blob: 372795683bd56e0092d09620d4c03cbd39f192f0 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/encoder/av1_multi_thread.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/ethread.h"
#include "aom_dsp/aom_dsp_common.h"
static void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
for (int i = 0; i < REFERENCE_MODES; i++)
td->rd_counts.comp_pred_diff[i] += td_t->rd_counts.comp_pred_diff[i];
for (int i = 0; i < REF_FRAMES; i++)
td->rd_counts.global_motion_used[i] +=
td_t->rd_counts.global_motion_used[i];
td->rd_counts.compound_ref_used_flag |=
td_t->rd_counts.compound_ref_used_flag;
td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag;
}
void av1_row_mt_sync_read_dummy(struct AV1RowMTSyncData *const row_mt_sync,
int r, int c) {
(void)row_mt_sync;
(void)r;
(void)c;
return;
}
void av1_row_mt_sync_write_dummy(struct AV1RowMTSyncData *const row_mt_sync,
int r, int c, const int cols) {
(void)row_mt_sync;
(void)r;
(void)c;
(void)cols;
return;
}
void av1_row_mt_sync_read(AV1RowMTSync *const row_mt_sync, int r, int c) {
#if CONFIG_MULTITHREAD
const int nsync = row_mt_sync->sync_range;
if (r) {
pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1];
pthread_mutex_lock(mutex);
while (c > row_mt_sync->cur_col[r - 1] - nsync) {
pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex);
}
pthread_mutex_unlock(mutex);
}
#else
(void)row_mt_sync;
(void)r;
(void)c;
#endif // CONFIG_MULTITHREAD
}
void av1_row_mt_sync_write(AV1RowMTSync *const row_mt_sync, int r, int c,
const int cols) {
#if CONFIG_MULTITHREAD
const int nsync = row_mt_sync->sync_range;
int cur;
// Only signal when there are enough encoded blocks for next row to run.
int sig = 1;
if (c < cols - 1) {
cur = c;
if (c % nsync) sig = 0;
} else {
cur = cols + nsync;
}
if (sig) {
pthread_mutex_lock(&row_mt_sync->mutex_[r]);
row_mt_sync->cur_col[r] = cur;
pthread_cond_signal(&row_mt_sync->cond_[r]);
pthread_mutex_unlock(&row_mt_sync->mutex_[r]);
}
#else
(void)row_mt_sync;
(void)r;
(void)c;
(void)cols;
#endif // CONFIG_MULTITHREAD
}
// Allocate memory for row synchronization
void av1_row_mt_sync_mem_alloc(AV1RowMTSync *row_mt_sync, AV1_COMMON *cm,
int rows) {
row_mt_sync->rows = rows;
#if CONFIG_MULTITHREAD
{
int i;
CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
aom_malloc(sizeof(*row_mt_sync->mutex_) * rows));
if (row_mt_sync->mutex_) {
for (i = 0; i < rows; ++i) {
pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
}
}
CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
aom_malloc(sizeof(*row_mt_sync->cond_) * rows));
if (row_mt_sync->cond_) {
for (i = 0; i < rows; ++i) {
pthread_cond_init(&row_mt_sync->cond_[i], NULL);
}
}
}
#endif // CONFIG_MULTITHREAD
CHECK_MEM_ERROR(cm, row_mt_sync->cur_col,
aom_malloc(sizeof(*row_mt_sync->cur_col) * rows));
// Set up nsync.
if (cm->seq_params.mib_size_log2 == 4)
row_mt_sync->sync_range = 2;
else
row_mt_sync->sync_range = 1;
}
// Deallocate row based multi-threading synchronization related mutex and data
void av1_row_mt_sync_mem_dealloc(AV1RowMTSync *row_mt_sync) {
if (row_mt_sync != NULL) {
#if CONFIG_MULTITHREAD
int i;
if (row_mt_sync->mutex_ != NULL) {
for (i = 0; i < row_mt_sync->rows; ++i) {
pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
}
aom_free(row_mt_sync->mutex_);
}
if (row_mt_sync->cond_ != NULL) {
for (i = 0; i < row_mt_sync->rows; ++i) {
pthread_cond_destroy(&row_mt_sync->cond_[i]);
}
aom_free(row_mt_sync->cond_);
}
#endif // CONFIG_MULTITHREAD
aom_free(row_mt_sync->cur_col);
// clear the structure as the source of this call may be dynamic change
// in tiles in which case this call will be followed by an _alloc()
// which may fail.
av1_zero(*row_mt_sync);
}
}
static int enc_row_mt_worker_hook(void *arg1, void *unused) {
EncWorkerData *const thread_data = (EncWorkerData *)arg1;
AV1_COMP *const cpi = thread_data->cpi;
const AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
int t;
(void)unused;
for (t = thread_data->start; t < tile_rows * tile_cols;
t += cpi->num_workers) {
int tile_row = t / tile_cols;
int tile_col = t % tile_cols;
TileDataEnc *const this_tile =
&cpi->tile_data[tile_row * cm->tile_cols + tile_col];
ThreadData *td = thread_data->td;
td->mb.e_mbd.tile_ctx = td->tctx;
td->mb.backup_tile_ctx = &this_tile->backup_tctx;
memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
av1_encode_tile(cpi, td, tile_row, tile_col);
}
return 1;
}
static int enc_worker_hook(void *arg1, void *unused) {
EncWorkerData *const thread_data = (EncWorkerData *)arg1;
AV1_COMP *const cpi = thread_data->cpi;
const AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
int t;
(void)unused;
for (t = thread_data->start; t < tile_rows * tile_cols;
t += cpi->num_workers) {
int tile_row = t / tile_cols;
int tile_col = t % tile_cols;
TileDataEnc *const this_tile =
&cpi->tile_data[tile_row * cm->tile_cols + tile_col];
thread_data->td->tctx = &this_tile->tctx;
thread_data->td->mb.e_mbd.tile_ctx = thread_data->td->tctx;
thread_data->td->mb.backup_tile_ctx = &this_tile->backup_tctx;
av1_encode_tile(cpi, thread_data->td, tile_row, tile_col);
}
return 1;
}
static void create_enc_workers(AV1_COMP *cpi, int num_workers) {
AV1_COMMON *const cm = &cpi->common;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
CHECK_MEM_ERROR(cm, cpi->workers,
aom_malloc(num_workers * sizeof(*cpi->workers)));
CHECK_MEM_ERROR(cm, cpi->tile_thr_data,
aom_calloc(num_workers, sizeof(*cpi->tile_thr_data)));
for (int i = 0; i < num_workers; i++) {
AVxWorker *const worker = &cpi->workers[i];
EncWorkerData *const thread_data = &cpi->tile_thr_data[i];
++cpi->num_workers;
winterface->init(worker);
worker->thread_name = "aom enc worker";
thread_data->cpi = cpi;
if (i < num_workers - 1) {
// Allocate thread data.
CHECK_MEM_ERROR(cm, thread_data->td,
aom_memalign(32, sizeof(*thread_data->td)));
av1_zero(*thread_data->td);
// Set up pc_tree.
thread_data->td->pc_tree = NULL;
av1_setup_pc_tree(cm, thread_data->td);
CHECK_MEM_ERROR(cm, thread_data->td->above_pred_buf,
(uint8_t *)aom_memalign(
16, MAX_MB_PLANE * MAX_SB_SQUARE *
sizeof(*thread_data->td->above_pred_buf)));
CHECK_MEM_ERROR(cm, thread_data->td->left_pred_buf,
(uint8_t *)aom_memalign(
16, MAX_MB_PLANE * MAX_SB_SQUARE *
sizeof(*thread_data->td->left_pred_buf)));
CHECK_MEM_ERROR(
cm, thread_data->td->wsrc_buf,
(int32_t *)aom_memalign(
16, MAX_SB_SQUARE * sizeof(*thread_data->td->wsrc_buf)));
#if CONFIG_COLLECT_INTER_MODE_RD_STATS
CHECK_MEM_ERROR(cm, thread_data->td->inter_modes_info,
(InterModesInfo *)aom_malloc(
sizeof(*thread_data->td->inter_modes_info)));
#endif
for (int x = 0; x < 2; x++)
for (int y = 0; y < 2; y++)
CHECK_MEM_ERROR(
cm, thread_data->td->hash_value_buffer[x][y],
(uint32_t *)aom_malloc(
AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
sizeof(*thread_data->td->hash_value_buffer[0][0])));
CHECK_MEM_ERROR(
cm, thread_data->td->mask_buf,
(int32_t *)aom_memalign(
16, MAX_SB_SQUARE * sizeof(*thread_data->td->mask_buf)));
// Allocate frame counters in thread data.
CHECK_MEM_ERROR(cm, thread_data->td->counts,
aom_calloc(1, sizeof(*thread_data->td->counts)));
// Allocate buffers used by palette coding mode.
CHECK_MEM_ERROR(
cm, thread_data->td->palette_buffer,
aom_memalign(16, sizeof(*thread_data->td->palette_buffer)));
CHECK_MEM_ERROR(
cm, thread_data->td->tmp_conv_dst,
aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
sizeof(*thread_data->td->tmp_conv_dst)));
for (int j = 0; j < 2; ++j) {
CHECK_MEM_ERROR(
cm, thread_data->td->tmp_obmc_bufs[j],
aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
sizeof(*thread_data->td->tmp_obmc_bufs[j])));
}
// Create threads
if (!winterface->reset(worker))
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Tile encoder thread creation failed");
} else {
// Main thread acts as a worker and uses the thread data in cpi.
thread_data->td = &cpi->td;
}
if (cpi->row_mt == 1)
CHECK_MEM_ERROR(
cm, thread_data->td->tctx,
(FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx)));
winterface->sync(worker);
}
}
static void launch_enc_workers(AV1_COMP *cpi, int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
// Encode a frame
for (int i = 0; i < num_workers; i++) {
AVxWorker *const worker = &cpi->workers[i];
EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
// Set the starting tile for each thread.
thread_data->start = i;
if (i == cpi->num_workers - 1)
winterface->execute(worker);
else
winterface->launch(worker);
}
}
static void sync_enc_workers(AV1_COMP *cpi, int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
// Encoding ends.
for (int i = 0; i < num_workers; i++) {
AVxWorker *const worker = &cpi->workers[i];
winterface->sync(worker);
}
}
static void accumulate_counters_enc_workers(AV1_COMP *cpi, int num_workers) {
for (int i = 0; i < num_workers; i++) {
AVxWorker *const worker = &cpi->workers[i];
EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
cpi->intrabc_used |= thread_data->td->intrabc_used_this_tile;
// Accumulate counters.
if (i < cpi->num_workers - 1) {
av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts);
accumulate_rd_opt(&cpi->td, thread_data->td);
cpi->td.mb.txb_split_count += thread_data->td->mb.txb_split_count;
}
}
}
static void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
int num_workers) {
for (int i = 0; i < num_workers; i++) {
AVxWorker *const worker = &cpi->workers[i];
EncWorkerData *const thread_data = &cpi->tile_thr_data[i];
worker->hook = hook;
worker->data1 = thread_data;
worker->data2 = NULL;
// Before encoding a frame, copy the thread data from cpi.
if (thread_data->td != &cpi->td) {
thread_data->td->mb = cpi->td.mb;
thread_data->td->rd_counts = cpi->td.rd_counts;
thread_data->td->mb.above_pred_buf = thread_data->td->above_pred_buf;
thread_data->td->mb.left_pred_buf = thread_data->td->left_pred_buf;
thread_data->td->mb.wsrc_buf = thread_data->td->wsrc_buf;
#if CONFIG_COLLECT_INTER_MODE_RD_STATS
thread_data->td->mb.inter_modes_info = thread_data->td->inter_modes_info;
#endif
for (int x = 0; x < 2; x++) {
for (int y = 0; y < 2; y++) {
memcpy(thread_data->td->hash_value_buffer[x][y],
cpi->td.mb.hash_value_buffer[x][y],
AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
sizeof(*thread_data->td->hash_value_buffer[0][0]));
thread_data->td->mb.hash_value_buffer[x][y] =
thread_data->td->hash_value_buffer[x][y];
}
}
thread_data->td->mb.mask_buf = thread_data->td->mask_buf;
}
if (thread_data->td->counts != &cpi->counts) {
memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts));
}
if (i < num_workers - 1) {
thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer;
thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
for (int j = 0; j < 2; ++j) {
thread_data->td->mb.tmp_obmc_bufs[j] =
thread_data->td->tmp_obmc_bufs[j];
}
thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
for (int j = 0; j < 2; ++j) {
thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] =
thread_data->td->mb.tmp_obmc_bufs[j];
}
}
}
}
void av1_encode_tiles_mt(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
int num_workers = AOMMIN(cpi->oxcf.max_threads, tile_cols * tile_rows);
if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows)
av1_alloc_tile_data(cpi);
av1_init_tile_data(cpi);
// Only run once to create threads and allocate thread data.
if (cpi->num_workers == 0) {
create_enc_workers(cpi, num_workers);
} else {
num_workers = AOMMIN(num_workers, cpi->num_workers);
}
prepare_enc_workers(cpi, enc_worker_hook, num_workers);
launch_enc_workers(cpi, num_workers);
sync_enc_workers(cpi, num_workers);
accumulate_counters_enc_workers(cpi, num_workers);
}
// Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int'
// members, so we treat it as an array, and sum over the whole length.
void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts,
const FRAME_COUNTS *counts) {
unsigned int *const acc = (unsigned int *)acc_counts;
const unsigned int *const cnt = (const unsigned int *)counts;
const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int);
for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i];
}
void av1_encode_tiles_row_mt(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt;
int num_workers = AOMMIN(cpi->oxcf.max_threads, tile_cols * tile_rows);
int max_sb_rows = 0;
if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
av1_row_mt_mem_dealloc(cpi);
av1_alloc_tile_data(cpi);
}
av1_init_tile_data(cpi);
for (int row = 0; row < tile_rows; row++) {
for (int col = 0; col < tile_cols; col++) {
TileDataEnc *tile_data = &cpi->tile_data[row * cm->tile_cols + col];
max_sb_rows = AOMMAX(max_sb_rows,
av1_get_sb_rows_in_tile(cm, tile_data->tile_info));
}
}
if (multi_thread_ctxt->allocated_tile_cols != tile_cols ||
multi_thread_ctxt->allocated_tile_rows != tile_rows ||
multi_thread_ctxt->allocated_sb_rows != max_sb_rows) {
av1_row_mt_mem_dealloc(cpi);
av1_row_mt_mem_alloc(cpi, max_sb_rows);
}
for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
// Initialize cur_col to -1 for all rows.
memset(this_tile->row_mt_sync.cur_col, -1,
sizeof(*this_tile->row_mt_sync.cur_col) * max_sb_rows);
}
}
// Only run once to create threads and allocate thread data.
if (cpi->num_workers == 0) {
create_enc_workers(cpi, num_workers);
} else {
num_workers = AOMMIN(num_workers, cpi->num_workers);
}
prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers);
launch_enc_workers(cpi, num_workers);
sync_enc_workers(cpi, num_workers);
accumulate_counters_enc_workers(cpi, num_workers);
}