blob: b771b0598ea6dd22983c8c3d713aa45ae1807de0 [file] [log] [blame]
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/reconinter.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/interp_search.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/partition_strategy.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/tpl_model.h"
#include "av1/encoder/tx_search.h"
#define RIGHT_SHIFT_MV(x) (((x) + 3 + ((x) >= 0)) >> 3)
typedef struct {
int_mv fmv;
int weight;
} cand_mv_t;
static int compare_weight(const void *a, const void *b) {
const int diff = ((cand_mv_t *)a)->weight - ((cand_mv_t *)b)->weight;
if (diff < 0)
return 1;
else if (diff > 0)
return -1;
return 0;
}
// Allow more mesh searches for screen content type on the ARF.
static int use_fine_search_interval(const AV1_COMP *const cpi) {
return cpi->is_screen_content_type &&
cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == ARF_UPDATE &&
cpi->oxcf.speed <= 2;
}
// Iterate through the tpl and collect the mvs to be used as candidates
static INLINE void get_mv_candidate_from_tpl(const AV1_COMP *const cpi,
const MACROBLOCK *x,
BLOCK_SIZE bsize, int ref,
cand_mv_t *cand, int *cand_count,
int *total_cand_weight) {
const SuperBlockEnc *sb_enc = &x->sb_enc;
if (!sb_enc->tpl_data_count) {
return;
}
const AV1_COMMON *cm = &cpi->common;
const MACROBLOCKD *xd = &x->e_mbd;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const BLOCK_SIZE tpl_bsize =
convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
const int tplw = mi_size_wide[tpl_bsize];
const int tplh = mi_size_high[tpl_bsize];
const int nw = mi_size_wide[bsize] / tplw;
const int nh = mi_size_high[bsize] / tplh;
if (nw >= 1 && nh >= 1) {
const int of_h = mi_row % mi_size_high[cm->seq_params->sb_size];
const int of_w = mi_col % mi_size_wide[cm->seq_params->sb_size];
const int start = of_h / tplh * sb_enc->tpl_stride + of_w / tplw;
int valid = 1;
// Assign large weight to start_mv, so it is always tested.
cand[0].weight = nw * nh;
for (int k = 0; k < nh; k++) {
for (int l = 0; l < nw; l++) {
const int_mv mv =
sb_enc
->tpl_mv[start + k * sb_enc->tpl_stride + l][ref - LAST_FRAME];
if (mv.as_int == INVALID_MV) {
valid = 0;
break;
}
const FULLPEL_MV fmv = { GET_MV_RAWPEL(mv.as_mv.row),
GET_MV_RAWPEL(mv.as_mv.col) };
int unique = 1;
for (int m = 0; m < *cand_count; m++) {
if (RIGHT_SHIFT_MV(fmv.row) ==
RIGHT_SHIFT_MV(cand[m].fmv.as_fullmv.row) &&
RIGHT_SHIFT_MV(fmv.col) ==
RIGHT_SHIFT_MV(cand[m].fmv.as_fullmv.col)) {
unique = 0;
cand[m].weight++;
break;
}
}
if (unique) {
cand[*cand_count].fmv.as_fullmv = fmv;
cand[*cand_count].weight = 1;
(*cand_count)++;
}
}
if (!valid) break;
}
if (valid) {
*total_cand_weight = 2 * nh * nw;
if (*cand_count > 2)
qsort(cand, *cand_count, sizeof(cand[0]), &compare_weight);
}
}
}
void av1_single_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int ref_idx, int *rate_mv,
int search_range, inter_mode_info *mode_info,
int_mv *best_mv,
struct HandleInterModeArgs *const args) {
MACROBLOCKD *xd = &x->e_mbd;
const AV1_COMMON *cm = &cpi->common;
const MotionVectorSearchParams *mv_search_params = &cpi->mv_search_params;
const int num_planes = av1_num_planes(cm);
MB_MODE_INFO *mbmi = xd->mi[0];
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
int bestsme = INT_MAX;
const int ref = mbmi->ref_frame[ref_idx];
const YV12_BUFFER_CONFIG *scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, ref);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const MvCosts *mv_costs = x->mv_costs;
if (scaled_ref_frame) {
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// full-pixel motion search code to be used without additional
// modifications.
for (int i = 0; i < num_planes; i++) {
backup_yv12[i] = xd->plane[i].pre[ref_idx];
}
av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL,
num_planes);
}
// Work out the size of the first step in the mv step search.
// 0 here is maximum length first step. 1 is AOMMAX >> 1 etc.
int step_param;
if (cpi->sf.mv_sf.auto_mv_step_size && cm->show_frame) {
// Take the weighted average of the step_params based on the last frame's
// max mv magnitude and that based on the best ref mvs of the current
// block for the given reference.
step_param = (av1_init_search_range(x->max_mv_context[ref]) +
mv_search_params->mv_step_param) /
2;
} else {
step_param = mv_search_params->mv_step_param;
}
const MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv;
FULLPEL_MV start_mv;
if (mbmi->motion_mode != SIMPLE_TRANSLATION)
start_mv = get_fullmv_from_mv(&mbmi->mv[0].as_mv);
else
start_mv = get_fullmv_from_mv(&ref_mv);
// cand stores start_mv and all possible MVs in a SB.
cand_mv_t cand[MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB + 1];
av1_zero(cand);
cand[0].fmv.as_fullmv = start_mv;
int cnt = 1;
int total_weight = 0;
if (!cpi->sf.mv_sf.full_pixel_search_level &&
mbmi->motion_mode == SIMPLE_TRANSLATION) {
get_mv_candidate_from_tpl(cpi, x, bsize, ref, cand, &cnt, &total_weight);
}
const int cand_cnt = AOMMIN(2, cnt);
// TODO(any): Test the speed feature for OBMC_CAUSAL mode.
if (cpi->sf.mv_sf.skip_fullpel_search_using_startmv &&
mbmi->motion_mode == SIMPLE_TRANSLATION) {
const int stack_size = args->start_mv_cnt;
for (int cand_idx = 0; cand_idx < cand_cnt; cand_idx++) {
int_mv *fmv_cand = &cand[cand_idx].fmv;
int skip_cand_mv = 0;
// Check difference between mvs in the stack and candidate mv.
for (int stack_idx = 0; stack_idx < stack_size; stack_idx++) {
const uint8_t this_ref_mv_idx = args->ref_mv_idx_stack[stack_idx];
const FULLPEL_MV *fmv_stack = &args->start_mv_stack[stack_idx];
const int this_newmv_valid =
args->single_newmv_valid[this_ref_mv_idx][ref];
const int row_diff = abs(fmv_stack->row - fmv_cand->as_fullmv.row);
const int col_diff = abs(fmv_stack->col - fmv_cand->as_fullmv.col);
if (!this_newmv_valid) continue;
if (cpi->sf.mv_sf.skip_fullpel_search_using_startmv >= 2) {
// Prunes the current start_mv candidate, if the absolute mv
// difference of both row and column are <= 1.
if (row_diff <= 1 && col_diff <= 1) {
skip_cand_mv = 1;
break;
}
} else if (cpi->sf.mv_sf.skip_fullpel_search_using_startmv >= 1) {
// Prunes the current start_mv candidate, if the sum of the absolute
// mv difference of row and column is <= 1.
if (row_diff + col_diff <= 1) {
skip_cand_mv = 1;
break;
}
}
}
if (skip_cand_mv) {
// Ensure atleast one full-pel motion search is not pruned.
assert(mbmi->ref_mv_idx != 0);
// Mark the candidate mv as invalid so that motion search gets skipped.
cand[cand_idx].fmv.as_int = INVALID_MV;
} else {
// Store start_mv candidate and corresponding ref_mv_idx of full-pel
// search in the mv stack (except last ref_mv_idx).
if (mbmi->ref_mv_idx != MAX_REF_MV_SEARCH - 1) {
args->start_mv_stack[args->start_mv_cnt] = fmv_cand->as_fullmv;
args->ref_mv_idx_stack[args->start_mv_cnt] = mbmi->ref_mv_idx;
args->start_mv_cnt++;
assert(args->start_mv_cnt <= (MAX_REF_MV_SEARCH - 1) * 2);
}
}
}
}
// Hot fix for asan complaints when resize mode is on. When resize mode is on,
// the stride of the reference frame can be different from indicated by
// MotionVectorSearchParams::search_site_cfg. When this happens, we need to
// readjust the stride.
const SEARCH_METHODS search_method = cpi->sf.mv_sf.search_method;
const search_site_config *src_search_site_cfg =
av1_get_search_site_config(cpi, x, search_method);
// Further reduce the search range.
if (search_range < INT_MAX) {
const search_site_config *search_site_cfg =
&src_search_site_cfg[search_method_lookup[cpi->sf.mv_sf.search_method]];
// Max step_param is search_site_cfg->num_search_steps.
if (search_range < 1) {
step_param = search_site_cfg->num_search_steps;
} else {
while (search_site_cfg->radius[search_site_cfg->num_search_steps -
step_param - 1] > (search_range << 1) &&
search_site_cfg->num_search_steps - step_param - 1 > 0)
step_param++;
}
}
int cost_list[5];
int_mv second_best_mv;
best_mv->as_int = second_best_mv.as_int = INVALID_MV;
// Allow more mesh searches for screen content type on the ARF.
const int fine_search_interval = use_fine_search_interval(cpi);
FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
switch (mbmi->motion_mode) {
case SIMPLE_TRANSLATION: {
// Perform a search with the top 2 candidates
int sum_weight = 0;
for (int m = 0; m < cand_cnt; m++) {
int_mv smv = cand[m].fmv;
FULLPEL_MV this_best_mv, this_second_best_mv;
if (smv.as_int == INVALID_MV) continue;
av1_make_default_fullpel_ms_params(
&full_ms_params, cpi, x, bsize, &ref_mv, smv.as_fullmv,
src_search_site_cfg, fine_search_interval);
const int thissme =
av1_full_pixel_search(smv.as_fullmv, &full_ms_params, step_param,
cond_cost_list(cpi, cost_list), &this_best_mv,
&this_second_best_mv);
if (thissme < bestsme) {
bestsme = thissme;
best_mv->as_fullmv = this_best_mv;
second_best_mv.as_fullmv = this_second_best_mv;
}
sum_weight += cand[m].weight;
if (4 * sum_weight > 3 * total_weight) break;
}
} break;
case OBMC_CAUSAL:
av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize,
&ref_mv, start_mv, src_search_site_cfg,
fine_search_interval);
bestsme = av1_obmc_full_pixel_search(start_mv, &full_ms_params,
step_param, &best_mv->as_fullmv);
break;
default: assert(0 && "Invalid motion mode!\n");
}
if (best_mv->as_int == INVALID_MV) return;
if (scaled_ref_frame) {
// Swap back the original buffers for subpel motion search.
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[ref_idx] = backup_yv12[i];
}
}
// Terminate search with the current ref_idx based on fullpel mv, rate cost,
// and other know cost.
if (cpi->sf.inter_sf.skip_newmv_in_drl >= 2 &&
mbmi->motion_mode == SIMPLE_TRANSLATION &&
best_mv->as_int != INVALID_MV) {
int_mv this_mv;
this_mv.as_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
const int ref_mv_idx = mbmi->ref_mv_idx;
const int this_mv_rate =
av1_mv_bit_cost(&this_mv.as_mv, &ref_mv, mv_costs->nmv_joint_cost,
mv_costs->mv_cost_stack, MV_COST_WEIGHT);
mode_info[ref_mv_idx].full_search_mv.as_int = this_mv.as_int;
mode_info[ref_mv_idx].full_mv_rate = this_mv_rate;
mode_info[ref_mv_idx].full_mv_bestsme = bestsme;
for (int prev_ref_idx = 0; prev_ref_idx < ref_mv_idx; ++prev_ref_idx) {
// Check if the motion search result same as previous results
if (this_mv.as_int == mode_info[prev_ref_idx].full_search_mv.as_int) {
// Compare the rate cost
const int prev_rate_cost = mode_info[prev_ref_idx].full_mv_rate +
mode_info[prev_ref_idx].drl_cost;
const int this_rate_cost =
this_mv_rate + mode_info[ref_mv_idx].drl_cost;
if (prev_rate_cost <= this_rate_cost) {
// If the current rate_cost is worse than the previous rate_cost, then
// we terminate the search. Since av1_single_motion_search is only
// called by handle_new_mv in SIMPLE_TRANSLATION mode, we set the
// best_mv to INVALID mv to signal that we wish to terminate search
// for the current mode.
best_mv->as_int = INVALID_MV;
return;
}
}
// Terminate the evaluation of current ref_mv_idx based on bestsme and
// drl_cost.
const int psme = mode_info[prev_ref_idx].full_mv_bestsme;
if (psme == INT_MAX) continue;
const int thr =
cpi->sf.inter_sf.skip_newmv_in_drl == 3 ? (psme + (psme >> 2)) : psme;
if (cpi->sf.inter_sf.skip_newmv_in_drl >= 3 &&
mode_info[ref_mv_idx].full_mv_bestsme > thr &&
mode_info[prev_ref_idx].drl_cost < mode_info[ref_mv_idx].drl_cost) {
best_mv->as_int = INVALID_MV;
return;
}
}
}
if (cpi->common.features.cur_frame_force_integer_mv) {
convert_fullmv_to_mv(best_mv);
}
const int use_fractional_mv =
bestsme < INT_MAX && cpi->common.features.cur_frame_force_integer_mv == 0;
int best_mv_rate = 0;
int mv_rate_calculated = 0;
if (use_fractional_mv) {
int_mv fractional_ms_list[3];
av1_set_fractional_mv(fractional_ms_list);
int dis; /* TODO: use dis in distortion calculation later. */
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv,
cost_list);
MV subpel_start_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv));
switch (mbmi->motion_mode) {
case SIMPLE_TRANSLATION:
if (cpi->sf.mv_sf.use_accurate_subpel_search) {
const int try_second = second_best_mv.as_int != INVALID_MV &&
second_best_mv.as_int != best_mv->as_int &&
(cpi->sf.mv_sf.disable_second_mv <= 1);
const int best_mv_var = mv_search_params->find_fractional_mv_step(
xd, cm, &ms_params, subpel_start_mv, &best_mv->as_mv, &dis,
&x->pred_sse[ref], fractional_ms_list);
if (try_second) {
struct macroblockd_plane *p = xd->plane;
const BUFFER_SET orig_dst = {
{ p[0].dst.buf, p[1].dst.buf, p[2].dst.buf },
{ p[0].dst.stride, p[1].dst.stride, p[2].dst.stride },
};
int64_t rd = INT64_MAX;
if (!cpi->sf.mv_sf.disable_second_mv) {
// Calculate actual rd cost.
mbmi->mv[0].as_mv = best_mv->as_mv;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst,
bsize, 0, 0);
av1_subtract_plane(x, bsize, 0);
RD_STATS this_rd_stats;
av1_init_rd_stats(&this_rd_stats);
av1_estimate_txfm_yrd(cpi, x, &this_rd_stats, INT64_MAX, bsize,
max_txsize_rect_lookup[bsize]);
int this_mv_rate = av1_mv_bit_cost(
&best_mv->as_mv, &ref_mv, mv_costs->nmv_joint_cost,
mv_costs->mv_cost_stack, MV_COST_WEIGHT);
rd = RDCOST(x->rdmult, this_mv_rate + this_rd_stats.rate,
this_rd_stats.dist);
}
MV this_best_mv;
subpel_start_mv = get_mv_from_fullmv(&second_best_mv.as_fullmv);
if (av1_is_subpelmv_in_range(&ms_params.mv_limits,
subpel_start_mv)) {
unsigned int sse;
const int this_var = mv_search_params->find_fractional_mv_step(
xd, cm, &ms_params, subpel_start_mv, &this_best_mv, &dis,
&sse, fractional_ms_list);
if (!cpi->sf.mv_sf.disable_second_mv) {
// If cpi->sf.mv_sf.disable_second_mv is 0, use actual rd cost
// to choose the better MV.
mbmi->mv[0].as_mv = this_best_mv;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst,
bsize, 0, 0);
av1_subtract_plane(x, bsize, 0);
RD_STATS tmp_rd_stats;
av1_init_rd_stats(&tmp_rd_stats);
av1_estimate_txfm_yrd(cpi, x, &tmp_rd_stats, INT64_MAX, bsize,
max_txsize_rect_lookup[bsize]);
int tmp_mv_rate = av1_mv_bit_cost(
&this_best_mv, &ref_mv, mv_costs->nmv_joint_cost,
mv_costs->mv_cost_stack, MV_COST_WEIGHT);
int64_t tmp_rd =
RDCOST(x->rdmult, tmp_rd_stats.rate + tmp_mv_rate,
tmp_rd_stats.dist);
if (tmp_rd < rd) {
best_mv->as_mv = this_best_mv;
x->pred_sse[ref] = sse;
}
} else {
// If cpi->sf.mv_sf.disable_second_mv = 1, use var to decide the
// best MV.
if (this_var < best_mv_var) {
best_mv->as_mv = this_best_mv;
x->pred_sse[ref] = sse;
}
}
}
}
} else {
mv_search_params->find_fractional_mv_step(
xd, cm, &ms_params, subpel_start_mv, &best_mv->as_mv, &dis,
&x->pred_sse[ref], NULL);
}
break;
case OBMC_CAUSAL:
av1_find_best_obmc_sub_pixel_tree_up(xd, cm, &ms_params,
subpel_start_mv, &best_mv->as_mv,
&dis, &x->pred_sse[ref], NULL);
break;
default: assert(0 && "Invalid motion mode!\n");
}
// Terminate search with the current ref_idx based on subpel mv and rate
// cost.
if (cpi->sf.inter_sf.skip_newmv_in_drl >= 1 && args != NULL &&
mbmi->motion_mode == SIMPLE_TRANSLATION &&
best_mv->as_int != INVALID_MV) {
const int ref_mv_idx = mbmi->ref_mv_idx;
best_mv_rate =
av1_mv_bit_cost(&best_mv->as_mv, &ref_mv, mv_costs->nmv_joint_cost,
mv_costs->mv_cost_stack, MV_COST_WEIGHT);
mv_rate_calculated = 1;
for (int prev_ref_idx = 0; prev_ref_idx < ref_mv_idx; ++prev_ref_idx) {
if (!args->single_newmv_valid[prev_ref_idx][ref]) continue;
// Check if the motion vectors are the same.
if (best_mv->as_int == args->single_newmv[prev_ref_idx][ref].as_int) {
// Skip this evaluation if the previous one is skipped.
if (mode_info[prev_ref_idx].skip) {
mode_info[ref_mv_idx].skip = 1;
break;
}
// Compare the rate cost that we current know.
const int prev_rate_cost =
args->single_newmv_rate[prev_ref_idx][ref] +
mode_info[prev_ref_idx].drl_cost;
const int this_rate_cost =
best_mv_rate + mode_info[ref_mv_idx].drl_cost;
if (prev_rate_cost <= this_rate_cost) {
// If the current rate_cost is worse than the previous rate_cost,
// then we terminate the search for this ref_mv_idx.
mode_info[ref_mv_idx].skip = 1;
break;
}
}
}
}
}
if (mv_rate_calculated) {
*rate_mv = best_mv_rate;
} else {
*rate_mv =
av1_mv_bit_cost(&best_mv->as_mv, &ref_mv, mv_costs->nmv_joint_cost,
mv_costs->mv_cost_stack, MV_COST_WEIGHT);
}
}
int av1_joint_motion_search(const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int_mv *cur_mv,
const uint8_t *mask, int mask_stride, int *rate_mv,
int allow_second_mv, int joint_me_num_refine_iter) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const int pw = block_size_wide[bsize];
const int ph = block_size_high[bsize];
const int plane = 0;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
// This function should only ever be called for compound modes
assert(has_second_ref(mbmi));
const int_mv init_mv[2] = { cur_mv[0], cur_mv[1] };
const int refs[2] = { mbmi->ref_frame[0], mbmi->ref_frame[1] };
const MvCosts *mv_costs = x->mv_costs;
int_mv ref_mv[2];
int ite, ref;
// Get the prediction block from the 'other' reference frame.
const int_interpfilters interp_filters =
av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
InterPredParams inter_pred_params;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
// Do joint motion search in compound mode to get more accurate mv.
struct buf_2d backup_yv12[2][MAX_MB_PLANE];
int last_besterr[2] = { INT_MAX, INT_MAX };
const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = {
av1_get_scaled_ref_frame(cpi, refs[0]),
av1_get_scaled_ref_frame(cpi, refs[1])
};
// Prediction buffer from second frame.
DECLARE_ALIGNED(16, uint8_t, second_pred16[MAX_SB_SQUARE * sizeof(uint16_t)]);
uint8_t *second_pred = get_buf_by_bd(xd, second_pred16);
int_mv best_mv, second_best_mv;
// Allow joint search multiple times iteratively for each reference frame
// and break out of the search loop if it couldn't find a better mv.
for (ite = 0; ite < (2 * joint_me_num_refine_iter); ite++) {
struct buf_2d ref_yv12[2];
int bestsme = INT_MAX;
int id = ite % 2; // Even iterations search in the first reference frame,
// odd iterations search in the second. The predictor
// found for the 'other' reference frame is factored in.
if (ite >= 2 && cur_mv[!id].as_int == init_mv[!id].as_int) {
if (cur_mv[id].as_int == init_mv[id].as_int) {
break;
} else {
int_mv cur_int_mv, init_int_mv;
cur_int_mv.as_mv.col = cur_mv[id].as_mv.col >> 3;
cur_int_mv.as_mv.row = cur_mv[id].as_mv.row >> 3;
init_int_mv.as_mv.row = init_mv[id].as_mv.row >> 3;
init_int_mv.as_mv.col = init_mv[id].as_mv.col >> 3;
if (cur_int_mv.as_int == init_int_mv.as_int) {
break;
}
}
}
for (ref = 0; ref < 2; ++ref) {
ref_mv[ref] = av1_get_ref_mv(x, ref);
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
if (scaled_ref_frame[ref]) {
int i;
for (i = 0; i < num_planes; i++)
backup_yv12[ref][i] = xd->plane[i].pre[ref];
av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
NULL, num_planes);
}
}
assert(IMPLIES(scaled_ref_frame[0] != NULL,
cm->width == scaled_ref_frame[0]->y_crop_width &&
cm->height == scaled_ref_frame[0]->y_crop_height));
assert(IMPLIES(scaled_ref_frame[1] != NULL,
cm->width == scaled_ref_frame[1]->y_crop_width &&
cm->height == scaled_ref_frame[1]->y_crop_height));
// Initialize based on (possibly scaled) prediction buffers.
ref_yv12[0] = xd->plane[plane].pre[0];
ref_yv12[1] = xd->plane[plane].pre[1];
av1_init_inter_params(&inter_pred_params, pw, ph, mi_row * MI_SIZE,
mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd), 0,
&cm->sf_identity, &ref_yv12[!id], interp_filters);
inter_pred_params.conv_params = get_conv_params(0, 0, xd->bd);
// Since we have scaled the reference frames to match the size of the
// current frame we must use a unit scaling factor during mode selection.
av1_enc_build_one_inter_predictor(second_pred, pw, &cur_mv[!id].as_mv,
&inter_pred_params);
// Do full-pixel compound motion search on the current reference frame.
if (id) xd->plane[plane].pre[0] = ref_yv12[id];
// Make motion search params
FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
const SEARCH_METHODS search_method = cpi->sf.mv_sf.search_method;
const search_site_config *src_search_sites =
av1_get_search_site_config(cpi, x, search_method);
// Use the mv result from the single mode as mv predictor.
const FULLPEL_MV start_fullmv = get_fullmv_from_mv(&cur_mv[id].as_mv);
av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize,
&ref_mv[id].as_mv, start_fullmv,
src_search_sites,
/*fine_search_interval=*/0);
av1_set_ms_compound_refs(&full_ms_params.ms_buffers, second_pred, mask,
mask_stride, id);
// Small-range full-pixel motion search.
if (!cpi->sf.mv_sf.disable_extensive_joint_motion_search &&
mbmi->interinter_comp.type != COMPOUND_WEDGE) {
bestsme =
av1_full_pixel_search(start_fullmv, &full_ms_params, 5, NULL,
&best_mv.as_fullmv, &second_best_mv.as_fullmv);
} else {
bestsme = av1_refining_search_8p_c(&full_ms_params, start_fullmv,
&best_mv.as_fullmv);
second_best_mv = best_mv;
}
const int try_second = second_best_mv.as_int != INVALID_MV &&
second_best_mv.as_int != best_mv.as_int &&
allow_second_mv;
// Restore the pointer to the first (possibly scaled) prediction buffer.
if (id) xd->plane[plane].pre[0] = ref_yv12[0];
for (ref = 0; ref < 2; ++ref) {
if (scaled_ref_frame[ref]) {
// Swap back the original buffers for subpel motion search.
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[ref] = backup_yv12[ref][i];
}
// Re-initialize based on unscaled prediction buffers.
ref_yv12[ref] = xd->plane[plane].pre[ref];
}
}
// Do sub-pixel compound motion search on the current reference frame.
if (id) xd->plane[plane].pre[0] = ref_yv12[id];
if (cpi->common.features.cur_frame_force_integer_mv) {
convert_fullmv_to_mv(&best_mv);
}
if (bestsme < INT_MAX &&
cpi->common.features.cur_frame_force_integer_mv == 0) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize,
&ref_mv[id].as_mv, NULL);
av1_set_ms_compound_refs(&ms_params.var_params.ms_buffers, second_pred,
mask, mask_stride, id);
ms_params.forced_stop = EIGHTH_PEL;
MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv);
assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, start_mv));
bestsme = cpi->mv_search_params.find_fractional_mv_step(
xd, cm, &ms_params, start_mv, &best_mv.as_mv, &dis, &sse, NULL);
if (try_second) {
MV this_best_mv;
MV subpel_start_mv = get_mv_from_fullmv(&second_best_mv.as_fullmv);
if (av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv)) {
const int thissme = cpi->mv_search_params.find_fractional_mv_step(
xd, cm, &ms_params, subpel_start_mv, &this_best_mv, &dis, &sse,
NULL);
if (thissme < bestsme) {
best_mv.as_mv = this_best_mv;
bestsme = thissme;
}
}
}
}
// Restore the pointer to the first prediction buffer.
if (id) xd->plane[plane].pre[0] = ref_yv12[0];
if (bestsme < last_besterr[id]) {
cur_mv[id] = best_mv;
last_besterr[id] = bestsme;
} else {
break;
}
}
*rate_mv = 0;
for (ref = 0; ref < 2; ++ref) {
const int_mv curr_ref_mv = av1_get_ref_mv(x, ref);
*rate_mv += av1_mv_bit_cost(&cur_mv[ref].as_mv, &curr_ref_mv.as_mv,
mv_costs->nmv_joint_cost,
mv_costs->mv_cost_stack, MV_COST_WEIGHT);
}
return AOMMIN(last_besterr[0], last_besterr[1]);
}
// Search for the best mv for one component of a compound,
// given that the other component is fixed.
int av1_compound_single_motion_search(const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, MV *this_mv,
const uint8_t *second_pred,
const uint8_t *mask, int mask_stride,
int *rate_mv, int ref_idx) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const int ref = mbmi->ref_frame[ref_idx];
const int_mv ref_mv = av1_get_ref_mv(x, ref_idx);
struct macroblockd_plane *const pd = &xd->plane[0];
const MvCosts *mv_costs = x->mv_costs;
struct buf_2d backup_yv12[MAX_MB_PLANE];
const YV12_BUFFER_CONFIG *const scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, ref);
// Check that this is either an interinter or an interintra block
assert(has_second_ref(mbmi) || (ref_idx == 0 && is_interintra_mode(mbmi)));
// Store the first prediction buffer.
struct buf_2d orig_yv12;
if (ref_idx) {
orig_yv12 = pd->pre[0];
pd->pre[0] = pd->pre[ref_idx];
}
if (scaled_ref_frame) {
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// full-pixel motion search code to be used without additional
// modifications.
for (int i = 0; i < num_planes; i++) {
backup_yv12[i] = xd->plane[i].pre[ref_idx];
}
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
// The index below needs to be 0 instead of ref_idx since we assume the
// 0th slot to be used for subsequent searches. Note that the ref_idx
// reference buffer has been copied to the 0th slot in the code above.
// Now we need to swap the reference frame for the 0th slot.
av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL,
num_planes);
}
int bestsme = INT_MAX;
int_mv best_mv;
// Make motion search params
FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
const SEARCH_METHODS search_method = cpi->sf.mv_sf.search_method;
const search_site_config *src_search_sites =
av1_get_search_site_config(cpi, x, search_method);
// Use the mv result from the single mode as mv predictor.
const FULLPEL_MV start_fullmv = get_fullmv_from_mv(this_mv);
av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize,
&ref_mv.as_mv, start_fullmv,
src_search_sites,
/*fine_search_interval=*/0);
av1_set_ms_compound_refs(&full_ms_params.ms_buffers, second_pred, mask,
mask_stride, ref_idx);
// Small-range full-pixel motion search.
bestsme = av1_full_pixel_search(start_fullmv, &full_ms_params, 5, NULL,
&best_mv.as_fullmv, NULL);
if (scaled_ref_frame) {
// Swap back the original buffers for subpel motion search for the 0th slot.
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[0] = backup_yv12[i];
}
}
if (cpi->common.features.cur_frame_force_integer_mv) {
convert_fullmv_to_mv(&best_mv);
}
const int use_fractional_mv =
bestsme < INT_MAX && cpi->common.features.cur_frame_force_integer_mv == 0;
if (use_fractional_mv) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv.as_mv,
NULL);
av1_set_ms_compound_refs(&ms_params.var_params.ms_buffers, second_pred,
mask, mask_stride, ref_idx);
ms_params.forced_stop = EIGHTH_PEL;
MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv);
assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, start_mv));
bestsme = cpi->mv_search_params.find_fractional_mv_step(
xd, cm, &ms_params, start_mv, &best_mv.as_mv, &dis, &sse, NULL);
}
// Restore the pointer to the first unscaled prediction buffer.
if (ref_idx) pd->pre[0] = orig_yv12;
if (bestsme < INT_MAX) *this_mv = best_mv.as_mv;
*rate_mv = 0;
*rate_mv += av1_mv_bit_cost(this_mv, &ref_mv.as_mv, mv_costs->nmv_joint_cost,
mv_costs->mv_cost_stack, MV_COST_WEIGHT);
return bestsme;
}
static AOM_INLINE void build_second_inter_pred(const AV1_COMP *cpi,
MACROBLOCK *x, BLOCK_SIZE bsize,
const MV *other_mv, int ref_idx,
uint8_t *second_pred) {
const AV1_COMMON *const cm = &cpi->common;
const int pw = block_size_wide[bsize];
const int ph = block_size_high[bsize];
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x);
const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y);
// This function should only ever be called for compound modes
assert(has_second_ref(mbmi));
const int plane = 0;
struct buf_2d ref_yv12 = xd->plane[plane].pre[!ref_idx];
struct scale_factors sf;
av1_setup_scale_factors_for_frame(&sf, ref_yv12.width, ref_yv12.height,
cm->width, cm->height);
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, pw, ph, p_row, p_col,
pd->subsampling_x, pd->subsampling_y, xd->bd,
is_cur_buf_hbd(xd), 0, &sf, &ref_yv12,
mbmi->interp_filters);
inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd);
// Get the prediction block from the 'other' reference frame.
av1_enc_build_one_inter_predictor(second_pred, pw, other_mv,
&inter_pred_params);
}
// Wrapper for av1_compound_single_motion_search, for the common case
// where the second prediction is also an inter mode.
int av1_compound_single_motion_search_interinter(
const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *cur_mv,
const uint8_t *mask, int mask_stride, int *rate_mv, int ref_idx) {
MACROBLOCKD *xd = &x->e_mbd;
// This function should only ever be called for compound modes
assert(has_second_ref(xd->mi[0]));
// Prediction buffer from second frame.
DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]);
uint8_t *second_pred;
if (is_cur_buf_hbd(xd))
second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16);
else
second_pred = (uint8_t *)second_pred_alloc_16;
MV *this_mv = &cur_mv[ref_idx].as_mv;
const MV *other_mv = &cur_mv[!ref_idx].as_mv;
build_second_inter_pred(cpi, x, bsize, other_mv, ref_idx, second_pred);
return av1_compound_single_motion_search(cpi, x, bsize, this_mv, second_pred,
mask, mask_stride, rate_mv, ref_idx);
}
static AOM_INLINE void do_masked_motion_search_indexed(
const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE bsize,
int_mv *tmp_mv, int *rate_mv, int which) {
// NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
BLOCK_SIZE sb_type = mbmi->bsize;
const uint8_t *mask;
const int mask_stride = block_size_wide[bsize];
mask = av1_get_compound_type_mask(comp_data, sb_type);
tmp_mv[0].as_int = cur_mv[0].as_int;
tmp_mv[1].as_int = cur_mv[1].as_int;
if (which == 0 || which == 1) {
av1_compound_single_motion_search_interinter(cpi, x, bsize, tmp_mv, mask,
mask_stride, rate_mv, which);
} else if (which == 2) {
const int joint_me_num_refine_iter =
cpi->sf.inter_sf.enable_fast_compound_mode_search == 2
? REDUCED_JOINT_ME_REFINE_ITER
: NUM_JOINT_ME_REFINE_ITER;
av1_joint_motion_search(cpi, x, bsize, tmp_mv, mask, mask_stride, rate_mv,
!cpi->sf.mv_sf.disable_second_mv,
joint_me_num_refine_iter);
}
}
int av1_interinter_compound_motion_search(const AV1_COMP *const cpi,
MACROBLOCK *x,
const int_mv *const cur_mv,
const BLOCK_SIZE bsize,
const PREDICTION_MODE this_mode) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
int_mv tmp_mv[2];
int tmp_rate_mv = 0;
// TODO(jingning): The average compound mode has proper SAD and variance
// functions implemented, and is triggerd by setting the mask pointer as
// Null. Need to further implement those for frame distance weighted mode.
mbmi->interinter_comp.seg_mask =
mbmi->interinter_comp.type == COMPOUND_AVERAGE ? NULL : xd->seg_mask;
const INTERINTER_COMPOUND_DATA *compound_data = &mbmi->interinter_comp;
if (this_mode == NEW_NEWMV) {
do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize,
tmp_mv, &tmp_rate_mv, 2);
mbmi->mv[0].as_int = tmp_mv[0].as_int;
mbmi->mv[1].as_int = tmp_mv[1].as_int;
} else if (this_mode >= NEAREST_NEWMV && this_mode <= NEW_NEARMV) {
// which = 1 if this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV
// which = 0 if this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV
int which = (NEWMV == compound_ref1_mode(this_mode));
do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize,
tmp_mv, &tmp_rate_mv, which);
mbmi->mv[which].as_int = tmp_mv[which].as_int;
}
return tmp_rate_mv;
}
int_mv av1_simple_motion_search(AV1_COMP *const cpi, MACROBLOCK *x, int mi_row,
int mi_col, BLOCK_SIZE bsize, int ref,
FULLPEL_MV start_mv, int num_planes,
int use_subpixel) {
assert(num_planes == 1 &&
"Currently simple_motion_search only supports luma plane");
assert(!frame_is_intra_only(&cpi->common) &&
"Simple motion search only enabled for non-key frames");
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
set_offsets_for_motion_search(cpi, x, mi_row, mi_col, bsize);
MB_MODE_INFO *mbmi = xd->mi[0];
mbmi->bsize = bsize;
mbmi->ref_frame[0] = ref;
mbmi->ref_frame[1] = NONE_FRAME;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref);
const YV12_BUFFER_CONFIG *scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, ref);
struct buf_2d backup_yv12;
// ref_mv is used to calculate the cost of the motion vector
const MV ref_mv = kZeroMv;
const int step_param =
AOMMIN(cpi->mv_search_params.mv_step_param +
cpi->sf.part_sf.simple_motion_search_reduce_search_steps,
MAX_MVSEARCH_STEPS - 2);
int cost_list[5];
const int ref_idx = 0;
int var;
int_mv best_mv;
av1_setup_pre_planes(xd, ref_idx, yv12, mi_row, mi_col,
get_ref_scale_factors(cm, ref), num_planes);
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
if (scaled_ref_frame) {
backup_yv12 = xd->plane[AOM_PLANE_Y].pre[ref_idx];
av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL,
num_planes);
}
// Allow more mesh searches for screen content type on the ARF.
const int fine_search_interval = use_fine_search_interval(cpi);
FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
const SEARCH_METHODS search_method = cpi->sf.mv_sf.search_method;
const search_site_config *src_search_sites =
av1_get_search_site_config(cpi, x, search_method);
av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &ref_mv,
start_mv, src_search_sites,
fine_search_interval);
var = av1_full_pixel_search(start_mv, &full_ms_params, step_param,
cond_cost_list(cpi, cost_list),
&best_mv.as_fullmv, NULL);
const int use_subpel_search =
var < INT_MAX && !cpi->common.features.cur_frame_force_integer_mv &&
use_subpixel;
if (scaled_ref_frame) {
xd->plane[AOM_PLANE_Y].pre[ref_idx] = backup_yv12;
}
if (use_subpel_search) {
int not_used = 0;
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv,
cost_list);
// TODO(yunqing): integrate this into av1_make_default_subpel_ms_params().
ms_params.forced_stop = cpi->sf.mv_sf.simple_motion_subpel_force_stop;
MV subpel_start_mv = get_mv_from_fullmv(&best_mv.as_fullmv);
assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv));
cpi->mv_search_params.find_fractional_mv_step(
xd, cm, &ms_params, subpel_start_mv, &best_mv.as_mv, &not_used,
&x->pred_sse[ref], NULL);
} else {
// Manually convert from units of pixel to 1/8-pixels if we are not doing
// subpel search
convert_fullmv_to_mv(&best_mv);
}
mbmi->mv[0] = best_mv;
// Get a copy of the prediction output
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
if (scaled_ref_frame) {
xd->plane[AOM_PLANE_Y].pre[ref_idx] = backup_yv12;
}
return best_mv;
}
int_mv av1_simple_motion_sse_var(AV1_COMP *cpi, MACROBLOCK *x, int mi_row,
int mi_col, BLOCK_SIZE bsize,
const FULLPEL_MV start_mv, int use_subpixel,
unsigned int *sse, unsigned int *var) {
MACROBLOCKD *xd = &x->e_mbd;
const MV_REFERENCE_FRAME ref =
cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
int_mv best_mv = av1_simple_motion_search(cpi, x, mi_row, mi_col, bsize, ref,
start_mv, 1, use_subpixel);
const uint8_t *src = x->plane[0].src.buf;
const int src_stride = x->plane[0].src.stride;
const uint8_t *dst = xd->plane[0].dst.buf;
const int dst_stride = xd->plane[0].dst.stride;
*var = cpi->ppi->fn_ptr[bsize].vf(src, src_stride, dst, dst_stride, sse);
return best_mv;
}