blob: dfaaed598037391ba80ae9dc9c10dbda64cc499c [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <cmath>
#include <cstdlib>
#include <string>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/entropy.h"
#include "aom/aom_integer.h"
using libaom_test::ACMRandom;
namespace {
// Horizontally and Vertically need 32x32: 8 Coeffs preceeding filtered section
// 16 Coefs within filtered section
// 8 Coeffs following filtered section
const int kNumCoeffs = 1024;
const int number_of_iterations = 10000;
#if CONFIG_AOM_HIGHBITDEPTH
typedef void (*loop_op_t)(uint16_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh, int bd);
typedef void (*dual_loop_op_t)(uint16_t *s, int p, const uint8_t *blimit0,
const uint8_t *limit0, const uint8_t *thresh0,
const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1, int bd);
#else
typedef void (*loop_op_t)(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh);
typedef void (*dual_loop_op_t)(uint8_t *s, int p, const uint8_t *blimit0,
const uint8_t *limit0, const uint8_t *thresh0,
const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1);
#endif // CONFIG_AOM_HIGHBITDEPTH
typedef std::tr1::tuple<loop_op_t, loop_op_t, int> loop8_param_t;
typedef std::tr1::tuple<dual_loop_op_t, dual_loop_op_t, int> dualloop8_param_t;
class Loop8Test6Param : public ::testing::TestWithParam<loop8_param_t> {
public:
virtual ~Loop8Test6Param() {}
virtual void SetUp() {
loopfilter_op_ = GET_PARAM(0);
ref_loopfilter_op_ = GET_PARAM(1);
bit_depth_ = GET_PARAM(2);
mask_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
int bit_depth_;
int mask_;
loop_op_t loopfilter_op_;
loop_op_t ref_loopfilter_op_;
};
class Loop8Test9Param : public ::testing::TestWithParam<dualloop8_param_t> {
public:
virtual ~Loop8Test9Param() {}
virtual void SetUp() {
loopfilter_op_ = GET_PARAM(0);
ref_loopfilter_op_ = GET_PARAM(1);
bit_depth_ = GET_PARAM(2);
mask_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
int bit_depth_;
int mask_;
dual_loop_op_t loopfilter_op_;
dual_loop_op_t ref_loopfilter_op_;
};
TEST_P(Loop8Test6Param, OperationCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = number_of_iterations;
#if CONFIG_AOM_HIGHBITDEPTH
int32_t bd = bit_depth_;
DECLARE_ALIGNED(16, uint16_t, s[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref_s[kNumCoeffs]);
#else
DECLARE_ALIGNED(8, uint8_t, s[kNumCoeffs]);
DECLARE_ALIGNED(8, uint8_t, ref_s[kNumCoeffs]);
#endif // CONFIG_AOM_HIGHBITDEPTH
int err_count_total = 0;
int first_failure = -1;
for (int i = 0; i < count_test_block; ++i) {
int err_count = 0;
uint8_t tmp = static_cast<uint8_t>(rnd(3 * MAX_LOOP_FILTER + 4));
DECLARE_ALIGNED(16, const uint8_t,
blimit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = static_cast<uint8_t>(rnd(MAX_LOOP_FILTER));
DECLARE_ALIGNED(16, const uint8_t,
limit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = rnd.Rand8();
DECLARE_ALIGNED(16, const uint8_t,
thresh[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
int32_t p = kNumCoeffs / 32;
uint16_t tmp_s[kNumCoeffs];
int j = 0;
while (j < kNumCoeffs) {
uint8_t val = rnd.Rand8();
if (val & 0x80) { // 50% chance to choose a new value.
tmp_s[j] = rnd.Rand16();
j++;
} else { // 50% chance to repeat previous value in row X times
int k = 0;
while (k++ < ((val & 0x1f) + 1) && j < kNumCoeffs) {
if (j < 1) {
tmp_s[j] = rnd.Rand16();
} else if (val & 0x20) { // Increment by an value within the limit
tmp_s[j] = (tmp_s[j - 1] + (*limit - 1));
} else { // Decrement by an value within the limit
tmp_s[j] = (tmp_s[j - 1] - (*limit - 1));
}
j++;
}
}
}
for (j = 0; j < kNumCoeffs; j++) {
if (i % 2) {
s[j] = tmp_s[j] & mask_;
} else {
s[j] = tmp_s[p * (j % p) + j / p] & mask_;
}
ref_s[j] = s[j];
}
#if CONFIG_AOM_HIGHBITDEPTH
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit, limit, thresh, bd);
ASM_REGISTER_STATE_CHECK(
loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh, bd));
#else
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit, limit, thresh);
ASM_REGISTER_STATE_CHECK(
loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh));
#endif // CONFIG_AOM_HIGHBITDEPTH
for (j = 0; j < kNumCoeffs; ++j) {
err_count += ref_s[j] != s[j];
}
if (err_count && !err_count_total) {
first_failure = i;
}
err_count_total += err_count;
}
EXPECT_EQ(0, err_count_total)
<< "Error: Loop8Test6Param, C output doesn't match SSE2 "
"loopfilter output. "
<< "First failed at test case " << first_failure;
}
TEST_P(Loop8Test6Param, ValueCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = number_of_iterations;
#if CONFIG_AOM_HIGHBITDEPTH
const int32_t bd = bit_depth_;
DECLARE_ALIGNED(16, uint16_t, s[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref_s[kNumCoeffs]);
#else
DECLARE_ALIGNED(8, uint8_t, s[kNumCoeffs]);
DECLARE_ALIGNED(8, uint8_t, ref_s[kNumCoeffs]);
#endif // CONFIG_AOM_HIGHBITDEPTH
int err_count_total = 0;
int first_failure = -1;
// NOTE: The code in av1_loopfilter.c:update_sharpness computes mblim as a
// function of sharpness_lvl and the loopfilter lvl as:
// block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
// ...
// memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
// SIMD_WIDTH);
// This means that the largest value for mblim will occur when sharpness_lvl
// is equal to 0, and lvl is equal to its greatest value (MAX_LOOP_FILTER).
// In this case block_inside_limit will be equal to MAX_LOOP_FILTER and
// therefore mblim will be equal to (2 * (lvl + 2) + block_inside_limit) =
// 2 * (MAX_LOOP_FILTER + 2) + MAX_LOOP_FILTER = 3 * MAX_LOOP_FILTER + 4
for (int i = 0; i < count_test_block; ++i) {
int err_count = 0;
uint8_t tmp = static_cast<uint8_t>(rnd(3 * MAX_LOOP_FILTER + 4));
DECLARE_ALIGNED(16, const uint8_t,
blimit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = static_cast<uint8_t>(rnd(MAX_LOOP_FILTER));
DECLARE_ALIGNED(16, const uint8_t,
limit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = rnd.Rand8();
DECLARE_ALIGNED(16, const uint8_t,
thresh[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
int32_t p = kNumCoeffs / 32;
for (int j = 0; j < kNumCoeffs; ++j) {
s[j] = rnd.Rand16() & mask_;
ref_s[j] = s[j];
}
#if CONFIG_AOM_HIGHBITDEPTH
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit, limit, thresh, bd);
ASM_REGISTER_STATE_CHECK(
loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh, bd));
#else
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit, limit, thresh);
ASM_REGISTER_STATE_CHECK(
loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh));
#endif // CONFIG_AOM_HIGHBITDEPTH
for (int j = 0; j < kNumCoeffs; ++j) {
err_count += ref_s[j] != s[j];
}
if (err_count && !err_count_total) {
first_failure = i;
}
err_count_total += err_count;
}
EXPECT_EQ(0, err_count_total)
<< "Error: Loop8Test6Param, C output doesn't match SSE2 "
"loopfilter output. "
<< "First failed at test case " << first_failure;
}
TEST_P(Loop8Test9Param, OperationCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = number_of_iterations;
#if CONFIG_AOM_HIGHBITDEPTH
const int32_t bd = bit_depth_;
DECLARE_ALIGNED(16, uint16_t, s[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref_s[kNumCoeffs]);
#else
DECLARE_ALIGNED(8, uint8_t, s[kNumCoeffs]);
DECLARE_ALIGNED(8, uint8_t, ref_s[kNumCoeffs]);
#endif // CONFIG_AOM_HIGHBITDEPTH
int err_count_total = 0;
int first_failure = -1;
for (int i = 0; i < count_test_block; ++i) {
int err_count = 0;
uint8_t tmp = static_cast<uint8_t>(rnd(3 * MAX_LOOP_FILTER + 4));
DECLARE_ALIGNED(16, const uint8_t,
blimit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = static_cast<uint8_t>(rnd(MAX_LOOP_FILTER));
DECLARE_ALIGNED(16, const uint8_t,
limit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = rnd.Rand8();
DECLARE_ALIGNED(16, const uint8_t,
thresh0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = static_cast<uint8_t>(rnd(3 * MAX_LOOP_FILTER + 4));
DECLARE_ALIGNED(16, const uint8_t,
blimit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = static_cast<uint8_t>(rnd(MAX_LOOP_FILTER));
DECLARE_ALIGNED(16, const uint8_t,
limit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = rnd.Rand8();
DECLARE_ALIGNED(16, const uint8_t,
thresh1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
int32_t p = kNumCoeffs / 32;
uint16_t tmp_s[kNumCoeffs];
int j = 0;
const uint8_t limit = *limit0 < *limit1 ? *limit0 : *limit1;
while (j < kNumCoeffs) {
uint8_t val = rnd.Rand8();
if (val & 0x80) { // 50% chance to choose a new value.
tmp_s[j] = rnd.Rand16();
j++;
} else { // 50% chance to repeat previous value in row X times.
int k = 0;
while (k++ < ((val & 0x1f) + 1) && j < kNumCoeffs) {
if (j < 1) {
tmp_s[j] = rnd.Rand16();
} else if (val & 0x20) { // Increment by a value within the limit.
tmp_s[j] = (tmp_s[j - 1] + (limit - 1));
} else { // Decrement by an value within the limit.
tmp_s[j] = (tmp_s[j - 1] - (limit - 1));
}
j++;
}
}
}
for (j = 0; j < kNumCoeffs; j++) {
if (i % 2) {
s[j] = tmp_s[j] & mask_;
} else {
s[j] = tmp_s[p * (j % p) + j / p] & mask_;
}
ref_s[j] = s[j];
}
#if CONFIG_AOM_HIGHBITDEPTH
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1,
limit1, thresh1, bd);
ASM_REGISTER_STATE_CHECK(loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0,
thresh0, blimit1, limit1, thresh1,
bd));
#else
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1,
limit1, thresh1);
ASM_REGISTER_STATE_CHECK(loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0,
thresh0, blimit1, limit1, thresh1));
#endif // CONFIG_AOM_HIGHBITDEPTH
for (j = 0; j < kNumCoeffs; ++j) {
err_count += ref_s[j] != s[j];
}
if (err_count && !err_count_total) {
first_failure = i;
}
err_count_total += err_count;
}
EXPECT_EQ(0, err_count_total)
<< "Error: Loop8Test9Param, C output doesn't match SSE2 "
"loopfilter output. "
<< "First failed at test case " << first_failure;
}
TEST_P(Loop8Test9Param, ValueCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = number_of_iterations;
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, s[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref_s[kNumCoeffs]);
#else
DECLARE_ALIGNED(8, uint8_t, s[kNumCoeffs]);
DECLARE_ALIGNED(8, uint8_t, ref_s[kNumCoeffs]);
#endif // CONFIG_AOM_HIGHBITDEPTH
int err_count_total = 0;
int first_failure = -1;
for (int i = 0; i < count_test_block; ++i) {
int err_count = 0;
uint8_t tmp = static_cast<uint8_t>(rnd(3 * MAX_LOOP_FILTER + 4));
DECLARE_ALIGNED(16, const uint8_t,
blimit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = static_cast<uint8_t>(rnd(MAX_LOOP_FILTER));
DECLARE_ALIGNED(16, const uint8_t,
limit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = rnd.Rand8();
DECLARE_ALIGNED(16, const uint8_t,
thresh0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = static_cast<uint8_t>(rnd(3 * MAX_LOOP_FILTER + 4));
DECLARE_ALIGNED(16, const uint8_t,
blimit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = static_cast<uint8_t>(rnd(MAX_LOOP_FILTER));
DECLARE_ALIGNED(16, const uint8_t,
limit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
tmp = rnd.Rand8();
DECLARE_ALIGNED(16, const uint8_t,
thresh1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp };
int32_t p = kNumCoeffs / 32; // TODO(pdlf) can we have non-square here?
for (int j = 0; j < kNumCoeffs; ++j) {
s[j] = rnd.Rand16() & mask_;
ref_s[j] = s[j];
}
#if CONFIG_AOM_HIGHBITDEPTH
const int32_t bd = bit_depth_;
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1,
limit1, thresh1, bd);
ASM_REGISTER_STATE_CHECK(loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0,
thresh0, blimit1, limit1, thresh1,
bd));
#else
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1,
limit1, thresh1);
ASM_REGISTER_STATE_CHECK(loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0,
thresh0, blimit1, limit1, thresh1));
#endif // CONFIG_AOM_HIGHBITDEPTH
for (int j = 0; j < kNumCoeffs; ++j) {
err_count += ref_s[j] != s[j];
}
if (err_count && !err_count_total) {
first_failure = i;
}
err_count_total += err_count;
}
EXPECT_EQ(0, err_count_total)
<< "Error: Loop8Test9Param, C output doesn't match SSE2"
"loopfilter output. "
<< "First failed at test case " << first_failure;
}
using std::tr1::make_tuple;
#if HAVE_SSE2
#if CONFIG_AOM_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
SSE2, Loop8Test6Param,
::testing::Values(make_tuple(&aom_highbd_lpf_horizontal_4_sse2,
&aom_highbd_lpf_horizontal_4_c, 8),
make_tuple(&aom_highbd_lpf_vertical_4_sse2,
&aom_highbd_lpf_vertical_4_c, 8),
make_tuple(&aom_highbd_lpf_horizontal_8_sse2,
&aom_highbd_lpf_horizontal_8_c, 8),
make_tuple(&aom_highbd_lpf_horizontal_edge_8_sse2,
&aom_highbd_lpf_horizontal_edge_8_c, 8),
make_tuple(&aom_highbd_lpf_horizontal_edge_16_sse2,
&aom_highbd_lpf_horizontal_edge_16_c, 8),
make_tuple(&aom_highbd_lpf_vertical_8_sse2,
&aom_highbd_lpf_vertical_8_c, 8),
make_tuple(&aom_highbd_lpf_vertical_16_sse2,
&aom_highbd_lpf_vertical_16_c, 8),
make_tuple(&aom_highbd_lpf_horizontal_4_sse2,
&aom_highbd_lpf_horizontal_4_c, 10),
make_tuple(&aom_highbd_lpf_vertical_4_sse2,
&aom_highbd_lpf_vertical_4_c, 10),
make_tuple(&aom_highbd_lpf_horizontal_8_sse2,
&aom_highbd_lpf_horizontal_8_c, 10),
make_tuple(&aom_highbd_lpf_horizontal_edge_8_sse2,
&aom_highbd_lpf_horizontal_edge_8_c, 10),
make_tuple(&aom_highbd_lpf_horizontal_edge_16_sse2,
&aom_highbd_lpf_horizontal_edge_16_c, 10),
make_tuple(&aom_highbd_lpf_vertical_8_sse2,
&aom_highbd_lpf_vertical_8_c, 10),
make_tuple(&aom_highbd_lpf_vertical_16_sse2,
&aom_highbd_lpf_vertical_16_c, 10),
make_tuple(&aom_highbd_lpf_horizontal_4_sse2,
&aom_highbd_lpf_horizontal_4_c, 12),
make_tuple(&aom_highbd_lpf_vertical_4_sse2,
&aom_highbd_lpf_vertical_4_c, 12),
make_tuple(&aom_highbd_lpf_horizontal_8_sse2,
&aom_highbd_lpf_horizontal_8_c, 12),
make_tuple(&aom_highbd_lpf_horizontal_edge_8_sse2,
&aom_highbd_lpf_horizontal_edge_8_c, 12),
make_tuple(&aom_highbd_lpf_horizontal_edge_16_sse2,
&aom_highbd_lpf_horizontal_edge_16_c, 12),
make_tuple(&aom_highbd_lpf_vertical_8_sse2,
&aom_highbd_lpf_vertical_8_c, 12),
make_tuple(&aom_highbd_lpf_vertical_16_sse2,
&aom_highbd_lpf_vertical_16_c, 12),
make_tuple(&aom_highbd_lpf_vertical_16_dual_sse2,
&aom_highbd_lpf_vertical_16_dual_c, 8),
make_tuple(&aom_highbd_lpf_vertical_16_dual_sse2,
&aom_highbd_lpf_vertical_16_dual_c, 10),
make_tuple(&aom_highbd_lpf_vertical_16_dual_sse2,
&aom_highbd_lpf_vertical_16_dual_c, 12)));
#else
INSTANTIATE_TEST_CASE_P(
SSE2, Loop8Test6Param,
::testing::Values(
make_tuple(&aom_lpf_horizontal_4_sse2, &aom_lpf_horizontal_4_c, 8),
make_tuple(&aom_lpf_horizontal_8_sse2, &aom_lpf_horizontal_8_c, 8),
make_tuple(&aom_lpf_horizontal_edge_8_sse2,
&aom_lpf_horizontal_edge_8_c, 8),
make_tuple(&aom_lpf_horizontal_edge_16_sse2,
&aom_lpf_horizontal_edge_16_c, 8),
make_tuple(&aom_lpf_vertical_4_sse2, &aom_lpf_vertical_4_c, 8),
make_tuple(&aom_lpf_vertical_8_sse2, &aom_lpf_vertical_8_c, 8),
make_tuple(&aom_lpf_vertical_16_sse2, &aom_lpf_vertical_16_c, 8),
make_tuple(&aom_lpf_vertical_16_dual_sse2, &aom_lpf_vertical_16_dual_c,
8)));
#endif // CONFIG_AOM_HIGHBITDEPTH
#endif
#if HAVE_AVX2 && (!CONFIG_AOM_HIGHBITDEPTH)
INSTANTIATE_TEST_CASE_P(
AVX2, Loop8Test6Param,
::testing::Values(make_tuple(&aom_lpf_horizontal_edge_8_avx2,
&aom_lpf_horizontal_edge_8_c, 8),
make_tuple(&aom_lpf_horizontal_edge_16_avx2,
&aom_lpf_horizontal_edge_16_c, 8)));
#endif
#if HAVE_SSE2
#if CONFIG_AOM_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
SSE2, Loop8Test9Param,
::testing::Values(make_tuple(&aom_highbd_lpf_horizontal_4_dual_sse2,
&aom_highbd_lpf_horizontal_4_dual_c, 8),
make_tuple(&aom_highbd_lpf_horizontal_8_dual_sse2,
&aom_highbd_lpf_horizontal_8_dual_c, 8),
make_tuple(&aom_highbd_lpf_vertical_4_dual_sse2,
&aom_highbd_lpf_vertical_4_dual_c, 8),
make_tuple(&aom_highbd_lpf_vertical_8_dual_sse2,
&aom_highbd_lpf_vertical_8_dual_c, 8),
make_tuple(&aom_highbd_lpf_horizontal_4_dual_sse2,
&aom_highbd_lpf_horizontal_4_dual_c, 10),
make_tuple(&aom_highbd_lpf_horizontal_8_dual_sse2,
&aom_highbd_lpf_horizontal_8_dual_c, 10),
make_tuple(&aom_highbd_lpf_vertical_4_dual_sse2,
&aom_highbd_lpf_vertical_4_dual_c, 10),
make_tuple(&aom_highbd_lpf_vertical_8_dual_sse2,
&aom_highbd_lpf_vertical_8_dual_c, 10),
make_tuple(&aom_highbd_lpf_horizontal_4_dual_sse2,
&aom_highbd_lpf_horizontal_4_dual_c, 12),
make_tuple(&aom_highbd_lpf_horizontal_8_dual_sse2,
&aom_highbd_lpf_horizontal_8_dual_c, 12),
make_tuple(&aom_highbd_lpf_vertical_4_dual_sse2,
&aom_highbd_lpf_vertical_4_dual_c, 12),
make_tuple(&aom_highbd_lpf_vertical_8_dual_sse2,
&aom_highbd_lpf_vertical_8_dual_c, 12)));
#else
INSTANTIATE_TEST_CASE_P(
SSE2, Loop8Test9Param,
::testing::Values(make_tuple(&aom_lpf_horizontal_4_dual_sse2,
&aom_lpf_horizontal_4_dual_c, 8),
make_tuple(&aom_lpf_horizontal_8_dual_sse2,
&aom_lpf_horizontal_8_dual_c, 8),
make_tuple(&aom_lpf_vertical_4_dual_sse2,
&aom_lpf_vertical_4_dual_c, 8),
make_tuple(&aom_lpf_vertical_8_dual_sse2,
&aom_lpf_vertical_8_dual_c, 8)));
#endif // CONFIG_AOM_HIGHBITDEPTH
#endif
#if HAVE_NEON
#if CONFIG_AOM_HIGHBITDEPTH
// No neon high bitdepth functions.
#else
INSTANTIATE_TEST_CASE_P(
NEON, Loop8Test6Param,
::testing::Values(
#if HAVE_NEON_ASM
// Using #if inside the macro is unsupported on MSVS but the tests are
// not
// currently built for MSVS with ARM and NEON.
make_tuple(&aom_lpf_horizontal_edge_8_neon,
&aom_lpf_horizontal_edge_8_c, 8),
make_tuple(&aom_lpf_horizontal_edge_16_neon,
&aom_lpf_horizontal_edge_16_c, 8),
make_tuple(&aom_lpf_vertical_16_neon, &aom_lpf_vertical_16_c, 8),
make_tuple(&aom_lpf_vertical_16_dual_neon, &aom_lpf_vertical_16_dual_c,
8),
#endif // HAVE_NEON_ASM
make_tuple(&aom_lpf_horizontal_8_neon, &aom_lpf_horizontal_8_c, 8),
make_tuple(&aom_lpf_vertical_8_neon, &aom_lpf_vertical_8_c, 8),
make_tuple(&aom_lpf_horizontal_4_neon, &aom_lpf_horizontal_4_c, 8),
make_tuple(&aom_lpf_vertical_4_neon, &aom_lpf_vertical_4_c, 8)));
INSTANTIATE_TEST_CASE_P(NEON, Loop8Test9Param,
::testing::Values(
#if HAVE_NEON_ASM
make_tuple(&aom_lpf_horizontal_8_dual_neon,
&aom_lpf_horizontal_8_dual_c, 8),
make_tuple(&aom_lpf_vertical_8_dual_neon,
&aom_lpf_vertical_8_dual_c, 8),
#endif // HAVE_NEON_ASM
make_tuple(&aom_lpf_horizontal_4_dual_neon,
&aom_lpf_horizontal_4_dual_c, 8),
make_tuple(&aom_lpf_vertical_4_dual_neon,
&aom_lpf_vertical_4_dual_c, 8)));
#endif // CONFIG_AOM_HIGHBITDEPTH
#endif // HAVE_NEON
#if HAVE_DSPR2 && !CONFIG_AOM_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
DSPR2, Loop8Test6Param,
::testing::Values(
make_tuple(&aom_lpf_horizontal_4_dspr2, &aom_lpf_horizontal_4_c, 8),
make_tuple(&aom_lpf_horizontal_8_dspr2, &aom_lpf_horizontal_8_c, 8),
make_tuple(&aom_lpf_horizontal_edge_8, &aom_lpf_horizontal_edge_8, 8),
make_tuple(&aom_lpf_horizontal_edge_16, &aom_lpf_horizontal_edge_16, 8),
make_tuple(&aom_lpf_vertical_4_dspr2, &aom_lpf_vertical_4_c, 8),
make_tuple(&aom_lpf_vertical_8_dspr2, &aom_lpf_vertical_8_c, 8),
make_tuple(&aom_lpf_vertical_16_dspr2, &aom_lpf_vertical_16_c, 8),
make_tuple(&aom_lpf_vertical_16_dual_dspr2, &aom_lpf_vertical_16_dual_c,
8)));
INSTANTIATE_TEST_CASE_P(
DSPR2, Loop8Test9Param,
::testing::Values(make_tuple(&aom_lpf_horizontal_4_dual_dspr2,
&aom_lpf_horizontal_4_dual_c, 8),
make_tuple(&aom_lpf_horizontal_8_dual_dspr2,
&aom_lpf_horizontal_8_dual_c, 8),
make_tuple(&aom_lpf_vertical_4_dual_dspr2,
&aom_lpf_vertical_4_dual_c, 8),
make_tuple(&aom_lpf_vertical_8_dual_dspr2,
&aom_lpf_vertical_8_dual_c, 8)));
#endif // HAVE_DSPR2 && !CONFIG_AOM_HIGHBITDEPTH
#if HAVE_MSA && (!CONFIG_AOM_HIGHBITDEPTH)
INSTANTIATE_TEST_CASE_P(
MSA, Loop8Test6Param,
::testing::Values(
make_tuple(&aom_lpf_horizontal_4_msa, &aom_lpf_horizontal_4_c, 8),
make_tuple(&aom_lpf_horizontal_8_msa, &aom_lpf_horizontal_8_c, 8),
make_tuple(&aom_lpf_horizontal_edge_8_msa, &aom_lpf_horizontal_edge_8_c,
8),
make_tuple(&aom_lpf_horizontal_edge_16_msa,
&aom_lpf_horizontal_edge_16_c, 8),
make_tuple(&aom_lpf_vertical_4_msa, &aom_lpf_vertical_4_c, 8),
make_tuple(&aom_lpf_vertical_8_msa, &aom_lpf_vertical_8_c, 8),
make_tuple(&aom_lpf_vertical_16_msa, &aom_lpf_vertical_16_c, 8)));
INSTANTIATE_TEST_CASE_P(
MSA, Loop8Test9Param,
::testing::Values(make_tuple(&aom_lpf_horizontal_4_dual_msa,
&aom_lpf_horizontal_4_dual_c, 8),
make_tuple(&aom_lpf_horizontal_8_dual_msa,
&aom_lpf_horizontal_8_dual_c, 8),
make_tuple(&aom_lpf_vertical_4_dual_msa,
&aom_lpf_vertical_4_dual_c, 8),
make_tuple(&aom_lpf_vertical_8_dual_msa,
&aom_lpf_vertical_8_dual_c, 8)));
#endif // HAVE_MSA && (!CONFIG_AOM_HIGHBITDEPTH)
} // namespace