blob: a581a5b95be88fc2933564bf3f0060f18db28ce0 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./aom_dsp_rtcd.h"
#include "av1/common/filter.h"
#include "av1/common/scale.h"
#include "aom_dsp/aom_filter.h"
// Note: Expect val to be in q4 precision
static INLINE int scaled_x(int val, const struct scale_factors *sf) {
const int off =
(sf->x_scale_fp - (1 << REF_SCALE_SHIFT)) * (1 << (SUBPEL_BITS - 1));
const int64_t tval = (int64_t)val * sf->x_scale_fp + off;
return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval,
REF_SCALE_SHIFT - SCALE_EXTRA_BITS);
}
// Note: Expect val to be in q4 precision
static INLINE int scaled_y(int val, const struct scale_factors *sf) {
const int off =
(sf->y_scale_fp - (1 << REF_SCALE_SHIFT)) * (1 << (SUBPEL_BITS - 1));
const int64_t tval = (int64_t)val * sf->y_scale_fp + off;
return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval,
REF_SCALE_SHIFT - SCALE_EXTRA_BITS);
}
// Note: Expect val to be in q4 precision
static int unscaled_value(int val, const struct scale_factors *sf) {
(void)sf;
return val << SCALE_EXTRA_BITS;
}
static int get_fixed_point_scale_factor(int other_size, int this_size) {
// Calculate scaling factor once for each reference frame
// and use fixed point scaling factors in decoding and encoding routines.
// Hardware implementations can calculate scale factor in device driver
// and use multiplication and shifting on hardware instead of division.
return ((other_size << REF_SCALE_SHIFT) + this_size / 2) / this_size;
}
// Given the fixed point scale, calculate coarse point scale.
static int fixed_point_scale_to_coarse_point_scale(int scale_fp) {
return ROUND_POWER_OF_TWO(scale_fp, REF_SCALE_SHIFT - SCALE_SUBPEL_BITS);
}
// Note: x and y are integer precision, mvq4 is q4 precision.
MV32 av1_scale_mv(const MV *mvq4, int x, int y,
const struct scale_factors *sf) {
const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf);
const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf);
const MV32 res = { scaled_y((y << SUBPEL_BITS) + mvq4->row, sf) - y_off_q4,
scaled_x((x << SUBPEL_BITS) + mvq4->col, sf) - x_off_q4 };
return res;
}
#if CONFIG_HIGHBITDEPTH
void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w,
int other_h, int this_w, int this_h,
int use_highbd) {
#else
void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w,
int other_h, int this_w, int this_h) {
#endif
if (!valid_ref_frame_size(other_w, other_h, this_w, this_h)) {
sf->x_scale_fp = REF_INVALID_SCALE;
sf->y_scale_fp = REF_INVALID_SCALE;
return;
}
sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w);
sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h);
sf->x_step_q4 = fixed_point_scale_to_coarse_point_scale(sf->x_scale_fp);
sf->y_step_q4 = fixed_point_scale_to_coarse_point_scale(sf->y_scale_fp);
if (av1_is_scaled(sf)) {
sf->scale_value_x = scaled_x;
sf->scale_value_y = scaled_y;
} else {
sf->scale_value_x = unscaled_value;
sf->scale_value_y = unscaled_value;
}
// TODO(agrange): Investigate the best choice of functions to use here
// for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what
// to do at full-pel offsets. The current selection, where the filter is
// applied in one direction only, and not at all for 0,0, seems to give the
// best quality, but it may be worth trying an additional mode that does
// do the filtering on full-pel.
if (sf->x_step_q4 == SCALE_SUBPEL_SHIFTS) {
if (sf->y_step_q4 == SCALE_SUBPEL_SHIFTS) {
// No scaling in either direction.
sf->predict[0][0][0] = aom_convolve_copy;
sf->predict[0][0][1] = aom_convolve_avg;
sf->predict[0][1][0] = aom_convolve8_vert;
sf->predict[0][1][1] = aom_convolve8_avg_vert;
sf->predict[1][0][0] = aom_convolve8_horiz;
sf->predict[1][0][1] = aom_convolve8_avg_horiz;
} else {
// No scaling in x direction. Must always scale in the y direction.
sf->predict[0][0][0] = aom_convolve8_vert;
sf->predict[0][0][1] = aom_convolve8_avg_vert;
sf->predict[0][1][0] = aom_convolve8_vert;
sf->predict[0][1][1] = aom_convolve8_avg_vert;
sf->predict[1][0][0] = aom_convolve8;
sf->predict[1][0][1] = aom_convolve8_avg;
}
} else {
if (sf->y_step_q4 == SCALE_SUBPEL_SHIFTS) {
// No scaling in the y direction. Must always scale in the x direction.
sf->predict[0][0][0] = aom_convolve8_horiz;
sf->predict[0][0][1] = aom_convolve8_avg_horiz;
sf->predict[0][1][0] = aom_convolve8;
sf->predict[0][1][1] = aom_convolve8_avg;
sf->predict[1][0][0] = aom_convolve8_horiz;
sf->predict[1][0][1] = aom_convolve8_avg_horiz;
} else {
// Must always scale in both directions.
sf->predict[0][0][0] = aom_convolve8;
sf->predict[0][0][1] = aom_convolve8_avg;
sf->predict[0][1][0] = aom_convolve8;
sf->predict[0][1][1] = aom_convolve8_avg;
sf->predict[1][0][0] = aom_convolve8;
sf->predict[1][0][1] = aom_convolve8_avg;
}
}
// 2D subpel motion always gets filtered in both directions
sf->predict[1][1][0] = aom_convolve8;
sf->predict[1][1][1] = aom_convolve8_avg;
#if CONFIG_HIGHBITDEPTH
if (use_highbd) {
if (sf->x_step_q4 == SCALE_SUBPEL_SHIFTS) {
if (sf->y_step_q4 == SCALE_SUBPEL_SHIFTS) {
// No scaling in either direction.
sf->highbd_predict[0][0][0] = aom_highbd_convolve_copy;
sf->highbd_predict[0][0][1] = aom_highbd_convolve_avg;
sf->highbd_predict[0][1][0] = aom_highbd_convolve8_vert;
sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg_vert;
sf->highbd_predict[1][0][0] = aom_highbd_convolve8_horiz;
sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg_horiz;
} else {
// No scaling in x direction. Must always scale in the y direction.
sf->highbd_predict[0][0][0] = aom_highbd_convolve8_vert;
sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg_vert;
sf->highbd_predict[0][1][0] = aom_highbd_convolve8_vert;
sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg_vert;
sf->highbd_predict[1][0][0] = aom_highbd_convolve8;
sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg;
}
} else {
if (sf->y_step_q4 == SCALE_SUBPEL_SHIFTS) {
// No scaling in the y direction. Must always scale in the x direction.
sf->highbd_predict[0][0][0] = aom_highbd_convolve8_horiz;
sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg_horiz;
sf->highbd_predict[0][1][0] = aom_highbd_convolve8;
sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg;
sf->highbd_predict[1][0][0] = aom_highbd_convolve8_horiz;
sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg_horiz;
} else {
// Must always scale in both directions.
sf->highbd_predict[0][0][0] = aom_highbd_convolve8;
sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg;
sf->highbd_predict[0][1][0] = aom_highbd_convolve8;
sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg;
sf->highbd_predict[1][0][0] = aom_highbd_convolve8;
sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg;
}
}
// 2D subpel motion always gets filtered in both directions.
sf->highbd_predict[1][1][0] = aom_highbd_convolve8;
sf->highbd_predict[1][1][1] = aom_highbd_convolve8_avg;
}
#endif // CONFIG_HIGHBITDEPTH
}