| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <limits.h> |
| |
| #include "vpx/vpx_encoder.h" |
| #include "vpx_mem/vpx_mem.h" |
| |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_entropymv.h" |
| #include "vp9/common/vp9_findnearmv.h" |
| #include "vp9/common/vp9_tile_common.h" |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9/common/vp9_entropymv.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #include "vp9/common/vp9_treecoder.h" |
| #include "vp9/common/vp9_systemdependent.h" |
| #include "vp9/common/vp9_pragmas.h" |
| |
| #include "vp9/encoder/vp9_mcomp.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/encoder/vp9_bitstream.h" |
| #include "vp9/encoder/vp9_segmentation.h" |
| #include "vp9/encoder/vp9_write_bit_buffer.h" |
| |
| |
| #if defined(SECTIONBITS_OUTPUT) |
| unsigned __int64 Sectionbits[500]; |
| #endif |
| |
| #ifdef ENTROPY_STATS |
| int intra_mode_stats[VP9_KF_BINTRAMODES] |
| [VP9_KF_BINTRAMODES] |
| [VP9_KF_BINTRAMODES]; |
| vp9_coeff_stats tree_update_hist_4x4[BLOCK_TYPES]; |
| vp9_coeff_stats tree_update_hist_8x8[BLOCK_TYPES]; |
| vp9_coeff_stats tree_update_hist_16x16[BLOCK_TYPES]; |
| vp9_coeff_stats tree_update_hist_32x32[BLOCK_TYPES]; |
| |
| extern unsigned int active_section; |
| #endif |
| |
| #define vp9_cost_upd ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)) >> 8) |
| #define vp9_cost_upd256 ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd))) |
| |
| static int update_bits[255]; |
| |
| static INLINE void write_le16(uint8_t *p, int value) { |
| p[0] = value; |
| p[1] = value >> 8; |
| } |
| |
| static INLINE void write_le32(uint8_t *p, int value) { |
| p[0] = value; |
| p[1] = value >> 8; |
| p[2] = value >> 16; |
| p[3] = value >> 24; |
| } |
| |
| void vp9_encode_unsigned_max(vp9_writer *br, int data, int max) { |
| assert(data <= max); |
| while (max) { |
| vp9_write_bit(br, data & 1); |
| data >>= 1; |
| max >>= 1; |
| } |
| } |
| |
| int recenter_nonneg(int v, int m) { |
| if (v > (m << 1)) |
| return v; |
| else if (v >= m) |
| return ((v - m) << 1); |
| else |
| return ((m - v) << 1) - 1; |
| } |
| |
| static int get_unsigned_bits(unsigned num_values) { |
| int cat = 0; |
| if ((num_values--) <= 1) return 0; |
| while (num_values > 0) { |
| cat++; |
| num_values >>= 1; |
| } |
| return cat; |
| } |
| |
| void encode_uniform(vp9_writer *w, int v, int n) { |
| int l = get_unsigned_bits(n); |
| int m; |
| if (l == 0) |
| return; |
| m = (1 << l) - n; |
| if (v < m) { |
| vp9_write_literal(w, v, l - 1); |
| } else { |
| vp9_write_literal(w, m + ((v - m) >> 1), l - 1); |
| vp9_write_literal(w, (v - m) & 1, 1); |
| } |
| } |
| |
| int count_uniform(int v, int n) { |
| int l = get_unsigned_bits(n); |
| int m; |
| if (l == 0) return 0; |
| m = (1 << l) - n; |
| if (v < m) |
| return l - 1; |
| else |
| return l; |
| } |
| |
| void encode_term_subexp(vp9_writer *w, int word, int k, int num_syms) { |
| int i = 0; |
| int mk = 0; |
| while (1) { |
| int b = (i ? k + i - 1 : k); |
| int a = (1 << b); |
| if (num_syms <= mk + 3 * a) { |
| encode_uniform(w, word - mk, num_syms - mk); |
| break; |
| } else { |
| int t = (word >= mk + a); |
| vp9_write_literal(w, t, 1); |
| if (t) { |
| i = i + 1; |
| mk += a; |
| } else { |
| vp9_write_literal(w, word - mk, b); |
| break; |
| } |
| } |
| } |
| } |
| |
| int count_term_subexp(int word, int k, int num_syms) { |
| int count = 0; |
| int i = 0; |
| int mk = 0; |
| while (1) { |
| int b = (i ? k + i - 1 : k); |
| int a = (1 << b); |
| if (num_syms <= mk + 3 * a) { |
| count += count_uniform(word - mk, num_syms - mk); |
| break; |
| } else { |
| int t = (word >= mk + a); |
| count++; |
| if (t) { |
| i = i + 1; |
| mk += a; |
| } else { |
| count += b; |
| break; |
| } |
| } |
| } |
| return count; |
| } |
| |
| static void compute_update_table() { |
| int i; |
| for (i = 0; i < 255; i++) |
| update_bits[i] = count_term_subexp(i, SUBEXP_PARAM, 255); |
| } |
| |
| static int split_index(int i, int n, int modulus) { |
| int max1 = (n - 1 - modulus / 2) / modulus + 1; |
| if (i % modulus == modulus / 2) i = i / modulus; |
| else i = max1 + i - (i + modulus - modulus / 2) / modulus; |
| return i; |
| } |
| |
| static int remap_prob(int v, int m) { |
| const int n = 256; |
| const int modulus = MODULUS_PARAM; |
| int i; |
| if ((m << 1) <= n) |
| i = recenter_nonneg(v, m) - 1; |
| else |
| i = recenter_nonneg(n - 1 - v, n - 1 - m) - 1; |
| |
| i = split_index(i, n - 1, modulus); |
| return i; |
| } |
| |
| static void write_prob_diff_update(vp9_writer *w, |
| vp9_prob newp, vp9_prob oldp) { |
| int delp = remap_prob(newp, oldp); |
| encode_term_subexp(w, delp, SUBEXP_PARAM, 255); |
| } |
| |
| static int prob_diff_update_cost(vp9_prob newp, vp9_prob oldp) { |
| int delp = remap_prob(newp, oldp); |
| return update_bits[delp] * 256; |
| } |
| |
| static void update_mode( |
| vp9_writer *w, |
| int n, |
| const struct vp9_token tok[/* n */], |
| vp9_tree tree, |
| vp9_prob Pnew [/* n-1 */], |
| vp9_prob Pcur [/* n-1 */], |
| unsigned int bct [/* n-1 */] [2], |
| const unsigned int num_events[/* n */] |
| ) { |
| unsigned int new_b = 0, old_b = 0; |
| int i = 0; |
| |
| vp9_tree_probs_from_distribution(tree, Pnew, bct, num_events, 0); |
| n--; |
| |
| do { |
| new_b += cost_branch(bct[i], Pnew[i]); |
| old_b += cost_branch(bct[i], Pcur[i]); |
| } while (++i < n); |
| |
| if (new_b + (n << 8) < old_b) { |
| int i = 0; |
| |
| vp9_write_bit(w, 1); |
| |
| do { |
| const vp9_prob p = Pnew[i]; |
| |
| vp9_write_literal(w, Pcur[i] = p ? p : 1, 8); |
| } while (++i < n); |
| } else |
| vp9_write_bit(w, 0); |
| } |
| |
| static void update_mbintra_mode_probs(VP9_COMP* const cpi, |
| vp9_writer* const bc) { |
| VP9_COMMON *const cm = &cpi->common; |
| |
| vp9_prob pnew[VP9_YMODES - 1]; |
| unsigned int bct[VP9_YMODES - 1][2]; |
| |
| update_mode(bc, VP9_YMODES, vp9_ymode_encodings, vp9_ymode_tree, pnew, |
| cm->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count); |
| |
| update_mode(bc, VP9_I32X32_MODES, vp9_sb_ymode_encodings, |
| vp9_sb_ymode_tree, pnew, cm->fc.sb_ymode_prob, bct, |
| (unsigned int *)cpi->sb_ymode_count); |
| } |
| |
| void vp9_update_skip_probs(VP9_COMP *cpi) { |
| VP9_COMMON *const pc = &cpi->common; |
| int k; |
| |
| for (k = 0; k < MBSKIP_CONTEXTS; ++k) |
| pc->mbskip_pred_probs[k] = get_binary_prob(cpi->skip_false_count[k], |
| cpi->skip_true_count[k]); |
| } |
| |
| static void update_switchable_interp_probs(VP9_COMP *cpi, |
| vp9_writer* const bc) { |
| VP9_COMMON *const pc = &cpi->common; |
| unsigned int branch_ct[32][2]; |
| int i, j; |
| for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) { |
| vp9_tree_probs_from_distribution( |
| vp9_switchable_interp_tree, |
| pc->fc.switchable_interp_prob[j], branch_ct, |
| cpi->switchable_interp_count[j], 0); |
| for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) { |
| if (pc->fc.switchable_interp_prob[j][i] < 1) |
| pc->fc.switchable_interp_prob[j][i] = 1; |
| vp9_write_prob(bc, pc->fc.switchable_interp_prob[j][i]); |
| } |
| } |
| } |
| |
| // This function updates the reference frame prediction stats |
| static void update_refpred_stats(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| int i; |
| vp9_prob new_pred_probs[PREDICTION_PROBS]; |
| int old_cost, new_cost; |
| |
| // Set the prediction probability structures to defaults |
| if (cm->frame_type != KEY_FRAME) { |
| // From the prediction counts set the probabilities for each context |
| for (i = 0; i < PREDICTION_PROBS; i++) { |
| const int c0 = cpi->ref_pred_count[i][0]; |
| const int c1 = cpi->ref_pred_count[i][1]; |
| |
| new_pred_probs[i] = get_binary_prob(c0, c1); |
| |
| // Decide whether or not to update the reference frame probs. |
| // Returned costs are in 1/256 bit units. |
| old_cost = c0 * vp9_cost_zero(cm->ref_pred_probs[i]) + |
| c1 * vp9_cost_one(cm->ref_pred_probs[i]); |
| |
| new_cost = c0 * vp9_cost_zero(new_pred_probs[i]) + |
| c1 * vp9_cost_one(new_pred_probs[i]); |
| |
| // Cost saving must be >= 8 bits (2048 in these units) |
| if ((old_cost - new_cost) >= 2048) { |
| cpi->ref_pred_probs_update[i] = 1; |
| cm->ref_pred_probs[i] = new_pred_probs[i]; |
| } else |
| cpi->ref_pred_probs_update[i] = 0; |
| } |
| } |
| } |
| |
| // This function is called to update the mode probability context used to encode |
| // inter modes. It assumes the branch counts table has already been populated |
| // prior to the actual packing of the bitstream (in rd stage or dummy pack) |
| // |
| // The branch counts table is re-populated during the actual pack stage and in |
| // the decoder to facilitate backwards update of the context. |
| static void update_inter_mode_probs(VP9_COMMON *cm, |
| int mode_context[INTER_MODE_CONTEXTS][4]) { |
| int i, j; |
| unsigned int (*mv_ref_ct)[4][2] = cm->fc.mv_ref_ct; |
| |
| vpx_memcpy(mode_context, cm->fc.vp9_mode_contexts, |
| sizeof(cm->fc.vp9_mode_contexts)); |
| |
| for (i = 0; i < INTER_MODE_CONTEXTS; i++) { |
| for (j = 0; j < 4; j++) { |
| int new_prob, old_cost, new_cost; |
| |
| // Work out cost of coding branches with the old and optimal probability |
| old_cost = cost_branch256(mv_ref_ct[i][j], mode_context[i][j]); |
| new_prob = get_binary_prob(mv_ref_ct[i][j][0], mv_ref_ct[i][j][1]); |
| new_cost = cost_branch256(mv_ref_ct[i][j], new_prob); |
| |
| // If cost saving is >= 14 bits then update the mode probability. |
| // This is the approximate net cost of updating one probability given |
| // that the no update case ismuch more common than the update case. |
| if (new_cost <= (old_cost - (14 << 8))) { |
| mode_context[i][j] = new_prob; |
| } |
| } |
| } |
| } |
| |
| static void write_ymode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_ymode_tree, p, vp9_ymode_encodings + m); |
| } |
| |
| static void kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_kf_ymode_tree, p, vp9_kf_ymode_encodings + m); |
| } |
| |
| static void write_sb_ymode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_sb_ymode_tree, p, vp9_sb_ymode_encodings + m); |
| } |
| |
| static void sb_kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_uv_mode_tree, p, vp9_sb_kf_ymode_encodings + m); |
| } |
| |
| static void write_uv_mode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_uv_mode_tree, p, vp9_uv_mode_encodings + m); |
| } |
| |
| static void write_kf_bmode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_bmode_tree, p, vp9_kf_bmode_encodings + m); |
| } |
| |
| static int prob_update_savings(const unsigned int *ct, |
| const vp9_prob oldp, const vp9_prob newp, |
| const vp9_prob upd) { |
| const int old_b = cost_branch256(ct, oldp); |
| const int new_b = cost_branch256(ct, newp); |
| const int update_b = 2048 + vp9_cost_upd256; |
| return old_b - new_b - update_b; |
| } |
| |
| static int prob_diff_update_savings_search(const unsigned int *ct, |
| const vp9_prob oldp, vp9_prob *bestp, |
| const vp9_prob upd) { |
| const int old_b = cost_branch256(ct, oldp); |
| int new_b, update_b, savings, bestsavings, step; |
| vp9_prob newp, bestnewp; |
| |
| bestsavings = 0; |
| bestnewp = oldp; |
| |
| step = (*bestp > oldp ? -1 : 1); |
| for (newp = *bestp; newp != oldp; newp += step) { |
| new_b = cost_branch256(ct, newp); |
| update_b = prob_diff_update_cost(newp, oldp) + vp9_cost_upd256; |
| savings = old_b - new_b - update_b; |
| if (savings > bestsavings) { |
| bestsavings = savings; |
| bestnewp = newp; |
| } |
| } |
| *bestp = bestnewp; |
| return bestsavings; |
| } |
| |
| static int prob_diff_update_savings_search_model(const unsigned int *ct, |
| const vp9_prob *oldp, |
| vp9_prob *bestp, |
| const vp9_prob upd, |
| int b, int r) { |
| int i, old_b, new_b, update_b, savings, bestsavings, step; |
| int newp; |
| vp9_prob bestnewp, newplist[ENTROPY_NODES], oldplist[ENTROPY_NODES]; |
| vp9_model_to_full_probs(oldp, oldplist); |
| vpx_memcpy(newplist, oldp, sizeof(vp9_prob) * UNCONSTRAINED_NODES); |
| for (i = UNCONSTRAINED_NODES, old_b = 0; i < ENTROPY_NODES; ++i) |
| old_b += cost_branch256(ct + 2 * i, oldplist[i]); |
| old_b += cost_branch256(ct + 2 * PIVOT_NODE, oldplist[PIVOT_NODE]); |
| |
| bestsavings = 0; |
| bestnewp = oldp[PIVOT_NODE]; |
| |
| step = (*bestp > oldp[PIVOT_NODE] ? -1 : 1); |
| newp = *bestp; |
| for (; newp != oldp[PIVOT_NODE]; newp += step) { |
| if (newp < 1 || newp > 255) continue; |
| newplist[PIVOT_NODE] = newp; |
| vp9_model_to_full_probs(newplist, newplist); |
| for (i = UNCONSTRAINED_NODES, new_b = 0; i < ENTROPY_NODES; ++i) |
| new_b += cost_branch256(ct + 2 * i, newplist[i]); |
| new_b += cost_branch256(ct + 2 * PIVOT_NODE, newplist[PIVOT_NODE]); |
| update_b = prob_diff_update_cost(newp, oldp[PIVOT_NODE]) + |
| vp9_cost_upd256; |
| savings = old_b - new_b - update_b; |
| if (savings > bestsavings) { |
| bestsavings = savings; |
| bestnewp = newp; |
| } |
| } |
| *bestp = bestnewp; |
| return bestsavings; |
| } |
| |
| static void vp9_cond_prob_update(vp9_writer *bc, vp9_prob *oldp, vp9_prob upd, |
| unsigned int *ct) { |
| vp9_prob newp; |
| int savings; |
| newp = get_binary_prob(ct[0], ct[1]); |
| savings = prob_update_savings(ct, *oldp, newp, upd); |
| if (savings > 0) { |
| vp9_write(bc, 1, upd); |
| vp9_write_prob(bc, newp); |
| *oldp = newp; |
| } else { |
| vp9_write(bc, 0, upd); |
| } |
| } |
| |
| static void pack_mb_tokens(vp9_writer* const bc, |
| TOKENEXTRA **tp, |
| const TOKENEXTRA *const stop) { |
| TOKENEXTRA *p = *tp; |
| |
| while (p < stop) { |
| const int t = p->token; |
| const struct vp9_token *const a = vp9_coef_encodings + t; |
| const vp9_extra_bit *const b = vp9_extra_bits + t; |
| int i = 0; |
| const vp9_prob *pp; |
| int v = a->value; |
| int n = a->len; |
| int ncount = n; |
| vp9_prob probs[ENTROPY_NODES]; |
| |
| if (t == EOSB_TOKEN) { |
| ++p; |
| break; |
| } |
| if (t >= TWO_TOKEN) { |
| vp9_model_to_full_probs(p->context_tree, probs); |
| pp = probs; |
| } else { |
| pp = p->context_tree; |
| } |
| assert(pp != 0); |
| |
| /* skip one or two nodes */ |
| if (p->skip_eob_node) { |
| n -= p->skip_eob_node; |
| i = 2 * p->skip_eob_node; |
| ncount -= p->skip_eob_node; |
| } |
| |
| do { |
| const int bb = (v >> --n) & 1; |
| vp9_write(bc, bb, pp[i >> 1]); |
| i = vp9_coef_tree[i + bb]; |
| ncount--; |
| } while (n && ncount); |
| |
| if (b->base_val) { |
| const int e = p->extra, l = b->len; |
| |
| if (l) { |
| const unsigned char *pb = b->prob; |
| int v = e >> 1; |
| int n = l; /* number of bits in v, assumed nonzero */ |
| int i = 0; |
| |
| do { |
| const int bb = (v >> --n) & 1; |
| vp9_write(bc, bb, pb[i >> 1]); |
| i = b->tree[i + bb]; |
| } while (n); |
| } |
| |
| vp9_write_bit(bc, e & 1); |
| } |
| ++p; |
| } |
| |
| *tp = p; |
| } |
| |
| static void write_mv_ref(vp9_writer *bc, MB_PREDICTION_MODE m, |
| const vp9_prob *p) { |
| #if CONFIG_DEBUG |
| assert(NEARESTMV <= m && m <= SPLITMV); |
| #endif |
| write_token(bc, vp9_mv_ref_tree, p, |
| vp9_mv_ref_encoding_array - NEARESTMV + m); |
| } |
| |
| static void write_sb_mv_ref(vp9_writer *bc, MB_PREDICTION_MODE m, |
| const vp9_prob *p) { |
| #if CONFIG_DEBUG |
| assert(NEARESTMV <= m && m < SPLITMV); |
| #endif |
| write_token(bc, vp9_sb_mv_ref_tree, p, |
| vp9_sb_mv_ref_encoding_array - NEARESTMV + m); |
| } |
| |
| // This function writes the current macro block's segnment id to the bitstream |
| // It should only be called if a segment map update is indicated. |
| static void write_mb_segid(vp9_writer *bc, |
| const MB_MODE_INFO *mi, const MACROBLOCKD *xd) { |
| if (xd->segmentation_enabled && xd->update_mb_segmentation_map) |
| treed_write(bc, vp9_segment_tree, xd->mb_segment_tree_probs, |
| mi->segment_id, 3); |
| } |
| |
| // This function encodes the reference frame |
| static void encode_ref_frame(vp9_writer *const bc, |
| VP9_COMMON *const cm, |
| MACROBLOCKD *xd, |
| int segment_id, |
| MV_REFERENCE_FRAME rf) { |
| int seg_ref_active; |
| int seg_ref_count = 0; |
| seg_ref_active = vp9_segfeature_active(xd, |
| segment_id, |
| SEG_LVL_REF_FRAME); |
| |
| if (seg_ref_active) { |
| seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) + |
| vp9_check_segref(xd, segment_id, LAST_FRAME) + |
| vp9_check_segref(xd, segment_id, GOLDEN_FRAME) + |
| vp9_check_segref(xd, segment_id, ALTREF_FRAME); |
| } |
| |
| // If segment level coding of this signal is disabled... |
| // or the segment allows multiple reference frame options |
| if (!seg_ref_active || (seg_ref_count > 1)) { |
| // Values used in prediction model coding |
| unsigned char prediction_flag; |
| vp9_prob pred_prob; |
| MV_REFERENCE_FRAME pred_rf; |
| |
| // Get the context probability the prediction flag |
| pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF); |
| |
| // Get the predicted value. |
| pred_rf = vp9_get_pred_ref(cm, xd); |
| |
| // Did the chosen reference frame match its predicted value. |
| prediction_flag = |
| (xd->mode_info_context->mbmi.ref_frame == pred_rf); |
| |
| vp9_set_pred_flag(xd, PRED_REF, prediction_flag); |
| vp9_write(bc, prediction_flag, pred_prob); |
| |
| // If not predicted correctly then code value explicitly |
| if (!prediction_flag) { |
| vp9_prob mod_refprobs[PREDICTION_PROBS]; |
| |
| vpx_memcpy(mod_refprobs, |
| cm->mod_refprobs[pred_rf], sizeof(mod_refprobs)); |
| |
| // If segment coding enabled blank out options that cant occur by |
| // setting the branch probability to 0. |
| if (seg_ref_active) { |
| mod_refprobs[INTRA_FRAME] *= |
| vp9_check_segref(xd, segment_id, INTRA_FRAME); |
| mod_refprobs[LAST_FRAME] *= |
| vp9_check_segref(xd, segment_id, LAST_FRAME); |
| mod_refprobs[GOLDEN_FRAME] *= |
| (vp9_check_segref(xd, segment_id, GOLDEN_FRAME) * |
| vp9_check_segref(xd, segment_id, ALTREF_FRAME)); |
| } |
| |
| if (mod_refprobs[0]) { |
| vp9_write(bc, (rf != INTRA_FRAME), mod_refprobs[0]); |
| } |
| |
| // Inter coded |
| if (rf != INTRA_FRAME) { |
| if (mod_refprobs[1]) { |
| vp9_write(bc, (rf != LAST_FRAME), mod_refprobs[1]); |
| } |
| |
| if (rf != LAST_FRAME) { |
| if (mod_refprobs[2]) { |
| vp9_write(bc, (rf != GOLDEN_FRAME), mod_refprobs[2]); |
| } |
| } |
| } |
| } |
| } |
| |
| // if using the prediction mdoel we have nothing further to do because |
| // the reference frame is fully coded by the segment |
| } |
| |
| // Update the probabilities used to encode reference frame data |
| static void update_ref_probs(VP9_COMP *const cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| |
| const int *const rfct = cpi->count_mb_ref_frame_usage; |
| const int rf_intra = rfct[INTRA_FRAME]; |
| const int rf_inter = rfct[LAST_FRAME] + |
| rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; |
| |
| cm->prob_intra_coded = get_binary_prob(rf_intra, rf_inter); |
| cm->prob_last_coded = get_prob(rfct[LAST_FRAME], rf_inter); |
| cm->prob_gf_coded = get_binary_prob(rfct[GOLDEN_FRAME], rfct[ALTREF_FRAME]); |
| |
| // Compute a modified set of probabilities to use when prediction of the |
| // reference frame fails |
| vp9_compute_mod_refprobs(cm); |
| } |
| |
| static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, |
| vp9_writer *bc, int mi_row, int mi_col) { |
| VP9_COMMON *const pc = &cpi->common; |
| const nmv_context *nmvc = &pc->fc.nmvc; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = &m->mbmi; |
| const MV_REFERENCE_FRAME rf = mi->ref_frame; |
| const MB_PREDICTION_MODE mode = mi->mode; |
| const int segment_id = mi->segment_id; |
| int skip_coeff; |
| |
| xd->prev_mode_info_context = pc->prev_mi + (m - pc->mi); |
| x->partition_info = x->pi + (m - pc->mi); |
| |
| #ifdef ENTROPY_STATS |
| active_section = 9; |
| #endif |
| |
| if (cpi->mb.e_mbd.update_mb_segmentation_map) { |
| // Is temporal coding of the segment map enabled |
| if (pc->temporal_update) { |
| unsigned char prediction_flag = vp9_get_pred_flag(xd, PRED_SEG_ID); |
| vp9_prob pred_prob = vp9_get_pred_prob(pc, xd, PRED_SEG_ID); |
| |
| // Code the segment id prediction flag for this mb |
| vp9_write(bc, prediction_flag, pred_prob); |
| |
| // If the mb segment id wasn't predicted code explicitly |
| if (!prediction_flag) |
| write_mb_segid(bc, mi, &cpi->mb.e_mbd); |
| } else { |
| // Normal unpredicted coding |
| write_mb_segid(bc, mi, &cpi->mb.e_mbd); |
| } |
| } |
| |
| if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) { |
| skip_coeff = 1; |
| } else { |
| skip_coeff = m->mbmi.mb_skip_coeff; |
| vp9_write(bc, skip_coeff, |
| vp9_get_pred_prob(pc, xd, PRED_MBSKIP)); |
| } |
| |
| // Encode the reference frame. |
| encode_ref_frame(bc, pc, xd, segment_id, rf); |
| |
| if (mi->sb_type >= BLOCK_SIZE_SB8X8 && pc->txfm_mode == TX_MODE_SELECT && |
| !(rf != INTRA_FRAME && |
| (skip_coeff || vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)))) { |
| TX_SIZE sz = mi->txfm_size; |
| // FIXME(rbultje) code ternary symbol once all experiments are merged |
| vp9_write(bc, sz != TX_4X4, pc->prob_tx[0]); |
| if (mi->sb_type >= BLOCK_SIZE_MB16X16 && sz != TX_4X4) { |
| vp9_write(bc, sz != TX_8X8, pc->prob_tx[1]); |
| if (mi->sb_type >= BLOCK_SIZE_SB32X32 && sz != TX_8X8) |
| vp9_write(bc, sz != TX_16X16, pc->prob_tx[2]); |
| } |
| } |
| |
| if (rf == INTRA_FRAME) { |
| #ifdef ENTROPY_STATS |
| active_section = 6; |
| #endif |
| |
| if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) |
| write_sb_ymode(bc, mode, pc->fc.sb_ymode_prob); |
| |
| if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8) { |
| int idx, idy; |
| int bw = 1 << b_width_log2(mi->sb_type); |
| int bh = 1 << b_height_log2(mi->sb_type); |
| for (idy = 0; idy < 2; idy += bh) |
| for (idx = 0; idx < 2; idx += bw) |
| write_sb_ymode(bc, m->bmi[idy * 2 + idx].as_mode.first, |
| pc->fc.sb_ymode_prob); |
| } |
| write_uv_mode(bc, mi->uv_mode, |
| pc->fc.uv_mode_prob[mode]); |
| } else { |
| vp9_prob mv_ref_p[VP9_MVREFS - 1]; |
| |
| vp9_mv_ref_probs(&cpi->common, mv_ref_p, mi->mb_mode_context[rf]); |
| |
| #ifdef ENTROPY_STATS |
| active_section = 3; |
| #endif |
| |
| // If segment skip is not enabled code the mode. |
| if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) { |
| if (mi->sb_type >= BLOCK_SIZE_SB8X8) |
| write_sb_mv_ref(bc, mode, mv_ref_p); |
| vp9_accum_mv_refs(&cpi->common, mode, mi->mb_mode_context[rf]); |
| } |
| |
| if (is_inter_mode(mode)) { |
| if (cpi->common.mcomp_filter_type == SWITCHABLE) { |
| write_token(bc, vp9_switchable_interp_tree, |
| vp9_get_pred_probs(&cpi->common, xd, |
| PRED_SWITCHABLE_INTERP), |
| vp9_switchable_interp_encodings + |
| vp9_switchable_interp_map[mi->interp_filter]); |
| } else { |
| assert(mi->interp_filter == cpi->common.mcomp_filter_type); |
| } |
| } |
| |
| // does the feature use compound prediction or not |
| // (if not specified at the frame/segment level) |
| if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { |
| vp9_write(bc, mi->second_ref_frame > INTRA_FRAME, |
| vp9_get_pred_prob(pc, xd, PRED_COMP)); |
| } |
| |
| switch (mode) { /* new, split require MVs */ |
| case NEWMV: |
| #ifdef ENTROPY_STATS |
| active_section = 5; |
| #endif |
| vp9_encode_mv(bc, |
| &mi->mv[0].as_mv, &mi->best_mv.as_mv, |
| nmvc, xd->allow_high_precision_mv); |
| |
| if (mi->second_ref_frame > 0) |
| vp9_encode_mv(bc, |
| &mi->mv[1].as_mv, &mi->best_second_mv.as_mv, |
| nmvc, xd->allow_high_precision_mv); |
| break; |
| case SPLITMV: { |
| int j; |
| MB_PREDICTION_MODE blockmode; |
| int_mv blockmv; |
| int bwl = b_width_log2(mi->sb_type), bw = 1 << bwl; |
| int bhl = b_height_log2(mi->sb_type), bh = 1 << bhl; |
| int idx, idy; |
| for (idy = 0; idy < 2; idy += bh) { |
| for (idx = 0; idx < 2; idx += bw) { |
| j = idy * 2 + idx; |
| blockmode = cpi->mb.partition_info->bmi[j].mode; |
| blockmv = cpi->mb.partition_info->bmi[j].mv; |
| write_sb_mv_ref(bc, blockmode, mv_ref_p); |
| vp9_accum_mv_refs(&cpi->common, blockmode, mi->mb_mode_context[rf]); |
| if (blockmode == NEWMV) { |
| #ifdef ENTROPY_STATS |
| active_section = 11; |
| #endif |
| vp9_encode_mv(bc, &blockmv.as_mv, &mi->best_mv.as_mv, |
| nmvc, xd->allow_high_precision_mv); |
| |
| if (mi->second_ref_frame > 0) |
| vp9_encode_mv(bc, |
| &cpi->mb.partition_info->bmi[j].second_mv.as_mv, |
| &mi->best_second_mv.as_mv, |
| nmvc, xd->allow_high_precision_mv); |
| } |
| } |
| } |
| |
| #ifdef MODE_STATS |
| ++count_mb_seg[mi->partitioning]; |
| #endif |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| } |
| |
| static void write_mb_modes_kf(const VP9_COMP *cpi, |
| MODE_INFO *m, |
| vp9_writer *bc, int mi_row, int mi_col) { |
| const VP9_COMMON *const c = &cpi->common; |
| const MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| const int ym = m->mbmi.mode; |
| const int mis = c->mode_info_stride; |
| const int segment_id = m->mbmi.segment_id; |
| int skip_coeff; |
| |
| if (xd->update_mb_segmentation_map) |
| write_mb_segid(bc, &m->mbmi, xd); |
| |
| if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) { |
| skip_coeff = 1; |
| } else { |
| skip_coeff = m->mbmi.mb_skip_coeff; |
| vp9_write(bc, skip_coeff, vp9_get_pred_prob(c, xd, PRED_MBSKIP)); |
| } |
| |
| if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8 && c->txfm_mode == TX_MODE_SELECT) { |
| TX_SIZE sz = m->mbmi.txfm_size; |
| // FIXME(rbultje) code ternary symbol once all experiments are merged |
| vp9_write(bc, sz != TX_4X4, c->prob_tx[0]); |
| if (m->mbmi.sb_type >= BLOCK_SIZE_MB16X16 && sz != TX_4X4) { |
| vp9_write(bc, sz != TX_8X8, c->prob_tx[1]); |
| if (m->mbmi.sb_type >= BLOCK_SIZE_SB32X32 && sz != TX_8X8) |
| vp9_write(bc, sz != TX_16X16, c->prob_tx[2]); |
| } |
| } |
| |
| if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) { |
| const MB_PREDICTION_MODE A = above_block_mode(m, 0, mis); |
| const MB_PREDICTION_MODE L = xd->left_available ? |
| left_block_mode(m, 0) : DC_PRED; |
| write_kf_bmode(bc, ym, c->kf_bmode_prob[A][L]); |
| } |
| |
| if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8) { |
| int idx, idy; |
| int bw = 1 << b_width_log2(m->mbmi.sb_type); |
| int bh = 1 << b_height_log2(m->mbmi.sb_type); |
| for (idy = 0; idy < 2; idy += bh) { |
| for (idx = 0; idx < 2; idx += bw) { |
| int i = idy * 2 + idx; |
| const MB_PREDICTION_MODE A = above_block_mode(m, i, mis); |
| const MB_PREDICTION_MODE L = (xd->left_available || idx) ? |
| left_block_mode(m, i) : DC_PRED; |
| write_kf_bmode(bc, m->bmi[i].as_mode.first, |
| c->kf_bmode_prob[A][L]); |
| } |
| } |
| } |
| |
| write_uv_mode(bc, m->mbmi.uv_mode, c->kf_uv_mode_prob[ym]); |
| } |
| |
| static void write_modes_b(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, |
| TOKENEXTRA **tok, TOKENEXTRA *tok_end, |
| int mi_row, int mi_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| |
| if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8) |
| if (xd->ab_index > 0) |
| return; |
| xd->mode_info_context = m; |
| set_mi_row_col(&cpi->common, xd, mi_row, |
| 1 << mi_height_log2(m->mbmi.sb_type), |
| mi_col, 1 << mi_width_log2(m->mbmi.sb_type)); |
| if (cm->frame_type == KEY_FRAME) { |
| write_mb_modes_kf(cpi, m, bc, mi_row, mi_col); |
| #ifdef ENTROPY_STATS |
| active_section = 8; |
| #endif |
| } else { |
| pack_inter_mode_mvs(cpi, m, bc, mi_row, mi_col); |
| #ifdef ENTROPY_STATS |
| active_section = 1; |
| #endif |
| } |
| |
| assert(*tok < tok_end); |
| pack_mb_tokens(bc, tok, tok_end); |
| } |
| |
| static void write_modes_sb(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, |
| TOKENEXTRA **tok, TOKENEXTRA *tok_end, |
| int mi_row, int mi_col, |
| BLOCK_SIZE_TYPE bsize) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| const int mis = cm->mode_info_stride; |
| int bwl, bhl; |
| int bsl = b_width_log2(bsize); |
| int bs = (1 << bsl) / 4; // mode_info step for subsize |
| int n; |
| PARTITION_TYPE partition; |
| BLOCK_SIZE_TYPE subsize; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
| return; |
| |
| bwl = b_width_log2(m->mbmi.sb_type); |
| bhl = b_height_log2(m->mbmi.sb_type); |
| |
| // parse the partition type |
| if ((bwl == bsl) && (bhl == bsl)) |
| partition = PARTITION_NONE; |
| else if ((bwl == bsl) && (bhl < bsl)) |
| partition = PARTITION_HORZ; |
| else if ((bwl < bsl) && (bhl == bsl)) |
| partition = PARTITION_VERT; |
| else if ((bwl < bsl) && (bhl < bsl)) |
| partition = PARTITION_SPLIT; |
| else |
| assert(0); |
| |
| if (bsize < BLOCK_SIZE_SB8X8) |
| if (xd->ab_index > 0) |
| return; |
| |
| if (bsize >= BLOCK_SIZE_SB8X8) { |
| int pl; |
| xd->left_seg_context = cm->left_seg_context + (mi_row & MI_MASK); |
| xd->above_seg_context = cm->above_seg_context + mi_col; |
| pl = partition_plane_context(xd, bsize); |
| // encode the partition information |
| write_token(bc, vp9_partition_tree, cm->fc.partition_prob[pl], |
| vp9_partition_encodings + partition); |
| } |
| |
| subsize = get_subsize(bsize, partition); |
| *(get_sb_index(xd, subsize)) = 0; |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col); |
| break; |
| case PARTITION_HORZ: |
| write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col); |
| *(get_sb_index(xd, subsize)) = 1; |
| if ((mi_row + bs) < cm->mi_rows) |
| write_modes_b(cpi, m + bs * mis, bc, tok, tok_end, mi_row + bs, mi_col); |
| break; |
| case PARTITION_VERT: |
| write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col); |
| *(get_sb_index(xd, subsize)) = 1; |
| if ((mi_col + bs) < cm->mi_cols) |
| write_modes_b(cpi, m + bs, bc, tok, tok_end, mi_row, mi_col + bs); |
| break; |
| case PARTITION_SPLIT: |
| for (n = 0; n < 4; n++) { |
| int j = n >> 1, i = n & 0x01; |
| *(get_sb_index(xd, subsize)) = n; |
| write_modes_sb(cpi, m + j * bs * mis + i * bs, bc, tok, tok_end, |
| mi_row + j * bs, mi_col + i * bs, subsize); |
| } |
| break; |
| default: |
| assert(0); |
| } |
| |
| // update partition context |
| if (bsize >= BLOCK_SIZE_SB8X8 && |
| (bsize == BLOCK_SIZE_SB8X8 || partition != PARTITION_SPLIT)) { |
| set_partition_seg_context(cm, xd, mi_row, mi_col); |
| update_partition_context(xd, subsize, bsize); |
| } |
| } |
| |
| static void write_modes(VP9_COMP *cpi, vp9_writer* const bc, |
| TOKENEXTRA **tok, TOKENEXTRA *tok_end) { |
| VP9_COMMON *const c = &cpi->common; |
| const int mis = c->mode_info_stride; |
| MODE_INFO *m, *m_ptr = c->mi; |
| int mi_row, mi_col; |
| |
| m_ptr += c->cur_tile_mi_col_start + c->cur_tile_mi_row_start * mis; |
| vpx_memset(c->above_seg_context, 0, sizeof(PARTITION_CONTEXT) * |
| mi_cols_aligned_to_sb(c)); |
| |
| for (mi_row = c->cur_tile_mi_row_start; |
| mi_row < c->cur_tile_mi_row_end; |
| mi_row += 8, m_ptr += 8 * mis) { |
| m = m_ptr; |
| vpx_memset(c->left_seg_context, 0, sizeof(c->left_seg_context)); |
| for (mi_col = c->cur_tile_mi_col_start; |
| mi_col < c->cur_tile_mi_col_end; |
| mi_col += 64 / MI_SIZE, m += 64 / MI_SIZE) |
| write_modes_sb(cpi, m, bc, tok, tok_end, mi_row, mi_col, |
| BLOCK_SIZE_SB64X64); |
| } |
| } |
| |
| /* This function is used for debugging probability trees. */ |
| static void print_prob_tree(vp9_coeff_probs *coef_probs, int block_types) { |
| /* print coef probability tree */ |
| int i, j, k, l, m; |
| FILE *f = fopen("enc_tree_probs.txt", "a"); |
| fprintf(f, "{\n"); |
| for (i = 0; i < block_types; i++) { |
| fprintf(f, " {\n"); |
| for (j = 0; j < REF_TYPES; ++j) { |
| fprintf(f, " {\n"); |
| for (k = 0; k < COEF_BANDS; k++) { |
| fprintf(f, " {\n"); |
| for (l = 0; l < PREV_COEF_CONTEXTS; l++) { |
| fprintf(f, " {"); |
| for (m = 0; m < ENTROPY_NODES; m++) { |
| fprintf(f, "%3u, ", |
| (unsigned int)(coef_probs[i][j][k][l][m])); |
| } |
| } |
| fprintf(f, " }\n"); |
| } |
| fprintf(f, " }\n"); |
| } |
| fprintf(f, " }\n"); |
| } |
| fprintf(f, "}\n"); |
| fclose(f); |
| } |
| |
| static void build_tree_distribution(vp9_coeff_probs *coef_probs, |
| vp9_coeff_count *coef_counts, |
| unsigned int (*eob_branch_ct)[REF_TYPES] |
| [COEF_BANDS] |
| [PREV_COEF_CONTEXTS], |
| #ifdef ENTROPY_STATS |
| VP9_COMP *cpi, |
| vp9_coeff_accum *context_counters, |
| #endif |
| vp9_coeff_stats *coef_branch_ct, |
| int block_types) { |
| int i, j, k, l; |
| #ifdef ENTROPY_STATS |
| int t = 0; |
| #endif |
| |
| for (i = 0; i < block_types; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { |
| if (l >= 3 && k == 0) |
| continue; |
| vp9_tree_probs_from_distribution(vp9_coef_tree, |
| coef_probs[i][j][k][l], |
| coef_branch_ct[i][j][k][l], |
| coef_counts[i][j][k][l], 0); |
| coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] - |
| coef_branch_ct[i][j][k][l][0][0]; |
| coef_probs[i][j][k][l][0] = |
| get_binary_prob(coef_branch_ct[i][j][k][l][0][0], |
| coef_branch_ct[i][j][k][l][0][1]); |
| #ifdef ENTROPY_STATS |
| if (!cpi->dummy_packing) { |
| for (t = 0; t < MAX_ENTROPY_TOKENS; ++t) |
| context_counters[i][j][k][l][t] += coef_counts[i][j][k][l][t]; |
| context_counters[i][j][k][l][MAX_ENTROPY_TOKENS] += |
| eob_branch_ct[i][j][k][l]; |
| } |
| #endif |
| } |
| } |
| } |
| } |
| } |
| |
| static void build_coeff_contexts(VP9_COMP *cpi) { |
| build_tree_distribution(cpi->frame_coef_probs_4x4, |
| cpi->coef_counts_4x4, |
| cpi->common.fc.eob_branch_counts[TX_4X4], |
| #ifdef ENTROPY_STATS |
| cpi, context_counters_4x4, |
| #endif |
| cpi->frame_branch_ct_4x4, BLOCK_TYPES); |
| build_tree_distribution(cpi->frame_coef_probs_8x8, |
| cpi->coef_counts_8x8, |
| cpi->common.fc.eob_branch_counts[TX_8X8], |
| #ifdef ENTROPY_STATS |
| cpi, context_counters_8x8, |
| #endif |
| cpi->frame_branch_ct_8x8, BLOCK_TYPES); |
| build_tree_distribution(cpi->frame_coef_probs_16x16, |
| cpi->coef_counts_16x16, |
| cpi->common.fc.eob_branch_counts[TX_16X16], |
| #ifdef ENTROPY_STATS |
| cpi, context_counters_16x16, |
| #endif |
| cpi->frame_branch_ct_16x16, BLOCK_TYPES); |
| build_tree_distribution(cpi->frame_coef_probs_32x32, |
| cpi->coef_counts_32x32, |
| cpi->common.fc.eob_branch_counts[TX_32X32], |
| #ifdef ENTROPY_STATS |
| cpi, context_counters_32x32, |
| #endif |
| cpi->frame_branch_ct_32x32, BLOCK_TYPES); |
| } |
| |
| static void update_coef_probs_common( |
| vp9_writer* const bc, |
| VP9_COMP *cpi, |
| #ifdef ENTROPY_STATS |
| vp9_coeff_stats *tree_update_hist, |
| #endif |
| vp9_coeff_probs *new_frame_coef_probs, |
| vp9_coeff_probs_model *old_frame_coef_probs, |
| vp9_coeff_stats *frame_branch_ct, |
| TX_SIZE tx_size) { |
| int i, j, k, l, t; |
| int update[2] = {0, 0}; |
| int savings; |
| |
| const int entropy_nodes_update = UNCONSTRAINED_NODES; |
| // vp9_prob bestupd = find_coef_update_prob(cpi); |
| |
| const int tstart = 0; |
| /* dry run to see if there is any udpate at all needed */ |
| savings = 0; |
| for (i = 0; i < BLOCK_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| // int prev_coef_savings[ENTROPY_NODES] = {0}; |
| for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { |
| for (t = tstart; t < entropy_nodes_update; ++t) { |
| vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; |
| const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t]; |
| const vp9_prob upd = vp9_coef_update_prob[t]; |
| int s; // = prev_coef_savings[t]; |
| int u = 0; |
| |
| if (l >= 3 && k == 0) |
| continue; |
| if (t == PIVOT_NODE) |
| s = prob_diff_update_savings_search_model( |
| frame_branch_ct[i][j][k][l][0], |
| old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); |
| else |
| s = prob_diff_update_savings_search( |
| frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); |
| if (s > 0 && newp != oldp) |
| u = 1; |
| if (u) |
| savings += s - (int)(vp9_cost_zero(upd)); |
| else |
| savings -= (int)(vp9_cost_zero(upd)); |
| update[u]++; |
| } |
| } |
| } |
| } |
| } |
| |
| // printf("Update %d %d, savings %d\n", update[0], update[1], savings); |
| /* Is coef updated at all */ |
| if (update[1] == 0 || savings < 0) { |
| vp9_write_bit(bc, 0); |
| return; |
| } |
| vp9_write_bit(bc, 1); |
| for (i = 0; i < BLOCK_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| // int prev_coef_savings[ENTROPY_NODES] = {0}; |
| for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { |
| // calc probs and branch cts for this frame only |
| for (t = tstart; t < entropy_nodes_update; ++t) { |
| vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; |
| vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t; |
| const vp9_prob upd = vp9_coef_update_prob[t]; |
| int s; // = prev_coef_savings[t]; |
| int u = 0; |
| if (l >= 3 && k == 0) |
| continue; |
| |
| if (t == PIVOT_NODE) |
| s = prob_diff_update_savings_search_model( |
| frame_branch_ct[i][j][k][l][0], |
| old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); |
| else |
| s = prob_diff_update_savings_search( |
| frame_branch_ct[i][j][k][l][t], |
| *oldp, &newp, upd); |
| if (s > 0 && newp != *oldp) |
| u = 1; |
| vp9_write(bc, u, upd); |
| #ifdef ENTROPY_STATS |
| if (!cpi->dummy_packing) |
| ++tree_update_hist[i][j][k][l][t][u]; |
| #endif |
| if (u) { |
| /* send/use new probability */ |
| write_prob_diff_update(bc, newp, *oldp); |
| *oldp = newp; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) { |
| vp9_clear_system_state(); |
| |
| // Build the cofficient contexts based on counts collected in encode loop |
| build_coeff_contexts(cpi); |
| |
| update_coef_probs_common(bc, |
| cpi, |
| #ifdef ENTROPY_STATS |
| tree_update_hist_4x4, |
| #endif |
| cpi->frame_coef_probs_4x4, |
| cpi->common.fc.coef_probs_4x4, |
| cpi->frame_branch_ct_4x4, |
| TX_4X4); |
| |
| /* do not do this if not even allowed */ |
| if (cpi->common.txfm_mode != ONLY_4X4) { |
| update_coef_probs_common(bc, |
| cpi, |
| #ifdef ENTROPY_STATS |
| tree_update_hist_8x8, |
| #endif |
| cpi->frame_coef_probs_8x8, |
| cpi->common.fc.coef_probs_8x8, |
| cpi->frame_branch_ct_8x8, |
| TX_8X8); |
| } |
| |
| if (cpi->common.txfm_mode > ALLOW_8X8) { |
| update_coef_probs_common(bc, |
| cpi, |
| #ifdef ENTROPY_STATS |
| tree_update_hist_16x16, |
| #endif |
| cpi->frame_coef_probs_16x16, |
| cpi->common.fc.coef_probs_16x16, |
| cpi->frame_branch_ct_16x16, |
| TX_16X16); |
| } |
| |
| if (cpi->common.txfm_mode > ALLOW_16X16) { |
| update_coef_probs_common(bc, |
| cpi, |
| #ifdef ENTROPY_STATS |
| tree_update_hist_32x32, |
| #endif |
| cpi->frame_coef_probs_32x32, |
| cpi->common.fc.coef_probs_32x32, |
| cpi->frame_branch_ct_32x32, |
| TX_32X32); |
| } |
| } |
| |
| static void decide_kf_ymode_entropy(VP9_COMP *cpi) { |
| int mode_cost[MB_MODE_COUNT]; |
| int bestcost = INT_MAX; |
| int bestindex = 0; |
| int i, j; |
| |
| for (i = 0; i < 8; i++) { |
| int cost = 0; |
| |
| vp9_cost_tokens(mode_cost, cpi->common.kf_ymode_prob[i], vp9_kf_ymode_tree); |
| |
| for (j = 0; j < VP9_YMODES; j++) |
| cost += mode_cost[j] * cpi->ymode_count[j]; |
| |
| vp9_cost_tokens(mode_cost, cpi->common.sb_kf_ymode_prob[i], |
| vp9_sb_ymode_tree); |
| for (j = 0; j < VP9_I32X32_MODES; j++) |
| cost += mode_cost[j] * cpi->sb_ymode_count[j]; |
| |
| if (cost < bestcost) { |
| bestindex = i; |
| bestcost = cost; |
| } |
| } |
| cpi->common.kf_ymode_probs_index = bestindex; |
| |
| } |
| static void segment_reference_frames(VP9_COMP *cpi) { |
| VP9_COMMON *oci = &cpi->common; |
| MODE_INFO *mi = oci->mi; |
| int ref[MAX_MB_SEGMENTS] = {0}; |
| int i, j; |
| int mb_index = 0; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| |
| for (i = 0; i < oci->mb_rows; i++) { |
| for (j = 0; j < oci->mb_cols; j++, mb_index++) |
| ref[mi[mb_index].mbmi.segment_id] |= (1 << mi[mb_index].mbmi.ref_frame); |
| mb_index++; |
| } |
| for (i = 0; i < MAX_MB_SEGMENTS; i++) { |
| vp9_enable_segfeature(xd, i, SEG_LVL_REF_FRAME); |
| vp9_set_segdata(xd, i, SEG_LVL_REF_FRAME, ref[i]); |
| } |
| } |
| |
| static void encode_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_writer *w) { |
| int i; |
| |
| // Encode the loop filter level and type |
| vp9_write_literal(w, pc->filter_level, 6); |
| vp9_write_literal(w, pc->sharpness_level, 3); |
| |
| // Write out loop filter deltas applied at the MB level based on mode or |
| // ref frame (if they are enabled). |
| vp9_write_bit(w, xd->mode_ref_lf_delta_enabled); |
| |
| if (xd->mode_ref_lf_delta_enabled) { |
| // Do the deltas need to be updated |
| vp9_write_bit(w, xd->mode_ref_lf_delta_update); |
| if (xd->mode_ref_lf_delta_update) { |
| // Send update |
| for (i = 0; i < MAX_REF_LF_DELTAS; i++) { |
| const int delta = xd->ref_lf_deltas[i]; |
| |
| // Frame level data |
| if (delta != xd->last_ref_lf_deltas[i]) { |
| xd->last_ref_lf_deltas[i] = delta; |
| vp9_write_bit(w, 1); |
| |
| if (delta > 0) { |
| vp9_write_literal(w, delta & 0x3F, 6); |
| vp9_write_bit(w, 0); // sign |
| } else { |
| assert(delta < 0); |
| vp9_write_literal(w, (-delta) & 0x3F, 6); |
| vp9_write_bit(w, 1); // sign |
| } |
| } else { |
| vp9_write_bit(w, 0); |
| } |
| } |
| |
| // Send update |
| for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { |
| const int delta = xd->mode_lf_deltas[i]; |
| if (delta != xd->last_mode_lf_deltas[i]) { |
| xd->last_mode_lf_deltas[i] = delta; |
| vp9_write_bit(w, 1); |
| |
| if (delta > 0) { |
| vp9_write_literal(w, delta & 0x3F, 6); |
| vp9_write_bit(w, 0); // sign |
| } else { |
| assert(delta < 0); |
| vp9_write_literal(w, (-delta) & 0x3F, 6); |
| vp9_write_bit(w, 1); // sign |
| } |
| } else { |
| vp9_write_bit(w, 0); |
| } |
| } |
| } |
| } |
| } |
| |
| static void put_delta_q(vp9_writer *bc, int delta_q) { |
| if (delta_q != 0) { |
| vp9_write_bit(bc, 1); |
| vp9_write_literal(bc, abs(delta_q), 4); |
| vp9_write_bit(bc, delta_q < 0); |
| } else { |
| vp9_write_bit(bc, 0); |
| } |
| } |
| |
| static void encode_quantization(VP9_COMMON *pc, vp9_writer *w) { |
| vp9_write_literal(w, pc->base_qindex, QINDEX_BITS); |
| put_delta_q(w, pc->y_dc_delta_q); |
| put_delta_q(w, pc->uv_dc_delta_q); |
| put_delta_q(w, pc->uv_ac_delta_q); |
| } |
| |
| |
| static void encode_segmentation(VP9_COMP *cpi, vp9_writer *w) { |
| int i, j; |
| VP9_COMMON *const pc = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| |
| vp9_write_bit(w, xd->segmentation_enabled); |
| if (!xd->segmentation_enabled) |
| return; |
| |
| // Segmentation map |
| vp9_write_bit(w, xd->update_mb_segmentation_map); |
| #if CONFIG_IMPLICIT_SEGMENTATION |
| vp9_write_bit(w, xd->allow_implicit_segment_update); |
| #endif |
| if (xd->update_mb_segmentation_map) { |
| // Select the coding strategy (temporal or spatial) |
| vp9_choose_segmap_coding_method(cpi); |
| // Write out probabilities used to decode unpredicted macro-block segments |
| for (i = 0; i < MB_SEG_TREE_PROBS; i++) { |
| const int prob = xd->mb_segment_tree_probs[i]; |
| if (prob != MAX_PROB) { |
| vp9_write_bit(w, 1); |
| vp9_write_prob(w, prob); |
| } else { |
| vp9_write_bit(w, 0); |
| } |
| } |
| |
| // Write out the chosen coding method. |
| vp9_write_bit(w, pc->temporal_update); |
| if (pc->temporal_update) { |
| for (i = 0; i < PREDICTION_PROBS; i++) { |
| const int prob = pc->segment_pred_probs[i]; |
| if (prob != MAX_PROB) { |
| vp9_write_bit(w, 1); |
| vp9_write_prob(w, prob); |
| } else { |
| vp9_write_bit(w, 0); |
| } |
| } |
| } |
| } |
| |
| // Segmentation data |
| vp9_write_bit(w, xd->update_mb_segmentation_data); |
| // segment_reference_frames(cpi); |
| if (xd->update_mb_segmentation_data) { |
| vp9_write_bit(w, xd->mb_segment_abs_delta); |
| |
| for (i = 0; i < MAX_MB_SEGMENTS; i++) { |
| for (j = 0; j < SEG_LVL_MAX; j++) { |
| const int data = vp9_get_segdata(xd, i, j); |
| const int data_max = vp9_seg_feature_data_max(j); |
| |
| if (vp9_segfeature_active(xd, i, j)) { |
| vp9_write_bit(w, 1); |
| |
| if (vp9_is_segfeature_signed(j)) { |
| if (data < 0) { |
| vp9_encode_unsigned_max(w, -data, data_max); |
| vp9_write_bit(w, 1); |
| } else { |
| vp9_encode_unsigned_max(w, data, data_max); |
| vp9_write_bit(w, 0); |
| } |
| } else { |
| vp9_encode_unsigned_max(w, data, data_max); |
| } |
| } else { |
| vp9_write_bit(w, 0); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| void write_uncompressed_header(VP9_COMMON *cm, |
| struct vp9_write_bit_buffer *wb) { |
| const int scaling_active = cm->width != cm->display_width || |
| cm->height != cm->display_height; |
| |
| vp9_wb_write_bit(wb, cm->frame_type); |
| vp9_wb_write_literal(wb, cm->version, 3); |
| vp9_wb_write_bit(wb, cm->show_frame); |
| vp9_wb_write_bit(wb, scaling_active); |
| vp9_wb_write_bit(wb, cm->subsampling_x); |
| vp9_wb_write_bit(wb, cm->subsampling_y); |
| |
| if (cm->frame_type == KEY_FRAME) { |
| vp9_wb_write_literal(wb, SYNC_CODE_0, 8); |
| vp9_wb_write_literal(wb, SYNC_CODE_1, 8); |
| vp9_wb_write_literal(wb, SYNC_CODE_2, 8); |
| } |
| |
| if (scaling_active) { |
| vp9_wb_write_literal(wb, cm->display_width, 16); |
| vp9_wb_write_literal(wb, cm->display_height, 16); |
| } |
| |
| vp9_wb_write_literal(wb, cm->width, 16); |
| vp9_wb_write_literal(wb, cm->height, 16); |
| |
| vp9_wb_write_literal(wb, cm->frame_context_idx, NUM_FRAME_CONTEXTS_LG2); |
| vp9_wb_write_bit(wb, cm->clr_type); |
| |
| vp9_wb_write_bit(wb, cm->error_resilient_mode); |
| if (!cm->error_resilient_mode) { |
| vp9_wb_write_bit(wb, cm->refresh_frame_context); |
| vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode); |
| } |
| } |
| |
| void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) { |
| int i, bytes_packed; |
| VP9_COMMON *const pc = &cpi->common; |
| vp9_writer header_bc, residual_bc; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| |
| uint8_t *cx_data = dest; |
| struct vp9_write_bit_buffer wb = {dest, 0}; |
| struct vp9_write_bit_buffer first_partition_size_wb; |
| |
| write_uncompressed_header(pc, &wb); |
| first_partition_size_wb = wb; |
| vp9_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size |
| |
| bytes_packed = vp9_rb_bytes_written(&wb); |
| cx_data += bytes_packed; |
| |
| compute_update_table(); |
| |
| vp9_start_encode(&header_bc, cx_data); |
| |
| encode_loopfilter(pc, xd, &header_bc); |
| |
| encode_quantization(pc, &header_bc); |
| |
| // When there is a key frame all reference buffers are updated using the new key frame |
| if (pc->frame_type != KEY_FRAME) { |
| int refresh_mask; |
| |
| // Should the GF or ARF be updated using the transmitted frame or buffer |
| #if CONFIG_MULTIPLE_ARF |
| if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame && |
| !cpi->refresh_alt_ref_frame) { |
| #else |
| if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { |
| #endif |
| /* Preserve the previously existing golden frame and update the frame in |
| * the alt ref slot instead. This is highly specific to the use of |
| * alt-ref as a forward reference, and this needs to be generalized as |
| * other uses are implemented (like RTC/temporal scaling) |
| * |
| * gld_fb_idx and alt_fb_idx need to be swapped for future frames, but |
| * that happens in vp9_onyx_if.c:update_reference_frames() so that it can |
| * be done outside of the recode loop. |
| */ |
| refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) | |
| (cpi->refresh_golden_frame << cpi->alt_fb_idx); |
| } else { |
| int arf_idx = cpi->alt_fb_idx; |
| #if CONFIG_MULTIPLE_ARF |
| // Determine which ARF buffer to use to encode this ARF frame. |
| if (cpi->multi_arf_enabled) { |
| int sn = cpi->sequence_number; |
| arf_idx = (cpi->frame_coding_order[sn] < 0) ? |
| cpi->arf_buffer_idx[sn + 1] : |
| cpi->arf_buffer_idx[sn]; |
| } |
| #endif |
| refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) | |
| (cpi->refresh_golden_frame << cpi->gld_fb_idx) | |
| (cpi->refresh_alt_ref_frame << arf_idx); |
| } |
| |
| vp9_write_literal(&header_bc, refresh_mask, NUM_REF_FRAMES); |
| vp9_write_literal(&header_bc, cpi->lst_fb_idx, NUM_REF_FRAMES_LG2); |
| vp9_write_literal(&header_bc, cpi->gld_fb_idx, NUM_REF_FRAMES_LG2); |
| vp9_write_literal(&header_bc, cpi->alt_fb_idx, NUM_REF_FRAMES_LG2); |
| |
| // Indicate the sign bias for each reference frame buffer. |
| for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { |
| vp9_write_bit(&header_bc, pc->ref_frame_sign_bias[LAST_FRAME + i]); |
| } |
| |
| // Signal whether to allow high MV precision |
| vp9_write_bit(&header_bc, (xd->allow_high_precision_mv) ? 1 : 0); |
| if (pc->mcomp_filter_type == SWITCHABLE) { |
| /* Check to see if only one of the filters is actually used */ |
| int count[VP9_SWITCHABLE_FILTERS]; |
| int i, j, c = 0; |
| for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) { |
| count[i] = 0; |
| for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) |
| count[i] += cpi->switchable_interp_count[j][i]; |
| c += (count[i] > 0); |
| } |
| if (c == 1) { |
| /* Only one filter is used. So set the filter at frame level */ |
| for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) { |
| if (count[i]) { |
| pc->mcomp_filter_type = vp9_switchable_interp[i]; |
| break; |
| } |
| } |
| } |
| } |
| // Signal the type of subpel filter to use |
| vp9_write_bit(&header_bc, (pc->mcomp_filter_type == SWITCHABLE)); |
| if (pc->mcomp_filter_type != SWITCHABLE) |
| vp9_write_literal(&header_bc, (pc->mcomp_filter_type), 2); |
| } |
| |
| #ifdef ENTROPY_STATS |
| if (pc->frame_type == INTER_FRAME) |
| active_section = 0; |
| else |
| active_section = 7; |
| #endif |
| |
| encode_segmentation(cpi, &header_bc); |
| |
| // Encode the common prediction model status flag probability updates for |
| // the reference frame |
| update_refpred_stats(cpi); |
| if (pc->frame_type != KEY_FRAME) { |
| for (i = 0; i < PREDICTION_PROBS; i++) { |
| if (cpi->ref_pred_probs_update[i]) { |
| vp9_write_bit(&header_bc, 1); |
| vp9_write_prob(&header_bc, pc->ref_pred_probs[i]); |
| } else { |
| vp9_write_bit(&header_bc, 0); |
| } |
| } |
| } |
| |
| if (cpi->mb.e_mbd.lossless) { |
| pc->txfm_mode = ONLY_4X4; |
| } else { |
| if (pc->txfm_mode == TX_MODE_SELECT) { |
| pc->prob_tx[0] = get_prob(cpi->txfm_count_32x32p[TX_4X4] + |
| cpi->txfm_count_16x16p[TX_4X4] + |
| cpi->txfm_count_8x8p[TX_4X4], |
| cpi->txfm_count_32x32p[TX_4X4] + |
| cpi->txfm_count_32x32p[TX_8X8] + |
| cpi->txfm_count_32x32p[TX_16X16] + |
| cpi->txfm_count_32x32p[TX_32X32] + |
| cpi->txfm_count_16x16p[TX_4X4] + |
| cpi->txfm_count_16x16p[TX_8X8] + |
| cpi->txfm_count_16x16p[TX_16X16] + |
| cpi->txfm_count_8x8p[TX_4X4] + |
| cpi->txfm_count_8x8p[TX_8X8]); |
| pc->prob_tx[1] = get_prob(cpi->txfm_count_32x32p[TX_8X8] + |
| cpi->txfm_count_16x16p[TX_8X8], |
| cpi->txfm_count_32x32p[TX_8X8] + |
| cpi->txfm_count_32x32p[TX_16X16] + |
| cpi->txfm_count_32x32p[TX_32X32] + |
| cpi->txfm_count_16x16p[TX_8X8] + |
| cpi->txfm_count_16x16p[TX_16X16]); |
| pc->prob_tx[2] = get_prob(cpi->txfm_count_32x32p[TX_16X16], |
| cpi->txfm_count_32x32p[TX_16X16] + |
| cpi->txfm_count_32x32p[TX_32X32]); |
| } else { |
| pc->prob_tx[0] = 128; |
| pc->prob_tx[1] = 128; |
| pc->prob_tx[2] = 128; |
| } |
| vp9_write_literal(&header_bc, pc->txfm_mode <= 3 ? pc->txfm_mode : 3, 2); |
| if (pc->txfm_mode > ALLOW_16X16) { |
| vp9_write_bit(&header_bc, pc->txfm_mode == TX_MODE_SELECT); |
| } |
| if (pc->txfm_mode == TX_MODE_SELECT) { |
| vp9_write_prob(&header_bc, pc->prob_tx[0]); |
| vp9_write_prob(&header_bc, pc->prob_tx[1]); |
| vp9_write_prob(&header_bc, pc->prob_tx[2]); |
| } |
| } |
| |
| // If appropriate update the inter mode probability context and code the |
| // changes in the bitstream. |
| if (pc->frame_type != KEY_FRAME) { |
| int i, j; |
| int new_context[INTER_MODE_CONTEXTS][4]; |
| if (!cpi->dummy_packing) { |
| update_inter_mode_probs(pc, new_context); |
| } else { |
| // In dummy pack assume context unchanged. |
| vpx_memcpy(new_context, pc->fc.vp9_mode_contexts, |
| sizeof(pc->fc.vp9_mode_contexts)); |
| } |
| |
| for (i = 0; i < INTER_MODE_CONTEXTS; i++) { |
| for (j = 0; j < 4; j++) { |
| if (new_context[i][j] != pc->fc.vp9_mode_contexts[i][j]) { |
| vp9_write(&header_bc, 1, 252); |
| vp9_write_prob(&header_bc, new_context[i][j]); |
| |
| // Only update the persistent copy if this is the "real pack" |
| if (!cpi->dummy_packing) { |
| pc->fc.vp9_mode_contexts[i][j] = new_context[i][j]; |
| } |
| } else { |
| vp9_write(&header_bc, 0, 252); |
| } |
| } |
| } |
| } |
| |
| vp9_clear_system_state(); // __asm emms; |
| |
| vp9_copy(cpi->common.fc.pre_coef_probs_4x4, |
| cpi->common.fc.coef_probs_4x4); |
| vp9_copy(cpi->common.fc.pre_coef_probs_8x8, |
| cpi->common.fc.coef_probs_8x8); |
| vp9_copy(cpi->common.fc.pre_coef_probs_16x16, |
| cpi->common.fc.coef_probs_16x16); |
| vp9_copy(cpi->common.fc.pre_coef_probs_32x32, |
| cpi->common.fc.coef_probs_32x32); |
| |
| vp9_copy(cpi->common.fc.pre_sb_ymode_prob, cpi->common.fc.sb_ymode_prob); |
| vp9_copy(cpi->common.fc.pre_ymode_prob, cpi->common.fc.ymode_prob); |
| vp9_copy(cpi->common.fc.pre_uv_mode_prob, cpi->common.fc.uv_mode_prob); |
| vp9_copy(cpi->common.fc.pre_bmode_prob, cpi->common.fc.bmode_prob); |
| vp9_copy(cpi->common.fc.pre_partition_prob, cpi->common.fc.partition_prob); |
| cpi->common.fc.pre_nmvc = cpi->common.fc.nmvc; |
| vp9_zero(cpi->common.fc.mv_ref_ct); |
| |
| update_coef_probs(cpi, &header_bc); |
| |
| #ifdef ENTROPY_STATS |
| active_section = 2; |
| #endif |
| |
| vp9_update_skip_probs(cpi); |
| for (i = 0; i < MBSKIP_CONTEXTS; ++i) { |
| vp9_write_prob(&header_bc, pc->mbskip_pred_probs[i]); |
| } |
| |
| if (pc->frame_type == KEY_FRAME) { |
| if (!pc->kf_ymode_probs_update) { |
| vp9_write_literal(&header_bc, pc->kf_ymode_probs_index, 3); |
| } |
| } else { |
| // Update the probabilities used to encode reference frame data |
| update_ref_probs(cpi); |
| |
| #ifdef ENTROPY_STATS |
| active_section = 1; |
| #endif |
| |
| if (pc->mcomp_filter_type == SWITCHABLE) |
| update_switchable_interp_probs(cpi, &header_bc); |
| |
| vp9_write_prob(&header_bc, pc->prob_intra_coded); |
| vp9_write_prob(&header_bc, pc->prob_last_coded); |
| vp9_write_prob(&header_bc, pc->prob_gf_coded); |
| |
| { |
| const int comp_pred_mode = cpi->common.comp_pred_mode; |
| const int use_compound_pred = (comp_pred_mode != SINGLE_PREDICTION_ONLY); |
| const int use_hybrid_pred = (comp_pred_mode == HYBRID_PREDICTION); |
| |
| vp9_write_bit(&header_bc, use_compound_pred); |
| if (use_compound_pred) { |
| vp9_write_bit(&header_bc, use_hybrid_pred); |
| if (use_hybrid_pred) { |
| for (i = 0; i < COMP_PRED_CONTEXTS; i++) { |
| pc->prob_comppred[i] = get_binary_prob(cpi->single_pred_count[i], |
| cpi->comp_pred_count[i]); |
| vp9_write_prob(&header_bc, pc->prob_comppred[i]); |
| } |
| } |
| } |
| } |
| update_mbintra_mode_probs(cpi, &header_bc); |
| |
| for (i = 0; i < NUM_PARTITION_CONTEXTS; ++i) { |
| vp9_prob Pnew[PARTITION_TYPES - 1]; |
| unsigned int bct[PARTITION_TYPES - 1][2]; |
| update_mode(&header_bc, PARTITION_TYPES, vp9_partition_encodings, |
| vp9_partition_tree, Pnew, pc->fc.partition_prob[i], bct, |
| (unsigned int *)cpi->partition_count[i]); |
| } |
| |
| vp9_write_nmv_probs(cpi, xd->allow_high_precision_mv, &header_bc); |
| } |
| |
| /* tiling */ |
| { |
| int min_log2_tiles, delta_log2_tiles, n_tile_bits, n; |
| |
| vp9_get_tile_n_bits(pc, &min_log2_tiles, &delta_log2_tiles); |
| n_tile_bits = pc->log2_tile_columns - min_log2_tiles; |
| for (n = 0; n < delta_log2_tiles; n++) { |
| if (n_tile_bits--) { |
| vp9_write_bit(&header_bc, 1); |
| } else { |
| vp9_write_bit(&header_bc, 0); |
| break; |
| } |
| } |
| vp9_write_bit(&header_bc, pc->log2_tile_rows != 0); |
| if (pc->log2_tile_rows != 0) |
| vp9_write_bit(&header_bc, pc->log2_tile_rows != 1); |
| } |
| |
| vp9_stop_encode(&header_bc); |
| |
| |
| // first partition size |
| assert(header_bc.pos <= 0xffff); |
| vp9_wb_write_literal(&first_partition_size_wb, header_bc.pos, 16); |
| *size = bytes_packed + header_bc.pos; |
| |
| if (pc->frame_type == KEY_FRAME) { |
| decide_kf_ymode_entropy(cpi); |
| } else { |
| /* This is not required if the counts in cpi are consistent with the |
| * final packing pass */ |
| // if (!cpi->dummy_packing) vp9_zero(cpi->NMVcount); |
| } |
| |
| { |
| int tile_row, tile_col, total_size = 0; |
| unsigned char *data_ptr = cx_data + header_bc.pos; |
| TOKENEXTRA *tok[1 << 6], *tok_end; |
| |
| tok[0] = cpi->tok; |
| for (tile_col = 1; tile_col < pc->tile_columns; tile_col++) |
| tok[tile_col] = tok[tile_col - 1] + cpi->tok_count[tile_col - 1]; |
| |
| for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { |
| vp9_get_tile_row_offsets(pc, tile_row); |
| tok_end = cpi->tok + cpi->tok_count[0]; |
| for (tile_col = 0; tile_col < pc->tile_columns; |
| tile_col++, tok_end += cpi->tok_count[tile_col]) { |
| vp9_get_tile_col_offsets(pc, tile_col); |
| |
| if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1) |
| vp9_start_encode(&residual_bc, data_ptr + total_size + 4); |
| else |
| vp9_start_encode(&residual_bc, data_ptr + total_size); |
| write_modes(cpi, &residual_bc, &tok[tile_col], tok_end); |
| vp9_stop_encode(&residual_bc); |
| if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1) { |
| // size of this tile |
| write_le32(data_ptr + total_size, residual_bc.pos); |
| total_size += 4; |
| } |
| |
| total_size += residual_bc.pos; |
| } |
| } |
| |
| assert((unsigned int)(tok[0] - cpi->tok) == cpi->tok_count[0]); |
| for (tile_col = 1; tile_col < pc->tile_columns; tile_col++) |
| assert((unsigned int)(tok[tile_col] - tok[tile_col - 1]) == |
| cpi->tok_count[tile_col]); |
| |
| *size += total_size; |
| } |
| } |
| |
| #ifdef ENTROPY_STATS |
| static void print_tree_update_for_type(FILE *f, |
| vp9_coeff_stats *tree_update_hist, |
| int block_types, const char *header) { |
| int i, j, k, l, m; |
| |
| fprintf(f, "const vp9_coeff_prob %s = {\n", header); |
| for (i = 0; i < block_types; i++) { |
| fprintf(f, " { \n"); |
| for (j = 0; j < REF_TYPES; j++) { |
| fprintf(f, " { \n"); |
| for (k = 0; k < COEF_BANDS; k++) { |
| fprintf(f, " {\n"); |
| for (l = 0; l < PREV_COEF_CONTEXTS; l++) { |
| fprintf(f, " {"); |
| for (m = 0; m < ENTROPY_NODES; m++) { |
| fprintf(f, "%3d, ", |
| get_binary_prob(tree_update_hist[i][j][k][l][m][0], |
| tree_update_hist[i][j][k][l][m][1])); |
| } |
| fprintf(f, "},\n"); |
| } |
| fprintf(f, "},\n"); |
| } |
| fprintf(f, " },\n"); |
| } |
| fprintf(f, " },\n"); |
| } |
| fprintf(f, "};\n"); |
| } |
| |
| void print_tree_update_probs() { |
| FILE *f = fopen("coefupdprob.h", "w"); |
| fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n"); |
| |
| print_tree_update_for_type(f, tree_update_hist_4x4, BLOCK_TYPES, |
| "vp9_coef_update_probs_4x4[BLOCK_TYPES]"); |
| print_tree_update_for_type(f, tree_update_hist_8x8, BLOCK_TYPES, |
| "vp9_coef_update_probs_8x8[BLOCK_TYPES]"); |
| print_tree_update_for_type(f, tree_update_hist_16x16, BLOCK_TYPES, |
| "vp9_coef_update_probs_16x16[BLOCK_TYPES]"); |
| print_tree_update_for_type(f, tree_update_hist_32x32, BLOCK_TYPES, |
| "vp9_coef_update_probs_32x32[BLOCK_TYPES]"); |
| |
| fclose(f); |
| f = fopen("treeupdate.bin", "wb"); |
| fwrite(tree_update_hist_4x4, sizeof(tree_update_hist_4x4), 1, f); |
| fwrite(tree_update_hist_8x8, sizeof(tree_update_hist_8x8), 1, f); |
| fwrite(tree_update_hist_16x16, sizeof(tree_update_hist_16x16), 1, f); |
| fwrite(tree_update_hist_32x32, sizeof(tree_update_hist_32x32), 1, f); |
| fclose(f); |
| } |
| #endif |