, GOLDEN),
// conditioning on the pair is known as one of the above two.
//
// 3 contexts: Voting is used to compare the count of LAST3_FRAME with the
// total count of GOLDEN_FRAME from the spatial neighbors.
int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd) {
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
// Count of LAST3
const int last3_count = ref_counts[LAST3_FRAME];
// Count of GOLDEN
const int gld_count = ref_counts[GOLDEN_FRAME];
const int pred_context =
(last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
return pred_context;
}
// == Common context functions for both comp and single ref ==
//
// Obtain contexts to signal a reference frame to be either LAST/LAST2 or
// LAST3/GOLDEN.
static int get_pred_context_ll2_or_l3gld(const MACROBLOCKD *xd) {
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
// Count of LAST + LAST2
const int last_last2_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME];
// Count of LAST3 + GOLDEN
const int last3_gld_count =
ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
const int pred_context = (last_last2_count == last3_gld_count)
? 1
: ((last_last2_count < last3_gld_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// Obtain contexts to signal a reference frame to be either LAST or LAST2.
static int get_pred_context_last_or_last2(const MACROBLOCKD *xd) {
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
// Count of LAST
const int last_count = ref_counts[LAST_FRAME];
// Count of LAST2
const int last2_count = ref_counts[LAST2_FRAME];
const int pred_context =
(last_count == last2_count) ? 1 : ((last_count < last2_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// Obtain contexts to signal a reference frame to be either LAST3 or GOLDEN.
static int get_pred_context_last3_or_gld(const MACROBLOCKD *xd) {
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
// Count of LAST3
const int last3_count = ref_counts[LAST3_FRAME];
// Count of GOLDEN
const int gld_count = ref_counts[GOLDEN_FRAME];
const int pred_context =
(last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// Obtain contexts to signal a reference frame be either BWDREF/ALTREF2, or
// ALTREF.
static int get_pred_context_brfarf2_or_arf(const MACROBLOCKD *xd) {
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
// Counts of BWDREF, ALTREF2, or ALTREF frames (B, A2, or A)
const int brfarf2_count =
ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME];
const int arf_count = ref_counts[ALTREF_FRAME];
const int pred_context =
(brfarf2_count == arf_count) ? 1 : ((brfarf2_count < arf_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// Obtain contexts to signal a reference frame be either BWDREF or ALTREF2.
static int get_pred_context_brf_or_arf2(const MACROBLOCKD *xd) {
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
// Count of BWDREF frames (B)
const int brf_count = ref_counts[BWDREF_FRAME];
// Count of ALTREF2 frames (A2)
const int arf2_count = ref_counts[ALTREF2_FRAME];
const int pred_context =
(brf_count == arf2_count) ? 1 : ((brf_count < arf2_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// == Context functions for comp ref ==
//
// Returns a context number for the given MB prediction signal
// Signal the first reference frame for a compound mode be either
// GOLDEN/LAST3, or LAST/LAST2.
int av1_get_pred_context_comp_ref_p(const MACROBLOCKD *xd) {
return get_pred_context_ll2_or_l3gld(xd);
}
// Returns a context number for the given MB prediction signal
// Signal the first reference frame for a compound mode be LAST,
// conditioning on that it is known either LAST/LAST2.
int av1_get_pred_context_comp_ref_p1(const MACROBLOCKD *xd) {
return get_pred_context_last_or_last2(xd);
}
// Returns a context number for the given MB prediction signal
// Signal the first reference frame for a compound mode be GOLDEN,
// conditioning on that it is known either GOLDEN or LAST3.
int av1_get_pred_context_comp_ref_p2(const MACROBLOCKD *xd) {
return get_pred_context_last3_or_gld(xd);
}
// Signal the 2nd reference frame for a compound mode be either
// ALTREF, or ALTREF2/BWDREF.
int av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD *xd) {
return get_pred_context_brfarf2_or_arf(xd);
}
// Signal the 2nd reference frame for a compound mode be either
// ALTREF2 or BWDREF.
int av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD *xd) {
return get_pred_context_brf_or_arf2(xd);
}
// == Context functions for single ref ==
//
// For the bit to signal whether the single reference is a forward reference
// frame or a backward reference frame.
int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) {
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
// Count of forward reference frames
const int fwd_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] +
ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
// Count of backward reference frames
const int bwd_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] +
ref_counts[ALTREF_FRAME];
const int pred_context =
(fwd_count == bwd_count) ? 1 : ((fwd_count < bwd_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// For the bit to signal whether the single reference is ALTREF_FRAME or
// non-ALTREF backward reference frame, knowing that it shall be either of
// these 2 choices.
int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) {
return get_pred_context_brfarf2_or_arf(xd);
}
// For the bit to signal whether the single reference is LAST3/GOLDEN or
// LAST2/LAST, knowing that it shall be either of these 2 choices.
int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) {
return get_pred_context_ll2_or_l3gld(xd);
}
// For the bit to signal whether the single reference is LAST2_FRAME or
// LAST_FRAME, knowing that it shall be either of these 2 choices.
int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) {
return get_pred_context_last_or_last2(xd);
}
// For the bit to signal whether the single reference is GOLDEN_FRAME or
// LAST3_FRAME, knowing that it shall be either of these 2 choices.
int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) {
return get_pred_context_last3_or_gld(xd);
}
// For the bit to signal whether the single reference is ALTREF2_FRAME or
// BWDREF_FRAME, knowing that it shall be either of these 2 choices.
int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd) {
return get_pred_context_brf_or_arf2(xd);
}