| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| |
| #include "./aom_config.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| #include "av1/common/av1_loopfilter.h" |
| #include "av1/common/onyxc_int.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/seg_common.h" |
| |
| #if CONFIG_LOOPFILTER_LEVEL |
| static const SEG_LVL_FEATURES seg_lvl_lf_lut[MAX_MB_PLANE][2] = { |
| { SEG_LVL_ALT_LF_Y_V, SEG_LVL_ALT_LF_Y_H }, |
| { SEG_LVL_ALT_LF_U, SEG_LVL_ALT_LF_U }, |
| { SEG_LVL_ALT_LF_V, SEG_LVL_ALT_LF_V } |
| }; |
| |
| #if CONFIG_EXT_DELTA_Q |
| static const int delta_lf_id_lut[MAX_MB_PLANE][2] = { |
| { 0, 1 }, { 2, 2 }, { 3, 3 } |
| }; |
| #endif // CONFIG_EXT_DELTA_Q |
| #endif // CONFIG_LOOPFILTER_LEVEL |
| |
| #define PARALLEL_DEBLOCKING_15TAPLUMAONLY 1 |
| #define PARALLEL_DEBLOCKING_DISABLE_15TAP 0 |
| #if CONFIG_DEBLOCK_13TAP |
| #define PARALLEL_DEBLOCKING_5_TAP_CHROMA 1 |
| #else |
| #define PARALLEL_DEBLOCKING_5_TAP_CHROMA 0 |
| #endif |
| |
| #if PARALLEL_DEBLOCKING_5_TAP_CHROMA |
| extern void aom_lpf_vertical_6_c(uint8_t *s, int pitch, const uint8_t *blimit, |
| const uint8_t *limit, const uint8_t *thresh); |
| |
| extern void aom_lpf_horizontal_6_c(uint8_t *s, int p, const uint8_t *blimit, |
| const uint8_t *limit, const uint8_t *thresh); |
| |
| extern void aom_highbd_lpf_horizontal_6_c(uint16_t *s, int p, |
| const uint8_t *blimit, |
| const uint8_t *limit, |
| const uint8_t *thresh, int bd); |
| |
| extern void aom_highbd_lpf_vertical_6_c(uint16_t *s, int pitch, |
| const uint8_t *blimit, |
| const uint8_t *limit, |
| const uint8_t *thresh, int bd); |
| #endif |
| |
| // 64 bit masks for left transform size. Each 1 represents a position where |
| // we should apply a loop filter across the left border of an 8x8 block |
| // boundary. |
| // |
| // In the case of TX_16X16-> ( in low order byte first we end up with |
| // a mask that looks like this |
| // |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // |
| // A loopfilter should be applied to every other 8x8 horizontally. |
| static const uint64_t left_64x64_txform_mask[TX_SIZES] = { |
| 0xffffffffffffffffULL, // TX_4X4 |
| 0xffffffffffffffffULL, // TX_8x8 |
| 0x5555555555555555ULL, // TX_16x16 |
| 0x1111111111111111ULL, // TX_32x32 |
| #if CONFIG_TX64X64 |
| 0x0101010101010101ULL, // TX_64x64 |
| #endif // CONFIG_TX64X64 |
| }; |
| |
| // 64 bit masks for above transform size. Each 1 represents a position where |
| // we should apply a loop filter across the top border of an 8x8 block |
| // boundary. |
| // |
| // In the case of TX_32x32 -> ( in low order byte first we end up with |
| // a mask that looks like this |
| // |
| // 11111111 |
| // 00000000 |
| // 00000000 |
| // 00000000 |
| // 11111111 |
| // 00000000 |
| // 00000000 |
| // 00000000 |
| // |
| // A loopfilter should be applied to every other 4 the row vertically. |
| static const uint64_t above_64x64_txform_mask[TX_SIZES] = { |
| 0xffffffffffffffffULL, // TX_4X4 |
| 0xffffffffffffffffULL, // TX_8x8 |
| 0x00ff00ff00ff00ffULL, // TX_16x16 |
| 0x000000ff000000ffULL, // TX_32x32 |
| #if CONFIG_TX64X64 |
| 0x00000000000000ffULL, // TX_64x64 |
| #endif // CONFIG_TX64X64 |
| }; |
| |
| // 64 bit masks for prediction sizes (left). Each 1 represents a position |
| // where left border of an 8x8 block. These are aligned to the right most |
| // appropriate bit, and then shifted into place. |
| // |
| // In the case of TX_16x32 -> ( low order byte first ) we end up with |
| // a mask that looks like this : |
| // |
| // 10000000 |
| // 10000000 |
| // 10000000 |
| // 10000000 |
| // 00000000 |
| // 00000000 |
| // 00000000 |
| // 00000000 |
| static const uint64_t left_prediction_mask[BLOCK_SIZES_ALL] = { |
| 0x0000000000000001ULL, // BLOCK_2X2, |
| 0x0000000000000001ULL, // BLOCK_2X4, |
| 0x0000000000000001ULL, // BLOCK_4X2, |
| 0x0000000000000001ULL, // BLOCK_4X4, |
| 0x0000000000000001ULL, // BLOCK_4X8, |
| 0x0000000000000001ULL, // BLOCK_8X4, |
| 0x0000000000000001ULL, // BLOCK_8X8, |
| 0x0000000000000101ULL, // BLOCK_8X16, |
| 0x0000000000000001ULL, // BLOCK_16X8, |
| 0x0000000000000101ULL, // BLOCK_16X16, |
| 0x0000000001010101ULL, // BLOCK_16X32, |
| 0x0000000000000101ULL, // BLOCK_32X16, |
| 0x0000000001010101ULL, // BLOCK_32X32, |
| 0x0101010101010101ULL, // BLOCK_32X64, |
| 0x0000000001010101ULL, // BLOCK_64X32, |
| 0x0101010101010101ULL, // BLOCK_64X64, |
| 0x0000000000000101ULL, // BLOCK_4X16, |
| 0x0000000000000001ULL, // BLOCK_16X4, |
| 0x0000000001010101ULL, // BLOCK_8X32, |
| 0x0000000000000001ULL, // BLOCK_32X8, |
| 0x0101010101010101ULL, // BLOCK_16X64, |
| 0x0000000000000101ULL, // BLOCK_64X16 |
| }; |
| |
| // 64 bit mask to shift and set for each prediction size. |
| static const uint64_t above_prediction_mask[BLOCK_SIZES_ALL] = { |
| 0x0000000000000001ULL, // BLOCK_2X2 |
| 0x0000000000000001ULL, // BLOCK_2X4 |
| 0x0000000000000001ULL, // BLOCK_4X2 |
| 0x0000000000000001ULL, // BLOCK_4X4 |
| 0x0000000000000001ULL, // BLOCK_4X8 |
| 0x0000000000000001ULL, // BLOCK_8X4 |
| 0x0000000000000001ULL, // BLOCK_8X8 |
| 0x0000000000000001ULL, // BLOCK_8X16, |
| 0x0000000000000003ULL, // BLOCK_16X8 |
| 0x0000000000000003ULL, // BLOCK_16X16 |
| 0x0000000000000003ULL, // BLOCK_16X32, |
| 0x000000000000000fULL, // BLOCK_32X16, |
| 0x000000000000000fULL, // BLOCK_32X32, |
| 0x000000000000000fULL, // BLOCK_32X64, |
| 0x00000000000000ffULL, // BLOCK_64X32, |
| 0x00000000000000ffULL, // BLOCK_64X64, |
| 0x0000000000000001ULL, // BLOCK_4X16, |
| 0x0000000000000003ULL, // BLOCK_16X4, |
| 0x0000000000000001ULL, // BLOCK_8X32, |
| 0x000000000000000fULL, // BLOCK_32X8, |
| 0x0000000000000003ULL, // BLOCK_16X64, |
| 0x00000000000000ffULL, // BLOCK_64X16 |
| }; |
| // 64 bit mask to shift and set for each prediction size. A bit is set for |
| // each 8x8 block that would be in the top left most block of the given block |
| // size in the 64x64 block. |
| static const uint64_t size_mask[BLOCK_SIZES_ALL] = { |
| 0x0000000000000001ULL, // BLOCK_2X2 |
| 0x0000000000000001ULL, // BLOCK_2X4 |
| 0x0000000000000001ULL, // BLOCK_4X2 |
| 0x0000000000000001ULL, // BLOCK_4X4 |
| 0x0000000000000001ULL, // BLOCK_4X8 |
| 0x0000000000000001ULL, // BLOCK_8X4 |
| 0x0000000000000001ULL, // BLOCK_8X8 |
| 0x0000000000000101ULL, // BLOCK_8X16, |
| 0x0000000000000003ULL, // BLOCK_16X8 |
| 0x0000000000000303ULL, // BLOCK_16X16 |
| 0x0000000003030303ULL, // BLOCK_16X32, |
| 0x0000000000000f0fULL, // BLOCK_32X16, |
| 0x000000000f0f0f0fULL, // BLOCK_32X32, |
| 0x0f0f0f0f0f0f0f0fULL, // BLOCK_32X64, |
| 0x00000000ffffffffULL, // BLOCK_64X32, |
| 0xffffffffffffffffULL, // BLOCK_64X64, |
| 0x0000000000000101ULL, // BLOCK_4X16, |
| 0x0000000000000003ULL, // BLOCK_16X4, |
| 0x0000000001010101ULL, // BLOCK_8X32, |
| 0x000000000000000fULL, // BLOCK_32X8, |
| 0x0303030303030303ULL, // BLOCK_16X64, |
| 0x000000000000ffffULL, // BLOCK_64X16 |
| }; |
| |
| // These are used for masking the left and above 32x32 borders. |
| static const uint64_t left_border = 0x1111111111111111ULL; |
| static const uint64_t above_border = 0x000000ff000000ffULL; |
| |
| // 16 bit masks for uv transform sizes. |
| static const uint16_t left_64x64_txform_mask_uv[TX_SIZES] = { |
| 0xffff, // TX_4X4 |
| 0xffff, // TX_8x8 |
| 0x5555, // TX_16x16 |
| 0x1111, // TX_32x32 |
| #if CONFIG_TX64X64 |
| 0x0101, // TX_64x64, never used |
| #endif // CONFIG_TX64X64 |
| }; |
| |
| static const uint16_t above_64x64_txform_mask_uv[TX_SIZES] = { |
| 0xffff, // TX_4X4 |
| 0xffff, // TX_8x8 |
| 0x0f0f, // TX_16x16 |
| 0x000f, // TX_32x32 |
| #if CONFIG_TX64X64 |
| 0x0003, // TX_64x64, never used |
| #endif // CONFIG_TX64X64 |
| }; |
| |
| // 16 bit left mask to shift and set for each uv prediction size. |
| static const uint16_t left_prediction_mask_uv[BLOCK_SIZES_ALL] = { |
| 0x0001, // BLOCK_2X2, |
| 0x0001, // BLOCK_2X4, |
| 0x0001, // BLOCK_4X2, |
| 0x0001, // BLOCK_4X4, |
| 0x0001, // BLOCK_4X8, |
| 0x0001, // BLOCK_8X4, |
| 0x0001, // BLOCK_8X8, |
| 0x0001, // BLOCK_8X16, |
| 0x0001, // BLOCK_16X8, |
| 0x0001, // BLOCK_16X16, |
| 0x0011, // BLOCK_16X32, |
| 0x0001, // BLOCK_32X16, |
| 0x0011, // BLOCK_32X32, |
| 0x1111, // BLOCK_32X64 |
| 0x0011, // BLOCK_64X32, |
| 0x1111, // BLOCK_64X64, |
| 0x0001, // BLOCK_4X16, |
| 0x0001, // BLOCK_16X4, |
| 0x0011, // BLOCK_8X32, |
| 0x0001, // BLOCK_32X8, |
| 0x1111, // BLOCK_16X64, |
| 0x0001, // BLOCK_64X16, |
| }; |
| |
| // 16 bit above mask to shift and set for uv each prediction size. |
| static const uint16_t above_prediction_mask_uv[BLOCK_SIZES_ALL] = { |
| 0x0001, // BLOCK_2X2 |
| 0x0001, // BLOCK_2X4 |
| 0x0001, // BLOCK_4X2 |
| 0x0001, // BLOCK_4X4 |
| 0x0001, // BLOCK_4X8 |
| 0x0001, // BLOCK_8X4 |
| 0x0001, // BLOCK_8X8 |
| 0x0001, // BLOCK_8X16, |
| 0x0001, // BLOCK_16X8 |
| 0x0001, // BLOCK_16X16 |
| 0x0001, // BLOCK_16X32, |
| 0x0003, // BLOCK_32X16, |
| 0x0003, // BLOCK_32X32, |
| 0x0003, // BLOCK_32X64, |
| 0x000f, // BLOCK_64X32, |
| 0x000f, // BLOCK_64X64, |
| 0x0001, // BLOCK_4X16, |
| 0x0001, // BLOCK_16X4, |
| 0x0001, // BLOCK_8X32, |
| 0x0003, // BLOCK_32X8, |
| 0x0001, // BLOCK_16X64, |
| 0x000f, // BLOCK_64X16 |
| }; |
| |
| // 64 bit mask to shift and set for each uv prediction size |
| static const uint16_t size_mask_uv[BLOCK_SIZES_ALL] = { |
| 0x0001, // BLOCK_2X2 |
| 0x0001, // BLOCK_2X4 |
| 0x0001, // BLOCK_4X2 |
| 0x0001, // BLOCK_4X4 |
| 0x0001, // BLOCK_4X8 |
| 0x0001, // BLOCK_8X4 |
| 0x0001, // BLOCK_8X8 |
| 0x0001, // BLOCK_8X16, |
| 0x0001, // BLOCK_16X8 |
| 0x0001, // BLOCK_16X16 |
| 0x0011, // BLOCK_16X32, |
| 0x0003, // BLOCK_32X16, |
| 0x0033, // BLOCK_32X32, |
| 0x3333, // BLOCK_32X64, |
| 0x00ff, // BLOCK_64X32, |
| 0xffff, // BLOCK_64X64, |
| 0x0001, // BLOCK_4X16, |
| 0x0001, // BLOCK_16X4, |
| 0x0011, // BLOCK_8X32, |
| 0x0003, // BLOCK_32X8, |
| 0x1111, // BLOCK_16X64, |
| 0x000f, // BLOCK_64X16 |
| }; |
| static const uint16_t left_border_uv = 0x1111; |
| static const uint16_t above_border_uv = 0x000f; |
| |
| static const int mode_lf_lut[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES |
| 1, 1, 0, 1, // INTER_MODES (GLOBALMV == 0) |
| #if CONFIG_COMPOUND_SINGLEREF |
| // 1, 1, 1, 1, 1, // INTER_SINGLEREF_COMP_MODES |
| // NOTE(zoeliu): Remove SR_NEAREST_NEWMV |
| 1, 1, 1, 1, // INTER_SINGLEREF_COMP_MODES |
| #endif // CONFIG_COMPOUND_SINGLEREF |
| 1, 1, 1, 1, 1, 1, 0, 1 // INTER_COMPOUND_MODES (GLOBAL_GLOBALMV == 0) |
| }; |
| |
| static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) { |
| int lvl; |
| |
| // For each possible value for the loop filter fill out limits |
| for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) { |
| // Set loop filter parameters that control sharpness. |
| int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4)); |
| |
| if (sharpness_lvl > 0) { |
| if (block_inside_limit > (9 - sharpness_lvl)) |
| block_inside_limit = (9 - sharpness_lvl); |
| } |
| |
| if (block_inside_limit < 1) block_inside_limit = 1; |
| |
| memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH); |
| memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit), |
| SIMD_WIDTH); |
| } |
| } |
| #if CONFIG_EXT_DELTA_Q |
| static uint8_t get_filter_level(const AV1_COMMON *cm, |
| const loop_filter_info_n *lfi_n, |
| #if CONFIG_LOOPFILTER_LEVEL |
| const int dir_idx, int plane, |
| #endif |
| #if CONFIG_LPF_SB |
| int mi_row, int mi_col, |
| #endif |
| const MB_MODE_INFO *mbmi) { |
| #if CONFIG_LPF_SB |
| return cm->mi[mi_row * cm->mi_stride + mi_col].mbmi.filt_lvl; |
| #endif |
| |
| const int segment_id = mbmi->segment_id; |
| if (cm->delta_lf_present_flag) { |
| #if CONFIG_LOOPFILTER_LEVEL |
| int delta_lf; |
| if (cm->delta_lf_multi) { |
| const int delta_lf_idx = delta_lf_id_lut[plane][dir_idx]; |
| delta_lf = mbmi->curr_delta_lf[delta_lf_idx]; |
| } else { |
| delta_lf = mbmi->current_delta_lf_from_base; |
| } |
| int lvl_seg = |
| clamp(delta_lf + cm->lf.filter_level[dir_idx], 0, MAX_LOOP_FILTER); |
| #else |
| int lvl_seg = clamp(mbmi->current_delta_lf_from_base + cm->lf.filter_level, |
| 0, MAX_LOOP_FILTER); |
| #endif |
| const int scale = 1 << (lvl_seg >> 5); |
| #if CONFIG_LOOPFILTER_LEVEL |
| assert(plane >= 0 && plane <= 2); |
| const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir_idx]; |
| if (segfeature_active(&cm->seg, segment_id, seg_lf_feature_id)) { |
| const int data = get_segdata(&cm->seg, segment_id, seg_lf_feature_id); |
| lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); |
| } |
| #else |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_ALT_LF)) { |
| const int data = get_segdata(&cm->seg, segment_id, SEG_LVL_ALT_LF); |
| lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); |
| } |
| #endif // CONFIG_LOOPFILTER_LEVEL |
| |
| if (cm->lf.mode_ref_delta_enabled) { |
| lvl_seg += cm->lf.ref_deltas[mbmi->ref_frame[0]] * scale; |
| if (mbmi->ref_frame[0] > INTRA_FRAME) |
| lvl_seg += cm->lf.mode_deltas[mode_lf_lut[mbmi->mode]] * scale; |
| lvl_seg = clamp(lvl_seg, 0, MAX_LOOP_FILTER); |
| } |
| return lvl_seg; |
| } else { |
| #if CONFIG_LOOPFILTER_LEVEL |
| return lfi_n |
| ->lvl[segment_id][dir_idx][mbmi->ref_frame[0]][mode_lf_lut[mbmi->mode]]; |
| #else |
| return lfi_n->lvl[segment_id][mbmi->ref_frame[0]][mode_lf_lut[mbmi->mode]]; |
| #endif |
| } |
| } |
| #else |
| static uint8_t get_filter_level(const loop_filter_info_n *lfi_n, |
| const MB_MODE_INFO *mbmi) { |
| #if CONFIG_LPF_SB |
| return mbmi->filt_lvl; |
| #endif |
| |
| const int segment_id = mbmi->segment_id; |
| return lfi_n->lvl[segment_id][mbmi->ref_frame[0]][mode_lf_lut[mbmi->mode]]; |
| } |
| #endif |
| |
| void av1_loop_filter_init(AV1_COMMON *cm) { |
| assert(MB_MODE_COUNT == NELEMENTS(mode_lf_lut)); |
| loop_filter_info_n *lfi = &cm->lf_info; |
| struct loopfilter *lf = &cm->lf; |
| int lvl; |
| |
| // init limits for given sharpness |
| update_sharpness(lfi, lf->sharpness_level); |
| lf->last_sharpness_level = lf->sharpness_level; |
| |
| // init hev threshold const vectors |
| for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) |
| memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH); |
| } |
| |
| #if CONFIG_LPF_SB |
| void av1_loop_filter_sb_level_init(AV1_COMMON *cm, int mi_row, int mi_col, |
| int lvl) { |
| const int mi_row_start = AOMMAX(0, mi_row - FILT_BOUNDARY_MI_OFFSET); |
| const int mi_col_start = AOMMAX(0, mi_col - FILT_BOUNDARY_MI_OFFSET); |
| const int mi_row_range = mi_row - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE; |
| const int mi_col_range = mi_col - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE; |
| const int mi_row_end = AOMMIN(mi_row_range, cm->mi_rows); |
| const int mi_col_end = AOMMIN(mi_col_range, cm->mi_cols); |
| |
| int row, col; |
| for (row = mi_row_start; row < mi_row_end; ++row) { |
| for (col = mi_col_start; col < mi_col_end; ++col) { |
| // Note: can't use cm->mi_grid_visible. Because for each partition, |
| // all visible pointers will point to the first of the partition. |
| cm->mi[row * cm->mi_stride + col].mbmi.filt_lvl = lvl; |
| } |
| } |
| } |
| #endif // CONFIG_LPF_SB |
| |
| void av1_loop_filter_frame_init(AV1_COMMON *cm, int default_filt_lvl, |
| int default_filt_lvl_r |
| #if CONFIG_LOOPFILTER_LEVEL |
| , |
| int plane |
| #endif |
| ) { |
| int seg_id; |
| // n_shift is the multiplier for lf_deltas |
| // the multiplier is 1 for when filter_lvl is between 0 and 31; |
| // 2 when filter_lvl is between 32 and 63 |
| int scale = 1 << (default_filt_lvl >> 5); |
| loop_filter_info_n *const lfi = &cm->lf_info; |
| struct loopfilter *const lf = &cm->lf; |
| const struct segmentation *const seg = &cm->seg; |
| |
| // update limits if sharpness has changed |
| if (lf->last_sharpness_level != lf->sharpness_level) { |
| update_sharpness(lfi, lf->sharpness_level); |
| lf->last_sharpness_level = lf->sharpness_level; |
| } |
| |
| for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) { |
| for (int dir = 0; dir < 2; ++dir) { |
| int lvl_seg = (dir == 0) ? default_filt_lvl : default_filt_lvl_r; |
| #if CONFIG_LOOPFILTER_LEVEL |
| assert(plane >= 0 && plane <= 2); |
| const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir]; |
| if (segfeature_active(seg, seg_id, seg_lf_feature_id)) { |
| const int data = get_segdata(&cm->seg, seg_id, seg_lf_feature_id); |
| lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); |
| } |
| #else |
| if (segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) { |
| const int data = get_segdata(seg, seg_id, SEG_LVL_ALT_LF); |
| lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); |
| } |
| #endif // CONFIG_LOOPFILTER_LEVEL |
| |
| if (!lf->mode_ref_delta_enabled) { |
| // we could get rid of this if we assume that deltas are set to |
| // zero when not in use; encoder always uses deltas |
| #if CONFIG_LOOPFILTER_LEVEL |
| memset(lfi->lvl[seg_id][dir], lvl_seg, sizeof(lfi->lvl[seg_id][dir])); |
| #else |
| memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id])); |
| #endif // CONFIG_LOOPFILTER_LEVEL |
| } else { |
| int ref, mode; |
| #if CONFIG_LOOPFILTER_LEVEL |
| scale = 1 << (lvl_seg >> 5); |
| |
| const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale; |
| lfi->lvl[seg_id][dir][INTRA_FRAME][0] = |
| clamp(intra_lvl, 0, MAX_LOOP_FILTER); |
| |
| for (ref = LAST_FRAME; ref < TOTAL_REFS_PER_FRAME; ++ref) { |
| for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) { |
| const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale + |
| lf->mode_deltas[mode] * scale; |
| lfi->lvl[seg_id][dir][ref][mode] = |
| clamp(inter_lvl, 0, MAX_LOOP_FILTER); |
| } |
| } |
| #else |
| (void)default_filt_lvl_r; |
| const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale; |
| lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER); |
| |
| for (ref = LAST_FRAME; ref < TOTAL_REFS_PER_FRAME; ++ref) { |
| for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) { |
| const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale + |
| lf->mode_deltas[mode] * scale; |
| lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER); |
| } |
| } |
| #endif |
| } |
| } |
| } |
| } |
| |
| static void filter_selectively_vert_row2(int subsampling_factor, uint8_t *s, |
| int pitch, unsigned int mask_16x16_l, |
| unsigned int mask_8x8_l, |
| unsigned int mask_4x4_l, |
| unsigned int mask_4x4_int_l, |
| const loop_filter_info_n *lfi_n, |
| const uint8_t *lfl) { |
| const int mask_shift = subsampling_factor ? 4 : 8; |
| const int mask_cutoff = subsampling_factor ? 0xf : 0xff; |
| const int lfl_forward = subsampling_factor ? 4 : 8; |
| |
| unsigned int mask_16x16_0 = mask_16x16_l & mask_cutoff; |
| unsigned int mask_8x8_0 = mask_8x8_l & mask_cutoff; |
| unsigned int mask_4x4_0 = mask_4x4_l & mask_cutoff; |
| unsigned int mask_4x4_int_0 = mask_4x4_int_l & mask_cutoff; |
| unsigned int mask_16x16_1 = (mask_16x16_l >> mask_shift) & mask_cutoff; |
| unsigned int mask_8x8_1 = (mask_8x8_l >> mask_shift) & mask_cutoff; |
| unsigned int mask_4x4_1 = (mask_4x4_l >> mask_shift) & mask_cutoff; |
| unsigned int mask_4x4_int_1 = (mask_4x4_int_l >> mask_shift) & mask_cutoff; |
| unsigned int mask; |
| |
| for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_4x4_int_0 | |
| mask_16x16_1 | mask_8x8_1 | mask_4x4_1 | mask_4x4_int_1; |
| mask; mask >>= 1) { |
| const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl; |
| const loop_filter_thresh *lfi1 = lfi_n->lfthr + *(lfl + lfl_forward); |
| |
| if (mask & 1) { |
| if ((mask_16x16_0 | mask_16x16_1) & 1) { |
| if ((mask_16x16_0 & mask_16x16_1) & 1) { |
| aom_lpf_vertical_16_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr); |
| } else if (mask_16x16_0 & 1) { |
| aom_lpf_vertical_16(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); |
| } else { |
| aom_lpf_vertical_16(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } |
| } |
| |
| if ((mask_8x8_0 | mask_8x8_1) & 1) { |
| if ((mask_8x8_0 & mask_8x8_1) & 1) { |
| aom_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } else if (mask_8x8_0 & 1) { |
| aom_lpf_vertical_8(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); |
| } else { |
| aom_lpf_vertical_8(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } |
| } |
| |
| if ((mask_4x4_0 | mask_4x4_1) & 1) { |
| if ((mask_4x4_0 & mask_4x4_1) & 1) { |
| aom_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } else if (mask_4x4_0 & 1) { |
| aom_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); |
| } else { |
| aom_lpf_vertical_4(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } |
| } |
| |
| if ((mask_4x4_int_0 | mask_4x4_int_1) & 1) { |
| if ((mask_4x4_int_0 & mask_4x4_int_1) & 1) { |
| aom_lpf_vertical_4_dual(s + 4, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } else if (mask_4x4_int_0 & 1) { |
| aom_lpf_vertical_4(s + 4, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr); |
| } else { |
| aom_lpf_vertical_4(s + 8 * pitch + 4, pitch, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } |
| } |
| } |
| |
| s += 8; |
| lfl += 1; |
| mask_16x16_0 >>= 1; |
| mask_8x8_0 >>= 1; |
| mask_4x4_0 >>= 1; |
| mask_4x4_int_0 >>= 1; |
| mask_16x16_1 >>= 1; |
| mask_8x8_1 >>= 1; |
| mask_4x4_1 >>= 1; |
| mask_4x4_int_1 >>= 1; |
| } |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| static void highbd_filter_selectively_vert_row2( |
| int subsampling_factor, uint16_t *s, int pitch, unsigned int mask_16x16_l, |
| unsigned int mask_8x8_l, unsigned int mask_4x4_l, |
| unsigned int mask_4x4_int_l, const loop_filter_info_n *lfi_n, |
| const uint8_t *lfl, int bd) { |
| const int mask_shift = subsampling_factor ? 4 : 8; |
| const int mask_cutoff = subsampling_factor ? 0xf : 0xff; |
| const int lfl_forward = subsampling_factor ? 4 : 8; |
| |
| unsigned int mask_16x16_0 = mask_16x16_l & mask_cutoff; |
| unsigned int mask_8x8_0 = mask_8x8_l & mask_cutoff; |
| unsigned int mask_4x4_0 = mask_4x4_l & mask_cutoff; |
| unsigned int mask_4x4_int_0 = mask_4x4_int_l & mask_cutoff; |
| unsigned int mask_16x16_1 = (mask_16x16_l >> mask_shift) & mask_cutoff; |
| unsigned int mask_8x8_1 = (mask_8x8_l >> mask_shift) & mask_cutoff; |
| unsigned int mask_4x4_1 = (mask_4x4_l >> mask_shift) & mask_cutoff; |
| unsigned int mask_4x4_int_1 = (mask_4x4_int_l >> mask_shift) & mask_cutoff; |
| unsigned int mask; |
| |
| for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_4x4_int_0 | |
| mask_16x16_1 | mask_8x8_1 | mask_4x4_1 | mask_4x4_int_1; |
| mask; mask >>= 1) { |
| const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl; |
| const loop_filter_thresh *lfi1 = lfi_n->lfthr + *(lfl + lfl_forward); |
| |
| if (mask & 1) { |
| if ((mask_16x16_0 | mask_16x16_1) & 1) { |
| if ((mask_16x16_0 & mask_16x16_1) & 1) { |
| aom_highbd_lpf_vertical_16_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, bd); |
| } else if (mask_16x16_0 & 1) { |
| aom_highbd_lpf_vertical_16(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, bd); |
| } else { |
| aom_highbd_lpf_vertical_16(s + 8 * pitch, pitch, lfi1->mblim, |
| lfi1->lim, lfi1->hev_thr, bd); |
| } |
| } |
| |
| if ((mask_8x8_0 | mask_8x8_1) & 1) { |
| if ((mask_8x8_0 & mask_8x8_1) & 1) { |
| aom_highbd_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr, bd); |
| } else if (mask_8x8_0 & 1) { |
| aom_highbd_lpf_vertical_8(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, bd); |
| } else { |
| aom_highbd_lpf_vertical_8(s + 8 * pitch, pitch, lfi1->mblim, |
| lfi1->lim, lfi1->hev_thr, bd); |
| } |
| } |
| |
| if ((mask_4x4_0 | mask_4x4_1) & 1) { |
| if ((mask_4x4_0 & mask_4x4_1) & 1) { |
| aom_highbd_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr, bd); |
| } else if (mask_4x4_0 & 1) { |
| aom_highbd_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, bd); |
| } else { |
| aom_highbd_lpf_vertical_4(s + 8 * pitch, pitch, lfi1->mblim, |
| lfi1->lim, lfi1->hev_thr, bd); |
| } |
| } |
| |
| if ((mask_4x4_int_0 | mask_4x4_int_1) & 1) { |
| if ((mask_4x4_int_0 & mask_4x4_int_1) & 1) { |
| aom_highbd_lpf_vertical_4_dual(s + 4, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr, bd); |
| } else if (mask_4x4_int_0 & 1) { |
| aom_highbd_lpf_vertical_4(s + 4, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, bd); |
| } else { |
| aom_highbd_lpf_vertical_4(s + 8 * pitch + 4, pitch, lfi1->mblim, |
| lfi1->lim, lfi1->hev_thr, bd); |
| } |
| } |
| } |
| |
| s += 8; |
| lfl += 1; |
| mask_16x16_0 >>= 1; |
| mask_8x8_0 >>= 1; |
| mask_4x4_0 >>= 1; |
| mask_4x4_int_0 >>= 1; |
| mask_16x16_1 >>= 1; |
| mask_8x8_1 >>= 1; |
| mask_4x4_1 >>= 1; |
| mask_4x4_int_1 >>= 1; |
| } |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| |
| static void filter_selectively_horiz( |
| uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, |
| unsigned int mask_4x4, unsigned int mask_4x4_int, |
| const loop_filter_info_n *lfi_n, const uint8_t *lfl) { |
| unsigned int mask; |
| int count; |
| |
| for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; |
| mask >>= count) { |
| const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl; |
| |
| count = 1; |
| if (mask & 1) { |
| if (mask_16x16 & 1) { |
| if ((mask_16x16 & 3) == 3) { |
| aom_lpf_horizontal_edge_16(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| count = 2; |
| } else { |
| aom_lpf_horizontal_edge_8(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| } |
| } else if (mask_8x8 & 1) { |
| if ((mask_8x8 & 3) == 3) { |
| // Next block's thresholds. |
| const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1); |
| |
| aom_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, lfin->lim, |
| lfin->hev_thr); |
| |
| if ((mask_4x4_int & 3) == 3) { |
| aom_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, lfin->mblim, |
| lfin->lim, lfin->hev_thr); |
| } else { |
| if (mask_4x4_int & 1) |
| aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| else if (mask_4x4_int & 2) |
| aom_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, |
| lfin->lim, lfin->hev_thr); |
| } |
| count = 2; |
| } else { |
| aom_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| |
| if (mask_4x4_int & 1) |
| aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| } |
| } else if (mask_4x4 & 1) { |
| if ((mask_4x4 & 3) == 3) { |
| // Next block's thresholds. |
| const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1); |
| |
| aom_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, lfin->lim, |
| lfin->hev_thr); |
| |
| if ((mask_4x4_int & 3) == 3) { |
| aom_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, lfin->mblim, |
| lfin->lim, lfin->hev_thr); |
| } else { |
| if (mask_4x4_int & 1) |
| aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| else if (mask_4x4_int & 2) |
| aom_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, |
| lfin->lim, lfin->hev_thr); |
| } |
| count = 2; |
| } else { |
| aom_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| |
| if (mask_4x4_int & 1) |
| aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| } |
| } else if (mask_4x4_int & 1) { |
| aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| } |
| } |
| s += 8 * count; |
| lfl += count; |
| mask_16x16 >>= count; |
| mask_8x8 >>= count; |
| mask_4x4 >>= count; |
| mask_4x4_int >>= count; |
| } |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| static void highbd_filter_selectively_horiz( |
| uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, |
| unsigned int mask_4x4, unsigned int mask_4x4_int, |
| const loop_filter_info_n *lfi_n, const uint8_t *lfl, int bd) { |
| unsigned int mask; |
| int count; |
| |
| for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; |
| mask >>= count) { |
| const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl; |
| |
| count = 1; |
| if (mask & 1) { |
| if (mask_16x16 & 1) { |
| if ((mask_16x16 & 3) == 3) { |
| aom_highbd_lpf_horizontal_edge_16(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| count = 2; |
| } else { |
| aom_highbd_lpf_horizontal_edge_8(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| } |
| } else if (mask_8x8 & 1) { |
| if ((mask_8x8 & 3) == 3) { |
| // Next block's thresholds. |
| const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1); |
| |
| aom_highbd_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, lfin->lim, |
| lfin->hev_thr, bd); |
| |
| if ((mask_4x4_int & 3) == 3) { |
| aom_highbd_lpf_horizontal_4_dual( |
| s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, |
| lfin->mblim, lfin->lim, lfin->hev_thr, bd); |
| } else { |
| if (mask_4x4_int & 1) { |
| aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, bd); |
| } else if (mask_4x4_int & 2) { |
| aom_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, |
| lfin->lim, lfin->hev_thr, bd); |
| } |
| } |
| count = 2; |
| } else { |
| aom_highbd_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| |
| if (mask_4x4_int & 1) { |
| aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, bd); |
| } |
| } |
| } else if (mask_4x4 & 1) { |
| if ((mask_4x4 & 3) == 3) { |
| // Next block's thresholds. |
| const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1); |
| |
| aom_highbd_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, lfin->lim, |
| lfin->hev_thr, bd); |
| if ((mask_4x4_int & 3) == 3) { |
| aom_highbd_lpf_horizontal_4_dual( |
| s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, |
| lfin->mblim, lfin->lim, lfin->hev_thr, bd); |
| } else { |
| if (mask_4x4_int & 1) { |
| aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, bd); |
| } else if (mask_4x4_int & 2) { |
| aom_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, |
| lfin->lim, lfin->hev_thr, bd); |
| } |
| } |
| count = 2; |
| } else { |
| aom_highbd_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| |
| if (mask_4x4_int & 1) { |
| aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, bd); |
| } |
| } |
| } else if (mask_4x4_int & 1) { |
| aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| } |
| } |
| s += 8 * count; |
| lfl += count; |
| mask_16x16 >>= count; |
| mask_8x8 >>= count; |
| mask_4x4 >>= count; |
| mask_4x4_int >>= count; |
| } |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| |
| // This function ors into the current lfm structure, where to do loop |
| // filters for the specific mi we are looking at. It uses information |
| // including the block_size_type (32x16, 32x32, etc.), the transform size, |
| // whether there were any coefficients encoded, and the loop filter strength |
| // block we are currently looking at. Shift is used to position the |
| // 1's we produce. |
| // TODO(JBB) Need another function for different resolution color.. |
| static void build_masks(AV1_COMMON *const cm, |
| const loop_filter_info_n *const lfi_n, |
| const MODE_INFO *mi, const int shift_y, |
| const int shift_uv, LOOP_FILTER_MASK *lfm) { |
| const MB_MODE_INFO *mbmi = &mi->mbmi; |
| const BLOCK_SIZE block_size = mbmi->sb_type; |
| // TODO(debargha): Check if masks can be setup correctly when |
| // rectangular transfroms are used with the EXT_TX expt. |
| const TX_SIZE tx_size_y = txsize_sqr_map[mbmi->tx_size]; |
| const TX_SIZE tx_size_y_left = txsize_horz_map[mbmi->tx_size]; |
| const TX_SIZE tx_size_y_above = txsize_vert_map[mbmi->tx_size]; |
| const TX_SIZE tx_size_uv = |
| txsize_sqr_map[uv_txsize_lookup[block_size][mbmi->tx_size][1][1]]; |
| const TX_SIZE tx_size_uv_left = |
| txsize_horz_map[uv_txsize_lookup[block_size][mbmi->tx_size][1][1]]; |
| const TX_SIZE tx_size_uv_above = |
| txsize_vert_map[uv_txsize_lookup[block_size][mbmi->tx_size][1][1]]; |
| #if CONFIG_EXT_DELTA_Q |
| #if CONFIG_LOOPFILTER_LEVEL |
| const int filter_level = get_filter_level(cm, lfi_n, 0, 0, mbmi); |
| #else |
| #if CONFIG_LPF_SB |
| const int filter_level = get_filter_level(cm, lfi_n, 0, 0, mbmi); |
| #else |
| const int filter_level = get_filter_level(cm, lfi_n, mbmi); |
| #endif // CONFIG_LPF_SB |
| #endif |
| #else |
| const int filter_level = get_filter_level(lfi_n, mbmi); |
| (void)cm; |
| #endif |
| uint64_t *const left_y = &lfm->left_y[tx_size_y_left]; |
| uint64_t *const above_y = &lfm->above_y[tx_size_y_above]; |
| uint64_t *const int_4x4_y = &lfm->int_4x4_y; |
| uint16_t *const left_uv = &lfm->left_uv[tx_size_uv_left]; |
| uint16_t *const above_uv = &lfm->above_uv[tx_size_uv_above]; |
| uint16_t *const int_4x4_uv = &lfm->left_int_4x4_uv; |
| int i; |
| |
| // If filter level is 0 we don't loop filter. |
| if (!filter_level) { |
| return; |
| } else { |
| const int w = num_8x8_blocks_wide_lookup[block_size]; |
| const int h = num_8x8_blocks_high_lookup[block_size]; |
| const int row = (shift_y >> MAX_MIB_SIZE_LOG2); |
| const int col = shift_y - (row << MAX_MIB_SIZE_LOG2); |
| |
| for (i = 0; i < h; i++) memset(&lfm->lfl_y[row + i][col], filter_level, w); |
| } |
| |
| // These set 1 in the current block size for the block size edges. |
| // For instance if the block size is 32x16, we'll set: |
| // above = 1111 |
| // 0000 |
| // and |
| // left = 1000 |
| // = 1000 |
| // NOTE : In this example the low bit is left most ( 1000 ) is stored as |
| // 1, not 8... |
| // |
| // U and V set things on a 16 bit scale. |
| // |
| *above_y |= above_prediction_mask[block_size] << shift_y; |
| *above_uv |= above_prediction_mask_uv[block_size] << shift_uv; |
| *left_y |= left_prediction_mask[block_size] << shift_y; |
| *left_uv |= left_prediction_mask_uv[block_size] << shift_uv; |
| |
| // If the block has no coefficients and is not intra we skip applying |
| // the loop filter on block edges. |
| if (mbmi->skip && is_inter_block(mbmi)) return; |
| |
| // Here we are adding a mask for the transform size. The transform |
| // size mask is set to be correct for a 64x64 prediction block size. We |
| // mask to match the size of the block we are working on and then shift it |
| // into place.. |
| *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y_above]) |
| << shift_y; |
| *above_uv |= |
| (size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv_above]) |
| << shift_uv; |
| |
| *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y_left]) |
| << shift_y; |
| *left_uv |= |
| (size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv_left]) |
| << shift_uv; |
| |
| // Here we are trying to determine what to do with the internal 4x4 block |
| // boundaries. These differ from the 4x4 boundaries on the outside edge of |
| // an 8x8 in that the internal ones can be skipped and don't depend on |
| // the prediction block size. |
| if (tx_size_y == TX_4X4) |
| *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y; |
| |
| if (tx_size_uv == TX_4X4) |
| *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv; |
| } |
| |
| // This function does the same thing as the one above with the exception that |
| // it only affects the y masks. It exists because for blocks < 16x16 in size, |
| // we only update u and v masks on the first block. |
| static void build_y_mask(AV1_COMMON *const cm, |
| const loop_filter_info_n *const lfi_n, |
| const MODE_INFO *mi, const int shift_y, |
| LOOP_FILTER_MASK *lfm) { |
| const MB_MODE_INFO *mbmi = &mi->mbmi; |
| const TX_SIZE tx_size_y = txsize_sqr_map[mbmi->tx_size]; |
| const TX_SIZE tx_size_y_left = txsize_horz_map[mbmi->tx_size]; |
| const TX_SIZE tx_size_y_above = txsize_vert_map[mbmi->tx_size]; |
| const BLOCK_SIZE block_size = mbmi->sb_type; |
| #if CONFIG_EXT_DELTA_Q |
| #if CONFIG_LOOPFILTER_LEVEL |
| const int filter_level = get_filter_level(cm, lfi_n, 0, 0, mbmi); |
| #else |
| #if CONFIG_LPF_SB |
| const int filter_level = get_filter_level(cm, lfi_n, 0, 0, mbmi); |
| #else |
| const int filter_level = get_filter_level(cm, lfi_n, mbmi); |
| #endif // CONFIG_LPF_SB |
| #endif |
| #else |
| const int filter_level = get_filter_level(lfi_n, mbmi); |
| (void)cm; |
| #endif |
| uint64_t *const left_y = &lfm->left_y[tx_size_y_left]; |
| uint64_t *const above_y = &lfm->above_y[tx_size_y_above]; |
| uint64_t *const int_4x4_y = &lfm->int_4x4_y; |
| int i; |
| |
| if (!filter_level) { |
| return; |
| } else { |
| const int w = num_8x8_blocks_wide_lookup[block_size]; |
| const int h = num_8x8_blocks_high_lookup[block_size]; |
| const int row = (shift_y >> MAX_MIB_SIZE_LOG2); |
| const int col = shift_y - (row << MAX_MIB_SIZE_LOG2); |
| |
| for (i = 0; i < h; i++) memset(&lfm->lfl_y[row + i][col], filter_level, w); |
| } |
| |
| *above_y |= above_prediction_mask[block_size] << shift_y; |
| *left_y |= left_prediction_mask[block_size] << shift_y; |
| |
| if (mbmi->skip && is_inter_block(mbmi)) return; |
| |
| *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y_above]) |
| << shift_y; |
| |
| *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y_left]) |
| << shift_y; |
| |
| if (tx_size_y == TX_4X4) |
| *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y; |
| } |
| |
| #if CONFIG_LOOPFILTERING_ACROSS_TILES |
| // This function update the bit masks for the entire 64x64 region represented |
| // by mi_row, mi_col. In case one of the edge is a tile boundary, loop filtering |
| // for that edge is disabled. This function only check the tile boundary info |
| // for the top left corner mi to determine the boundary information for the |
| // top and left edge of the whole super block |
| static void update_tile_boundary_filter_mask(AV1_COMMON *const cm, |
| const int mi_row, const int mi_col, |
| LOOP_FILTER_MASK *lfm) { |
| int i; |
| MODE_INFO *const mi = cm->mi + mi_row * cm->mi_stride + mi_col; |
| |
| if (mi->mbmi.boundary_info & TILE_LEFT_BOUNDARY) { |
| for (i = 0; i <= TX_32X32; i++) { |
| lfm->left_y[i] &= 0xfefefefefefefefeULL; |
| lfm->left_uv[i] &= 0xeeee; |
| } |
| } |
| |
| if (mi->mbmi.boundary_info & TILE_ABOVE_BOUNDARY) { |
| for (i = 0; i <= TX_32X32; i++) { |
| lfm->above_y[i] &= 0xffffffffffffff00ULL; |
| lfm->above_uv[i] &= 0xfff0; |
| } |
| } |
| } |
| #endif // CONFIG_LOOPFILTERING_ACROSS_TILES |
| |
| // This function sets up the bit masks for the entire 64x64 region represented |
| // by mi_row, mi_col. |
| // TODO(JBB): This function only works for yv12. |
| void av1_setup_mask(AV1_COMMON *const cm, const int mi_row, const int mi_col, |
| MODE_INFO **mi, const int mode_info_stride, |
| LOOP_FILTER_MASK *lfm) { |
| #if CONFIG_EXT_PARTITION |
| assert(0 && "Not yet updated"); |
| #endif // CONFIG_EXT_PARTITION |
| int idx_32, idx_16, idx_8; |
| const loop_filter_info_n *const lfi_n = &cm->lf_info; |
| MODE_INFO **mip = mi; |
| MODE_INFO **mip2 = mi; |
| |
| // These are offsets to the next mi in the 64x64 block. It is what gets |
| // added to the mi ptr as we go through each loop. It helps us to avoid |
| // setting up special row and column counters for each index. The last step |
| // brings us out back to the starting position. |
| const int offset_32[] = { 4, (mode_info_stride << 2) - 4, 4, |
| -(mode_info_stride << 2) - 4 }; |
| const int offset_16[] = { 2, (mode_info_stride << 1) - 2, 2, |
| -(mode_info_stride << 1) - 2 }; |
| const int offset[] = { 1, mode_info_stride - 1, 1, -mode_info_stride - 1 }; |
| |
| // Following variables represent shifts to position the current block |
| // mask over the appropriate block. A shift of 36 to the left will move |
| // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left |
| // 4 rows to the appropriate spot. |
| const int shift_32_y[] = { 0, 4, 32, 36 }; |
| const int shift_16_y[] = { 0, 2, 16, 18 }; |
| const int shift_8_y[] = { 0, 1, 8, 9 }; |
| const int shift_32_uv[] = { 0, 2, 8, 10 }; |
| const int shift_16_uv[] = { 0, 1, 4, 5 }; |
| int i; |
| const int max_rows = AOMMIN(cm->mi_rows - mi_row, MAX_MIB_SIZE); |
| const int max_cols = AOMMIN(cm->mi_cols - mi_col, MAX_MIB_SIZE); |
| |
| av1_zero(*lfm); |
| assert(mip[0] != NULL); |
| |
| // TODO(jimbankoski): Try moving most of the following code into decode |
| // loop and storing lfm in the mbmi structure so that we don't have to go |
| // through the recursive loop structure multiple times. |
| switch (mip[0]->mbmi.sb_type) { |
| case BLOCK_64X64: build_masks(cm, lfi_n, mip[0], 0, 0, lfm); break; |
| case BLOCK_64X32: |
| build_masks(cm, lfi_n, mip[0], 0, 0, lfm); |
| mip2 = mip + mode_info_stride * 4; |
| if (4 >= max_rows) break; |
| build_masks(cm, lfi_n, mip2[0], 32, 8, lfm); |
| break; |
| case BLOCK_32X64: |
| build_masks(cm, lfi_n, mip[0], 0, 0, lfm); |
| mip2 = mip + 4; |
| if (4 >= max_cols) break; |
| build_masks(cm, lfi_n, mip2[0], 4, 2, lfm); |
| break; |
| default: |
| for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) { |
| const int shift_y_32 = shift_32_y[idx_32]; |
| const int shift_uv_32 = shift_32_uv[idx_32]; |
| const int mi_32_col_offset = ((idx_32 & 1) << 2); |
| const int mi_32_row_offset = ((idx_32 >> 1) << 2); |
| if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows) |
| continue; |
| switch (mip[0]->mbmi.sb_type) { |
| case BLOCK_32X32: |
| build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm); |
| break; |
| case BLOCK_32X16: |
| build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm); |
| if (mi_32_row_offset + 2 >= max_rows) continue; |
| mip2 = mip + mode_info_stride * 2; |
| build_masks(cm, lfi_n, mip2[0], shift_y_32 + 16, shift_uv_32 + 4, |
| lfm); |
| break; |
| case BLOCK_16X32: |
| build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm); |
| if (mi_32_col_offset + 2 >= max_cols) continue; |
| mip2 = mip + 2; |
| build_masks(cm, lfi_n, mip2[0], shift_y_32 + 2, shift_uv_32 + 1, |
| lfm); |
| break; |
| default: |
| for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) { |
| const int shift_y_32_16 = shift_y_32 + shift_16_y[idx_16]; |
| const int shift_uv_32_16 = shift_uv_32 + shift_16_uv[idx_16]; |
| const int mi_16_col_offset = |
| mi_32_col_offset + ((idx_16 & 1) << 1); |
| const int mi_16_row_offset = |
| mi_32_row_offset + ((idx_16 >> 1) << 1); |
| |
| if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows) |
| continue; |
| |
| switch (mip[0]->mbmi.sb_type) { |
| case BLOCK_16X16: |
| build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16, |
| lfm); |
| break; |
| case BLOCK_16X8: |
| build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16, |
| lfm); |
| if (mi_16_row_offset + 1 >= max_rows) continue; |
| mip2 = mip + mode_info_stride; |
| build_y_mask(cm, lfi_n, mip2[0], shift_y_32_16 + 8, lfm); |
| break; |
| case BLOCK_8X16: |
| build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16, |
| lfm); |
| if (mi_16_col_offset + 1 >= max_cols) continue; |
| mip2 = mip + 1; |
| build_y_mask(cm, lfi_n, mip2[0], shift_y_32_16 + 1, lfm); |
| break; |
| default: { |
| const int shift_y_32_16_8_zero = shift_y_32_16 + shift_8_y[0]; |
| build_masks(cm, lfi_n, mip[0], shift_y_32_16_8_zero, |
| shift_uv_32_16, lfm); |
| mip += offset[0]; |
| for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) { |
| const int shift_y_32_16_8 = |
| shift_y_32_16 + shift_8_y[idx_8]; |
| const int mi_8_col_offset = |
| mi_16_col_offset + ((idx_8 & 1)); |
| const int mi_8_row_offset = |
| mi_16_row_offset + ((idx_8 >> 1)); |
| |
| if (mi_8_col_offset >= max_cols || |
| mi_8_row_offset >= max_rows) |
| continue; |
| build_y_mask(cm, lfi_n, mip[0], shift_y_32_16_8, lfm); |
| } |
| break; |
| } |
| } |
| } |
| break; |
| } |
| } |
| break; |
| } |
| // The largest loopfilter we have is 16x16 so we use the 16x16 mask |
| // for 32x32 transforms also. |
| lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32]; |
| lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32]; |
| lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32]; |
| lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32]; |
| |
| // We do at least 8 tap filter on every 32x32 even if the transform size |
| // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and |
| // remove it from the 4x4. |
| lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border; |
| lfm->left_y[TX_4X4] &= ~left_border; |
| lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border; |
| lfm->above_y[TX_4X4] &= ~above_border; |
| lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv; |
| lfm->left_uv[TX_4X4] &= ~left_border_uv; |
| lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv; |
| lfm->above_uv[TX_4X4] &= ~above_border_uv; |
| |
| // We do some special edge handling. |
| if (mi_row + MAX_MIB_SIZE > cm->mi_rows) { |
| const uint64_t rows = cm->mi_rows - mi_row; |
| |
| // Each pixel inside the border gets a 1, |
| const uint64_t mask_y = (((uint64_t)1 << (rows << MAX_MIB_SIZE_LOG2)) - 1); |
| const uint16_t mask_uv = |
| (((uint16_t)1 << (((rows + 1) >> 1) << (MAX_MIB_SIZE_LOG2 - 1))) - 1); |
| |
| // Remove values completely outside our border. |
| for (i = 0; i < TX_32X32; i++) { |
| lfm->left_y[i] &= mask_y; |
| lfm->above_y[i] &= mask_y; |
| lfm->left_uv[i] &= mask_uv; |
| lfm->above_uv[i] &= mask_uv; |
| } |
| lfm->int_4x4_y &= mask_y; |
| lfm->above_int_4x4_uv = lfm->left_int_4x4_uv & mask_uv; |
| |
| // We don't apply a wide loop filter on the last uv block row. If set |
| // apply the shorter one instead. |
| if (rows == 1) { |
| lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16]; |
| lfm->above_uv[TX_16X16] = 0; |
| } |
| if (rows == 5) { |
| lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00; |
| lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00); |
| } |
| } else { |
| lfm->above_int_4x4_uv = lfm->left_int_4x4_uv; |
| } |
| |
| if (mi_col + MAX_MIB_SIZE > cm->mi_cols) { |
| const uint64_t columns = cm->mi_cols - mi_col; |
| |
| // Each pixel inside the border gets a 1, the multiply copies the border |
| // to where we need it. |
| const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101ULL; |
| const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111; |
| |
| // Internal edges are not applied on the last column of the image so |
| // we mask 1 more for the internal edges |
| const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111; |
| |
| // Remove the bits outside the image edge. |
| for (i = 0; i < TX_32X32; i++) { |
| lfm->left_y[i] &= mask_y; |
| lfm->above_y[i] &= mask_y; |
| lfm->left_uv[i] &= mask_uv; |
| lfm->above_uv[i] &= mask_uv; |
| } |
| lfm->int_4x4_y &= mask_y; |
| lfm->left_int_4x4_uv &= mask_uv_int; |
| |
| // We don't apply a wide loop filter on the last uv column. If set |
| // apply the shorter one instead. |
| if (columns == 1) { |
| lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16]; |
| lfm->left_uv[TX_16X16] = 0; |
| } |
| if (columns == 5) { |
| lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc); |
| lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc); |
| } |
| } |
| // We don't apply a loop filter on the first column in the image, mask that |
| // out. |
| if (mi_col == 0) { |
| for (i = 0; i < TX_32X32; i++) { |
| lfm->left_y[i] &= 0xfefefefefefefefeULL; |
| lfm->left_uv[i] &= 0xeeee; |
| } |
| } |
| |
| #if CONFIG_LOOPFILTERING_ACROSS_TILES |
| if (av1_disable_loopfilter_on_tile_boundary(cm)) { |
| update_tile_boundary_filter_mask(cm, mi_row, mi_col, lfm); |
| } |
| #endif // CONFIG_LOOPFILTERING_ACROSS_TILES |
| |
| // Assert if we try to apply 2 different loop filters at the same position. |
| assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8])); |
| assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4])); |
| assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4])); |
| assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16])); |
| assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_8X8])); |
| assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4])); |
| assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4])); |
| assert(!(lfm->left_int_4x4_uv & lfm->left_uv[TX_16X16])); |
| assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8])); |
| assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4])); |
| assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4])); |
| assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16])); |
| assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8])); |
| assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4])); |
| assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4])); |
| assert(!(lfm->above_int_4x4_uv & lfm->above_uv[TX_16X16])); |
| } |
| |
| static void filter_selectively_vert( |
| uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, |
| unsigned int mask_4x4, unsigned int mask_4x4_int, |
| const loop_filter_info_n *lfi_n, const uint8_t *lfl) { |
| unsigned int mask; |
| |
| for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; |
| mask >>= 1) { |
| const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl; |
| |
| if (mask & 1) { |
| if (mask_16x16 & 1) { |
| aom_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| } else if (mask_8x8 & 1) { |
| aom_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| } else if (mask_4x4 & 1) { |
| aom_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| } |
| } |
| if (mask_4x4_int & 1) |
| aom_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| s += 8; |
| lfl += 1; |
| mask_16x16 >>= 1; |
| mask_8x8 >>= 1; |
| mask_4x4 >>= 1; |
| mask_4x4_int >>= 1; |
| } |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| static void highbd_filter_selectively_vert( |
| uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, |
| unsigned int mask_4x4, unsigned int mask_4x4_int, |
| const loop_filter_info_n *lfi_n, const uint8_t *lfl, int bd) { |
| unsigned int mask; |
| |
| for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; |
| mask >>= 1) { |
| const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl; |
| |
| if (mask & 1) { |
| if (mask_16x16 & 1) { |
| aom_highbd_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, |
| bd); |
| } else if (mask_8x8 & 1) { |
| aom_highbd_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, |
| bd); |
| } else if (mask_4x4 & 1) { |
| aom_highbd_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, |
| bd); |
| } |
| } |
| if (mask_4x4_int & 1) |
| aom_highbd_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| s += 8; |
| lfl += 1; |
| mask_16x16 >>= 1; |
| mask_8x8 >>= 1; |
| mask_4x4 >>= 1; |
| mask_4x4_int >>= 1; |
| } |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| |
| typedef struct { |
| unsigned int m16x16; |
| unsigned int m8x8; |
| unsigned int m4x4; |
| } FilterMasks; |
| |
| // Get filter level and masks for the given row index 'idx_r'. (Only used for |
| // the non420 case). |
| // Note: 'row_masks_ptr' and/or 'col_masks_ptr' can be passed NULL. |
| static void get_filter_level_and_masks_non420( |
| AV1_COMMON *const cm, const struct macroblockd_plane *const plane, int pl, |
| MODE_INFO **mib, int mi_row, int mi_col, int idx_r, uint8_t *const lfl_r, |
| unsigned int *const mask_4x4_int_r_ptr, |
| unsigned int *const mask_4x4_int_c_ptr, FilterMasks *const row_masks_ptr, |
| FilterMasks *const col_masks_ptr) { |
| const int ss_x = plane->subsampling_x; |
| const int ss_y = plane->subsampling_y; |
| const int col_step = mi_size_wide[BLOCK_8X8] << ss_x; |
| FilterMasks row_masks, col_masks; |
| memset(&row_masks, 0, sizeof(row_masks)); |
| memset(&col_masks, 0, sizeof(col_masks)); |
| unsigned int mask_4x4_int_r = 0, mask_4x4_int_c = 0; |
| const int r = idx_r >> mi_height_log2_lookup[BLOCK_8X8]; |
| |
| // Determine the vertical edges that need filtering |
| int idx_c; |
| for (idx_c = 0; idx_c < cm->mib_size && mi_col + idx_c < cm->mi_cols; |
| idx_c += col_step) { |
| const MODE_INFO *mi = mib[idx_r * cm->mi_stride + idx_c]; |
| const MB_MODE_INFO *mbmi = &mi[0].mbmi; |
| const BLOCK_SIZE sb_type = mbmi->sb_type; |
| const int skip_this = mbmi->skip && is_inter_block(mbmi); |
| // Map index to 8x8 unit |
| const int c = idx_c >> mi_width_log2_lookup[BLOCK_8X8]; |
| |
| const int blk_row = r & (num_8x8_blocks_high_lookup[sb_type] - 1); |
| const int blk_col = c & (num_8x8_blocks_wide_lookup[sb_type] - 1); |
| |
| // left edge of current unit is block/partition edge -> no skip |
| const int block_edge_left = |
| (num_4x4_blocks_wide_lookup[sb_type] > 1) ? !blk_col : 1; |
| const int skip_this_c = skip_this && !block_edge_left; |
| // top edge of current unit is block/partition edge -> no skip |
| const int block_edge_above = |
| (num_4x4_blocks_high_lookup[sb_type] > 1) ? !blk_row : 1; |
| const int skip_this_r = skip_this && !block_edge_above; |
| |
| TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV) |
| ? av1_get_uv_tx_size(mbmi, plane) |
| : mbmi->tx_size; |
| |
| const int skip_border_4x4_c = |
| ss_x && mi_col + idx_c >= cm->mi_cols - mi_size_wide[BLOCK_8X8]; |
| const int skip_border_4x4_r = |
| ss_y && mi_row + idx_r >= cm->mi_rows - mi_size_high[BLOCK_8X8]; |
| |
| int tx_size_mask = 0; |
| const int c_step = (c >> ss_x); |
| const int r_step = (r >> ss_y); |
| const int col_mask = 1 << c_step; |
| |
| if (is_inter_block(mbmi) && !mbmi->skip) { |
| const int tx_row_idx = |
| (blk_row * mi_size_high[BLOCK_8X8] << TX_UNIT_HIGH_LOG2) >> 1; |
| const int tx_col_idx = |
| (blk_col * mi_size_wide[BLOCK_8X8] << TX_UNIT_WIDE_LOG2) >> 1; |
| const BLOCK_SIZE bsize = |
| AOMMAX(BLOCK_4X4, get_plane_block_size(mbmi->sb_type, plane)); |
| const TX_SIZE mb_tx_size = mbmi->inter_tx_size[tx_row_idx][tx_col_idx]; |
| tx_size = (plane->plane_type == PLANE_TYPE_UV) |
| ? uv_txsize_lookup[bsize][mb_tx_size][0][0] |
| : mb_tx_size; |
| } |
| |
| // Filter level can vary per MI |
| #if CONFIG_EXT_DELTA_Q |
| #if CONFIG_LOOPFILTER_LEVEL |
| if (!(lfl_r[c_step] = get_filter_level(cm, &cm->lf_info, 0, 0, mbmi))) |
| continue; |
| #else |
| #if CONFIG_LPF_SB |
| if (!(lfl_r[c_step] = |
| get_filter_level(cm, &cm->lf_info, mi_row, mi_col, mbmi))) |
| continue; |
| #else |
| if (!(lfl_r[c_step] = get_filter_level(cm, &cm->lf_info, mbmi))) continue; |
| #endif // CONFIG_LPF_SB |
| #endif |
| #else |
| if (!(lfl_r[c_step] = get_filter_level(&cm->lf_info, mbmi))) continue; |
| #endif |
| |
| TX_SIZE tx_size_horz_edge, tx_size_vert_edge; |
| |
| // filt_len_vert_edge is the length of deblocking filter for a vertical edge |
| // The filter direction of a vertical edge is horizontal. |
| // Thus, filt_len_vert_edge is determined as the minimum width of the two |
| // transform block sizes on the left and right (current block) side of edge |
| const int filt_len_vert_edge = AOMMIN( |
| tx_size_wide[tx_size], |
| tx_size_wide[cm->left_txfm_context[pl][((mi_row + idx_r) & MAX_MIB_MASK) |
| << TX_UNIT_HIGH_LOG2]]); |
| |
| // filt_len_horz_edge is the len of deblocking filter for a horizontal edge |
| // The filter direction of a horizontal edge is vertical. |
| // Thus, filt_len_horz_edge is determined as the minimum height of the two |
| // transform block sizes on the top and bottom (current block) side of edge |
| const int filt_len_horz_edge = |
| AOMMIN(tx_size_high[tx_size], |
| tx_size_high[cm->top_txfm_context[pl][(mi_col + idx_c) |
| << TX_UNIT_WIDE_LOG2]]); |
| |
| // transform width/height of current block |
| const int tx_wide_cur = tx_size_wide[tx_size]; |
| const int tx_high_cur = tx_size_high[tx_size]; |
| |
| // tx_size_vert_edge is square transform size for a vertical deblocking edge |
| // It determines the type of filter applied to the vertical edge |
| // Similarly, tx_size_horz_edge is for a horizontal deblocking edge |
| tx_size_vert_edge = get_sqr_tx_size(filt_len_vert_edge); |
| tx_size_horz_edge = get_sqr_tx_size(filt_len_horz_edge); |
| |
| memset(cm->top_txfm_context[pl] + ((mi_col + idx_c) << TX_UNIT_WIDE_LOG2), |
| tx_size, mi_size_wide[BLOCK_8X8] << TX_UNIT_WIDE_LOG2); |
| memset(cm->left_txfm_context[pl] + |
| (((mi_row + idx_r) & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2), |
| tx_size, mi_size_high[BLOCK_8X8] << TX_UNIT_HIGH_LOG2); |
| |
| if (tx_size_vert_edge == TX_32X32) |
| tx_size_mask = 3; |
| else if (tx_size_vert_edge == TX_16X16) |
| tx_size_mask = 1; |
| else |
| tx_size_mask = 0; |
| |
| // Build masks based on the transform size of each block |
| // handle vertical mask |
| if (tx_size_vert_edge == TX_32X32) { |
| if (!skip_this_c && (c_step & tx_size_mask) == 0) { |
| if (!skip_border_4x4_c) |
| col_masks.m16x16 |= col_mask; |
| else |
| col_masks.m8x8 |= col_mask; |
| } |
| } else if (tx_size_vert_edge == TX_16X16) { |
| if (!skip_this_c && (c_step & tx_size_mask) == 0) { |
| if (!skip_border_4x4_c) |
| col_masks.m16x16 |= col_mask; |
| else |
| col_masks.m8x8 |= col_mask; |
| } |
| } else { |
| // force 8x8 filtering on 32x32 boundaries |
| if (!skip_this_c && (c_step & tx_size_mask) == 0) { |
| if (tx_size_vert_edge == TX_8X8 || (c_step & 3) == 0) |
| col_masks.m8x8 |= col_mask; |
| else |
| col_masks.m4x4 |= col_mask; |
| } |
| |
| if (!skip_this && tx_wide_cur < 8 && !skip_border_4x4_c && |
| (c_step & tx_size_mask) == 0) |
| mask_4x4_int_c |= col_mask; |
| } |
| |
| if (tx_size_horz_edge == TX_32X32) |
| tx_size_mask = 3; |
| else if (tx_size_horz_edge == TX_16X16) |
| tx_size_mask = 1; |
| else |
| tx_size_mask = 0; |
| |
| // set horizontal mask |
| if (tx_size_horz_edge == TX_32X32) { |
| if (!skip_this_r && (r_step & tx_size_mask) == 0) { |
| if (!skip_border_4x4_r) |
| row_masks.m16x16 |= col_mask; |
| else |
| row_masks.m8x8 |= col_mask; |
| } |
| } else if (tx_size_horz_edge == TX_16X16) { |
| if (!skip_this_r && (r_step & tx_size_mask) == 0) { |
| if (!skip_border_4x4_r) |
| row_masks.m16x16 |= col_mask; |
| else |
| row_masks.m8x8 |= col_mask; |
| } |
| } else { |
| // force 8x8 filtering on 32x32 boundaries |
| if (!skip_this_r && (r_step & tx_size_mask) == 0) { |
| if (tx_size_horz_edge == TX_8X8 || (r_step & 3) == 0) |
| row_masks.m8x8 |= col_mask; |
| else |
| row_masks.m4x4 |= col_mask; |
| } |
| |
| if (!skip_this && tx_high_cur < 8 && !skip_border_4x4_r && |
| (r_step & tx_size_mask) == 0) |
| mask_4x4_int_r |= col_mask; |
| } |
| } |
| |
| if (row_masks_ptr) *row_masks_ptr = row_masks; |
| if (col_masks_ptr) *col_masks_ptr = col_masks; |
| if (mask_4x4_int_c_ptr) *mask_4x4_int_c_ptr = mask_4x4_int_c; |
| if (mask_4x4_int_r_ptr) *mask_4x4_int_r_ptr = mask_4x4_int_r; |
| } |
| |
| void av1_filter_block_plane_non420_ver(AV1_COMMON *const cm, |
| struct macroblockd_plane *plane, |
| MODE_INFO **mib, int mi_row, int mi_col, |
| int pl) { |
| const int ss_y = plane->subsampling_y; |
| const int row_step = mi_size_high[BLOCK_8X8] << ss_y; |
| struct buf_2d *const dst = &plane->dst; |
| uint8_t *const dst0 = dst->buf; |
| uint8_t lfl[MAX_MIB_SIZE][MAX_MIB_SIZE] = { { 0 } }; |
| |
| int idx_r; |
| for (idx_r = 0; idx_r < cm->mib_size && mi_row + idx_r < cm->mi_rows; |
| idx_r += row_step) { |
| unsigned int mask_4x4_int; |
| FilterMasks col_masks; |
| const int r = idx_r >> mi_height_log2_lookup[BLOCK_8X8]; |
| get_filter_level_and_masks_non420(cm, plane, pl, mib, mi_row, mi_col, idx_r, |
| &lfl[r][0], NULL, &mask_4x4_int, NULL, |
| &col_masks); |
| |
| // Disable filtering on the leftmost column or tile boundary |
| unsigned int border_mask = ~(mi_col == 0 ? 1 : 0); |
| #if CONFIG_LOOPFILTERING_ACROSS_TILES |
| MODE_INFO *const mi = cm->mi + (mi_row + idx_r) * cm->mi_stride + mi_col; |
| if (av1_disable_loopfilter_on_tile_boundary(cm) && |
| ((mi->mbmi.boundary_info & TILE_LEFT_BOUNDARY) != 0)) { |
| border_mask = 0xfffffffe; |
| } |
| #endif // CONFIG_LOOPFILTERING_ACROSS_TILES |
| |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| highbd_filter_selectively_vert( |
| CONVERT_TO_SHORTPTR(dst->buf), dst->stride, |
| col_masks.m16x16 & border_mask, col_masks.m8x8 & border_mask, |
| col_masks.m4x4 & border_mask, mask_4x4_int, &cm->lf_info, &lfl[r][0], |
| (int)cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| filter_selectively_vert( |
| dst->buf, dst->stride, col_masks.m16x16 & border_mask, |
| col_masks.m8x8 & border_mask, col_masks.m4x4 & border_mask, |
| mask_4x4_int, &cm->lf_info, &lfl[r][0]); |
| dst->buf += 8 * dst->stride; |
| } |
| |
| // Now do horizontal pass |
| dst->buf = dst0; |
| } |
| |
| void av1_filter_block_plane_non420_hor(AV1_COMMON *const cm, |
| struct macroblockd_plane *plane, |
| MODE_INFO **mib, int mi_row, int mi_col, |
| int pl) { |
| const int ss_y = plane->subsampling_y; |
| const int row_step = mi_size_high[BLOCK_8X8] << ss_y; |
| struct buf_2d *const dst = &plane->dst; |
| uint8_t *const dst0 = dst->buf; |
| uint8_t lfl[MAX_MIB_SIZE][MAX_MIB_SIZE] = { { 0 } }; |
| |
| int idx_r; |
| for (idx_r = 0; idx_r < cm->mib_size && mi_row + idx_r < cm->mi_rows; |
| idx_r += row_step) { |
| unsigned int mask_4x4_int; |
| FilterMasks row_masks; |
| const int r = idx_r >> mi_height_log2_lookup[BLOCK_8X8]; |
| get_filter_level_and_masks_non420(cm, plane, pl, mib, mi_row, mi_col, idx_r, |
| &lfl[r][0], &mask_4x4_int, NULL, |
| &row_masks, NULL); |
| |
| #if CONFIG_LOOPFILTERING_ACROSS_TILES |
| // Disable filtering on the abovemost row or tile boundary |
| const MODE_INFO *mi = cm->mi + (mi_row + idx_r) * cm->mi_stride + mi_col; |
| if ((av1_disable_loopfilter_on_tile_boundary(cm) && |
| (mi->mbmi.boundary_info & TILE_ABOVE_BOUNDARY)) || |
| (mi_row + idx_r == 0)) |
| memset(&row_masks, 0, sizeof(row_masks)); |
| #else |
| if (mi_row + idx_r == 0) memset(&row_masks, 0, sizeof(row_masks)); |
| #endif // CONFIG_LOOPFILTERING_ACROSS_TILES |
| |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| highbd_filter_selectively_horiz( |
| CONVERT_TO_SHORTPTR(dst->buf), dst->stride, row_masks.m16x16, |
| row_masks.m8x8, row_masks.m4x4, mask_4x4_int, &cm->lf_info, |
| &lfl[r][0], (int)cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| filter_selectively_horiz(dst->buf, dst->stride, row_masks.m16x16, |
| row_masks.m8x8, row_masks.m4x4, mask_4x4_int, |
| &cm->lf_info, &lfl[r][0]); |
| dst->buf += 8 * dst->stride; |
| } |
| dst->buf = dst0; |
| } |
| |
| void av1_filter_block_plane_ss00_ver(AV1_COMMON *const cm, |
| struct macroblockd_plane *const plane, |
| int mi_row, LOOP_FILTER_MASK *lfm) { |
| struct buf_2d *const dst = &plane->dst; |
| uint8_t *const dst0 = dst->buf; |
| int r; |
| uint64_t mask_16x16 = lfm->left_y[TX_16X16]; |
| uint64_t mask_8x8 = lfm->left_y[TX_8X8]; |
| uint64_t mask_4x4 = lfm->left_y[TX_4X4]; |
| uint64_t mask_4x4_int = lfm->int_4x4_y; |
| |
| assert(plane->subsampling_x == 0 && plane->subsampling_y == 0); |
| |
| // Vertical pass: do 2 rows at one time |
| for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 2) { |
| unsigned int mask_16x16_l = mask_16x16 & 0xffff; |
| unsigned int mask_8x8_l = mask_8x8 & 0xffff; |
| unsigned int mask_4x4_l = mask_4x4 & 0xffff; |
| unsigned int mask_4x4_int_l = mask_4x4_int & 0xffff; |
| |
| // Disable filtering on the leftmost column. |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| highbd_filter_selectively_vert_row2( |
| plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride, |
| mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info, |
| &lfm->lfl_y[r][0], (int)cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| filter_selectively_vert_row2( |
| plane->subsampling_x, dst->buf, dst->stride, mask_16x16_l, mask_8x8_l, |
| mask_4x4_l, mask_4x4_int_l, &cm->lf_info, &lfm->lfl_y[r][0]); |
| |
| dst->buf += 2 * MI_SIZE * dst->stride; |
| mask_16x16 >>= 2 * MI_SIZE; |
| mask_8x8 >>= 2 * MI_SIZE; |
| mask_4x4 >>= 2 * MI_SIZE; |
| mask_4x4_int >>= 2 * MI_SIZE; |
| } |
| |
| // Horizontal pass |
| dst->buf = dst0; |
| } |
| |
| void av1_filter_block_plane_ss00_hor(AV1_COMMON *const cm, |
| struct macroblockd_plane *const plane, |
| int mi_row, LOOP_FILTER_MASK *lfm) { |
| struct buf_2d *const dst = &plane->dst; |
| uint8_t *const dst0 = dst->buf; |
| int r; |
| uint64_t mask_16x16 = lfm->above_y[TX_16X16]; |
| uint64_t mask_8x8 = lfm->above_y[TX_8X8]; |
| uint64_t mask_4x4 = lfm->above_y[TX_4X4]; |
| uint64_t mask_4x4_int = lfm->int_4x4_y; |
| |
| assert(plane->subsampling_x == 0 && plane->subsampling_y == 0); |
| |
| for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r++) { |
| unsigned int mask_16x16_r; |
| unsigned int mask_8x8_r; |
| unsigned int mask_4x4_r; |
| |
| if (mi_row + r == 0) { |
| mask_16x16_r = 0; |
| mask_8x8_r = 0; |
| mask_4x4_r = 0; |
| } else { |
| mask_16x16_r = mask_16x16 & 0xff; |
| mask_8x8_r = mask_8x8 & 0xff; |
| mask_4x4_r = mask_4x4 & 0xff; |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| highbd_filter_selectively_horiz( |
| CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r, |
| mask_4x4_r, mask_4x4_int & 0xff, &cm->lf_info, &lfm->lfl_y[r][0], |
| (int)cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r, |
| mask_4x4_r, mask_4x4_int & 0xff, &cm->lf_info, |
| &lfm->lfl_y[r][0]); |
| |
| dst->buf += MI_SIZE * dst->stride; |
| mask_16x16 >>= MI_SIZE; |
| mask_8x8 >>= MI_SIZE; |
| mask_4x4 >>= MI_SIZE; |
| mask_4x4_int >>= MI_SIZE; |
| } |
| // restore the buf pointer in case there is additional filter pass. |
| dst->buf = dst0; |
| } |
| |
| void av1_filter_block_plane_ss11_ver(AV1_COMMON *const cm, |
| struct macroblockd_plane *const plane, |
| int mi_row, LOOP_FILTER_MASK *lfm) { |
| struct buf_2d *const dst = &plane->dst; |
| uint8_t *const dst0 = dst->buf; |
| int r, c; |
| |
| uint16_t mask_16x16 = lfm->left_uv[TX_16X16]; |
| uint16_t mask_8x8 = lfm->left_uv[TX_8X8]; |
| uint16_t mask_4x4 = lfm->left_uv[TX_4X4]; |
| uint16_t mask_4x4_int = lfm->left_int_4x4_uv; |
| |
| assert(plane->subsampling_x == 1 && plane->subsampling_y == 1); |
| assert(plane->plane_type == PLANE_TYPE_UV); |
| memset(lfm->lfl_uv, 0, sizeof(lfm->lfl_uv)); |
| |
| // Vertical pass: do 2 rows at one time |
| for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 4) { |
| for (c = 0; c < (cm->mib_size >> 1); c++) { |
| lfm->lfl_uv[r >> 1][c] = lfm->lfl_y[r][c << 1]; |
| lfm->lfl_uv[(r + 2) >> 1][c] = lfm->lfl_y[r + 2][c << 1]; |
| } |
| |
| { |
| unsigned int mask_16x16_l = mask_16x16 & 0xff; |
| unsigned int mask_8x8_l = mask_8x8 & 0xff; |
| unsigned int mask_4x4_l = mask_4x4 & 0xff; |
| unsigned int mask_4x4_int_l = mask_4x4_int & 0xff; |
| |
| // Disable filtering on the leftmost column. |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| highbd_filter_selectively_vert_row2( |
| plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride, |
| mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info, |
| &lfm->lfl_uv[r >> 1][0], (int)cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| filter_selectively_vert_row2(plane->subsampling_x, dst->buf, |
| dst->stride, mask_16x16_l, mask_8x8_l, |
| mask_4x4_l, mask_4x4_int_l, &cm->lf_info, |
| &lfm->lfl_uv[r >> 1][0]); |
| |
| dst->buf += 2 * MI_SIZE * dst->stride; |
| mask_16x16 >>= MI_SIZE; |
| mask_8x8 >>= MI_SIZE; |
| mask_4x4 >>= MI_SIZE; |
| mask_4x4_int >>= MI_SIZE; |
| } |
| } |
| |
| // Horizontal pass |
| dst->buf = dst0; |
| } |
| |
| void av1_filter_block_plane_ss11_hor(AV1_COMMON *const cm, |
| struct macroblockd_plane *const plane, |
| int mi_row, LOOP_FILTER_MASK *lfm) { |
| struct buf_2d *const dst = &plane->dst; |
| uint8_t *const dst0 = dst->buf; |
| int r, c; |
| uint64_t mask_16x16 = lfm->above_uv[TX_16X16]; |
| uint64_t mask_8x8 = lfm->above_uv[TX_8X8]; |
| uint64_t mask_4x4 = lfm->above_uv[TX_4X4]; |
| uint64_t mask_4x4_int = lfm->above_int_4x4_uv; |
| |
| assert(plane->subsampling_x == 1 && plane->subsampling_y == 1); |
| memset(lfm->lfl_uv, 0, sizeof(lfm->lfl_uv)); |
| |
| // re-porpulate the filter level for uv, same as the code for vertical |
| // filter in av1_filter_block_plane_ss11_ver |
| for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 4) { |
| for (c = 0; c < (cm->mib_size >> 1); c++) { |
| lfm->lfl_uv[r >> 1][c] = lfm->lfl_y[r][c << 1]; |
| lfm->lfl_uv[(r + 2) >> 1][c] = lfm->lfl_y[r + 2][c << 1]; |
| } |
| } |
| |
| for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 2) { |
| const int skip_border_4x4_r = mi_row + r == cm->mi_rows - 1; |
| const unsigned int mask_4x4_int_r = |
| skip_border_4x4_r ? 0 : (mask_4x4_int & 0xf); |
| unsigned int mask_16x16_r; |
| unsigned int mask_8x8_r; |
| unsigned int mask_4x4_r; |
| |
| if (mi_row + r == 0) { |
| mask_16x16_r = 0; |
| mask_8x8_r = 0; |
| mask_4x4_r = 0; |
| } else { |
| mask_16x16_r = mask_16x16 & 0xf; |
| mask_8x8_r = mask_8x8 & 0xf; |
| mask_4x4_r = mask_4x4 & 0xf; |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| highbd_filter_selectively_horiz( |
| CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r, |
| mask_4x4_r, mask_4x4_int_r, &cm->lf_info, &lfm->lfl_uv[r >> 1][0], |
| (int)cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r, |
| mask_4x4_r, mask_4x4_int_r, &cm->lf_info, |
| &lfm->lfl_uv[r >> 1][0]); |
| |
| dst->buf += MI_SIZE * dst->stride; |
| mask_16x16 >>= MI_SIZE / 2; |
| mask_8x8 >>= MI_SIZE / 2; |
| mask_4x4 >>= MI_SIZE / 2; |
| mask_4x4_int >>= MI_SIZE / 2; |
| } |
| // restore the buf pointer in case there is additional filter pass. |
| dst->buf = dst0; |
| } |
| |
| #if CONFIG_PARALLEL_DEBLOCKING |
| typedef enum EDGE_DIR { VERT_EDGE = 0, HORZ_EDGE = 1, NUM_EDGE_DIRS } EDGE_DIR; |
| static const uint32_t av1_prediction_masks[NUM_EDGE_DIRS][BLOCK_SIZES_ALL] = { |
| // mask for vertical edges filtering |
| { |
| 2 - 1, // BLOCK_2X2 |
| 2 - 1, // BLOCK_2X4 |
| 4 - 1, // BLOCK_4X2 |
| 4 - 1, // BLOCK_4X4 |
| 4 - 1, // BLOCK_4X8 |
| 8 - 1, // BLOCK_8X4 |
| 8 - 1, // BLOCK_8X8 |
| 8 - 1, // BLOCK_8X16 |
| 16 - 1, // BLOCK_16X8 |
| 16 - 1, // BLOCK_16X16 |
| 16 - 1, // BLOCK_16X32 |
| 32 - 1, // BLOCK_32X16 |
| 32 - 1, // BLOCK_32X32 |
| 32 - 1, // BLOCK_32X64 |
| 64 - 1, // BLOCK_64X32 |
| 64 - 1, // BLOCK_64X64 |
| #if CONFIG_EXT_PARTITION |
| 64 - 1, // BLOCK_64X128 |
| 128 - 1, // BLOCK_128X64 |
| 128 - 1, // BLOCK_128X128 |
| #endif // CONFIG_EXT_PARTITION |
| 4 - 1, // BLOCK_4X16, |
| 16 - 1, // BLOCK_16X4, |
| 8 - 1, // BLOCK_8X32, |
| 32 - 1, // BLOCK_32X8, |
| 16 - 1, // BLOCK_16X64, |
| 64 - 1, // BLOCK_64X16 |
| #if CONFIG_EXT_PARTITION |
| 32 - 1, // BLOCK_32X128 |
| 128 - 1, // BLOCK_128X32 |
| #endif // CONFIG_EXT_PARTITION |
| }, |
| // mask for horizontal edges filtering |
| { |
| 2 - 1, // BLOCK_2X2 |
| 4 - 1, // BLOCK_2X4 |
| 2 - 1, // BLOCK_4X2 |
| 4 - 1, // BLOCK_4X4 |
| 8 - 1, // BLOCK_4X8 |
| 4 - 1, // BLOCK_8X4 |
| 8 - 1, // BLOCK_8X8 |
| 16 - 1, // BLOCK_8X16 |
| 8 - 1, // BLOCK_16X8 |
| 16 - 1, // BLOCK_16X16 |
| 32 - 1, // BLOCK_16X32 |
| 16 - 1, // BLOCK_32X16 |
| 32 - 1, // BLOCK_32X32 |
| 64 - 1, // BLOCK_32X64 |
| 32 - 1, // BLOCK_64X32 |
| 64 - 1, // BLOCK_64X64 |
| #if CONFIG_EXT_PARTITION |
| 128 - 1, // BLOCK_64X128 |
| 64 - 1, // BLOCK_128X64 |
| 128 - 1, // BLOCK_128X128 |
| #endif // CONFIG_EXT_PARTITION |
| 16 - 1, // BLOCK_4X16, |
| 4 - 1, // BLOCK_16X4, |
| 32 - 1, // BLOCK_8X32, |
| 8 - 1, // BLOCK_32X8, |
| 64 - 1, // BLOCK_16X64, |
| 16 - 1, // BLOCK_64X16 |
| #if CONFIG_EXT_PARTITION |
| 128 - 1, // BLOCK_32X128 |
| 32 - 1, // BLOCK_128X32 |
| #endif // CONFIG_EXT_PARTITION |
| }, |
| }; |
| |
| static const uint32_t av1_transform_masks[NUM_EDGE_DIRS][TX_SIZES_ALL] = { |
| { |
| 4 - 1, // TX_4X4 |
| 8 - 1, // TX_8X8 |
| 16 - 1, // TX_16X16 |
| 32 - 1, // TX_32X32 |
| #if CONFIG_TX64X64 |
| 64 - 1, // TX_64X64 |
| #endif // CONFIG_TX64X64 |
| 4 - 1, // TX_4X8 |
| 8 - 1, // TX_8X4 |
| 8 - 1, // TX_8X16 |
| 16 - 1, // TX_16X8 |
| 16 - 1, // TX_16X32 |
| 32 - 1, // TX_32X16 |
| #if CONFIG_TX64X64 |
| 32 - 1, // TX_32X64 |
| 64 - 1, // TX_64X32 |
| #endif // CONFIG_TX64X64 |
| 4 - 1, // TX_4X16 |
| 16 - 1, // TX_16X4 |
| 8 - 1, // TX_8X32 |
| 32 - 1 // TX_32X8 |
| }, |
| { |
| 4 - 1, // TX_4X4 |
| 8 - 1, // TX_8X8 |
| 16 - 1, // TX_16X16 |
| 32 - 1, // TX_32X32 |
| #if CONFIG_TX64X64 |
| 64 - 1, // TX_64X64 |
| #endif // CONFIG_TX64X64 |
| 8 - 1, // TX_4X8 |
| 4 - 1, // TX_8X4 |
| 16 - 1, // TX_8X16 |
| 8 - 1, // TX_16X8 |
| 32 - 1, // TX_16X32 |
| 16 - 1, // TX_32X16 |
| #if CONFIG_TX64X64 |
| 64 - 1, // TX_32X64 |
| 32 - 1, // TX_64X32 |
| #endif // CONFIG_TX64X64 |
| 16 - 1, // TX_4X16 |
| 4 - 1, // TX_16X4 |
| 32 - 1, // TX_8X32 |
| 8 - 1 // TX_32X8 |
| } |
| }; |
| |
| static TX_SIZE av1_get_transform_size(const MODE_INFO *const mi, |
| const EDGE_DIR edge_dir, const int mi_row, |
| const int mi_col, const int plane, |
| const struct macroblockd_plane *plane_ptr, |
| const uint32_t scale_horz, |
| const uint32_t scale_vert) { |
| const MB_MODE_INFO *mbmi = &mi->mbmi; |
| TX_SIZE tx_size = (plane == AOM_PLANE_Y) |
| ? mbmi->tx_size |
| : av1_get_uv_tx_size(mbmi, plane_ptr); |
| assert(tx_size < TX_SIZES_ALL); |
| |
| // mi_row and mi_col is the absolute position of the MI block. |
| // idx_c and idx_r is the relative offset of the MI within the super block |
| // c and r is the relative offset of the 8x8 block within the supert block |
| // blk_row and block_col is the relative offset of the current 8x8 block |
| // within the current partition. |
| const int idx_c = mi_col & MAX_MIB_MASK; |
| const int idx_r = mi_row & MAX_MIB_MASK; |
| const int c = idx_c >> mi_width_log2_lookup[BLOCK_8X8]; |
| const int r = idx_r >> mi_height_log2_lookup[BLOCK_8X8]; |
| const BLOCK_SIZE sb_type = mi->mbmi.sb_type; |
| const int blk_row = r & (num_8x8_blocks_high_lookup[sb_type] - 1); |
| const int blk_col = c & (num_8x8_blocks_wide_lookup[sb_type] - 1); |
| |
| if (is_inter_block(mbmi) && !mbmi->skip) { |
| const int tx_row_idx = |
| (blk_row * mi_size_high[BLOCK_8X8] << TX_UNIT_HIGH_LOG2) >> 1; |
| const int tx_col_idx = |
| (blk_col * mi_size_wide[BLOCK_8X8] << TX_UNIT_WIDE_LOG2) >> 1; |
| const BLOCK_SIZE bsize = |
| AOMMAX(BLOCK_4X4, ss_size_lookup[sb_type][scale_horz][scale_vert]); |
| const TX_SIZE mb_tx_size = mbmi->inter_tx_size[tx_row_idx][tx_col_idx]; |
| |
| assert(mb_tx_size < TX_SIZES_ALL); |
| |
| tx_size = (plane == AOM_PLANE_Y) |
| ? mb_tx_size |
| : uv_txsize_lookup[bsize][mb_tx_size][0][0]; |
| assert(tx_size < TX_SIZES_ALL); |
| } |
| |
| // since in case of chrominance or non-square transorm need to convert |
| // transform size into transform size in particular direction. |
| // for vertical edge, filter direction is horizontal, for horizontal |
| // edge, filter direction is vertical. |
| tx_size = (VERT_EDGE == edge_dir) ? txsize_horz_map[tx_size] |
| : txsize_vert_map[tx_size]; |
| return tx_size; |
| } |
| |
| typedef struct AV1_DEBLOCKING_PARAMETERS { |
| // length of the filter applied to the outer edge |
| uint32_t filter_length; |
| // length of the filter applied to the inner edge |
| uint32_t filter_length_internal; |
| // deblocking limits |
| const uint8_t *lim; |
| const uint8_t *mblim; |
| const uint8_t *hev_thr; |
| } AV1_DEBLOCKING_PARAMETERS; |
| |
| static void set_lpf_parameters( |
| AV1_DEBLOCKING_PARAMETERS *const params, const ptrdiff_t mode_step, |
| const AV1_COMMON *const cm, const EDGE_DIR edge_dir, const uint32_t x, |
| const uint32_t y, const int plane, |
| const struct macroblockd_plane *const plane_ptr) { |
| // reset to initial values |
| params->filter_length = 0; |
| params->filter_length_internal = 0; |
| |
| // no deblocking is required |
| const uint32_t width = plane_ptr->dst.width; |
| const uint32_t height = plane_ptr->dst.height; |
| if ((width <= x) || (height <= y)) { |
| return; |
| } |
| |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| const int mi_row = (y << scale_vert) >> MI_SIZE_LOG2; |
| const int mi_col = (x << scale_horz) >> MI_SIZE_LOG2; |
| MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col; |
| const MB_MODE_INFO *mbmi = &mi[0]->mbmi; |
| |
| { |
| const TX_SIZE ts = |
| av1_get_transform_size(mi[0], edge_dir, mi_row, mi_col, plane, |
| plane_ptr, scale_horz, scale_vert); |
| |
| #if CONFIG_EXT_DELTA_Q |
| #if CONFIG_LOOPFILTER_LEVEL |
| const uint32_t curr_level = |
| get_filter_level(cm, &cm->lf_info, edge_dir, plane, mbmi); |
| #else |
| #if CONFIG_LPF_SB |
| const uint32_t curr_level = |
| get_filter_level(cm, &cm->lf_info, mi_row, mi_col, mbmi); |
| #else |
| const uint32_t curr_level = get_filter_level(cm, &cm->lf_info, mbmi); |
| #endif // CONFIG_LPF_SB |
| #endif |
| #else |
| const uint32_t curr_level = get_filter_level(&cm->lf_info, mbmi); |
| #endif // CONFIG_EXT_DELTA_Q |
| |
| const int curr_skipped = mbmi->skip && is_inter_block(mbmi); |
| const uint32_t coord = (VERT_EDGE == edge_dir) ? (x) : (y); |
| uint32_t level = curr_level; |
| // prepare outer edge parameters. deblock the edge if it's an edge of a TU |
| if (coord) { |
| #if CONFIG_LOOPFILTERING_ACROSS_TILES |
| MODE_INFO *const mi_bound = cm->mi + mi_row * cm->mi_stride + mi_col; |
| if (!av1_disable_loopfilter_on_tile_boundary(cm) || |
| ((VERT_EDGE == edge_dir) && |
| (0 == (mi_bound->mbmi.boundary_info & TILE_LEFT_BOUNDARY))) || |
| ((HORZ_EDGE == edge_dir) && |
| (0 == (mi_bound->mbmi.boundary_info & TILE_ABOVE_BOUNDARY)))) |
| #endif // CONFIG_LOOPFILTERING_ACROSS_TILES |
| { |
| const int32_t tu_edge = |
| (coord & av1_transform_masks[edge_dir][ts]) ? (0) : (1); |
| if (tu_edge) { |
| const MODE_INFO *const mi_prev = *(mi - mode_step); |
| const int pv_row = |
| (VERT_EDGE == edge_dir) ? (mi_row) : (mi_row - (1 << scale_vert)); |
| const int pv_col = |
| (VERT_EDGE == edge_dir) ? (mi_col - (1 << scale_horz)) : (mi_col); |
| const TX_SIZE pv_ts = |
| av1_get_transform_size(mi_prev, edge_dir, pv_row, pv_col, plane, |
| plane_ptr, scale_horz, scale_vert); |
| |
| #if CONFIG_EXT_DELTA_Q |
| #if CONFIG_LOOPFILTER_LEVEL |
| const uint32_t pv_lvl = get_filter_level(cm, &cm->lf_info, edge_dir, |
| plane, &mi_prev->mbmi); |
| #else |
| #if CONFIG_LPF_SB |
| const uint32_t pv_lvl = get_filter_level(cm, &cm->lf_info, pv_row, |
| pv_col, &mi_prev->mbmi); |
| #else |
| const uint32_t pv_lvl = |
| get_filter_level(cm, &cm->lf_info, &mi_prev->mbmi); |
| #endif // CONFIG_LPF_SB |
| #endif |
| #else |
| const uint32_t pv_lvl = |
| get_filter_level(&cm->lf_info, &mi_prev->mbmi); |
| #endif // CONFIG_EXT_DELTA_Q |
| |
| const int pv_skip = |
| mi_prev->mbmi.skip && is_inter_block(&mi_prev->mbmi); |
| const int32_t pu_edge = |
| (coord & |
| av1_prediction_masks[edge_dir] |
| [ss_size_lookup[mbmi->sb_type][scale_horz] |
| [scale_vert]]) |
| ? (0) |
| : (1); |
| // if the current and the previous blocks are skipped, |
| // deblock the edge if the edge belongs to a PU's edge only. |
| if ((curr_level || pv_lvl) && |
| (!pv_skip || !curr_skipped || pu_edge)) { |
| const TX_SIZE min_ts = AOMMIN(ts, pv_ts); |
| if (TX_4X4 >= min_ts) { |
| params->filter_length = 4; |
| } else if (TX_8X8 == min_ts) { |
| #if PARALLEL_DEBLOCKING_5_TAP_CHROMA |
| if (plane != 0) |
| params->filter_length = 6; |
| else |
| #endif |
| params->filter_length = 8; |
| } else { |
| params->filter_length = 16; |
| #if PARALLEL_DEBLOCKING_15TAPLUMAONLY |
| // No wide filtering for chroma plane |
| if (plane != 0) { |
| #if PARALLEL_DEBLOCKING_5_TAP_CHROMA |
| params->filter_length = 6; |
| #else |
| params->filter_length = 8; |
| #endif |
| } |
| #endif |
| } |
| |
| #if PARALLEL_DEBLOCKING_DISABLE_15TAP |
| params->filter_length = (TX_4X4 >= AOMMIN(ts, pv_ts)) ? (4) : (8); |
| #endif // PARALLEL_DEBLOCKING_DISABLE_15TAP |
| |
| // update the level if the current block is skipped, |
| // but the previous one is not |
| level = (curr_level) ? (curr_level) : (pv_lvl); |
| } |
| } |
| } |
| |
| // prepare common parameters |
| if (params->filter_length || params->filter_length_internal) { |
| const loop_filter_thresh *const limits = cm->lf_info.lfthr + level; |
| params->lim = limits->lim; |
| params->mblim = limits->mblim; |
| params->hev_thr = limits->hev_thr; |
| } |
| } |
| } |
| } |
| |
| static void av1_filter_block_plane_vert( |
| const AV1_COMMON *const cm, const int plane, |
| const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row, |
| const uint32_t mi_col) { |
| const int col_step = MI_SIZE >> MI_SIZE_LOG2; |
| const int row_step = MI_SIZE >> MI_SIZE_LOG2; |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| uint8_t *const dst_ptr = plane_ptr->dst.buf; |
| const int dst_stride = plane_ptr->dst.stride; |
| #if CONFIG_LPF_SB |
| int y_range = mi_row ? MAX_MIB_SIZE : MAX_MIB_SIZE - FILT_BOUNDARY_MI_OFFSET; |
| y_range = AOMMIN(y_range, cm->mi_rows); |
| y_range >>= scale_vert; |
| |
| int x_range = mi_col ? MAX_MIB_SIZE : MAX_MIB_SIZE - FILT_BOUNDARY_MI_OFFSET; |
| x_range = AOMMIN(x_range, cm->mi_cols); |
| x_range >>= scale_horz; |
| #else |
| const int y_range = (MAX_MIB_SIZE >> scale_vert); |
| const int x_range = (MAX_MIB_SIZE >> scale_horz); |
| #endif // CONFIG_LPF_SB |
| for (int y = 0; y < y_range; y += row_step) { |
| uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride; |
| for (int x = 0; x < x_range; x += col_step) { |
| // inner loop always filter vertical edges in a MI block. If MI size |
| // is 8x8, it will filter the vertical edge aligned with a 8x8 block. |
| // If 4x4 trasnform is used, it will then filter the internal edge |
| // aligned with a 4x4 block |
| const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; |
| const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; |
| AV1_DEBLOCKING_PARAMETERS params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| set_lpf_parameters(¶ms, ((ptrdiff_t)1 << scale_horz), cm, VERT_EDGE, |
| curr_x, curr_y, plane, plane_ptr); |
| |
| switch (params.filter_length) { |
| // apply 4-tap filtering |
| case 4: |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_vertical_4(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| aom_lpf_vertical_4(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| #if PARALLEL_DEBLOCKING_5_TAP_CHROMA |
| case 6: // apply 6-tap filter for chroma plane only |
| assert(plane != 0); |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_vertical_6_c(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| aom_lpf_vertical_6_c(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| #endif |
| // apply 8-tap filtering |
| case 8: |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_vertical_8(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| aom_lpf_vertical_8(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 16-tap filtering |
| case 16: |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| #if CONFIG_DEBLOCK_13TAP |
| // TODO(olah): Remove _c once SIMD for 13-tap is available |
| aom_highbd_lpf_vertical_16_c(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, cm->bit_depth); |
| #else |
| aom_highbd_lpf_vertical_16(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| cm->bit_depth); |
| #endif |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| #if CONFIG_DEBLOCK_13TAP |
| aom_lpf_vertical_16_c(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| #else |
| aom_lpf_vertical_16(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| #endif |
| break; |
| // no filtering |
| default: break; |
| } |
| // process the internal edge |
| if (params.filter_length_internal) { |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_vertical_4(CONVERT_TO_SHORTPTR(p + 4), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| aom_lpf_vertical_4(p + 4, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| } |
| // advance the destination pointer |
| p += MI_SIZE; |
| } |
| } |
| } |
| |
| static void av1_filter_block_plane_horz( |
| const AV1_COMMON *const cm, const int plane, |
| const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row, |
| const uint32_t mi_col) { |
| const int col_step = MI_SIZE >> MI_SIZE_LOG2; |
| const int row_step = MI_SIZE >> MI_SIZE_LOG2; |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| uint8_t *const dst_ptr = plane_ptr->dst.buf; |
| const int dst_stride = plane_ptr->dst.stride; |
| #if CONFIG_LPF_SB |
| int y_range = mi_row ? MAX_MIB_SIZE : MAX_MIB_SIZE - FILT_BOUNDARY_MI_OFFSET; |
| y_range = AOMMIN(y_range, cm->mi_rows); |
| y_range >>= scale_vert; |
| |
| int x_range = mi_col ? MAX_MIB_SIZE : MAX_MIB_SIZE - FILT_BOUNDARY_MI_OFFSET; |
| x_range = AOMMIN(x_range, cm->mi_cols); |
| x_range >>= scale_horz; |
| #else |
| const int y_range = (MAX_MIB_SIZE >> scale_vert); |
| const int x_range = (MAX_MIB_SIZE >> scale_horz); |
| #endif // CONFIG_LPF_SB |
| for (int y = 0; y < y_range; y += row_step) { |
| uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride; |
| for (int x = 0; x < x_range; x += col_step) { |
| // inner loop always filter vertical edges in a MI block. If MI size |
| // is 8x8, it will first filter the vertical edge aligned with a 8x8 |
| // block. If 4x4 trasnform is used, it will then filter the internal |
| // edge aligned with a 4x4 block |
| const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; |
| const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; |
| AV1_DEBLOCKING_PARAMETERS params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| set_lpf_parameters(¶ms, (cm->mi_stride << scale_vert), cm, HORZ_EDGE, |
| curr_x, curr_y, plane, plane_ptr); |
| |
| switch (params.filter_length) { |
| // apply 4-tap filtering |
| case 4: |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_horizontal_4(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| aom_lpf_horizontal_4(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| #if PARALLEL_DEBLOCKING_5_TAP_CHROMA |
| // apply 6-tap filtering |
| case 6: assert(plane != 0); |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_horizontal_6_c(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| aom_lpf_horizontal_6_c(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| #endif |
| // apply 8-tap filtering |
| case 8: |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_horizontal_8(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| aom_lpf_horizontal_8(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 16-tap filtering |
| case 16: |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| #if CONFIG_DEBLOCK_13TAP |
| // TODO(olah): Remove _c once SIMD for 13-tap is available |
| aom_highbd_lpf_horizontal_edge_16_c( |
| CONVERT_TO_SHORTPTR(p), dst_stride, params.mblim, params.lim, |
| params.hev_thr, cm->bit_depth); |
| #else |
| aom_highbd_lpf_horizontal_edge_16( |
| CONVERT_TO_SHORTPTR(p), dst_stride, params.mblim, params.lim, |
| params.hev_thr, cm->bit_depth); |
| #endif |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| #if CONFIG_DEBLOCK_13TAP |
| aom_lpf_horizontal_edge_16_c(p, dst_stride, params.mblim, |
| params.lim, params.hev_thr); |
| #else |
| aom_lpf_horizontal_edge_16(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| #endif |
| break; |
| // no filtering |
| default: break; |
| } |
| // process the internal edge |
| if (params.filter_length_internal) { |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_horizontal_4(CONVERT_TO_SHORTPTR(p + 4 * dst_stride), |
| dst_stride, params.mblim, params.lim, |
| params.hev_thr, cm->bit_depth); |
| else |
| #endif // CONFIG_HIGHBITDEPTH |
| aom_lpf_horizontal_4(p + 4 * dst_stride, dst_stride, params.mblim, |
| params.lim, params.hev_thr); |
| } |
| // advance the destination pointer |
| p += MI_SIZE; |
| } |
| } |
| } |
| #endif // CONFIG_PARALLEL_DEBLOCKING |
| |
| void av1_loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, AV1_COMMON *cm, |
| struct macroblockd_plane *planes, int start, int stop, |
| #if CONFIG_LPF_SB |
| int col_start, int col_end, |
| #endif |
| int y_only) { |
| #if CONFIG_LOOPFILTER_LEVEL |
| // y_only no longer has its original meaning. |
| // Here it means which plane to filter |
| // when y_only = {0, 1, 2}, it means we are searching for filter level for |
| // Y/U/V plane individually. |
| const int plane_start = y_only; |
| const int plane_end = plane_start + 1; |
| #else |
| const int num_planes = y_only ? 1 : MAX_MB_PLANE; |
| const int plane_start = 0; |
| const int plane_end = num_planes; |
| #endif // CONFIG_LOOPFILTER_LEVEL |
| #if !CONFIG_LPF_SB |
| #if CONFIG_PARALLEL_DEBLOCKING |
| const int col_start = 0; |
| const int col_end = cm->mi_cols; |
| #endif |
| #endif // CONFIG_LPF_SB |
| int mi_row, mi_col; |
| int plane; |
| |
| #if !CONFIG_PARALLEL_DEBLOCKING |
| for (int i = 0; i < MAX_MB_PLANE; ++i) |
| memset(cm->top_txfm_context[i], TX_32X32, cm->mi_cols << TX_UNIT_WIDE_LOG2); |
| for (mi_row = start; mi_row < stop; mi_row += cm->mib_size) { |
| MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride; |
| for (int i = 0; i < MAX_MB_PLANE; ++i) |
| memset(cm->left_txfm_context[i], TX_32X32, |
| MAX_MIB_SIZE << TX_UNIT_HIGH_LOG2); |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += cm->mib_size) { |
| av1_setup_dst_planes(planes, cm->sb_size, frame_buffer, mi_row, mi_col); |
| |
| for (plane = plane_start; plane < plane_end; ++plane) { |
| av1_filter_block_plane_non420_ver(cm, &planes[plane], mi + mi_col, |
| mi_row, mi_col, plane); |
| av1_filter_block_plane_non420_hor(cm, &planes[plane], mi + mi_col, |
| mi_row, mi_col, plane); |
| } |
| } |
| } |
| #else |
| |
| // filter all vertical edges in every 64x64 super block |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
| for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { |
| av1_setup_dst_planes(planes, cm->sb_size, frame_buffer, mi_row, mi_col); |
| for (plane = plane_start; plane < plane_end; ++plane) { |
| av1_filter_block_plane_vert(cm, plane, &planes[plane], mi_row, mi_col); |
| } |
| } |
| } |
| |
| // filter all horizontal edges in every 64x64 super block |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
| for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { |
| av1_setup_dst_planes(planes, cm->sb_size, frame_buffer, mi_row, mi_col); |
| for (plane = plane_start; plane < plane_end; ++plane) { |
| av1_filter_block_plane_horz(cm, plane, &planes[plane], mi_row, mi_col); |
| } |
| } |
| } |
| #endif // !CONFIG_PARALLEL_DEBLOCKING |
| } |
| |
| void av1_loop_filter_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
| MACROBLOCKD *xd, int frame_filter_level, |
| #if CONFIG_LOOPFILTER_LEVEL |
| int frame_filter_level_r, |
| #endif |
| int y_only, int partial_frame |
| #if CONFIG_LPF_SB |
| , |
| int mi_row, int mi_col |
| #endif |
| ) { |
| int start_mi_row, end_mi_row, mi_rows_to_filter; |
| #if CONFIG_EXT_DELTA_Q |
| #if CONFIG_LOOPFILTER_LEVEL |
| int orig_filter_level[2] = { cm->lf.filter_level[0], cm->lf.filter_level[1] }; |
| #else |
| int orig_filter_level = cm->lf.filter_level; |
| #endif |
| #endif |
| |
| #if CONFIG_LPF_SB |
| if (partial_frame && !frame_filter_level) return; |
| #else |
| #if CONFIG_LOOPFILTER_LEVEL |
| if (!frame_filter_level && !frame_filter_level_r) return; |
| #else |
| if (!frame_filter_level) return; |
| #endif |
| #endif // CONFIG_LPF_SB |
| #if CONFIG_LPF_SB |
| int start_mi_col; |
| int end_mi_col; |
| |
| // In the experiment of deblocking filtering per superblock. |
| // When partial_frame is 1, it indicates we are searching for the best filter |
| // level for current superblock. We reuse frame_filter_level as filter level |
| // for superblock, no longer for the whole frame. |
| // When partial_frame is 0, it's in the actual filtering stage for the frame |
| if (partial_frame) { |
| start_mi_row = AOMMAX(0, mi_row - FILT_BOUNDARY_MI_OFFSET); |
| start_mi_col = AOMMAX(0, mi_col - FILT_BOUNDARY_MI_OFFSET); |
| const int mi_row_range = mi_row - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE; |
| const int mi_col_range = mi_col - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE; |
| end_mi_row = AOMMIN(mi_row_range, cm->mi_rows); |
| end_mi_col = AOMMIN(mi_col_range, cm->mi_cols); |
| |
| av1_loop_filter_sb_level_init(cm, mi_row, mi_col, frame_filter_level); |
| } else { |
| start_mi_row = 0; |
| mi_rows_to_filter = cm->mi_rows; |
| end_mi_row = start_mi_row + mi_rows_to_filter; |
| start_mi_col = 0; |
| end_mi_col = cm->mi_cols; |
| } |
| #else |
| start_mi_row = 0; |
| mi_rows_to_filter = cm->mi_rows; |
| if (partial_frame && cm->mi_rows > 8) { |
| start_mi_row = cm->mi_rows >> 1; |
| start_mi_row &= 0xfffffff8; |
| mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); |
| } |
| end_mi_row = start_mi_row + mi_rows_to_filter; |
| #if CONFIG_LOOPFILTER_LEVEL |
| // TODO(chengchen): refactor the code such that y_only has its matching |
| // meaning. Now it means the plane to be filtered in this experiment. |
| av1_loop_filter_frame_init(cm, frame_filter_level, frame_filter_level_r, |
| y_only); |
| #else |
| av1_loop_filter_frame_init(cm, frame_filter_level, frame_filter_level); |
| #endif |
| #endif // CONFIG_LPF_SB |
| |
| #if CONFIG_EXT_DELTA_Q |
| #if CONFIG_LOOPFILTER_LEVEL |
| cm->lf.filter_level[0] = frame_filter_level; |
| cm->lf.filter_level[1] = frame_filter_level_r; |
| #else |
| cm->lf.filter_level = frame_filter_level; |
| #endif |
| #endif |
| |
| #if CONFIG_LPF_SB |
| av1_loop_filter_rows(frame, cm, xd->plane, start_mi_row, end_mi_row, |
| start_mi_col, end_mi_col, y_only); |
| #else |
| av1_loop_filter_rows(frame, cm, xd->plane, start_mi_row, end_mi_row, y_only); |
| #endif // CONFIG_LPF_SB |
| |
| #if CONFIG_EXT_DELTA_Q |
| #if CONFIG_LOOPFILTER_LEVEL |
| cm->lf.filter_level[0] = orig_filter_level[0]; |
| cm->lf.filter_level[1] = orig_filter_level[1]; |
| #else |
| cm->lf.filter_level = orig_filter_level; |
| #endif |
| #endif |
| } |
| |
| void av1_loop_filter_data_reset(LFWorkerData *lf_data, |
| YV12_BUFFER_CONFIG *frame_buffer, |
| struct AV1Common *cm, |
| const struct macroblockd_plane *planes) { |
| lf_data->frame_buffer = frame_buffer; |
| lf_data->cm = cm; |
| lf_data->start = 0; |
| lf_data->stop = 0; |
| lf_data->y_only = 0; |
| memcpy(lf_data->planes, planes, sizeof(lf_data->planes)); |
| } |
| |
| int av1_loop_filter_worker(LFWorkerData *const lf_data, void *unused) { |
| (void)unused; |
| #if !CONFIG_LPF_SB |
| av1_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, |
| lf_data->start, lf_data->stop, lf_data->y_only); |
| #else |
| (void)lf_data; |
| #endif // CONFIG_LPF_SB |
| return 1; |
| } |