blob: 82ce87379eb494d326dc458cb1d6b80b96408123 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
#if CONFIG_LOOPFILTER_LEVEL
static const SEG_LVL_FEATURES seg_lvl_lf_lut[MAX_MB_PLANE][2] = {
{ SEG_LVL_ALT_LF_Y_V, SEG_LVL_ALT_LF_Y_H },
{ SEG_LVL_ALT_LF_U, SEG_LVL_ALT_LF_U },
{ SEG_LVL_ALT_LF_V, SEG_LVL_ALT_LF_V }
};
#if CONFIG_EXT_DELTA_Q
static const int delta_lf_id_lut[MAX_MB_PLANE][2] = {
{ 0, 1 }, { 2, 2 }, { 3, 3 }
};
#endif // CONFIG_EXT_DELTA_Q
#endif // CONFIG_LOOPFILTER_LEVEL
#define PARALLEL_DEBLOCKING_15TAPLUMAONLY 1
#define PARALLEL_DEBLOCKING_DISABLE_15TAP 0
#if CONFIG_DEBLOCK_13TAP
#define PARALLEL_DEBLOCKING_5_TAP_CHROMA 1
#else
#define PARALLEL_DEBLOCKING_5_TAP_CHROMA 0
#endif
#if PARALLEL_DEBLOCKING_5_TAP_CHROMA
extern void aom_lpf_vertical_6_c(uint8_t *s, int pitch, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh);
extern void aom_lpf_horizontal_6_c(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh);
extern void aom_highbd_lpf_horizontal_6_c(uint16_t *s, int p,
const uint8_t *blimit,
const uint8_t *limit,
const uint8_t *thresh, int bd);
extern void aom_highbd_lpf_vertical_6_c(uint16_t *s, int pitch,
const uint8_t *blimit,
const uint8_t *limit,
const uint8_t *thresh, int bd);
#endif
// 64 bit masks for left transform size. Each 1 represents a position where
// we should apply a loop filter across the left border of an 8x8 block
// boundary.
//
// In the case of TX_16X16-> ( in low order byte first we end up with
// a mask that looks like this
//
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
//
// A loopfilter should be applied to every other 8x8 horizontally.
static const uint64_t left_64x64_txform_mask[TX_SIZES] = {
0xffffffffffffffffULL, // TX_4X4
0xffffffffffffffffULL, // TX_8x8
0x5555555555555555ULL, // TX_16x16
0x1111111111111111ULL, // TX_32x32
#if CONFIG_TX64X64
0x0101010101010101ULL, // TX_64x64
#endif // CONFIG_TX64X64
};
// 64 bit masks for above transform size. Each 1 represents a position where
// we should apply a loop filter across the top border of an 8x8 block
// boundary.
//
// In the case of TX_32x32 -> ( in low order byte first we end up with
// a mask that looks like this
//
// 11111111
// 00000000
// 00000000
// 00000000
// 11111111
// 00000000
// 00000000
// 00000000
//
// A loopfilter should be applied to every other 4 the row vertically.
static const uint64_t above_64x64_txform_mask[TX_SIZES] = {
0xffffffffffffffffULL, // TX_4X4
0xffffffffffffffffULL, // TX_8x8
0x00ff00ff00ff00ffULL, // TX_16x16
0x000000ff000000ffULL, // TX_32x32
#if CONFIG_TX64X64
0x00000000000000ffULL, // TX_64x64
#endif // CONFIG_TX64X64
};
// 64 bit masks for prediction sizes (left). Each 1 represents a position
// where left border of an 8x8 block. These are aligned to the right most
// appropriate bit, and then shifted into place.
//
// In the case of TX_16x32 -> ( low order byte first ) we end up with
// a mask that looks like this :
//
// 10000000
// 10000000
// 10000000
// 10000000
// 00000000
// 00000000
// 00000000
// 00000000
static const uint64_t left_prediction_mask[BLOCK_SIZES_ALL] = {
0x0000000000000001ULL, // BLOCK_2X2,
0x0000000000000001ULL, // BLOCK_2X4,
0x0000000000000001ULL, // BLOCK_4X2,
0x0000000000000001ULL, // BLOCK_4X4,
0x0000000000000001ULL, // BLOCK_4X8,
0x0000000000000001ULL, // BLOCK_8X4,
0x0000000000000001ULL, // BLOCK_8X8,
0x0000000000000101ULL, // BLOCK_8X16,
0x0000000000000001ULL, // BLOCK_16X8,
0x0000000000000101ULL, // BLOCK_16X16,
0x0000000001010101ULL, // BLOCK_16X32,
0x0000000000000101ULL, // BLOCK_32X16,
0x0000000001010101ULL, // BLOCK_32X32,
0x0101010101010101ULL, // BLOCK_32X64,
0x0000000001010101ULL, // BLOCK_64X32,
0x0101010101010101ULL, // BLOCK_64X64,
0x0000000000000101ULL, // BLOCK_4X16,
0x0000000000000001ULL, // BLOCK_16X4,
0x0000000001010101ULL, // BLOCK_8X32,
0x0000000000000001ULL, // BLOCK_32X8,
0x0101010101010101ULL, // BLOCK_16X64,
0x0000000000000101ULL, // BLOCK_64X16
};
// 64 bit mask to shift and set for each prediction size.
static const uint64_t above_prediction_mask[BLOCK_SIZES_ALL] = {
0x0000000000000001ULL, // BLOCK_2X2
0x0000000000000001ULL, // BLOCK_2X4
0x0000000000000001ULL, // BLOCK_4X2
0x0000000000000001ULL, // BLOCK_4X4
0x0000000000000001ULL, // BLOCK_4X8
0x0000000000000001ULL, // BLOCK_8X4
0x0000000000000001ULL, // BLOCK_8X8
0x0000000000000001ULL, // BLOCK_8X16,
0x0000000000000003ULL, // BLOCK_16X8
0x0000000000000003ULL, // BLOCK_16X16
0x0000000000000003ULL, // BLOCK_16X32,
0x000000000000000fULL, // BLOCK_32X16,
0x000000000000000fULL, // BLOCK_32X32,
0x000000000000000fULL, // BLOCK_32X64,
0x00000000000000ffULL, // BLOCK_64X32,
0x00000000000000ffULL, // BLOCK_64X64,
0x0000000000000001ULL, // BLOCK_4X16,
0x0000000000000003ULL, // BLOCK_16X4,
0x0000000000000001ULL, // BLOCK_8X32,
0x000000000000000fULL, // BLOCK_32X8,
0x0000000000000003ULL, // BLOCK_16X64,
0x00000000000000ffULL, // BLOCK_64X16
};
// 64 bit mask to shift and set for each prediction size. A bit is set for
// each 8x8 block that would be in the top left most block of the given block
// size in the 64x64 block.
static const uint64_t size_mask[BLOCK_SIZES_ALL] = {
0x0000000000000001ULL, // BLOCK_2X2
0x0000000000000001ULL, // BLOCK_2X4
0x0000000000000001ULL, // BLOCK_4X2
0x0000000000000001ULL, // BLOCK_4X4
0x0000000000000001ULL, // BLOCK_4X8
0x0000000000000001ULL, // BLOCK_8X4
0x0000000000000001ULL, // BLOCK_8X8
0x0000000000000101ULL, // BLOCK_8X16,
0x0000000000000003ULL, // BLOCK_16X8
0x0000000000000303ULL, // BLOCK_16X16
0x0000000003030303ULL, // BLOCK_16X32,
0x0000000000000f0fULL, // BLOCK_32X16,
0x000000000f0f0f0fULL, // BLOCK_32X32,
0x0f0f0f0f0f0f0f0fULL, // BLOCK_32X64,
0x00000000ffffffffULL, // BLOCK_64X32,
0xffffffffffffffffULL, // BLOCK_64X64,
0x0000000000000101ULL, // BLOCK_4X16,
0x0000000000000003ULL, // BLOCK_16X4,
0x0000000001010101ULL, // BLOCK_8X32,
0x000000000000000fULL, // BLOCK_32X8,
0x0303030303030303ULL, // BLOCK_16X64,
0x000000000000ffffULL, // BLOCK_64X16
};
// These are used for masking the left and above 32x32 borders.
static const uint64_t left_border = 0x1111111111111111ULL;
static const uint64_t above_border = 0x000000ff000000ffULL;
// 16 bit masks for uv transform sizes.
static const uint16_t left_64x64_txform_mask_uv[TX_SIZES] = {
0xffff, // TX_4X4
0xffff, // TX_8x8
0x5555, // TX_16x16
0x1111, // TX_32x32
#if CONFIG_TX64X64
0x0101, // TX_64x64, never used
#endif // CONFIG_TX64X64
};
static const uint16_t above_64x64_txform_mask_uv[TX_SIZES] = {
0xffff, // TX_4X4
0xffff, // TX_8x8
0x0f0f, // TX_16x16
0x000f, // TX_32x32
#if CONFIG_TX64X64
0x0003, // TX_64x64, never used
#endif // CONFIG_TX64X64
};
// 16 bit left mask to shift and set for each uv prediction size.
static const uint16_t left_prediction_mask_uv[BLOCK_SIZES_ALL] = {
0x0001, // BLOCK_2X2,
0x0001, // BLOCK_2X4,
0x0001, // BLOCK_4X2,
0x0001, // BLOCK_4X4,
0x0001, // BLOCK_4X8,
0x0001, // BLOCK_8X4,
0x0001, // BLOCK_8X8,
0x0001, // BLOCK_8X16,
0x0001, // BLOCK_16X8,
0x0001, // BLOCK_16X16,
0x0011, // BLOCK_16X32,
0x0001, // BLOCK_32X16,
0x0011, // BLOCK_32X32,
0x1111, // BLOCK_32X64
0x0011, // BLOCK_64X32,
0x1111, // BLOCK_64X64,
0x0001, // BLOCK_4X16,
0x0001, // BLOCK_16X4,
0x0011, // BLOCK_8X32,
0x0001, // BLOCK_32X8,
0x1111, // BLOCK_16X64,
0x0001, // BLOCK_64X16,
};
// 16 bit above mask to shift and set for uv each prediction size.
static const uint16_t above_prediction_mask_uv[BLOCK_SIZES_ALL] = {
0x0001, // BLOCK_2X2
0x0001, // BLOCK_2X4
0x0001, // BLOCK_4X2
0x0001, // BLOCK_4X4
0x0001, // BLOCK_4X8
0x0001, // BLOCK_8X4
0x0001, // BLOCK_8X8
0x0001, // BLOCK_8X16,
0x0001, // BLOCK_16X8
0x0001, // BLOCK_16X16
0x0001, // BLOCK_16X32,
0x0003, // BLOCK_32X16,
0x0003, // BLOCK_32X32,
0x0003, // BLOCK_32X64,
0x000f, // BLOCK_64X32,
0x000f, // BLOCK_64X64,
0x0001, // BLOCK_4X16,
0x0001, // BLOCK_16X4,
0x0001, // BLOCK_8X32,
0x0003, // BLOCK_32X8,
0x0001, // BLOCK_16X64,
0x000f, // BLOCK_64X16
};
// 64 bit mask to shift and set for each uv prediction size
static const uint16_t size_mask_uv[BLOCK_SIZES_ALL] = {
0x0001, // BLOCK_2X2
0x0001, // BLOCK_2X4
0x0001, // BLOCK_4X2
0x0001, // BLOCK_4X4
0x0001, // BLOCK_4X8
0x0001, // BLOCK_8X4
0x0001, // BLOCK_8X8
0x0001, // BLOCK_8X16,
0x0001, // BLOCK_16X8
0x0001, // BLOCK_16X16
0x0011, // BLOCK_16X32,
0x0003, // BLOCK_32X16,
0x0033, // BLOCK_32X32,
0x3333, // BLOCK_32X64,
0x00ff, // BLOCK_64X32,
0xffff, // BLOCK_64X64,
0x0001, // BLOCK_4X16,
0x0001, // BLOCK_16X4,
0x0011, // BLOCK_8X32,
0x0003, // BLOCK_32X8,
0x1111, // BLOCK_16X64,
0x000f, // BLOCK_64X16
};
static const uint16_t left_border_uv = 0x1111;
static const uint16_t above_border_uv = 0x000f;
static const int mode_lf_lut[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES
1, 1, 0, 1, // INTER_MODES (GLOBALMV == 0)
#if CONFIG_COMPOUND_SINGLEREF
// 1, 1, 1, 1, 1, // INTER_SINGLEREF_COMP_MODES
// NOTE(zoeliu): Remove SR_NEAREST_NEWMV
1, 1, 1, 1, // INTER_SINGLEREF_COMP_MODES
#endif // CONFIG_COMPOUND_SINGLEREF
1, 1, 1, 1, 1, 1, 0, 1 // INTER_COMPOUND_MODES (GLOBAL_GLOBALMV == 0)
};
static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
int lvl;
// For each possible value for the loop filter fill out limits
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
// Set loop filter parameters that control sharpness.
int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
if (sharpness_lvl > 0) {
if (block_inside_limit > (9 - sharpness_lvl))
block_inside_limit = (9 - sharpness_lvl);
}
if (block_inside_limit < 1) block_inside_limit = 1;
memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH);
memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
SIMD_WIDTH);
}
}
#if CONFIG_EXT_DELTA_Q
static uint8_t get_filter_level(const AV1_COMMON *cm,
const loop_filter_info_n *lfi_n,
#if CONFIG_LOOPFILTER_LEVEL
const int dir_idx, int plane,
#endif
#if CONFIG_LPF_SB
int mi_row, int mi_col,
#endif
const MB_MODE_INFO *mbmi) {
#if CONFIG_LPF_SB
return cm->mi[mi_row * cm->mi_stride + mi_col].mbmi.filt_lvl;
#endif
const int segment_id = mbmi->segment_id;
if (cm->delta_lf_present_flag) {
#if CONFIG_LOOPFILTER_LEVEL
int delta_lf;
if (cm->delta_lf_multi) {
const int delta_lf_idx = delta_lf_id_lut[plane][dir_idx];
delta_lf = mbmi->curr_delta_lf[delta_lf_idx];
} else {
delta_lf = mbmi->current_delta_lf_from_base;
}
int lvl_seg =
clamp(delta_lf + cm->lf.filter_level[dir_idx], 0, MAX_LOOP_FILTER);
#else
int lvl_seg = clamp(mbmi->current_delta_lf_from_base + cm->lf.filter_level,
0, MAX_LOOP_FILTER);
#endif
const int scale = 1 << (lvl_seg >> 5);
#if CONFIG_LOOPFILTER_LEVEL
assert(plane >= 0 && plane <= 2);
const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir_idx];
if (segfeature_active(&cm->seg, segment_id, seg_lf_feature_id)) {
const int data = get_segdata(&cm->seg, segment_id, seg_lf_feature_id);
lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER);
}
#else
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_ALT_LF)) {
const int data = get_segdata(&cm->seg, segment_id, SEG_LVL_ALT_LF);
lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER);
}
#endif // CONFIG_LOOPFILTER_LEVEL
if (cm->lf.mode_ref_delta_enabled) {
lvl_seg += cm->lf.ref_deltas[mbmi->ref_frame[0]] * scale;
if (mbmi->ref_frame[0] > INTRA_FRAME)
lvl_seg += cm->lf.mode_deltas[mode_lf_lut[mbmi->mode]] * scale;
lvl_seg = clamp(lvl_seg, 0, MAX_LOOP_FILTER);
}
return lvl_seg;
} else {
#if CONFIG_LOOPFILTER_LEVEL
return lfi_n
->lvl[segment_id][dir_idx][mbmi->ref_frame[0]][mode_lf_lut[mbmi->mode]];
#else
return lfi_n->lvl[segment_id][mbmi->ref_frame[0]][mode_lf_lut[mbmi->mode]];
#endif
}
}
#else
static uint8_t get_filter_level(const loop_filter_info_n *lfi_n,
const MB_MODE_INFO *mbmi) {
#if CONFIG_LPF_SB
return mbmi->filt_lvl;
#endif
const int segment_id = mbmi->segment_id;
return lfi_n->lvl[segment_id][mbmi->ref_frame[0]][mode_lf_lut[mbmi->mode]];
}
#endif
void av1_loop_filter_init(AV1_COMMON *cm) {
assert(MB_MODE_COUNT == NELEMENTS(mode_lf_lut));
loop_filter_info_n *lfi = &cm->lf_info;
struct loopfilter *lf = &cm->lf;
int lvl;
// init limits for given sharpness
update_sharpness(lfi, lf->sharpness_level);
lf->last_sharpness_level = lf->sharpness_level;
// init hev threshold const vectors
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++)
memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH);
}
#if CONFIG_LPF_SB
void av1_loop_filter_sb_level_init(AV1_COMMON *cm, int mi_row, int mi_col,
int lvl) {
const int mi_row_start = AOMMAX(0, mi_row - FILT_BOUNDARY_MI_OFFSET);
const int mi_col_start = AOMMAX(0, mi_col - FILT_BOUNDARY_MI_OFFSET);
const int mi_row_range = mi_row - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE;
const int mi_col_range = mi_col - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE;
const int mi_row_end = AOMMIN(mi_row_range, cm->mi_rows);
const int mi_col_end = AOMMIN(mi_col_range, cm->mi_cols);
int row, col;
for (row = mi_row_start; row < mi_row_end; ++row) {
for (col = mi_col_start; col < mi_col_end; ++col) {
// Note: can't use cm->mi_grid_visible. Because for each partition,
// all visible pointers will point to the first of the partition.
cm->mi[row * cm->mi_stride + col].mbmi.filt_lvl = lvl;
}
}
}
#endif // CONFIG_LPF_SB
void av1_loop_filter_frame_init(AV1_COMMON *cm, int default_filt_lvl,
int default_filt_lvl_r
#if CONFIG_LOOPFILTER_LEVEL
,
int plane
#endif
) {
int seg_id;
// n_shift is the multiplier for lf_deltas
// the multiplier is 1 for when filter_lvl is between 0 and 31;
// 2 when filter_lvl is between 32 and 63
int scale = 1 << (default_filt_lvl >> 5);
loop_filter_info_n *const lfi = &cm->lf_info;
struct loopfilter *const lf = &cm->lf;
const struct segmentation *const seg = &cm->seg;
// update limits if sharpness has changed
if (lf->last_sharpness_level != lf->sharpness_level) {
update_sharpness(lfi, lf->sharpness_level);
lf->last_sharpness_level = lf->sharpness_level;
}
for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
for (int dir = 0; dir < 2; ++dir) {
int lvl_seg = (dir == 0) ? default_filt_lvl : default_filt_lvl_r;
#if CONFIG_LOOPFILTER_LEVEL
assert(plane >= 0 && plane <= 2);
const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir];
if (segfeature_active(seg, seg_id, seg_lf_feature_id)) {
const int data = get_segdata(&cm->seg, seg_id, seg_lf_feature_id);
lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER);
}
#else
if (segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) {
const int data = get_segdata(seg, seg_id, SEG_LVL_ALT_LF);
lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER);
}
#endif // CONFIG_LOOPFILTER_LEVEL
if (!lf->mode_ref_delta_enabled) {
// we could get rid of this if we assume that deltas are set to
// zero when not in use; encoder always uses deltas
#if CONFIG_LOOPFILTER_LEVEL
memset(lfi->lvl[seg_id][dir], lvl_seg, sizeof(lfi->lvl[seg_id][dir]));
#else
memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id]));
#endif // CONFIG_LOOPFILTER_LEVEL
} else {
int ref, mode;
#if CONFIG_LOOPFILTER_LEVEL
scale = 1 << (lvl_seg >> 5);
const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
lfi->lvl[seg_id][dir][INTRA_FRAME][0] =
clamp(intra_lvl, 0, MAX_LOOP_FILTER);
for (ref = LAST_FRAME; ref < TOTAL_REFS_PER_FRAME; ++ref) {
for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale +
lf->mode_deltas[mode] * scale;
lfi->lvl[seg_id][dir][ref][mode] =
clamp(inter_lvl, 0, MAX_LOOP_FILTER);
}
}
#else
(void)default_filt_lvl_r;
const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER);
for (ref = LAST_FRAME; ref < TOTAL_REFS_PER_FRAME; ++ref) {
for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale +
lf->mode_deltas[mode] * scale;
lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER);
}
}
#endif
}
}
}
}
static void filter_selectively_vert_row2(int subsampling_factor, uint8_t *s,
int pitch, unsigned int mask_16x16_l,
unsigned int mask_8x8_l,
unsigned int mask_4x4_l,
unsigned int mask_4x4_int_l,
const loop_filter_info_n *lfi_n,
const uint8_t *lfl) {
const int mask_shift = subsampling_factor ? 4 : 8;
const int mask_cutoff = subsampling_factor ? 0xf : 0xff;
const int lfl_forward = subsampling_factor ? 4 : 8;
unsigned int mask_16x16_0 = mask_16x16_l & mask_cutoff;
unsigned int mask_8x8_0 = mask_8x8_l & mask_cutoff;
unsigned int mask_4x4_0 = mask_4x4_l & mask_cutoff;
unsigned int mask_4x4_int_0 = mask_4x4_int_l & mask_cutoff;
unsigned int mask_16x16_1 = (mask_16x16_l >> mask_shift) & mask_cutoff;
unsigned int mask_8x8_1 = (mask_8x8_l >> mask_shift) & mask_cutoff;
unsigned int mask_4x4_1 = (mask_4x4_l >> mask_shift) & mask_cutoff;
unsigned int mask_4x4_int_1 = (mask_4x4_int_l >> mask_shift) & mask_cutoff;
unsigned int mask;
for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_4x4_int_0 |
mask_16x16_1 | mask_8x8_1 | mask_4x4_1 | mask_4x4_int_1;
mask; mask >>= 1) {
const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl;
const loop_filter_thresh *lfi1 = lfi_n->lfthr + *(lfl + lfl_forward);
if (mask & 1) {
if ((mask_16x16_0 | mask_16x16_1) & 1) {
if ((mask_16x16_0 & mask_16x16_1) & 1) {
aom_lpf_vertical_16_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr);
} else if (mask_16x16_0 & 1) {
aom_lpf_vertical_16(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr);
} else {
aom_lpf_vertical_16(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
}
}
if ((mask_8x8_0 | mask_8x8_1) & 1) {
if ((mask_8x8_0 & mask_8x8_1) & 1) {
aom_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
} else if (mask_8x8_0 & 1) {
aom_lpf_vertical_8(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr);
} else {
aom_lpf_vertical_8(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
}
}
if ((mask_4x4_0 | mask_4x4_1) & 1) {
if ((mask_4x4_0 & mask_4x4_1) & 1) {
aom_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
} else if (mask_4x4_0 & 1) {
aom_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr);
} else {
aom_lpf_vertical_4(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
}
}
if ((mask_4x4_int_0 | mask_4x4_int_1) & 1) {
if ((mask_4x4_int_0 & mask_4x4_int_1) & 1) {
aom_lpf_vertical_4_dual(s + 4, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
} else if (mask_4x4_int_0 & 1) {
aom_lpf_vertical_4(s + 4, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr);
} else {
aom_lpf_vertical_4(s + 8 * pitch + 4, pitch, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
}
}
}
s += 8;
lfl += 1;
mask_16x16_0 >>= 1;
mask_8x8_0 >>= 1;
mask_4x4_0 >>= 1;
mask_4x4_int_0 >>= 1;
mask_16x16_1 >>= 1;
mask_8x8_1 >>= 1;
mask_4x4_1 >>= 1;
mask_4x4_int_1 >>= 1;
}
}
#if CONFIG_HIGHBITDEPTH
static void highbd_filter_selectively_vert_row2(
int subsampling_factor, uint16_t *s, int pitch, unsigned int mask_16x16_l,
unsigned int mask_8x8_l, unsigned int mask_4x4_l,
unsigned int mask_4x4_int_l, const loop_filter_info_n *lfi_n,
const uint8_t *lfl, int bd) {
const int mask_shift = subsampling_factor ? 4 : 8;
const int mask_cutoff = subsampling_factor ? 0xf : 0xff;
const int lfl_forward = subsampling_factor ? 4 : 8;
unsigned int mask_16x16_0 = mask_16x16_l & mask_cutoff;
unsigned int mask_8x8_0 = mask_8x8_l & mask_cutoff;
unsigned int mask_4x4_0 = mask_4x4_l & mask_cutoff;
unsigned int mask_4x4_int_0 = mask_4x4_int_l & mask_cutoff;
unsigned int mask_16x16_1 = (mask_16x16_l >> mask_shift) & mask_cutoff;
unsigned int mask_8x8_1 = (mask_8x8_l >> mask_shift) & mask_cutoff;
unsigned int mask_4x4_1 = (mask_4x4_l >> mask_shift) & mask_cutoff;
unsigned int mask_4x4_int_1 = (mask_4x4_int_l >> mask_shift) & mask_cutoff;
unsigned int mask;
for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_4x4_int_0 |
mask_16x16_1 | mask_8x8_1 | mask_4x4_1 | mask_4x4_int_1;
mask; mask >>= 1) {
const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl;
const loop_filter_thresh *lfi1 = lfi_n->lfthr + *(lfl + lfl_forward);
if (mask & 1) {
if ((mask_16x16_0 | mask_16x16_1) & 1) {
if ((mask_16x16_0 & mask_16x16_1) & 1) {
aom_highbd_lpf_vertical_16_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, bd);
} else if (mask_16x16_0 & 1) {
aom_highbd_lpf_vertical_16(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, bd);
} else {
aom_highbd_lpf_vertical_16(s + 8 * pitch, pitch, lfi1->mblim,
lfi1->lim, lfi1->hev_thr, bd);
}
}
if ((mask_8x8_0 | mask_8x8_1) & 1) {
if ((mask_8x8_0 & mask_8x8_1) & 1) {
aom_highbd_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim, lfi1->lim,
lfi1->hev_thr, bd);
} else if (mask_8x8_0 & 1) {
aom_highbd_lpf_vertical_8(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, bd);
} else {
aom_highbd_lpf_vertical_8(s + 8 * pitch, pitch, lfi1->mblim,
lfi1->lim, lfi1->hev_thr, bd);
}
}
if ((mask_4x4_0 | mask_4x4_1) & 1) {
if ((mask_4x4_0 & mask_4x4_1) & 1) {
aom_highbd_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim, lfi1->lim,
lfi1->hev_thr, bd);
} else if (mask_4x4_0 & 1) {
aom_highbd_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, bd);
} else {
aom_highbd_lpf_vertical_4(s + 8 * pitch, pitch, lfi1->mblim,
lfi1->lim, lfi1->hev_thr, bd);
}
}
if ((mask_4x4_int_0 | mask_4x4_int_1) & 1) {
if ((mask_4x4_int_0 & mask_4x4_int_1) & 1) {
aom_highbd_lpf_vertical_4_dual(s + 4, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim, lfi1->lim,
lfi1->hev_thr, bd);
} else if (mask_4x4_int_0 & 1) {
aom_highbd_lpf_vertical_4(s + 4, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, bd);
} else {
aom_highbd_lpf_vertical_4(s + 8 * pitch + 4, pitch, lfi1->mblim,
lfi1->lim, lfi1->hev_thr, bd);
}
}
}
s += 8;
lfl += 1;
mask_16x16_0 >>= 1;
mask_8x8_0 >>= 1;
mask_4x4_0 >>= 1;
mask_4x4_int_0 >>= 1;
mask_16x16_1 >>= 1;
mask_8x8_1 >>= 1;
mask_4x4_1 >>= 1;
mask_4x4_int_1 >>= 1;
}
}
#endif // CONFIG_HIGHBITDEPTH
static void filter_selectively_horiz(
uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_info_n *lfi_n, const uint8_t *lfl) {
unsigned int mask;
int count;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
mask >>= count) {
const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
count = 1;
if (mask & 1) {
if (mask_16x16 & 1) {
if ((mask_16x16 & 3) == 3) {
aom_lpf_horizontal_edge_16(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
count = 2;
} else {
aom_lpf_horizontal_edge_8(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
} else if (mask_8x8 & 1) {
if ((mask_8x8 & 3) == 3) {
// Next block's thresholds.
const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
aom_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr);
if ((mask_4x4_int & 3) == 3) {
aom_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, lfin->mblim,
lfin->lim, lfin->hev_thr);
} else {
if (mask_4x4_int & 1)
aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
else if (mask_4x4_int & 2)
aom_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
lfin->lim, lfin->hev_thr);
}
count = 2;
} else {
aom_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
if (mask_4x4_int & 1)
aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
} else if (mask_4x4 & 1) {
if ((mask_4x4 & 3) == 3) {
// Next block's thresholds.
const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
aom_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr);
if ((mask_4x4_int & 3) == 3) {
aom_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, lfin->mblim,
lfin->lim, lfin->hev_thr);
} else {
if (mask_4x4_int & 1)
aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
else if (mask_4x4_int & 2)
aom_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
lfin->lim, lfin->hev_thr);
}
count = 2;
} else {
aom_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
if (mask_4x4_int & 1)
aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
} else if (mask_4x4_int & 1) {
aom_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
}
s += 8 * count;
lfl += count;
mask_16x16 >>= count;
mask_8x8 >>= count;
mask_4x4 >>= count;
mask_4x4_int >>= count;
}
}
#if CONFIG_HIGHBITDEPTH
static void highbd_filter_selectively_horiz(
uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_info_n *lfi_n, const uint8_t *lfl, int bd) {
unsigned int mask;
int count;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
mask >>= count) {
const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
count = 1;
if (mask & 1) {
if (mask_16x16 & 1) {
if ((mask_16x16 & 3) == 3) {
aom_highbd_lpf_horizontal_edge_16(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
count = 2;
} else {
aom_highbd_lpf_horizontal_edge_8(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
}
} else if (mask_8x8 & 1) {
if ((mask_8x8 & 3) == 3) {
// Next block's thresholds.
const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
aom_highbd_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr, bd);
if ((mask_4x4_int & 3) == 3) {
aom_highbd_lpf_horizontal_4_dual(
s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
lfin->mblim, lfin->lim, lfin->hev_thr, bd);
} else {
if (mask_4x4_int & 1) {
aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
} else if (mask_4x4_int & 2) {
aom_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
lfin->lim, lfin->hev_thr, bd);
}
}
count = 2;
} else {
aom_highbd_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
if (mask_4x4_int & 1) {
aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
}
}
} else if (mask_4x4 & 1) {
if ((mask_4x4 & 3) == 3) {
// Next block's thresholds.
const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
aom_highbd_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr, bd);
if ((mask_4x4_int & 3) == 3) {
aom_highbd_lpf_horizontal_4_dual(
s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
lfin->mblim, lfin->lim, lfin->hev_thr, bd);
} else {
if (mask_4x4_int & 1) {
aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
} else if (mask_4x4_int & 2) {
aom_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
lfin->lim, lfin->hev_thr, bd);
}
}
count = 2;
} else {
aom_highbd_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
if (mask_4x4_int & 1) {
aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
}
}
} else if (mask_4x4_int & 1) {
aom_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
}
}
s += 8 * count;
lfl += count;
mask_16x16 >>= count;
mask_8x8 >>= count;
mask_4x4 >>= count;
mask_4x4_int >>= count;
}
}
#endif // CONFIG_HIGHBITDEPTH
// This function ors into the current lfm structure, where to do loop
// filters for the specific mi we are looking at. It uses information
// including the block_size_type (32x16, 32x32, etc.), the transform size,
// whether there were any coefficients encoded, and the loop filter strength
// block we are currently looking at. Shift is used to position the
// 1's we produce.
// TODO(JBB) Need another function for different resolution color..
static void build_masks(AV1_COMMON *const cm,
const loop_filter_info_n *const lfi_n,
const MODE_INFO *mi, const int shift_y,
const int shift_uv, LOOP_FILTER_MASK *lfm) {
const MB_MODE_INFO *mbmi = &mi->mbmi;
const BLOCK_SIZE block_size = mbmi->sb_type;
// TODO(debargha): Check if masks can be setup correctly when
// rectangular transfroms are used with the EXT_TX expt.
const TX_SIZE tx_size_y = txsize_sqr_map[mbmi->tx_size];
const TX_SIZE tx_size_y_left = txsize_horz_map[mbmi->tx_size];
const TX_SIZE tx_size_y_above = txsize_vert_map[mbmi->tx_size];
const TX_SIZE tx_size_uv =
txsize_sqr_map[uv_txsize_lookup[block_size][mbmi->tx_size][1][1]];
const TX_SIZE tx_size_uv_left =
txsize_horz_map[uv_txsize_lookup[block_size][mbmi->tx_size][1][1]];
const TX_SIZE tx_size_uv_above =
txsize_vert_map[uv_txsize_lookup[block_size][mbmi->tx_size][1][1]];
#if CONFIG_EXT_DELTA_Q
#if CONFIG_LOOPFILTER_LEVEL
const int filter_level = get_filter_level(cm, lfi_n, 0, 0, mbmi);
#else
#if CONFIG_LPF_SB
const int filter_level = get_filter_level(cm, lfi_n, 0, 0, mbmi);
#else
const int filter_level = get_filter_level(cm, lfi_n, mbmi);
#endif // CONFIG_LPF_SB
#endif
#else
const int filter_level = get_filter_level(lfi_n, mbmi);
(void)cm;
#endif
uint64_t *const left_y = &lfm->left_y[tx_size_y_left];
uint64_t *const above_y = &lfm->above_y[tx_size_y_above];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
uint16_t *const left_uv = &lfm->left_uv[tx_size_uv_left];
uint16_t *const above_uv = &lfm->above_uv[tx_size_uv_above];
uint16_t *const int_4x4_uv = &lfm->left_int_4x4_uv;
int i;
// If filter level is 0 we don't loop filter.
if (!filter_level) {
return;
} else {
const int w = num_8x8_blocks_wide_lookup[block_size];
const int h = num_8x8_blocks_high_lookup[block_size];
const int row = (shift_y >> MAX_MIB_SIZE_LOG2);
const int col = shift_y - (row << MAX_MIB_SIZE_LOG2);
for (i = 0; i < h; i++) memset(&lfm->lfl_y[row + i][col], filter_level, w);
}
// These set 1 in the current block size for the block size edges.
// For instance if the block size is 32x16, we'll set:
// above = 1111
// 0000
// and
// left = 1000
// = 1000
// NOTE : In this example the low bit is left most ( 1000 ) is stored as
// 1, not 8...
//
// U and V set things on a 16 bit scale.
//
*above_y |= above_prediction_mask[block_size] << shift_y;
*above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
*left_y |= left_prediction_mask[block_size] << shift_y;
*left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
// If the block has no coefficients and is not intra we skip applying
// the loop filter on block edges.
if (mbmi->skip && is_inter_block(mbmi)) return;
// Here we are adding a mask for the transform size. The transform
// size mask is set to be correct for a 64x64 prediction block size. We
// mask to match the size of the block we are working on and then shift it
// into place..
*above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y_above])
<< shift_y;
*above_uv |=
(size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv_above])
<< shift_uv;
*left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y_left])
<< shift_y;
*left_uv |=
(size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv_left])
<< shift_uv;
// Here we are trying to determine what to do with the internal 4x4 block
// boundaries. These differ from the 4x4 boundaries on the outside edge of
// an 8x8 in that the internal ones can be skipped and don't depend on
// the prediction block size.
if (tx_size_y == TX_4X4)
*int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y;
if (tx_size_uv == TX_4X4)
*int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
}
// This function does the same thing as the one above with the exception that
// it only affects the y masks. It exists because for blocks < 16x16 in size,
// we only update u and v masks on the first block.
static void build_y_mask(AV1_COMMON *const cm,
const loop_filter_info_n *const lfi_n,
const MODE_INFO *mi, const int shift_y,
LOOP_FILTER_MASK *lfm) {
const MB_MODE_INFO *mbmi = &mi->mbmi;
const TX_SIZE tx_size_y = txsize_sqr_map[mbmi->tx_size];
const TX_SIZE tx_size_y_left = txsize_horz_map[mbmi->tx_size];
const TX_SIZE tx_size_y_above = txsize_vert_map[mbmi->tx_size];
const BLOCK_SIZE block_size = mbmi->sb_type;
#if CONFIG_EXT_DELTA_Q
#if CONFIG_LOOPFILTER_LEVEL
const int filter_level = get_filter_level(cm, lfi_n, 0, 0, mbmi);
#else
#if CONFIG_LPF_SB
const int filter_level = get_filter_level(cm, lfi_n, 0, 0, mbmi);
#else
const int filter_level = get_filter_level(cm, lfi_n, mbmi);
#endif // CONFIG_LPF_SB
#endif
#else
const int filter_level = get_filter_level(lfi_n, mbmi);
(void)cm;
#endif
uint64_t *const left_y = &lfm->left_y[tx_size_y_left];
uint64_t *const above_y = &lfm->above_y[tx_size_y_above];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
int i;
if (!filter_level) {
return;
} else {
const int w = num_8x8_blocks_wide_lookup[block_size];
const int h = num_8x8_blocks_high_lookup[block_size];
const int row = (shift_y >> MAX_MIB_SIZE_LOG2);
const int col = shift_y - (row << MAX_MIB_SIZE_LOG2);
for (i = 0; i < h; i++) memset(&lfm->lfl_y[row + i][col], filter_level, w);
}
*above_y |= above_prediction_mask[block_size] << shift_y;
*left_y |= left_prediction_mask[block_size] << shift_y;
if (mbmi->skip && is_inter_block(mbmi)) return;
*above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y_above])
<< shift_y;
*left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y_left])
<< shift_y;
if (tx_size_y == TX_4X4)
*int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y;
}
#if CONFIG_LOOPFILTERING_ACROSS_TILES
// This function update the bit masks for the entire 64x64 region represented
// by mi_row, mi_col. In case one of the edge is a tile boundary, loop filtering
// for that edge is disabled. This function only check the tile boundary info
// for the top left corner mi to determine the boundary information for the
// top and left edge of the whole super block
static void update_tile_boundary_filter_mask(AV1_COMMON *const cm,
const int mi_row, const int mi_col,
LOOP_FILTER_MASK *lfm) {
int i;
MODE_INFO *const mi = cm->mi + mi_row * cm->mi_stride + mi_col;
if (mi->mbmi.boundary_info & TILE_LEFT_BOUNDARY) {
for (i = 0; i <= TX_32X32; i++) {
lfm->left_y[i] &= 0xfefefefefefefefeULL;
lfm->left_uv[i] &= 0xeeee;
}
}
if (mi->mbmi.boundary_info & TILE_ABOVE_BOUNDARY) {
for (i = 0; i <= TX_32X32; i++) {
lfm->above_y[i] &= 0xffffffffffffff00ULL;
lfm->above_uv[i] &= 0xfff0;
}
}
}
#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
// This function sets up the bit masks for the entire 64x64 region represented
// by mi_row, mi_col.
// TODO(JBB): This function only works for yv12.
void av1_setup_mask(AV1_COMMON *const cm, const int mi_row, const int mi_col,
MODE_INFO **mi, const int mode_info_stride,
LOOP_FILTER_MASK *lfm) {
#if CONFIG_EXT_PARTITION
assert(0 && "Not yet updated");
#endif // CONFIG_EXT_PARTITION
int idx_32, idx_16, idx_8;
const loop_filter_info_n *const lfi_n = &cm->lf_info;
MODE_INFO **mip = mi;
MODE_INFO **mip2 = mi;
// These are offsets to the next mi in the 64x64 block. It is what gets
// added to the mi ptr as we go through each loop. It helps us to avoid
// setting up special row and column counters for each index. The last step
// brings us out back to the starting position.
const int offset_32[] = { 4, (mode_info_stride << 2) - 4, 4,
-(mode_info_stride << 2) - 4 };
const int offset_16[] = { 2, (mode_info_stride << 1) - 2, 2,
-(mode_info_stride << 1) - 2 };
const int offset[] = { 1, mode_info_stride - 1, 1, -mode_info_stride - 1 };
// Following variables represent shifts to position the current block
// mask over the appropriate block. A shift of 36 to the left will move
// the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
// 4 rows to the appropriate spot.
const int shift_32_y[] = { 0, 4, 32, 36 };
const int shift_16_y[] = { 0, 2, 16, 18 };
const int shift_8_y[] = { 0, 1, 8, 9 };
const int shift_32_uv[] = { 0, 2, 8, 10 };
const int shift_16_uv[] = { 0, 1, 4, 5 };
int i;
const int max_rows = AOMMIN(cm->mi_rows - mi_row, MAX_MIB_SIZE);
const int max_cols = AOMMIN(cm->mi_cols - mi_col, MAX_MIB_SIZE);
av1_zero(*lfm);
assert(mip[0] != NULL);
// TODO(jimbankoski): Try moving most of the following code into decode
// loop and storing lfm in the mbmi structure so that we don't have to go
// through the recursive loop structure multiple times.
switch (mip[0]->mbmi.sb_type) {
case BLOCK_64X64: build_masks(cm, lfi_n, mip[0], 0, 0, lfm); break;
case BLOCK_64X32:
build_masks(cm, lfi_n, mip[0], 0, 0, lfm);
mip2 = mip + mode_info_stride * 4;
if (4 >= max_rows) break;
build_masks(cm, lfi_n, mip2[0], 32, 8, lfm);
break;
case BLOCK_32X64:
build_masks(cm, lfi_n, mip[0], 0, 0, lfm);
mip2 = mip + 4;
if (4 >= max_cols) break;
build_masks(cm, lfi_n, mip2[0], 4, 2, lfm);
break;
default:
for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
const int shift_y_32 = shift_32_y[idx_32];
const int shift_uv_32 = shift_32_uv[idx_32];
const int mi_32_col_offset = ((idx_32 & 1) << 2);
const int mi_32_row_offset = ((idx_32 >> 1) << 2);
if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
continue;
switch (mip[0]->mbmi.sb_type) {
case BLOCK_32X32:
build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm);
break;
case BLOCK_32X16:
build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm);
if (mi_32_row_offset + 2 >= max_rows) continue;
mip2 = mip + mode_info_stride * 2;
build_masks(cm, lfi_n, mip2[0], shift_y_32 + 16, shift_uv_32 + 4,
lfm);
break;
case BLOCK_16X32:
build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm);
if (mi_32_col_offset + 2 >= max_cols) continue;
mip2 = mip + 2;
build_masks(cm, lfi_n, mip2[0], shift_y_32 + 2, shift_uv_32 + 1,
lfm);
break;
default:
for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
const int shift_y_32_16 = shift_y_32 + shift_16_y[idx_16];
const int shift_uv_32_16 = shift_uv_32 + shift_16_uv[idx_16];
const int mi_16_col_offset =
mi_32_col_offset + ((idx_16 & 1) << 1);
const int mi_16_row_offset =
mi_32_row_offset + ((idx_16 >> 1) << 1);
if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
continue;
switch (mip[0]->mbmi.sb_type) {
case BLOCK_16X16:
build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16,
lfm);
break;
case BLOCK_16X8:
build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16,
lfm);
if (mi_16_row_offset + 1 >= max_rows) continue;
mip2 = mip + mode_info_stride;
build_y_mask(cm, lfi_n, mip2[0], shift_y_32_16 + 8, lfm);
break;
case BLOCK_8X16:
build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16,
lfm);
if (mi_16_col_offset + 1 >= max_cols) continue;
mip2 = mip + 1;
build_y_mask(cm, lfi_n, mip2[0], shift_y_32_16 + 1, lfm);
break;
default: {
const int shift_y_32_16_8_zero = shift_y_32_16 + shift_8_y[0];
build_masks(cm, lfi_n, mip[0], shift_y_32_16_8_zero,
shift_uv_32_16, lfm);
mip += offset[0];
for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
const int shift_y_32_16_8 =
shift_y_32_16 + shift_8_y[idx_8];
const int mi_8_col_offset =
mi_16_col_offset + ((idx_8 & 1));
const int mi_8_row_offset =
mi_16_row_offset + ((idx_8 >> 1));
if (mi_8_col_offset >= max_cols ||
mi_8_row_offset >= max_rows)
continue;
build_y_mask(cm, lfi_n, mip[0], shift_y_32_16_8, lfm);
}
break;
}
}
}
break;
}
}
break;
}
// The largest loopfilter we have is 16x16 so we use the 16x16 mask
// for 32x32 transforms also.
lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
// We do at least 8 tap filter on every 32x32 even if the transform size
// is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
// remove it from the 4x4.
lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
lfm->left_y[TX_4X4] &= ~left_border;
lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
lfm->above_y[TX_4X4] &= ~above_border;
lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
lfm->left_uv[TX_4X4] &= ~left_border_uv;
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
lfm->above_uv[TX_4X4] &= ~above_border_uv;
// We do some special edge handling.
if (mi_row + MAX_MIB_SIZE > cm->mi_rows) {
const uint64_t rows = cm->mi_rows - mi_row;
// Each pixel inside the border gets a 1,
const uint64_t mask_y = (((uint64_t)1 << (rows << MAX_MIB_SIZE_LOG2)) - 1);
const uint16_t mask_uv =
(((uint16_t)1 << (((rows + 1) >> 1) << (MAX_MIB_SIZE_LOG2 - 1))) - 1);
// Remove values completely outside our border.
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= mask_y;
lfm->above_y[i] &= mask_y;
lfm->left_uv[i] &= mask_uv;
lfm->above_uv[i] &= mask_uv;
}
lfm->int_4x4_y &= mask_y;
lfm->above_int_4x4_uv = lfm->left_int_4x4_uv & mask_uv;
// We don't apply a wide loop filter on the last uv block row. If set
// apply the shorter one instead.
if (rows == 1) {
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
lfm->above_uv[TX_16X16] = 0;
}
if (rows == 5) {
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
}
} else {
lfm->above_int_4x4_uv = lfm->left_int_4x4_uv;
}
if (mi_col + MAX_MIB_SIZE > cm->mi_cols) {
const uint64_t columns = cm->mi_cols - mi_col;
// Each pixel inside the border gets a 1, the multiply copies the border
// to where we need it.
const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101ULL;
const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
// Internal edges are not applied on the last column of the image so
// we mask 1 more for the internal edges
const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
// Remove the bits outside the image edge.
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= mask_y;
lfm->above_y[i] &= mask_y;
lfm->left_uv[i] &= mask_uv;
lfm->above_uv[i] &= mask_uv;
}
lfm->int_4x4_y &= mask_y;
lfm->left_int_4x4_uv &= mask_uv_int;
// We don't apply a wide loop filter on the last uv column. If set
// apply the shorter one instead.
if (columns == 1) {
lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
lfm->left_uv[TX_16X16] = 0;
}
if (columns == 5) {
lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
}
}
// We don't apply a loop filter on the first column in the image, mask that
// out.
if (mi_col == 0) {
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= 0xfefefefefefefefeULL;
lfm->left_uv[i] &= 0xeeee;
}
}
#if CONFIG_LOOPFILTERING_ACROSS_TILES
if (av1_disable_loopfilter_on_tile_boundary(cm)) {
update_tile_boundary_filter_mask(cm, mi_row, mi_col, lfm);
}
#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
// Assert if we try to apply 2 different loop filters at the same position.
assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8]));
assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4]));
assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4]));
assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16]));
assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_8X8]));
assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4]));
assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4]));
assert(!(lfm->left_int_4x4_uv & lfm->left_uv[TX_16X16]));
assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8]));
assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4]));
assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4]));
assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16]));
assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8]));
assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4]));
assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4]));
assert(!(lfm->above_int_4x4_uv & lfm->above_uv[TX_16X16]));
}
static void filter_selectively_vert(
uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_info_n *lfi_n, const uint8_t *lfl) {
unsigned int mask;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
mask >>= 1) {
const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
if (mask & 1) {
if (mask_16x16 & 1) {
aom_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
} else if (mask_8x8 & 1) {
aom_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
} else if (mask_4x4 & 1) {
aom_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
}
}
if (mask_4x4_int & 1)
aom_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
s += 8;
lfl += 1;
mask_16x16 >>= 1;
mask_8x8 >>= 1;
mask_4x4 >>= 1;
mask_4x4_int >>= 1;
}
}
#if CONFIG_HIGHBITDEPTH
static void highbd_filter_selectively_vert(
uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_info_n *lfi_n, const uint8_t *lfl, int bd) {
unsigned int mask;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
mask >>= 1) {
const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
if (mask & 1) {
if (mask_16x16 & 1) {
aom_highbd_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
bd);
} else if (mask_8x8 & 1) {
aom_highbd_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
bd);
} else if (mask_4x4 & 1) {
aom_highbd_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
bd);
}
}
if (mask_4x4_int & 1)
aom_highbd_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
s += 8;
lfl += 1;
mask_16x16 >>= 1;
mask_8x8 >>= 1;
mask_4x4 >>= 1;
mask_4x4_int >>= 1;
}
}
#endif // CONFIG_HIGHBITDEPTH
typedef struct {
unsigned int m16x16;
unsigned int m8x8;
unsigned int m4x4;
} FilterMasks;
// Get filter level and masks for the given row index 'idx_r'. (Only used for
// the non420 case).
// Note: 'row_masks_ptr' and/or 'col_masks_ptr' can be passed NULL.
static void get_filter_level_and_masks_non420(
AV1_COMMON *const cm, const struct macroblockd_plane *const plane, int pl,
MODE_INFO **mib, int mi_row, int mi_col, int idx_r, uint8_t *const lfl_r,
unsigned int *const mask_4x4_int_r_ptr,
unsigned int *const mask_4x4_int_c_ptr, FilterMasks *const row_masks_ptr,
FilterMasks *const col_masks_ptr) {
const int ss_x = plane->subsampling_x;
const int ss_y = plane->subsampling_y;
const int col_step = mi_size_wide[BLOCK_8X8] << ss_x;
FilterMasks row_masks, col_masks;
memset(&row_masks, 0, sizeof(row_masks));
memset(&col_masks, 0, sizeof(col_masks));
unsigned int mask_4x4_int_r = 0, mask_4x4_int_c = 0;
const int r = idx_r >> mi_height_log2_lookup[BLOCK_8X8];
// Determine the vertical edges that need filtering
int idx_c;
for (idx_c = 0; idx_c < cm->mib_size && mi_col + idx_c < cm->mi_cols;
idx_c += col_step) {
const MODE_INFO *mi = mib[idx_r * cm->mi_stride + idx_c];
const MB_MODE_INFO *mbmi = &mi[0].mbmi;
const BLOCK_SIZE sb_type = mbmi->sb_type;
const int skip_this = mbmi->skip && is_inter_block(mbmi);
// Map index to 8x8 unit
const int c = idx_c >> mi_width_log2_lookup[BLOCK_8X8];
const int blk_row = r & (num_8x8_blocks_high_lookup[sb_type] - 1);
const int blk_col = c & (num_8x8_blocks_wide_lookup[sb_type] - 1);
// left edge of current unit is block/partition edge -> no skip
const int block_edge_left =
(num_4x4_blocks_wide_lookup[sb_type] > 1) ? !blk_col : 1;
const int skip_this_c = skip_this && !block_edge_left;
// top edge of current unit is block/partition edge -> no skip
const int block_edge_above =
(num_4x4_blocks_high_lookup[sb_type] > 1) ? !blk_row : 1;
const int skip_this_r = skip_this && !block_edge_above;
TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV)
? av1_get_uv_tx_size(mbmi, plane)
: mbmi->tx_size;
const int skip_border_4x4_c =
ss_x && mi_col + idx_c >= cm->mi_cols - mi_size_wide[BLOCK_8X8];
const int skip_border_4x4_r =
ss_y && mi_row + idx_r >= cm->mi_rows - mi_size_high[BLOCK_8X8];
int tx_size_mask = 0;
const int c_step = (c >> ss_x);
const int r_step = (r >> ss_y);
const int col_mask = 1 << c_step;
if (is_inter_block(mbmi) && !mbmi->skip) {
const int tx_row_idx =
(blk_row * mi_size_high[BLOCK_8X8] << TX_UNIT_HIGH_LOG2) >> 1;
const int tx_col_idx =
(blk_col * mi_size_wide[BLOCK_8X8] << TX_UNIT_WIDE_LOG2) >> 1;
const BLOCK_SIZE bsize =
AOMMAX(BLOCK_4X4, get_plane_block_size(mbmi->sb_type, plane));
const TX_SIZE mb_tx_size = mbmi->inter_tx_size[tx_row_idx][tx_col_idx];
tx_size = (plane->plane_type == PLANE_TYPE_UV)
? uv_txsize_lookup[bsize][mb_tx_size][0][0]
: mb_tx_size;
}
// Filter level can vary per MI
#if CONFIG_EXT_DELTA_Q
#if CONFIG_LOOPFILTER_LEVEL
if (!(lfl_r[c_step] = get_filter_level(cm, &cm->lf_info, 0, 0, mbmi)))
continue;
#else
#if CONFIG_LPF_SB
if (!(lfl_r[c_step] =
get_filter_level(cm, &cm->lf_info, mi_row, mi_col, mbmi)))
continue;
#else
if (!(lfl_r[c_step] = get_filter_level(cm, &cm->lf_info, mbmi))) continue;
#endif // CONFIG_LPF_SB
#endif
#else
if (!(lfl_r[c_step] = get_filter_level(&cm->lf_info, mbmi))) continue;
#endif
TX_SIZE tx_size_horz_edge, tx_size_vert_edge;
// filt_len_vert_edge is the length of deblocking filter for a vertical edge
// The filter direction of a vertical edge is horizontal.
// Thus, filt_len_vert_edge is determined as the minimum width of the two
// transform block sizes on the left and right (current block) side of edge
const int filt_len_vert_edge = AOMMIN(
tx_size_wide[tx_size],
tx_size_wide[cm->left_txfm_context[pl][((mi_row + idx_r) & MAX_MIB_MASK)
<< TX_UNIT_HIGH_LOG2]]);
// filt_len_horz_edge is the len of deblocking filter for a horizontal edge
// The filter direction of a horizontal edge is vertical.
// Thus, filt_len_horz_edge is determined as the minimum height of the two
// transform block sizes on the top and bottom (current block) side of edge
const int filt_len_horz_edge =
AOMMIN(tx_size_high[tx_size],
tx_size_high[cm->top_txfm_context[pl][(mi_col + idx_c)
<< TX_UNIT_WIDE_LOG2]]);
// transform width/height of current block
const int tx_wide_cur = tx_size_wide[tx_size];
const int tx_high_cur = tx_size_high[tx_size];
// tx_size_vert_edge is square transform size for a vertical deblocking edge
// It determines the type of filter applied to the vertical edge
// Similarly, tx_size_horz_edge is for a horizontal deblocking edge
tx_size_vert_edge = get_sqr_tx_size(filt_len_vert_edge);
tx_size_horz_edge = get_sqr_tx_size(filt_len_horz_edge);
memset(cm->top_txfm_context[pl] + ((mi_col + idx_c) << TX_UNIT_WIDE_LOG2),
tx_size, mi_size_wide[BLOCK_8X8] << TX_UNIT_WIDE_LOG2);
memset(cm->left_txfm_context[pl] +
(((mi_row + idx_r) & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2),
tx_size, mi_size_high[BLOCK_8X8] << TX_UNIT_HIGH_LOG2);
if (tx_size_vert_edge == TX_32X32)
tx_size_mask = 3;
else if (tx_size_vert_edge == TX_16X16)
tx_size_mask = 1;
else
tx_size_mask = 0;
// Build masks based on the transform size of each block
// handle vertical mask
if (tx_size_vert_edge == TX_32X32) {
if (!skip_this_c && (c_step & tx_size_mask) == 0) {
if (!skip_border_4x4_c)
col_masks.m16x16 |= col_mask;
else
col_masks.m8x8 |= col_mask;
}
} else if (tx_size_vert_edge == TX_16X16) {
if (!skip_this_c && (c_step & tx_size_mask) == 0) {
if (!skip_border_4x4_c)
col_masks.m16x16 |= col_mask;
else
col_masks.m8x8 |= col_mask;
}
} else {
// force 8x8 filtering on 32x32 boundaries
if (!skip_this_c && (c_step & tx_size_mask) == 0) {
if (tx_size_vert_edge == TX_8X8 || (c_step & 3) == 0)
col_masks.m8x8 |= col_mask;
else
col_masks.m4x4 |= col_mask;
}
if (!skip_this && tx_wide_cur < 8 && !skip_border_4x4_c &&
(c_step & tx_size_mask) == 0)
mask_4x4_int_c |= col_mask;
}
if (tx_size_horz_edge == TX_32X32)
tx_size_mask = 3;
else if (tx_size_horz_edge == TX_16X16)
tx_size_mask = 1;
else
tx_size_mask = 0;
// set horizontal mask
if (tx_size_horz_edge == TX_32X32) {
if (!skip_this_r && (r_step & tx_size_mask) == 0) {
if (!skip_border_4x4_r)
row_masks.m16x16 |= col_mask;
else
row_masks.m8x8 |= col_mask;
}
} else if (tx_size_horz_edge == TX_16X16) {
if (!skip_this_r && (r_step & tx_size_mask) == 0) {
if (!skip_border_4x4_r)
row_masks.m16x16 |= col_mask;
else
row_masks.m8x8 |= col_mask;
}
} else {
// force 8x8 filtering on 32x32 boundaries
if (!skip_this_r && (r_step & tx_size_mask) == 0) {
if (tx_size_horz_edge == TX_8X8 || (r_step & 3) == 0)
row_masks.m8x8 |= col_mask;
else
row_masks.m4x4 |= col_mask;
}
if (!skip_this && tx_high_cur < 8 && !skip_border_4x4_r &&
(r_step & tx_size_mask) == 0)
mask_4x4_int_r |= col_mask;
}
}
if (row_masks_ptr) *row_masks_ptr = row_masks;
if (col_masks_ptr) *col_masks_ptr = col_masks;
if (mask_4x4_int_c_ptr) *mask_4x4_int_c_ptr = mask_4x4_int_c;
if (mask_4x4_int_r_ptr) *mask_4x4_int_r_ptr = mask_4x4_int_r;
}
void av1_filter_block_plane_non420_ver(AV1_COMMON *const cm,
struct macroblockd_plane *plane,
MODE_INFO **mib, int mi_row, int mi_col,
int pl) {
const int ss_y = plane->subsampling_y;
const int row_step = mi_size_high[BLOCK_8X8] << ss_y;
struct buf_2d *const dst = &plane->dst;
uint8_t *const dst0 = dst->buf;
uint8_t lfl[MAX_MIB_SIZE][MAX_MIB_SIZE] = { { 0 } };
int idx_r;
for (idx_r = 0; idx_r < cm->mib_size && mi_row + idx_r < cm->mi_rows;
idx_r += row_step) {
unsigned int mask_4x4_int;
FilterMasks col_masks;
const int r = idx_r >> mi_height_log2_lookup[BLOCK_8X8];
get_filter_level_and_masks_non420(cm, plane, pl, mib, mi_row, mi_col, idx_r,
&lfl[r][0], NULL, &mask_4x4_int, NULL,
&col_masks);
// Disable filtering on the leftmost column or tile boundary
unsigned int border_mask = ~(mi_col == 0 ? 1 : 0);
#if CONFIG_LOOPFILTERING_ACROSS_TILES
MODE_INFO *const mi = cm->mi + (mi_row + idx_r) * cm->mi_stride + mi_col;
if (av1_disable_loopfilter_on_tile_boundary(cm) &&
((mi->mbmi.boundary_info & TILE_LEFT_BOUNDARY) != 0)) {
border_mask = 0xfffffffe;
}
#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
highbd_filter_selectively_vert(
CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
col_masks.m16x16 & border_mask, col_masks.m8x8 & border_mask,
col_masks.m4x4 & border_mask, mask_4x4_int, &cm->lf_info, &lfl[r][0],
(int)cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
filter_selectively_vert(
dst->buf, dst->stride, col_masks.m16x16 & border_mask,
col_masks.m8x8 & border_mask, col_masks.m4x4 & border_mask,
mask_4x4_int, &cm->lf_info, &lfl[r][0]);
dst->buf += 8 * dst->stride;
}
// Now do horizontal pass
dst->buf = dst0;
}
void av1_filter_block_plane_non420_hor(AV1_COMMON *const cm,
struct macroblockd_plane *plane,
MODE_INFO **mib, int mi_row, int mi_col,
int pl) {
const int ss_y = plane->subsampling_y;
const int row_step = mi_size_high[BLOCK_8X8] << ss_y;
struct buf_2d *const dst = &plane->dst;
uint8_t *const dst0 = dst->buf;
uint8_t lfl[MAX_MIB_SIZE][MAX_MIB_SIZE] = { { 0 } };
int idx_r;
for (idx_r = 0; idx_r < cm->mib_size && mi_row + idx_r < cm->mi_rows;
idx_r += row_step) {
unsigned int mask_4x4_int;
FilterMasks row_masks;
const int r = idx_r >> mi_height_log2_lookup[BLOCK_8X8];
get_filter_level_and_masks_non420(cm, plane, pl, mib, mi_row, mi_col, idx_r,
&lfl[r][0], &mask_4x4_int, NULL,
&row_masks, NULL);
#if CONFIG_LOOPFILTERING_ACROSS_TILES
// Disable filtering on the abovemost row or tile boundary
const MODE_INFO *mi = cm->mi + (mi_row + idx_r) * cm->mi_stride + mi_col;
if ((av1_disable_loopfilter_on_tile_boundary(cm) &&
(mi->mbmi.boundary_info & TILE_ABOVE_BOUNDARY)) ||
(mi_row + idx_r == 0))
memset(&row_masks, 0, sizeof(row_masks));
#else
if (mi_row + idx_r == 0) memset(&row_masks, 0, sizeof(row_masks));
#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
highbd_filter_selectively_horiz(
CONVERT_TO_SHORTPTR(dst->buf), dst->stride, row_masks.m16x16,
row_masks.m8x8, row_masks.m4x4, mask_4x4_int, &cm->lf_info,
&lfl[r][0], (int)cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
filter_selectively_horiz(dst->buf, dst->stride, row_masks.m16x16,
row_masks.m8x8, row_masks.m4x4, mask_4x4_int,
&cm->lf_info, &lfl[r][0]);
dst->buf += 8 * dst->stride;
}
dst->buf = dst0;
}
void av1_filter_block_plane_ss00_ver(AV1_COMMON *const cm,
struct macroblockd_plane *const plane,
int mi_row, LOOP_FILTER_MASK *lfm) {
struct buf_2d *const dst = &plane->dst;
uint8_t *const dst0 = dst->buf;
int r;
uint64_t mask_16x16 = lfm->left_y[TX_16X16];
uint64_t mask_8x8 = lfm->left_y[TX_8X8];
uint64_t mask_4x4 = lfm->left_y[TX_4X4];
uint64_t mask_4x4_int = lfm->int_4x4_y;
assert(plane->subsampling_x == 0 && plane->subsampling_y == 0);
// Vertical pass: do 2 rows at one time
for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 2) {
unsigned int mask_16x16_l = mask_16x16 & 0xffff;
unsigned int mask_8x8_l = mask_8x8 & 0xffff;
unsigned int mask_4x4_l = mask_4x4 & 0xffff;
unsigned int mask_4x4_int_l = mask_4x4_int & 0xffff;
// Disable filtering on the leftmost column.
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
highbd_filter_selectively_vert_row2(
plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info,
&lfm->lfl_y[r][0], (int)cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
filter_selectively_vert_row2(
plane->subsampling_x, dst->buf, dst->stride, mask_16x16_l, mask_8x8_l,
mask_4x4_l, mask_4x4_int_l, &cm->lf_info, &lfm->lfl_y[r][0]);
dst->buf += 2 * MI_SIZE * dst->stride;
mask_16x16 >>= 2 * MI_SIZE;
mask_8x8 >>= 2 * MI_SIZE;
mask_4x4 >>= 2 * MI_SIZE;
mask_4x4_int >>= 2 * MI_SIZE;
}
// Horizontal pass
dst->buf = dst0;
}
void av1_filter_block_plane_ss00_hor(AV1_COMMON *const cm,
struct macroblockd_plane *const plane,
int mi_row, LOOP_FILTER_MASK *lfm) {
struct buf_2d *const dst = &plane->dst;
uint8_t *const dst0 = dst->buf;
int r;
uint64_t mask_16x16 = lfm->above_y[TX_16X16];
uint64_t mask_8x8 = lfm->above_y[TX_8X8];
uint64_t mask_4x4 = lfm->above_y[TX_4X4];
uint64_t mask_4x4_int = lfm->int_4x4_y;
assert(plane->subsampling_x == 0 && plane->subsampling_y == 0);
for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r++) {
unsigned int mask_16x16_r;
unsigned int mask_8x8_r;
unsigned int mask_4x4_r;
if (mi_row + r == 0) {
mask_16x16_r = 0;
mask_8x8_r = 0;
mask_4x4_r = 0;
} else {
mask_16x16_r = mask_16x16 & 0xff;
mask_8x8_r = mask_8x8 & 0xff;
mask_4x4_r = mask_4x4 & 0xff;
}
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
highbd_filter_selectively_horiz(
CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int & 0xff, &cm->lf_info, &lfm->lfl_y[r][0],
(int)cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int & 0xff, &cm->lf_info,
&lfm->lfl_y[r][0]);
dst->buf += MI_SIZE * dst->stride;
mask_16x16 >>= MI_SIZE;
mask_8x8 >>= MI_SIZE;
mask_4x4 >>= MI_SIZE;
mask_4x4_int >>= MI_SIZE;
}
// restore the buf pointer in case there is additional filter pass.
dst->buf = dst0;
}
void av1_filter_block_plane_ss11_ver(AV1_COMMON *const cm,
struct macroblockd_plane *const plane,
int mi_row, LOOP_FILTER_MASK *lfm) {
struct buf_2d *const dst = &plane->dst;
uint8_t *const dst0 = dst->buf;
int r, c;
uint16_t mask_16x16 = lfm->left_uv[TX_16X16];
uint16_t mask_8x8 = lfm->left_uv[TX_8X8];
uint16_t mask_4x4 = lfm->left_uv[TX_4X4];
uint16_t mask_4x4_int = lfm->left_int_4x4_uv;
assert(plane->subsampling_x == 1 && plane->subsampling_y == 1);
assert(plane->plane_type == PLANE_TYPE_UV);
memset(lfm->lfl_uv, 0, sizeof(lfm->lfl_uv));
// Vertical pass: do 2 rows at one time
for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 4) {
for (c = 0; c < (cm->mib_size >> 1); c++) {
lfm->lfl_uv[r >> 1][c] = lfm->lfl_y[r][c << 1];
lfm->lfl_uv[(r + 2) >> 1][c] = lfm->lfl_y[r + 2][c << 1];
}
{
unsigned int mask_16x16_l = mask_16x16 & 0xff;
unsigned int mask_8x8_l = mask_8x8 & 0xff;
unsigned int mask_4x4_l = mask_4x4 & 0xff;
unsigned int mask_4x4_int_l = mask_4x4_int & 0xff;
// Disable filtering on the leftmost column.
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
highbd_filter_selectively_vert_row2(
plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
mask_16x16_l, mask_8x8_l, mask_4x4_l, mask_4x4_int_l, &cm->lf_info,
&lfm->lfl_uv[r >> 1][0], (int)cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
filter_selectively_vert_row2(plane->subsampling_x, dst->buf,
dst->stride, mask_16x16_l, mask_8x8_l,
mask_4x4_l, mask_4x4_int_l, &cm->lf_info,
&lfm->lfl_uv[r >> 1][0]);
dst->buf += 2 * MI_SIZE * dst->stride;
mask_16x16 >>= MI_SIZE;
mask_8x8 >>= MI_SIZE;
mask_4x4 >>= MI_SIZE;
mask_4x4_int >>= MI_SIZE;
}
}
// Horizontal pass
dst->buf = dst0;
}
void av1_filter_block_plane_ss11_hor(AV1_COMMON *const cm,
struct macroblockd_plane *const plane,
int mi_row, LOOP_FILTER_MASK *lfm) {
struct buf_2d *const dst = &plane->dst;
uint8_t *const dst0 = dst->buf;
int r, c;
uint64_t mask_16x16 = lfm->above_uv[TX_16X16];
uint64_t mask_8x8 = lfm->above_uv[TX_8X8];
uint64_t mask_4x4 = lfm->above_uv[TX_4X4];
uint64_t mask_4x4_int = lfm->above_int_4x4_uv;
assert(plane->subsampling_x == 1 && plane->subsampling_y == 1);
memset(lfm->lfl_uv, 0, sizeof(lfm->lfl_uv));
// re-porpulate the filter level for uv, same as the code for vertical
// filter in av1_filter_block_plane_ss11_ver
for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 4) {
for (c = 0; c < (cm->mib_size >> 1); c++) {
lfm->lfl_uv[r >> 1][c] = lfm->lfl_y[r][c << 1];
lfm->lfl_uv[(r + 2) >> 1][c] = lfm->lfl_y[r + 2][c << 1];
}
}
for (r = 0; r < cm->mib_size && mi_row + r < cm->mi_rows; r += 2) {
const int skip_border_4x4_r = mi_row + r == cm->mi_rows - 1;
const unsigned int mask_4x4_int_r =
skip_border_4x4_r ? 0 : (mask_4x4_int & 0xf);
unsigned int mask_16x16_r;
unsigned int mask_8x8_r;
unsigned int mask_4x4_r;
if (mi_row + r == 0) {
mask_16x16_r = 0;
mask_8x8_r = 0;
mask_4x4_r = 0;
} else {
mask_16x16_r = mask_16x16 & 0xf;
mask_8x8_r = mask_8x8 & 0xf;
mask_4x4_r = mask_4x4 & 0xf;
}
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
highbd_filter_selectively_horiz(
CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int_r, &cm->lf_info, &lfm->lfl_uv[r >> 1][0],
(int)cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int_r, &cm->lf_info,
&lfm->lfl_uv[r >> 1][0]);
dst->buf += MI_SIZE * dst->stride;
mask_16x16 >>= MI_SIZE / 2;
mask_8x8 >>= MI_SIZE / 2;
mask_4x4 >>= MI_SIZE / 2;
mask_4x4_int >>= MI_SIZE / 2;
}
// restore the buf pointer in case there is additional filter pass.
dst->buf = dst0;
}
#if CONFIG_PARALLEL_DEBLOCKING
typedef enum EDGE_DIR { VERT_EDGE = 0, HORZ_EDGE = 1, NUM_EDGE_DIRS } EDGE_DIR;
static const uint32_t av1_prediction_masks[NUM_EDGE_DIRS][BLOCK_SIZES_ALL] = {
// mask for vertical edges filtering
{
2 - 1, // BLOCK_2X2
2 - 1, // BLOCK_2X4
4 - 1, // BLOCK_4X2
4 - 1, // BLOCK_4X4
4 - 1, // BLOCK_4X8
8 - 1, // BLOCK_8X4
8 - 1, // BLOCK_8X8
8 - 1, // BLOCK_8X16
16 - 1, // BLOCK_16X8
16 - 1, // BLOCK_16X16
16 - 1, // BLOCK_16X32
32 - 1, // BLOCK_32X16
32 - 1, // BLOCK_32X32
32 - 1, // BLOCK_32X64
64 - 1, // BLOCK_64X32
64 - 1, // BLOCK_64X64
#if CONFIG_EXT_PARTITION
64 - 1, // BLOCK_64X128
128 - 1, // BLOCK_128X64
128 - 1, // BLOCK_128X128
#endif // CONFIG_EXT_PARTITION
4 - 1, // BLOCK_4X16,
16 - 1, // BLOCK_16X4,
8 - 1, // BLOCK_8X32,
32 - 1, // BLOCK_32X8,
16 - 1, // BLOCK_16X64,
64 - 1, // BLOCK_64X16
#if CONFIG_EXT_PARTITION
32 - 1, // BLOCK_32X128
128 - 1, // BLOCK_128X32
#endif // CONFIG_EXT_PARTITION
},
// mask for horizontal edges filtering
{
2 - 1, // BLOCK_2X2
4 - 1, // BLOCK_2X4
2 - 1, // BLOCK_4X2
4 - 1, // BLOCK_4X4
8 - 1, // BLOCK_4X8
4 - 1, // BLOCK_8X4
8 - 1, // BLOCK_8X8
16 - 1, // BLOCK_8X16
8 - 1, // BLOCK_16X8
16 - 1, // BLOCK_16X16
32 - 1, // BLOCK_16X32
16 - 1, // BLOCK_32X16
32 - 1, // BLOCK_32X32
64 - 1, // BLOCK_32X64
32 - 1, // BLOCK_64X32
64 - 1, // BLOCK_64X64
#if CONFIG_EXT_PARTITION
128 - 1, // BLOCK_64X128
64 - 1, // BLOCK_128X64
128 - 1, // BLOCK_128X128
#endif // CONFIG_EXT_PARTITION
16 - 1, // BLOCK_4X16,
4 - 1, // BLOCK_16X4,
32 - 1, // BLOCK_8X32,
8 - 1, // BLOCK_32X8,
64 - 1, // BLOCK_16X64,
16 - 1, // BLOCK_64X16
#if CONFIG_EXT_PARTITION
128 - 1, // BLOCK_32X128
32 - 1, // BLOCK_128X32
#endif // CONFIG_EXT_PARTITION
},
};
static const uint32_t av1_transform_masks[NUM_EDGE_DIRS][TX_SIZES_ALL] = {
{
4 - 1, // TX_4X4
8 - 1, // TX_8X8
16 - 1, // TX_16X16
32 - 1, // TX_32X32
#if CONFIG_TX64X64
64 - 1, // TX_64X64
#endif // CONFIG_TX64X64
4 - 1, // TX_4X8
8 - 1, // TX_8X4
8 - 1, // TX_8X16
16 - 1, // TX_16X8
16 - 1, // TX_16X32
32 - 1, // TX_32X16
#if CONFIG_TX64X64
32 - 1, // TX_32X64
64 - 1, // TX_64X32
#endif // CONFIG_TX64X64
4 - 1, // TX_4X16
16 - 1, // TX_16X4
8 - 1, // TX_8X32
32 - 1 // TX_32X8
},
{
4 - 1, // TX_4X4
8 - 1, // TX_8X8
16 - 1, // TX_16X16
32 - 1, // TX_32X32
#if CONFIG_TX64X64
64 - 1, // TX_64X64
#endif // CONFIG_TX64X64
8 - 1, // TX_4X8
4 - 1, // TX_8X4
16 - 1, // TX_8X16
8 - 1, // TX_16X8
32 - 1, // TX_16X32
16 - 1, // TX_32X16
#if CONFIG_TX64X64
64 - 1, // TX_32X64
32 - 1, // TX_64X32
#endif // CONFIG_TX64X64
16 - 1, // TX_4X16
4 - 1, // TX_16X4
32 - 1, // TX_8X32
8 - 1 // TX_32X8
}
};
static TX_SIZE av1_get_transform_size(const MODE_INFO *const mi,
const EDGE_DIR edge_dir, const int mi_row,
const int mi_col, const int plane,
const struct macroblockd_plane *plane_ptr,
const uint32_t scale_horz,
const uint32_t scale_vert) {
const MB_MODE_INFO *mbmi = &mi->mbmi;
TX_SIZE tx_size = (plane == AOM_PLANE_Y)
? mbmi->tx_size
: av1_get_uv_tx_size(mbmi, plane_ptr);
assert(tx_size < TX_SIZES_ALL);
// mi_row and mi_col is the absolute position of the MI block.
// idx_c and idx_r is the relative offset of the MI within the super block
// c and r is the relative offset of the 8x8 block within the supert block
// blk_row and block_col is the relative offset of the current 8x8 block
// within the current partition.
const int idx_c = mi_col & MAX_MIB_MASK;
const int idx_r = mi_row & MAX_MIB_MASK;
const int c = idx_c >> mi_width_log2_lookup[BLOCK_8X8];
const int r = idx_r >> mi_height_log2_lookup[BLOCK_8X8];
const BLOCK_SIZE sb_type = mi->mbmi.sb_type;
const int blk_row = r & (num_8x8_blocks_high_lookup[sb_type] - 1);
const int blk_col = c & (num_8x8_blocks_wide_lookup[sb_type] - 1);
if (is_inter_block(mbmi) && !mbmi->skip) {
const int tx_row_idx =
(blk_row * mi_size_high[BLOCK_8X8] << TX_UNIT_HIGH_LOG2) >> 1;
const int tx_col_idx =
(blk_col * mi_size_wide[BLOCK_8X8] << TX_UNIT_WIDE_LOG2) >> 1;
const BLOCK_SIZE bsize =
AOMMAX(BLOCK_4X4, ss_size_lookup[sb_type][scale_horz][scale_vert]);
const TX_SIZE mb_tx_size = mbmi->inter_tx_size[tx_row_idx][tx_col_idx];
assert(mb_tx_size < TX_SIZES_ALL);
tx_size = (plane == AOM_PLANE_Y)
? mb_tx_size
: uv_txsize_lookup[bsize][mb_tx_size][0][0];
assert(tx_size < TX_SIZES_ALL);
}
// since in case of chrominance or non-square transorm need to convert
// transform size into transform size in particular direction.
// for vertical edge, filter direction is horizontal, for horizontal
// edge, filter direction is vertical.
tx_size = (VERT_EDGE == edge_dir) ? txsize_horz_map[tx_size]
: txsize_vert_map[tx_size];
return tx_size;
}
typedef struct AV1_DEBLOCKING_PARAMETERS {
// length of the filter applied to the outer edge
uint32_t filter_length;
// length of the filter applied to the inner edge
uint32_t filter_length_internal;
// deblocking limits
const uint8_t *lim;
const uint8_t *mblim;
const uint8_t *hev_thr;
} AV1_DEBLOCKING_PARAMETERS;
static void set_lpf_parameters(
AV1_DEBLOCKING_PARAMETERS *const params, const ptrdiff_t mode_step,
const AV1_COMMON *const cm, const EDGE_DIR edge_dir, const uint32_t x,
const uint32_t y, const int plane,
const struct macroblockd_plane *const plane_ptr) {
// reset to initial values
params->filter_length = 0;
params->filter_length_internal = 0;
// no deblocking is required
const uint32_t width = plane_ptr->dst.width;
const uint32_t height = plane_ptr->dst.height;
if ((width <= x) || (height <= y)) {
return;
}
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
const int mi_row = (y << scale_vert) >> MI_SIZE_LOG2;
const int mi_col = (x << scale_horz) >> MI_SIZE_LOG2;
MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col;
const MB_MODE_INFO *mbmi = &mi[0]->mbmi;
{
const TX_SIZE ts =
av1_get_transform_size(mi[0], edge_dir, mi_row, mi_col, plane,
plane_ptr, scale_horz, scale_vert);
#if CONFIG_EXT_DELTA_Q
#if CONFIG_LOOPFILTER_LEVEL
const uint32_t curr_level =
get_filter_level(cm, &cm->lf_info, edge_dir, plane, mbmi);
#else
#if CONFIG_LPF_SB
const uint32_t curr_level =
get_filter_level(cm, &cm->lf_info, mi_row, mi_col, mbmi);
#else
const uint32_t curr_level = get_filter_level(cm, &cm->lf_info, mbmi);
#endif // CONFIG_LPF_SB
#endif
#else
const uint32_t curr_level = get_filter_level(&cm->lf_info, mbmi);
#endif // CONFIG_EXT_DELTA_Q
const int curr_skipped = mbmi->skip && is_inter_block(mbmi);
const uint32_t coord = (VERT_EDGE == edge_dir) ? (x) : (y);
uint32_t level = curr_level;
// prepare outer edge parameters. deblock the edge if it's an edge of a TU
if (coord) {
#if CONFIG_LOOPFILTERING_ACROSS_TILES
MODE_INFO *const mi_bound = cm->mi + mi_row * cm->mi_stride + mi_col;
if (!av1_disable_loopfilter_on_tile_boundary(cm) ||
((VERT_EDGE == edge_dir) &&
(0 == (mi_bound->mbmi.boundary_info & TILE_LEFT_BOUNDARY))) ||
((HORZ_EDGE == edge_dir) &&
(0 == (mi_bound->mbmi.boundary_info & TILE_ABOVE_BOUNDARY))))
#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
{
const int32_t tu_edge =
(coord & av1_transform_masks[edge_dir][ts]) ? (0) : (1);
if (tu_edge) {
const MODE_INFO *const mi_prev = *(mi - mode_step);
const int pv_row =
(VERT_EDGE == edge_dir) ? (mi_row) : (mi_row - (1 << scale_vert));
const int pv_col =
(VERT_EDGE == edge_dir) ? (mi_col - (1 << scale_horz)) : (mi_col);
const TX_SIZE pv_ts =
av1_get_transform_size(mi_prev, edge_dir, pv_row, pv_col, plane,
plane_ptr, scale_horz, scale_vert);
#if CONFIG_EXT_DELTA_Q
#if CONFIG_LOOPFILTER_LEVEL
const uint32_t pv_lvl = get_filter_level(cm, &cm->lf_info, edge_dir,
plane, &mi_prev->mbmi);
#else
#if CONFIG_LPF_SB
const uint32_t pv_lvl = get_filter_level(cm, &cm->lf_info, pv_row,
pv_col, &mi_prev->mbmi);
#else
const uint32_t pv_lvl =
get_filter_level(cm, &cm->lf_info, &mi_prev->mbmi);
#endif // CONFIG_LPF_SB
#endif
#else
const uint32_t pv_lvl =
get_filter_level(&cm->lf_info, &mi_prev->mbmi);
#endif // CONFIG_EXT_DELTA_Q
const int pv_skip =
mi_prev->mbmi.skip && is_inter_block(&mi_prev->mbmi);
const int32_t pu_edge =
(coord &
av1_prediction_masks[edge_dir]
[ss_size_lookup[mbmi->sb_type][scale_horz]
[scale_vert]])
? (0)
: (1);
// if the current and the previous blocks are skipped,
// deblock the edge if the edge belongs to a PU's edge only.
if ((curr_level || pv_lvl) &&
(!pv_skip || !curr_skipped || pu_edge)) {
const TX_SIZE min_ts = AOMMIN(ts, pv_ts);
if (TX_4X4 >= min_ts) {
params->filter_length = 4;
} else if (TX_8X8 == min_ts) {
#if PARALLEL_DEBLOCKING_5_TAP_CHROMA
if (plane != 0)
params->filter_length = 6;
else
#endif
params->filter_length = 8;
} else {
params->filter_length = 16;
#if PARALLEL_DEBLOCKING_15TAPLUMAONLY
// No wide filtering for chroma plane
if (plane != 0) {
#if PARALLEL_DEBLOCKING_5_TAP_CHROMA
params->filter_length = 6;
#else
params->filter_length = 8;
#endif
}
#endif
}
#if PARALLEL_DEBLOCKING_DISABLE_15TAP
params->filter_length = (TX_4X4 >= AOMMIN(ts, pv_ts)) ? (4) : (8);
#endif // PARALLEL_DEBLOCKING_DISABLE_15TAP
// update the level if the current block is skipped,
// but the previous one is not
level = (curr_level) ? (curr_level) : (pv_lvl);
}
}
}
// prepare common parameters
if (params->filter_length || params->filter_length_internal) {
const loop_filter_thresh *const limits = cm->lf_info.lfthr + level;
params->lim = limits->lim;
params->mblim = limits->mblim;
params->hev_thr = limits->hev_thr;
}
}
}
}
static void av1_filter_block_plane_vert(
const AV1_COMMON *const cm, const int plane,
const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row,
const uint32_t mi_col) {
const int col_step = MI_SIZE >> MI_SIZE_LOG2;
const int row_step = MI_SIZE >> MI_SIZE_LOG2;
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
#if CONFIG_LPF_SB
int y_range = mi_row ? MAX_MIB_SIZE : MAX_MIB_SIZE - FILT_BOUNDARY_MI_OFFSET;
y_range = AOMMIN(y_range, cm->mi_rows);
y_range >>= scale_vert;
int x_range = mi_col ? MAX_MIB_SIZE : MAX_MIB_SIZE - FILT_BOUNDARY_MI_OFFSET;
x_range = AOMMIN(x_range, cm->mi_cols);
x_range >>= scale_horz;
#else
const int y_range = (MAX_MIB_SIZE >> scale_vert);
const int x_range = (MAX_MIB_SIZE >> scale_horz);
#endif // CONFIG_LPF_SB
for (int y = 0; y < y_range; y += row_step) {
uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride;
for (int x = 0; x < x_range; x += col_step) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will filter the vertical edge aligned with a 8x8 block.
// If 4x4 trasnform is used, it will then filter the internal edge
// aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
set_lpf_parameters(&params, ((ptrdiff_t)1 << scale_horz), cm, VERT_EDGE,
curr_x, curr_y, plane, plane_ptr);
switch (params.filter_length) {
// apply 4-tap filtering
case 4:
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
aom_highbd_lpf_vertical_4(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
aom_lpf_vertical_4(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
#if PARALLEL_DEBLOCKING_5_TAP_CHROMA
case 6: // apply 6-tap filter for chroma plane only
assert(plane != 0);
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
aom_highbd_lpf_vertical_6_c(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
aom_lpf_vertical_6_c(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
#endif
// apply 8-tap filtering
case 8:
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
aom_highbd_lpf_vertical_8(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
aom_lpf_vertical_8(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 16-tap filtering
case 16:
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
#if CONFIG_DEBLOCK_13TAP
// TODO(olah): Remove _c once SIMD for 13-tap is available
aom_highbd_lpf_vertical_16_c(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, cm->bit_depth);
#else
aom_highbd_lpf_vertical_16(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
cm->bit_depth);
#endif
else
#endif // CONFIG_HIGHBITDEPTH
#if CONFIG_DEBLOCK_13TAP
aom_lpf_vertical_16_c(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
#else
aom_lpf_vertical_16(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
#endif
break;
// no filtering
default: break;
}
// process the internal edge
if (params.filter_length_internal) {
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
aom_highbd_lpf_vertical_4(CONVERT_TO_SHORTPTR(p + 4), dst_stride,
params.mblim, params.lim, params.hev_thr,
cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
aom_lpf_vertical_4(p + 4, dst_stride, params.mblim, params.lim,
params.hev_thr);
}
// advance the destination pointer
p += MI_SIZE;
}
}
}
static void av1_filter_block_plane_horz(
const AV1_COMMON *const cm, const int plane,
const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row,
const uint32_t mi_col) {
const int col_step = MI_SIZE >> MI_SIZE_LOG2;
const int row_step = MI_SIZE >> MI_SIZE_LOG2;
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
#if CONFIG_LPF_SB
int y_range = mi_row ? MAX_MIB_SIZE : MAX_MIB_SIZE - FILT_BOUNDARY_MI_OFFSET;
y_range = AOMMIN(y_range, cm->mi_rows);
y_range >>= scale_vert;
int x_range = mi_col ? MAX_MIB_SIZE : MAX_MIB_SIZE - FILT_BOUNDARY_MI_OFFSET;
x_range = AOMMIN(x_range, cm->mi_cols);
x_range >>= scale_horz;
#else
const int y_range = (MAX_MIB_SIZE >> scale_vert);
const int x_range = (MAX_MIB_SIZE >> scale_horz);
#endif // CONFIG_LPF_SB
for (int y = 0; y < y_range; y += row_step) {
uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride;
for (int x = 0; x < x_range; x += col_step) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will first filter the vertical edge aligned with a 8x8
// block. If 4x4 trasnform is used, it will then filter the internal
// edge aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
set_lpf_parameters(&params, (cm->mi_stride << scale_vert), cm, HORZ_EDGE,
curr_x, curr_y, plane, plane_ptr);
switch (params.filter_length) {
// apply 4-tap filtering
case 4:
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
aom_highbd_lpf_horizontal_4(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
aom_lpf_horizontal_4(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
#if PARALLEL_DEBLOCKING_5_TAP_CHROMA
// apply 6-tap filtering
case 6: assert(plane != 0);
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
aom_highbd_lpf_horizontal_6_c(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
aom_lpf_horizontal_6_c(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
#endif
// apply 8-tap filtering
case 8:
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
aom_highbd_lpf_horizontal_8(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
aom_lpf_horizontal_8(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 16-tap filtering
case 16:
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
#if CONFIG_DEBLOCK_13TAP
// TODO(olah): Remove _c once SIMD for 13-tap is available
aom_highbd_lpf_horizontal_edge_16_c(
CONVERT_TO_SHORTPTR(p), dst_stride, params.mblim, params.lim,
params.hev_thr, cm->bit_depth);
#else
aom_highbd_lpf_horizontal_edge_16(
CONVERT_TO_SHORTPTR(p), dst_stride, params.mblim, params.lim,
params.hev_thr, cm->bit_depth);
#endif
else
#endif // CONFIG_HIGHBITDEPTH
#if CONFIG_DEBLOCK_13TAP
aom_lpf_horizontal_edge_16_c(p, dst_stride, params.mblim,
params.lim, params.hev_thr);
#else
aom_lpf_horizontal_edge_16(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
#endif
break;
// no filtering
default: break;
}
// process the internal edge
if (params.filter_length_internal) {
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
aom_highbd_lpf_horizontal_4(CONVERT_TO_SHORTPTR(p + 4 * dst_stride),
dst_stride, params.mblim, params.lim,
params.hev_thr, cm->bit_depth);
else
#endif // CONFIG_HIGHBITDEPTH
aom_lpf_horizontal_4(p + 4 * dst_stride, dst_stride, params.mblim,
params.lim, params.hev_thr);
}
// advance the destination pointer
p += MI_SIZE;
}
}
}
#endif // CONFIG_PARALLEL_DEBLOCKING
void av1_loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, AV1_COMMON *cm,
struct macroblockd_plane *planes, int start, int stop,
#if CONFIG_LPF_SB
int col_start, int col_end,
#endif
int y_only) {
#if CONFIG_LOOPFILTER_LEVEL
// y_only no longer has its original meaning.
// Here it means which plane to filter
// when y_only = {0, 1, 2}, it means we are searching for filter level for
// Y/U/V plane individually.
const int plane_start = y_only;
const int plane_end = plane_start + 1;
#else
const int num_planes = y_only ? 1 : MAX_MB_PLANE;
const int plane_start = 0;
const int plane_end = num_planes;
#endif // CONFIG_LOOPFILTER_LEVEL
#if !CONFIG_LPF_SB
#if CONFIG_PARALLEL_DEBLOCKING
const int col_start = 0;
const int col_end = cm->mi_cols;
#endif
#endif // CONFIG_LPF_SB
int mi_row, mi_col;
int plane;
#if !CONFIG_PARALLEL_DEBLOCKING
for (int i = 0; i < MAX_MB_PLANE; ++i)
memset(cm->top_txfm_context[i], TX_32X32, cm->mi_cols << TX_UNIT_WIDE_LOG2);
for (mi_row = start; mi_row < stop; mi_row += cm->mib_size) {
MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
for (int i = 0; i < MAX_MB_PLANE; ++i)
memset(cm->left_txfm_context[i], TX_32X32,
MAX_MIB_SIZE << TX_UNIT_HIGH_LOG2);
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += cm->mib_size) {
av1_setup_dst_planes(planes, cm->sb_size, frame_buffer, mi_row, mi_col);
for (plane = plane_start; plane < plane_end; ++plane) {
av1_filter_block_plane_non420_ver(cm, &planes[plane], mi + mi_col,
mi_row, mi_col, plane);
av1_filter_block_plane_non420_hor(cm, &planes[plane], mi + mi_col,
mi_row, mi_col, plane);
}
}
}
#else
// filter all vertical edges in every 64x64 super block
for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) {
av1_setup_dst_planes(planes, cm->sb_size, frame_buffer, mi_row, mi_col);
for (plane = plane_start; plane < plane_end; ++plane) {
av1_filter_block_plane_vert(cm, plane, &planes[plane], mi_row, mi_col);
}
}
}
// filter all horizontal edges in every 64x64 super block
for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) {
av1_setup_dst_planes(planes, cm->sb_size, frame_buffer, mi_row, mi_col);
for (plane = plane_start; plane < plane_end; ++plane) {
av1_filter_block_plane_horz(cm, plane, &planes[plane], mi_row, mi_col);
}
}
}
#endif // !CONFIG_PARALLEL_DEBLOCKING
}
void av1_loop_filter_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
MACROBLOCKD *xd, int frame_filter_level,
#if CONFIG_LOOPFILTER_LEVEL
int frame_filter_level_r,
#endif
int y_only, int partial_frame
#if CONFIG_LPF_SB
,
int mi_row, int mi_col
#endif
) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
#if CONFIG_EXT_DELTA_Q
#if CONFIG_LOOPFILTER_LEVEL
int orig_filter_level[2] = { cm->lf.filter_level[0], cm->lf.filter_level[1] };
#else
int orig_filter_level = cm->lf.filter_level;
#endif
#endif
#if CONFIG_LPF_SB
if (partial_frame && !frame_filter_level) return;
#else
#if CONFIG_LOOPFILTER_LEVEL
if (!frame_filter_level && !frame_filter_level_r) return;
#else
if (!frame_filter_level) return;
#endif
#endif // CONFIG_LPF_SB
#if CONFIG_LPF_SB
int start_mi_col;
int end_mi_col;
// In the experiment of deblocking filtering per superblock.
// When partial_frame is 1, it indicates we are searching for the best filter
// level for current superblock. We reuse frame_filter_level as filter level
// for superblock, no longer for the whole frame.
// When partial_frame is 0, it's in the actual filtering stage for the frame
if (partial_frame) {
start_mi_row = AOMMAX(0, mi_row - FILT_BOUNDARY_MI_OFFSET);
start_mi_col = AOMMAX(0, mi_col - FILT_BOUNDARY_MI_OFFSET);
const int mi_row_range = mi_row - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE;
const int mi_col_range = mi_col - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE;
end_mi_row = AOMMIN(mi_row_range, cm->mi_rows);
end_mi_col = AOMMIN(mi_col_range, cm->mi_cols);
av1_loop_filter_sb_level_init(cm, mi_row, mi_col, frame_filter_level);
} else {
start_mi_row = 0;
mi_rows_to_filter = cm->mi_rows;
end_mi_row = start_mi_row + mi_rows_to_filter;
start_mi_col = 0;
end_mi_col = cm->mi_cols;
}
#else
start_mi_row = 0;
mi_rows_to_filter = cm->mi_rows;
if (partial_frame && cm->mi_rows > 8) {
start_mi_row = cm->mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
#if CONFIG_LOOPFILTER_LEVEL
// TODO(chengchen): refactor the code such that y_only has its matching
// meaning. Now it means the plane to be filtered in this experiment.
av1_loop_filter_frame_init(cm, frame_filter_level, frame_filter_level_r,
y_only);
#else
av1_loop_filter_frame_init(cm, frame_filter_level, frame_filter_level);
#endif
#endif // CONFIG_LPF_SB
#if CONFIG_EXT_DELTA_Q
#if CONFIG_LOOPFILTER_LEVEL
cm->lf.filter_level[0] = frame_filter_level;
cm->lf.filter_level[1] = frame_filter_level_r;
#else
cm->lf.filter_level = frame_filter_level;
#endif
#endif
#if CONFIG_LPF_SB
av1_loop_filter_rows(frame, cm, xd->plane, start_mi_row, end_mi_row,
start_mi_col, end_mi_col, y_only);
#else
av1_loop_filter_rows(frame, cm, xd->plane, start_mi_row, end_mi_row, y_only);
#endif // CONFIG_LPF_SB
#if CONFIG_EXT_DELTA_Q
#if CONFIG_LOOPFILTER_LEVEL
cm->lf.filter_level[0] = orig_filter_level[0];
cm->lf.filter_level[1] = orig_filter_level[1];
#else
cm->lf.filter_level = orig_filter_level;
#endif
#endif
}
void av1_loop_filter_data_reset(LFWorkerData *lf_data,
YV12_BUFFER_CONFIG *frame_buffer,
struct AV1Common *cm,
const struct macroblockd_plane *planes) {
lf_data->frame_buffer = frame_buffer;
lf_data->cm = cm;
lf_data->start = 0;
lf_data->stop = 0;
lf_data->y_only = 0;
memcpy(lf_data->planes, planes, sizeof(lf_data->planes));
}
int av1_loop_filter_worker(LFWorkerData *const lf_data, void *unused) {
(void)unused;
#if !CONFIG_LPF_SB
av1_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
lf_data->start, lf_data->stop, lf_data->y_only);
#else
(void)lf_data;
#endif // CONFIG_LPF_SB
return 1;
}