blob: fdf1495afb61b8d7cc524779cb8964a218159311 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_once.h"
#include "av1/common/alloccommon.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/common/common.h"
#include "av1/common/entropymode.h"
#include "av1/common/quant_common.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encode_strategy.h"
#include "av1/encoder/gop_structure.h"
#include "av1/encoder/random.h"
#include "av1/encoder/ratectrl.h"
#include "config/aom_dsp_rtcd.h"
#define USE_UNRESTRICTED_Q_IN_CQ_MODE 0
// Max rate target for 1080P and below encodes under normal circumstances
// (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
#define MAX_MB_RATE 250
#define MAXRATE_1080P 2025000
#define MIN_BPB_FACTOR 0.005
#define MAX_BPB_FACTOR 50
#define SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO 0
#define SUPERRES_QADJ_PER_DENOM_KEYFRAME 2
#define SUPERRES_QADJ_PER_DENOM_ARFFRAME 0
#define FRAME_OVERHEAD_BITS 200
#define ASSIGN_MINQ_TABLE(bit_depth, name) \
do { \
switch (bit_depth) { \
case AOM_BITS_8: name = name##_8; break; \
case AOM_BITS_10: name = name##_10; break; \
case AOM_BITS_12: name = name##_12; break; \
default: \
assert(0 && \
"bit_depth should be AOM_BITS_8, AOM_BITS_10" \
" or AOM_BITS_12"); \
name = NULL; \
} \
} while (0)
// Tables relating active max Q to active min Q
static int kf_low_motion_minq_8[QINDEX_RANGE];
static int kf_high_motion_minq_8[QINDEX_RANGE];
static int arfgf_low_motion_minq_8[QINDEX_RANGE];
static int arfgf_high_motion_minq_8[QINDEX_RANGE];
static int inter_minq_8[QINDEX_RANGE];
static int rtc_minq_8[QINDEX_RANGE];
static int kf_low_motion_minq_10[QINDEX_RANGE];
static int kf_high_motion_minq_10[QINDEX_RANGE];
static int arfgf_low_motion_minq_10[QINDEX_RANGE];
static int arfgf_high_motion_minq_10[QINDEX_RANGE];
static int inter_minq_10[QINDEX_RANGE];
static int rtc_minq_10[QINDEX_RANGE];
static int kf_low_motion_minq_12[QINDEX_RANGE];
static int kf_high_motion_minq_12[QINDEX_RANGE];
static int arfgf_low_motion_minq_12[QINDEX_RANGE];
static int arfgf_high_motion_minq_12[QINDEX_RANGE];
static int inter_minq_12[QINDEX_RANGE];
static int rtc_minq_12[QINDEX_RANGE];
static int gf_high = 2400;
static int gf_low = 300;
#ifdef STRICT_RC
static int kf_high = 3200;
#else
static int kf_high = 5000;
#endif
static int kf_low = 400;
// How many times less pixels there are to encode given the current scaling.
// Temporary replacement for rcf_mult and rate_thresh_mult.
static double resize_rate_factor(const FrameDimensionCfg *const frm_dim_cfg,
int width, int height) {
return (double)(frm_dim_cfg->width * frm_dim_cfg->height) / (width * height);
}
// Functions to compute the active minq lookup table entries based on a
// formulaic approach to facilitate easier adjustment of the Q tables.
// The formulae were derived from computing a 3rd order polynomial best
// fit to the original data (after plotting real maxq vs minq (not q index))
static int get_minq_index(double maxq, double x3, double x2, double x1,
aom_bit_depth_t bit_depth) {
const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
// Special case handling to deal with the step from q2.0
// down to lossless mode represented by q 1.0.
if (minqtarget <= 2.0) return 0;
return av1_find_qindex(minqtarget, bit_depth, 0, QINDEX_RANGE - 1);
}
static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
int *arfgf_high, int *inter, int *rtc,
aom_bit_depth_t bit_depth) {
int i;
for (i = 0; i < QINDEX_RANGE; i++) {
const double maxq = av1_convert_qindex_to_q(i, bit_depth);
kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth);
arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
}
}
static void rc_init_minq_luts(void) {
init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
inter_minq_8, rtc_minq_8, AOM_BITS_8);
init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
inter_minq_10, rtc_minq_10, AOM_BITS_10);
init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
inter_minq_12, rtc_minq_12, AOM_BITS_12);
}
void av1_rc_init_minq_luts(void) { aom_once(rc_init_minq_luts); }
// These functions use formulaic calculations to make playing with the
// quantizer tables easier. If necessary they can be replaced by lookup
// tables if and when things settle down in the experimental bitstream
double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) {
// Convert the index to a real Q value (scaled down to match old Q values)
switch (bit_depth) {
case AOM_BITS_8: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 4.0;
case AOM_BITS_10: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 16.0;
case AOM_BITS_12: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 64.0;
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1.0;
}
}
int av1_get_bpmb_enumerator(FRAME_TYPE frame_type,
const int is_screen_content_type) {
int enumerator;
if (is_screen_content_type) {
enumerator = (frame_type == KEY_FRAME) ? 1000000 : 750000;
} else {
enumerator = (frame_type == KEY_FRAME) ? 2000000 : 1500000;
}
return enumerator;
}
static int get_init_ratio(double sse) { return (int)(300000 / sse); }
int av1_rc_bits_per_mb(const AV1_COMP *cpi, FRAME_TYPE frame_type, int qindex,
double correction_factor, int accurate_estimate) {
const AV1_COMMON *const cm = &cpi->common;
const int is_screen_content_type = cpi->is_screen_content_type;
const aom_bit_depth_t bit_depth = cm->seq_params->bit_depth;
const double q = av1_convert_qindex_to_q(qindex, bit_depth);
int enumerator = av1_get_bpmb_enumerator(frame_type, is_screen_content_type);
assert(correction_factor <= MAX_BPB_FACTOR &&
correction_factor >= MIN_BPB_FACTOR);
if (frame_type != KEY_FRAME && accurate_estimate) {
assert(cpi->rec_sse != UINT64_MAX);
const int mbs = cm->mi_params.MBs;
const double sse_sqrt =
(double)((int)sqrt((double)(cpi->rec_sse)) << BPER_MB_NORMBITS) /
(double)mbs;
const int ratio = (cpi->rc.bit_est_ratio == 0) ? get_init_ratio(sse_sqrt)
: cpi->rc.bit_est_ratio;
// Clamp the enumerator to lower the q fluctuations.
enumerator = AOMMIN(AOMMAX((int)(ratio * sse_sqrt), 20000), 170000);
}
// q based adjustment to baseline enumerator
return (int)(enumerator * correction_factor / q);
}
int av1_estimate_bits_at_q(const AV1_COMP *cpi, int q,
double correction_factor) {
const AV1_COMMON *const cm = &cpi->common;
const FRAME_TYPE frame_type = cm->current_frame.frame_type;
const int mbs = cm->mi_params.MBs;
const int bpm =
(int)(av1_rc_bits_per_mb(cpi, frame_type, q, correction_factor,
cpi->sf.hl_sf.accurate_bit_estimate));
return AOMMAX(FRAME_OVERHEAD_BITS,
(int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
}
int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target,
FRAME_UPDATE_TYPE frame_update_type) {
const RATE_CONTROL *rc = &cpi->rc;
const AV1EncoderConfig *oxcf = &cpi->oxcf;
const int min_frame_target =
AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
// Clip the frame target to the minimum setup value.
if (frame_update_type == OVERLAY_UPDATE ||
frame_update_type == INTNL_OVERLAY_UPDATE) {
// If there is an active ARF at this location use the minimum
// bits on this frame even if it is a constructed arf.
// The active maximum quantizer insures that an appropriate
// number of bits will be spent if needed for constructed ARFs.
target = min_frame_target;
} else if (target < min_frame_target) {
target = min_frame_target;
}
// Clip the frame target to the maximum allowed value.
if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
if (oxcf->rc_cfg.max_inter_bitrate_pct) {
const int max_rate =
rc->avg_frame_bandwidth * oxcf->rc_cfg.max_inter_bitrate_pct / 100;
target = AOMMIN(target, max_rate);
}
return target;
}
int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int64_t target) {
const RATE_CONTROL *rc = &cpi->rc;
const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg;
if (rc_cfg->max_intra_bitrate_pct) {
const int64_t max_rate =
(int64_t)rc->avg_frame_bandwidth * rc_cfg->max_intra_bitrate_pct / 100;
target = AOMMIN(target, max_rate);
}
if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
return (int)target;
}
// Update the buffer level for higher temporal layers, given the encoded current
// temporal layer.
static void update_layer_buffer_level(SVC *svc, int encoded_frame_size,
bool is_screen) {
const int current_temporal_layer = svc->temporal_layer_id;
for (int i = current_temporal_layer + 1; i < svc->number_temporal_layers;
++i) {
const int layer =
LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
PRIMARY_RATE_CONTROL *lp_rc = &lc->p_rc;
lp_rc->bits_off_target +=
(int)round(lc->target_bandwidth / lc->framerate) - encoded_frame_size;
// Clip buffer level to maximum buffer size for the layer.
lp_rc->bits_off_target =
AOMMIN(lp_rc->bits_off_target, lp_rc->maximum_buffer_size);
lp_rc->buffer_level = lp_rc->bits_off_target;
// For screen-content mode: don't let buffer level go below threshold,
// given here as -rc->maximum_ buffer_size, to allow buffer to come back
// up sooner after slide change with big oveshoot.
if (is_screen) {
lp_rc->bits_off_target =
AOMMAX(lp_rc->bits_off_target, -lp_rc->maximum_buffer_size);
lp_rc->buffer_level = lp_rc->bits_off_target;
}
}
}
// Update the buffer level: leaky bucket model.
static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) {
const AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
// Non-viewable frames are a special case and are treated as pure overhead.
if (!cm->show_frame)
p_rc->bits_off_target -= encoded_frame_size;
else
p_rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
// Clip the buffer level to the maximum specified buffer size.
p_rc->bits_off_target =
AOMMIN(p_rc->bits_off_target, p_rc->maximum_buffer_size);
// For screen-content mode: don't let buffel level go below threshold,
// given here as -rc->maximum_ buffer_size, to allow buffer to come back
// up sooner after slide change with big oveshoot.
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN)
p_rc->bits_off_target =
AOMMAX(p_rc->bits_off_target, -p_rc->maximum_buffer_size);
p_rc->buffer_level = p_rc->bits_off_target;
if (cpi->ppi->use_svc)
update_layer_buffer_level(&cpi->svc, encoded_frame_size,
cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN);
#if CONFIG_FPMT_TEST
/* The variable temp_buffer_level is introduced for quality
* simulation purpose, it retains the value previous to the parallel
* encode frames. The variable is updated based on the update flag.
*
* If there exist show_existing_frames between parallel frames, then to
* retain the temp state do not update it. */
int show_existing_between_parallel_frames =
(cpi->ppi->gf_group.update_type[cpi->gf_frame_index] ==
INTNL_OVERLAY_UPDATE &&
cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2);
if (cpi->do_frame_data_update && !show_existing_between_parallel_frames &&
cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
p_rc->temp_buffer_level = p_rc->buffer_level;
}
#endif
}
int av1_rc_get_default_min_gf_interval(int width, int height,
double framerate) {
// Assume we do not need any constraint lower than 4K 20 fps
static const double factor_safe = 3840 * 2160 * 20.0;
const double factor = width * height * framerate;
const int default_interval =
clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
if (factor <= factor_safe)
return default_interval;
else
return AOMMAX(default_interval,
(int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
// Note this logic makes:
// 4K24: 5
// 4K30: 6
// 4K60: 12
}
int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
interval += (interval & 0x01); // Round to even value
interval = AOMMAX(MAX_GF_INTERVAL, interval);
return AOMMAX(interval, min_gf_interval);
}
void av1_primary_rc_init(const AV1EncoderConfig *oxcf,
PRIMARY_RATE_CONTROL *p_rc) {
const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;
int worst_allowed_q = rc_cfg->worst_allowed_q;
int min_gf_interval = oxcf->gf_cfg.min_gf_interval;
int max_gf_interval = oxcf->gf_cfg.max_gf_interval;
if (min_gf_interval == 0)
min_gf_interval = av1_rc_get_default_min_gf_interval(
oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height,
oxcf->input_cfg.init_framerate);
if (max_gf_interval == 0)
max_gf_interval = av1_rc_get_default_max_gf_interval(
oxcf->input_cfg.init_framerate, min_gf_interval);
p_rc->baseline_gf_interval = (min_gf_interval + max_gf_interval) / 2;
p_rc->this_key_frame_forced = 0;
p_rc->next_key_frame_forced = 0;
p_rc->ni_frames = 0;
p_rc->tot_q = 0.0;
p_rc->total_actual_bits = 0;
p_rc->total_target_bits = 0;
p_rc->buffer_level = p_rc->starting_buffer_level;
if (oxcf->target_seq_level_idx[0] < SEQ_LEVELS) {
worst_allowed_q = 255;
}
if (oxcf->pass == AOM_RC_ONE_PASS && rc_cfg->mode == AOM_CBR) {
p_rc->avg_frame_qindex[KEY_FRAME] = worst_allowed_q;
p_rc->avg_frame_qindex[INTER_FRAME] = worst_allowed_q;
} else {
p_rc->avg_frame_qindex[KEY_FRAME] =
(worst_allowed_q + rc_cfg->best_allowed_q) / 2;
p_rc->avg_frame_qindex[INTER_FRAME] =
(worst_allowed_q + rc_cfg->best_allowed_q) / 2;
}
p_rc->avg_q = av1_convert_qindex_to_q(rc_cfg->worst_allowed_q,
oxcf->tool_cfg.bit_depth);
p_rc->last_q[KEY_FRAME] = rc_cfg->best_allowed_q;
p_rc->last_q[INTER_FRAME] = rc_cfg->worst_allowed_q;
for (int i = 0; i < RATE_FACTOR_LEVELS; ++i) {
p_rc->rate_correction_factors[i] = 0.7;
}
p_rc->rate_correction_factors[KF_STD] = 1.0;
p_rc->bits_off_target = p_rc->starting_buffer_level;
p_rc->rolling_target_bits =
(int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate);
p_rc->rolling_actual_bits =
(int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate);
}
void av1_rc_init(const AV1EncoderConfig *oxcf, RATE_CONTROL *rc) {
const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;
rc->frames_since_key = 8; // Sensible default for first frame.
rc->frames_to_fwd_kf = oxcf->kf_cfg.fwd_kf_dist;
rc->frames_till_gf_update_due = 0;
rc->ni_av_qi = rc_cfg->worst_allowed_q;
rc->ni_tot_qi = 0;
rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval;
rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval;
if (rc->min_gf_interval == 0)
rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height,
oxcf->input_cfg.init_framerate);
if (rc->max_gf_interval == 0)
rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
oxcf->input_cfg.init_framerate, rc->min_gf_interval);
rc->avg_frame_low_motion = 0;
rc->resize_state = ORIG;
rc->resize_avg_qp = 0;
rc->resize_buffer_underflow = 0;
rc->resize_count = 0;
rc->rtc_external_ratectrl = 0;
rc->frame_level_fast_extra_bits = 0;
rc->use_external_qp_one_pass = 0;
}
int av1_rc_drop_frame(AV1_COMP *cpi) {
const AV1EncoderConfig *oxcf = &cpi->oxcf;
RATE_CONTROL *const rc = &cpi->rc;
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
#if CONFIG_FPMT_TEST
const int simulate_parallel_frame =
cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
int64_t buffer_level =
simulate_parallel_frame ? p_rc->temp_buffer_level : p_rc->buffer_level;
#else
int64_t buffer_level = p_rc->buffer_level;
#endif
if (!oxcf->rc_cfg.drop_frames_water_mark) {
return 0;
} else {
if (buffer_level < 0) {
// Always drop if buffer is below 0.
return 1;
} else {
// If buffer is below drop_mark, for now just drop every other frame
// (starting with the next frame) until it increases back over drop_mark.
int drop_mark = (int)(oxcf->rc_cfg.drop_frames_water_mark *
p_rc->optimal_buffer_level / 100);
if ((buffer_level > drop_mark) && (rc->decimation_factor > 0)) {
--rc->decimation_factor;
} else if (buffer_level <= drop_mark && rc->decimation_factor == 0) {
rc->decimation_factor = 1;
}
if (rc->decimation_factor > 0) {
if (rc->decimation_count > 0) {
--rc->decimation_count;
return 1;
} else {
rc->decimation_count = rc->decimation_factor;
return 0;
}
} else {
rc->decimation_count = 0;
return 0;
}
}
}
}
static int adjust_q_cbr(const AV1_COMP *cpi, int q, int active_worst_quality,
int width, int height) {
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const AV1_COMMON *const cm = &cpi->common;
const SVC *const svc = &cpi->svc;
const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
int max_delta_down;
int max_delta_up = 20;
const int change_avg_frame_bandwidth =
abs(rc->avg_frame_bandwidth - rc->prev_avg_frame_bandwidth) >
0.1 * (rc->avg_frame_bandwidth);
// Set the maximum adjustment down for Q for this frame.
if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
cpi->cyclic_refresh->apply_cyclic_refresh) {
// For static screen type content limit the Q drop till the start of the
// next refresh cycle.
if (cpi->is_screen_content_type &&
(cpi->cyclic_refresh->sb_index > cpi->cyclic_refresh->last_sb_index)) {
max_delta_down = AOMMIN(8, AOMMAX(1, rc->q_1_frame / 32));
} else {
max_delta_down = AOMMIN(16, AOMMAX(1, rc->q_1_frame / 8));
}
if (!cpi->ppi->use_svc && cpi->is_screen_content_type) {
// Link max_delta_up to max_delta_down and buffer status.
if (p_rc->buffer_level > p_rc->optimal_buffer_level) {
max_delta_up = AOMMAX(4, max_delta_down);
} else {
max_delta_up = AOMMAX(8, max_delta_down);
}
}
} else {
max_delta_down = (cpi->is_screen_content_type)
? AOMMIN(8, AOMMAX(1, rc->q_1_frame / 16))
: AOMMIN(16, AOMMAX(1, rc->q_1_frame / 8));
}
// If resolution changes or avg_frame_bandwidth significantly changed,
// then set this flag to indicate change in target bits per macroblock.
const int change_target_bits_mb =
cm->prev_frame &&
(width != cm->prev_frame->width || height != cm->prev_frame->height ||
change_avg_frame_bandwidth);
// Apply some control/clamp to QP under certain conditions.
// Delay the use of the clamping for svc until after num_temporal_layers,
// to make they have been set for each temporal layer.
if (!frame_is_intra_only(cm) && rc->frames_since_key > 1 &&
(!cpi->ppi->use_svc ||
svc->current_superframe > (unsigned int)svc->number_temporal_layers) &&
!change_target_bits_mb && !cpi->rc.rtc_external_ratectrl &&
(!cpi->oxcf.rc_cfg.gf_cbr_boost_pct ||
!(refresh_frame->alt_ref_frame || refresh_frame->golden_frame))) {
// If in the previous two frames we have seen both overshoot and undershoot
// clamp Q between the two. Check for rc->q_1/2_frame > 0 in case they have
// not been set due to dropped frames.
if (rc->rc_1_frame * rc->rc_2_frame == -1 &&
rc->q_1_frame != rc->q_2_frame && rc->q_1_frame > 0 &&
rc->q_2_frame > 0) {
int qclamp = clamp(q, AOMMIN(rc->q_1_frame, rc->q_2_frame),
AOMMAX(rc->q_1_frame, rc->q_2_frame));
// If the previous frame had overshoot and the current q needs to
// increase above the clamped value, reduce the clamp for faster reaction
// to overshoot.
if (cpi->rc.rc_1_frame == -1 && q > qclamp && rc->frames_since_key > 10)
q = (q + qclamp) >> 1;
else
q = qclamp;
}
// Adjust Q base on source content change from scene detection.
if (cpi->sf.rt_sf.check_scene_detection && rc->prev_avg_source_sad > 0 &&
rc->frames_since_key > 10 && rc->frame_source_sad > 0 &&
!cpi->rc.rtc_external_ratectrl) {
const int bit_depth = cm->seq_params->bit_depth;
double delta =
(double)rc->avg_source_sad / (double)rc->prev_avg_source_sad - 1.0;
// Push Q downwards if content change is decreasing and buffer level
// is stable (at least 1/4-optimal level), so not overshooting. Do so
// only for high Q to avoid excess overshoot.
// Else reduce decrease in Q from previous frame if content change is
// increasing and buffer is below max (so not undershooting).
if (delta < 0.0 &&
p_rc->buffer_level > (p_rc->optimal_buffer_level >> 2) &&
q > (rc->worst_quality >> 1)) {
double q_adj_factor = 1.0 + 0.5 * tanh(4.0 * delta);
double q_val = av1_convert_qindex_to_q(q, bit_depth);
q += av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
} else if (rc->q_1_frame - q > 0 && delta > 0.1 &&
p_rc->buffer_level < AOMMIN(p_rc->maximum_buffer_size,
p_rc->optimal_buffer_level << 1)) {
q = (3 * q + rc->q_1_frame) >> 2;
}
}
// Limit the decrease in Q from previous frame.
if (rc->q_1_frame - q > max_delta_down) q = rc->q_1_frame - max_delta_down;
// Limit the increase in Q from previous frame.
else if (q - rc->q_1_frame > max_delta_up)
q = rc->q_1_frame + max_delta_up;
}
// Adjustment for temporal layers.
if (svc->number_temporal_layers > 1 && svc->spatial_layer_id == 0 &&
!change_target_bits_mb && !cpi->rc.rtc_external_ratectrl &&
cpi->oxcf.resize_cfg.resize_mode != RESIZE_DYNAMIC) {
if (svc->temporal_layer_id > 0) {
// Constrain enhancement relative to the previous base TL0.
// Get base temporal layer TL0.
const int layer = LAYER_IDS_TO_IDX(0, 0, svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
// lc->rc.avg_frame_bandwidth and lc->p_rc.last_q correspond to the
// last TL0 frame.
if (rc->avg_frame_bandwidth < lc->rc.avg_frame_bandwidth &&
q < lc->p_rc.last_q[INTER_FRAME] - 4)
q = lc->p_rc.last_q[INTER_FRAME] - 4;
} else if (cpi->svc.temporal_layer_id == 0 &&
p_rc->buffer_level > (p_rc->optimal_buffer_level >> 2) &&
rc->frame_source_sad < 100000) {
// Push base TL0 Q down if buffer is stable and frame_source_sad
// is below threshold.
int delta = (svc->number_temporal_layers == 2) ? 4 : 10;
q = q - delta;
}
}
// For non-svc (single layer): if resolution has increased push q closer
// to the active_worst to avoid excess overshoot.
if (!cpi->ppi->use_svc && cm->prev_frame &&
(width * height > 1.5 * cm->prev_frame->width * cm->prev_frame->height))
q = (q + active_worst_quality) >> 1;
// For single layer RPS: Bias Q based on distance of closest reference.
if (cpi->ppi->rtc_ref.bias_recovery_frame) {
const int min_dist = av1_svc_get_min_ref_dist(cpi);
q = q - AOMMIN(min_dist, 20);
}
return AOMMAX(AOMMIN(q, cpi->rc.worst_quality), cpi->rc.best_quality);
}
static const RATE_FACTOR_LEVEL rate_factor_levels[FRAME_UPDATE_TYPES] = {
KF_STD, // KF_UPDATE
INTER_NORMAL, // LF_UPDATE
GF_ARF_STD, // GF_UPDATE
GF_ARF_STD, // ARF_UPDATE
INTER_NORMAL, // OVERLAY_UPDATE
INTER_NORMAL, // INTNL_OVERLAY_UPDATE
GF_ARF_LOW, // INTNL_ARF_UPDATE
};
static RATE_FACTOR_LEVEL get_rate_factor_level(const GF_GROUP *const gf_group,
int gf_frame_index) {
const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_frame_index];
assert(update_type < FRAME_UPDATE_TYPES);
return rate_factor_levels[update_type];
}
/*!\brief Gets a rate vs Q correction factor
*
* This function returns the current value of a correction factor used to
* dynamilcally adjust the relationship between Q and the expected number
* of bits for the frame.
*
* \ingroup rate_control
* \param[in] cpi Top level encoder instance structure
* \param[in] width Frame width
* \param[in] height Frame height
*
* \return Returns a correction factor for the current frame
*/
static double get_rate_correction_factor(const AV1_COMP *cpi, int width,
int height) {
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
double rcf;
double rate_correction_factors_kfstd;
double rate_correction_factors_gfarfstd;
double rate_correction_factors_internormal;
rate_correction_factors_kfstd =
(cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
? rc->frame_level_rate_correction_factors[KF_STD]
: p_rc->rate_correction_factors[KF_STD];
rate_correction_factors_gfarfstd =
(cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
? rc->frame_level_rate_correction_factors[GF_ARF_STD]
: p_rc->rate_correction_factors[GF_ARF_STD];
rate_correction_factors_internormal =
(cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
? rc->frame_level_rate_correction_factors[INTER_NORMAL]
: p_rc->rate_correction_factors[INTER_NORMAL];
if (cpi->common.current_frame.frame_type == KEY_FRAME) {
rcf = rate_correction_factors_kfstd;
} else if (is_stat_consumption_stage(cpi)) {
const RATE_FACTOR_LEVEL rf_lvl =
get_rate_factor_level(&cpi->ppi->gf_group, cpi->gf_frame_index);
double rate_correction_factors_rflvl =
(cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
? rc->frame_level_rate_correction_factors[rf_lvl]
: p_rc->rate_correction_factors[rf_lvl];
rcf = rate_correction_factors_rflvl;
} else {
if ((refresh_frame->alt_ref_frame || refresh_frame->golden_frame) &&
!rc->is_src_frame_alt_ref && !cpi->ppi->use_svc &&
(cpi->oxcf.rc_cfg.mode != AOM_CBR ||
cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20))
rcf = rate_correction_factors_gfarfstd;
else
rcf = rate_correction_factors_internormal;
}
rcf *= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height);
return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
}
/*!\brief Sets a rate vs Q correction factor
*
* This function updates the current value of a correction factor used to
* dynamilcally adjust the relationship between Q and the expected number
* of bits for the frame.
*
* \ingroup rate_control
* \param[in] cpi Top level encoder instance structure
* \param[in] is_encode_stage Indicates if recode loop or post-encode
* \param[in] factor New correction factor
* \param[in] width Frame width
* \param[in] height Frame height
*
* \remark Updates the rate correction factor for the
* current frame type in cpi->rc.
*/
static void set_rate_correction_factor(AV1_COMP *cpi, int is_encode_stage,
double factor, int width, int height) {
RATE_CONTROL *const rc = &cpi->rc;
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
int update_default_rcf = 1;
// Normalize RCF to account for the size-dependent scaling factor.
factor /= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height);
factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
if (cpi->common.current_frame.frame_type == KEY_FRAME) {
p_rc->rate_correction_factors[KF_STD] = factor;
} else if (is_stat_consumption_stage(cpi)) {
const RATE_FACTOR_LEVEL rf_lvl =
get_rate_factor_level(&cpi->ppi->gf_group, cpi->gf_frame_index);
if (is_encode_stage &&
cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
rc->frame_level_rate_correction_factors[rf_lvl] = factor;
update_default_rcf = 0;
}
if (update_default_rcf) p_rc->rate_correction_factors[rf_lvl] = factor;
} else {
if ((refresh_frame->alt_ref_frame || refresh_frame->golden_frame) &&
!rc->is_src_frame_alt_ref && !cpi->ppi->use_svc &&
(cpi->oxcf.rc_cfg.mode != AOM_CBR ||
cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20)) {
p_rc->rate_correction_factors[GF_ARF_STD] = factor;
} else {
if (is_encode_stage &&
cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
rc->frame_level_rate_correction_factors[INTER_NORMAL] = factor;
update_default_rcf = 0;
}
if (update_default_rcf)
p_rc->rate_correction_factors[INTER_NORMAL] = factor;
}
}
}
void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int is_encode_stage,
int width, int height) {
const AV1_COMMON *const cm = &cpi->common;
double correction_factor = 1.0;
double rate_correction_factor =
get_rate_correction_factor(cpi, width, height);
double adjustment_limit;
int projected_size_based_on_q = 0;
int cyclic_refresh_active =
cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled;
// Do not update the rate factors for arf overlay frames.
if (cpi->rc.is_src_frame_alt_ref) return;
// Don't update rate correction factors here on scene changes as
// it is already reset in av1_encodedframe_overshoot_cbr(),
// but reset variables related to previous frame q and size.
// Note that the counter of frames since the last scene change
// is only valid when cyclic refresh mode is enabled and that
// this break out only applies to scene changes that are not
// recorded as INTRA only key frames.
if ((cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) &&
(cpi->cyclic_refresh->counter_encode_maxq_scene_change == 0) &&
!frame_is_intra_only(cm) && !cpi->ppi->use_svc) {
cpi->rc.q_2_frame = cm->quant_params.base_qindex;
cpi->rc.q_1_frame = cm->quant_params.base_qindex;
cpi->rc.rc_2_frame = 0;
cpi->rc.rc_1_frame = 0;
return;
}
// Clear down mmx registers to allow floating point in what follows
// Work out how big we would have expected the frame to be at this Q given
// the current correction factor.
// Stay in double to avoid int overflow when values are large
if (cyclic_refresh_active) {
projected_size_based_on_q =
av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
} else {
projected_size_based_on_q = av1_estimate_bits_at_q(
cpi, cm->quant_params.base_qindex, rate_correction_factor);
}
// Work out a size correction factor.
if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
correction_factor = (double)cpi->rc.projected_frame_size /
(double)projected_size_based_on_q;
// Clamp correction factor to prevent anything too extreme
correction_factor = AOMMAX(correction_factor, 0.25);
cpi->rc.q_2_frame = cpi->rc.q_1_frame;
cpi->rc.q_1_frame = cm->quant_params.base_qindex;
cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
if (correction_factor > 1.1)
cpi->rc.rc_1_frame = -1;
else if (correction_factor < 0.9)
cpi->rc.rc_1_frame = 1;
else
cpi->rc.rc_1_frame = 0;
// Decide how heavily to dampen the adjustment
if (correction_factor > 0.0) {
if (cpi->is_screen_content_type) {
adjustment_limit =
0.25 + 0.5 * AOMMIN(0.5, fabs(log10(correction_factor)));
} else {
adjustment_limit =
0.25 + 0.75 * AOMMIN(0.5, fabs(log10(correction_factor)));
}
} else {
adjustment_limit = 0.75;
}
// Adjustment to delta Q and number of blocks updated in cyclic refressh
// based on over or under shoot of target in current frame.
if (cyclic_refresh_active && cpi->rc.this_frame_target > 0) {
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
if (correction_factor > 1.25) {
cr->percent_refresh_adjustment =
AOMMAX(cr->percent_refresh_adjustment - 1, -5);
cr->rate_ratio_qdelta_adjustment =
AOMMAX(cr->rate_ratio_qdelta_adjustment - 0.05, -0.0);
} else if (correction_factor < 0.5) {
cr->percent_refresh_adjustment =
AOMMIN(cr->percent_refresh_adjustment + 1, 5);
cr->rate_ratio_qdelta_adjustment =
AOMMIN(cr->rate_ratio_qdelta_adjustment + 0.05, 0.25);
}
}
if (correction_factor > 1.01) {
// We are not already at the worst allowable quality
correction_factor = (1.0 + ((correction_factor - 1.0) * adjustment_limit));
rate_correction_factor = rate_correction_factor * correction_factor;
// Keep rate_correction_factor within limits
if (rate_correction_factor > MAX_BPB_FACTOR)
rate_correction_factor = MAX_BPB_FACTOR;
} else if (correction_factor < 0.99) {
// We are not already at the best allowable quality
correction_factor = 1.0 / correction_factor;
correction_factor = (1.0 + ((correction_factor - 1.0) * adjustment_limit));
correction_factor = 1.0 / correction_factor;
rate_correction_factor = rate_correction_factor * correction_factor;
// Keep rate_correction_factor within limits
if (rate_correction_factor < MIN_BPB_FACTOR)
rate_correction_factor = MIN_BPB_FACTOR;
}
set_rate_correction_factor(cpi, is_encode_stage, rate_correction_factor,
width, height);
}
// Calculate rate for the given 'q'.
static int get_bits_per_mb(const AV1_COMP *cpi, int use_cyclic_refresh,
double correction_factor, int q) {
const AV1_COMMON *const cm = &cpi->common;
return use_cyclic_refresh
? av1_cyclic_refresh_rc_bits_per_mb(cpi, q, correction_factor)
: av1_rc_bits_per_mb(cpi, cm->current_frame.frame_type, q,
correction_factor,
cpi->sf.hl_sf.accurate_bit_estimate);
}
/*!\brief Searches for a Q index value predicted to give an average macro
* block rate closest to the target value.
*
* Similar to find_qindex_by_rate() function, but returns a q index with a
* rate just above or below the desired rate, depending on which of the two
* rates is closer to the desired rate.
* Also, respects the selected aq_mode when computing the rate.
*
* \ingroup rate_control
* \param[in] desired_bits_per_mb Target bits per mb
* \param[in] cpi Top level encoder instance structure
* \param[in] correction_factor Current Q to rate correction factor
* \param[in] best_qindex Min allowed Q value.
* \param[in] worst_qindex Max allowed Q value.
*
* \return Returns a correction factor for the current frame
*/
static int find_closest_qindex_by_rate(int desired_bits_per_mb,
const AV1_COMP *cpi,
double correction_factor,
int best_qindex, int worst_qindex) {
const int use_cyclic_refresh = cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
cpi->cyclic_refresh->apply_cyclic_refresh;
// Find 'qindex' based on 'desired_bits_per_mb'.
assert(best_qindex <= worst_qindex);
int low = best_qindex;
int high = worst_qindex;
while (low < high) {
const int mid = (low + high) >> 1;
const int mid_bits_per_mb =
get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, mid);
if (mid_bits_per_mb > desired_bits_per_mb) {
low = mid + 1;
} else {
high = mid;
}
}
assert(low == high);
// Calculate rate difference of this q index from the desired rate.
const int curr_q = low;
const int curr_bits_per_mb =
get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, curr_q);
const int curr_bit_diff = (curr_bits_per_mb <= desired_bits_per_mb)
? desired_bits_per_mb - curr_bits_per_mb
: INT_MAX;
assert((curr_bit_diff != INT_MAX && curr_bit_diff >= 0) ||
curr_q == worst_qindex);
// Calculate rate difference for previous q index too.
const int prev_q = curr_q - 1;
int prev_bit_diff;
if (curr_bit_diff == INT_MAX || curr_q == best_qindex) {
prev_bit_diff = INT_MAX;
} else {
const int prev_bits_per_mb =
get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, prev_q);
assert(prev_bits_per_mb > desired_bits_per_mb);
prev_bit_diff = prev_bits_per_mb - desired_bits_per_mb;
}
// Pick one of the two q indices, depending on which one has rate closer to
// the desired rate.
return (curr_bit_diff <= prev_bit_diff) ? curr_q : prev_q;
}
int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame,
int active_best_quality, int active_worst_quality,
int width, int height) {
const int MBs = av1_get_MBs(width, height);
const double correction_factor =
get_rate_correction_factor(cpi, width, height);
const int target_bits_per_mb =
(int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / MBs);
int q =
find_closest_qindex_by_rate(target_bits_per_mb, cpi, correction_factor,
active_best_quality, active_worst_quality);
if (cpi->oxcf.rc_cfg.mode == AOM_CBR && has_no_stats_stage(cpi))
return adjust_q_cbr(cpi, q, active_worst_quality, width, height);
return q;
}
static int get_active_quality(int q, int gfu_boost, int low, int high,
int *low_motion_minq, int *high_motion_minq) {
if (gfu_boost > high) {
return low_motion_minq[q];
} else if (gfu_boost < low) {
return high_motion_minq[q];
} else {
const int gap = high - low;
const int offset = high - gfu_boost;
const int qdiff = high_motion_minq[q] - low_motion_minq[q];
const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
return low_motion_minq[q] + adjustment;
}
}
static int get_kf_active_quality(const PRIMARY_RATE_CONTROL *const p_rc, int q,
aom_bit_depth_t bit_depth) {
int *kf_low_motion_minq;
int *kf_high_motion_minq;
ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
return get_active_quality(q, p_rc->kf_boost, kf_low, kf_high,
kf_low_motion_minq, kf_high_motion_minq);
}
static int get_gf_active_quality_no_rc(int gfu_boost, int q,
aom_bit_depth_t bit_depth) {
int *arfgf_low_motion_minq;
int *arfgf_high_motion_minq;
ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
return get_active_quality(q, gfu_boost, gf_low, gf_high,
arfgf_low_motion_minq, arfgf_high_motion_minq);
}
static int get_gf_active_quality(const PRIMARY_RATE_CONTROL *const p_rc, int q,
aom_bit_depth_t bit_depth) {
return get_gf_active_quality_no_rc(p_rc->gfu_boost, q, bit_depth);
}
static int get_gf_high_motion_quality(int q, aom_bit_depth_t bit_depth) {
int *arfgf_high_motion_minq;
ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
return arfgf_high_motion_minq[q];
}
static int calc_active_worst_quality_no_stats_vbr(const AV1_COMP *cpi) {
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
const unsigned int curr_frame = cpi->common.current_frame.frame_number;
int active_worst_quality;
int last_q_key_frame;
int last_q_inter_frame;
#if CONFIG_FPMT_TEST
const int simulate_parallel_frame =
cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
last_q_key_frame = simulate_parallel_frame ? p_rc->temp_last_q[KEY_FRAME]
: p_rc->last_q[KEY_FRAME];
last_q_inter_frame = simulate_parallel_frame ? p_rc->temp_last_q[INTER_FRAME]
: p_rc->last_q[INTER_FRAME];
#else
last_q_key_frame = p_rc->last_q[KEY_FRAME];
last_q_inter_frame = p_rc->last_q[INTER_FRAME];
#endif
if (cpi->common.current_frame.frame_type == KEY_FRAME) {
active_worst_quality =
curr_frame == 0 ? rc->worst_quality : last_q_key_frame * 2;
} else {
if (!rc->is_src_frame_alt_ref &&
(refresh_frame->golden_frame || refresh_frame->bwd_ref_frame ||
refresh_frame->alt_ref_frame)) {
active_worst_quality =
curr_frame == 1 ? last_q_key_frame * 5 / 4 : last_q_inter_frame;
} else {
active_worst_quality =
curr_frame == 1 ? last_q_key_frame * 2 : last_q_inter_frame * 2;
}
}
return AOMMIN(active_worst_quality, rc->worst_quality);
}
// Adjust active_worst_quality level based on buffer level.
static int calc_active_worst_quality_no_stats_cbr(const AV1_COMP *cpi) {
// Adjust active_worst_quality: If buffer is above the optimal/target level,
// bring active_worst_quality down depending on fullness of buffer.
// If buffer is below the optimal level, let the active_worst_quality go from
// ambient Q (at buffer = optimal level) to worst_quality level
// (at buffer = critical level).
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc;
const SVC *const svc = &cpi->svc;
unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers;
// Buffer level below which we push active_worst to worst_quality.
int64_t critical_level = p_rc->optimal_buffer_level >> 3;
int64_t buff_lvl_step = 0;
int adjustment = 0;
int active_worst_quality;
int ambient_qp;
if (cm->current_frame.frame_type == KEY_FRAME) return rc->worst_quality;
// For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
// for the first few frames following key frame. These are both initialized
// to worst_quality and updated with (3/4, 1/4) average in postencode_update.
// So for first few frames following key, the qp of that key frame is weighted
// into the active_worst_quality setting. For SVC the key frame should
// correspond to layer (0, 0), so use that for layer context.
int avg_qindex_key = p_rc->avg_frame_qindex[KEY_FRAME];
if (svc->number_temporal_layers > 1) {
int layer = LAYER_IDS_TO_IDX(0, 0, svc->number_temporal_layers);
const LAYER_CONTEXT *lc = &svc->layer_context[layer];
const PRIMARY_RATE_CONTROL *const lp_rc = &lc->p_rc;
avg_qindex_key =
AOMMIN(lp_rc->avg_frame_qindex[KEY_FRAME], lp_rc->last_q[KEY_FRAME]);
}
ambient_qp = (cm->current_frame.frame_number < num_frames_weight_key)
? AOMMIN(p_rc->avg_frame_qindex[INTER_FRAME], avg_qindex_key)
: p_rc->avg_frame_qindex[INTER_FRAME];
ambient_qp = AOMMIN(rc->worst_quality, ambient_qp);
if (p_rc->buffer_level > p_rc->optimal_buffer_level) {
// Adjust down.
int max_adjustment_down; // Maximum adjustment down for Q
if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && !cpi->ppi->use_svc &&
(cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN)) {
active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp);
max_adjustment_down = AOMMIN(4, active_worst_quality / 16);
} else {
active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4);
max_adjustment_down = active_worst_quality / 3;
}
if (max_adjustment_down) {
buff_lvl_step =
((p_rc->maximum_buffer_size - p_rc->optimal_buffer_level) /
max_adjustment_down);
if (buff_lvl_step)
adjustment = (int)((p_rc->buffer_level - p_rc->optimal_buffer_level) /
buff_lvl_step);
active_worst_quality -= adjustment;
}
} else if (p_rc->buffer_level > critical_level) {
// Adjust up from ambient Q.
active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp);
if (critical_level) {
buff_lvl_step = (p_rc->optimal_buffer_level - critical_level);
if (buff_lvl_step) {
adjustment = (int)((rc->worst_quality - ambient_qp) *
(p_rc->optimal_buffer_level - p_rc->buffer_level) /
buff_lvl_step);
}
active_worst_quality += adjustment;
}
} else {
// Set to worst_quality if buffer is below critical level.
active_worst_quality = rc->worst_quality;
}
return active_worst_quality;
}
// Calculate the active_best_quality level.
static int calc_active_best_quality_no_stats_cbr(const AV1_COMP *cpi,
int active_worst_quality,
int width, int height) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
const CurrentFrame *const current_frame = &cm->current_frame;
int *rtc_minq;
const int bit_depth = cm->seq_params->bit_depth;
int active_best_quality = rc->best_quality;
ASSIGN_MINQ_TABLE(bit_depth, rtc_minq);
if (frame_is_intra_only(cm)) {
// Handle the special case for key frames forced when we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping.
if (p_rc->this_key_frame_forced) {
int qindex = p_rc->last_boosted_qindex;
double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
int delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
(last_boosted_q * 0.75), bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
} else if (current_frame->frame_number > 0) {
// not first frame of one pass and kf_boost is set
double q_adj_factor = 1.0;
double q_val;
active_best_quality = get_kf_active_quality(
p_rc, p_rc->avg_frame_qindex[KEY_FRAME], bit_depth);
// Allow somewhat lower kf minq with small image formats.
if ((width * height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Convert the adjustment factor to a qindex delta
// on active_best_quality.
q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
active_best_quality +=
av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
}
} else if (!rc->is_src_frame_alt_ref && !cpi->ppi->use_svc &&
cpi->oxcf.rc_cfg.gf_cbr_boost_pct &&
(refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) {
// Use the lower of active_worst_quality and recent
// average Q as basis for GF/ARF best Q limit unless last frame was
// a key frame.
int q = active_worst_quality;
if (rc->frames_since_key > 1 &&
p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
q = p_rc->avg_frame_qindex[INTER_FRAME];
}
active_best_quality = get_gf_active_quality(p_rc, q, bit_depth);
} else {
// Use the lower of active_worst_quality and recent/average Q.
FRAME_TYPE frame_type =
(current_frame->frame_number > 1) ? INTER_FRAME : KEY_FRAME;
if (p_rc->avg_frame_qindex[frame_type] < active_worst_quality)
active_best_quality = rtc_minq[p_rc->avg_frame_qindex[frame_type]];
else
active_best_quality = rtc_minq[active_worst_quality];
}
return active_best_quality;
}
#if RT_PASSIVE_STRATEGY
static int get_q_passive_strategy(const AV1_COMP *const cpi,
const int q_candidate, const int threshold) {
const AV1_COMMON *const cm = &cpi->common;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const CurrentFrame *const current_frame = &cm->current_frame;
int sum = 0;
int count = 0;
int i = 1;
while (i < MAX_Q_HISTORY) {
int frame_id = current_frame->frame_number - i;
if (frame_id <= 0) break;
sum += p_rc->q_history[frame_id % MAX_Q_HISTORY];
++count;
++i;
}
if (count > 0) {
const int avg_q = sum / count;
if (abs(avg_q - q_candidate) <= threshold) return avg_q;
}
return q_candidate;
}
#endif // RT_PASSIVE_STRATEGY
/*!\brief Picks q and q bounds given CBR rate control parameters in \c cpi->rc.
*
* Handles the special case when using:
* - Constant bit-rate mode: \c cpi->oxcf.rc_cfg.mode == \ref AOM_CBR, and
* - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are
* NOT available.
*
* \ingroup rate_control
* \param[in] cpi Top level encoder structure
* \param[in] width Coded frame width
* \param[in] height Coded frame height
* \param[out] bottom_index Bottom bound for q index (best quality)
* \param[out] top_index Top bound for q index (worst quality)
* \return Returns selected q index to be used for encoding this frame.
*/
static int rc_pick_q_and_bounds_no_stats_cbr(const AV1_COMP *cpi, int width,
int height, int *bottom_index,
int *top_index) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const CurrentFrame *const current_frame = &cm->current_frame;
int q;
int active_worst_quality = calc_active_worst_quality_no_stats_cbr(cpi);
int active_best_quality = calc_active_best_quality_no_stats_cbr(
cpi, active_worst_quality, width, height);
assert(has_no_stats_stage(cpi));
assert(cpi->oxcf.rc_cfg.mode == AOM_CBR);
// Clip the active best and worst quality values to limits
active_best_quality =
clamp(active_best_quality, rc->best_quality, rc->worst_quality);
active_worst_quality =
clamp(active_worst_quality, active_best_quality, rc->worst_quality);
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
// Limit Q range for the adaptive loop.
if (current_frame->frame_type == KEY_FRAME && !p_rc->this_key_frame_forced &&
current_frame->frame_number != 0) {
int qdelta = 0;
qdelta = av1_compute_qdelta_by_rate(cpi, current_frame->frame_type,
active_worst_quality, 2.0);
*top_index = active_worst_quality + qdelta;
*top_index = AOMMAX(*top_index, *bottom_index);
}
q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
active_worst_quality, width, height);
#if RT_PASSIVE_STRATEGY
if (current_frame->frame_type != KEY_FRAME &&
cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) {
q = get_q_passive_strategy(cpi, q, 50);
}
#endif // RT_PASSIVE_STRATEGY
if (q > *top_index) {
// Special case when we are targeting the max allowed rate
if (rc->this_frame_target >= rc->max_frame_bandwidth)
*top_index = q;
else
q = *top_index;
}
assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
*bottom_index >= rc->best_quality);
assert(q <= rc->worst_quality && q >= rc->best_quality);
return q;
}
static int gf_group_pyramid_level(const GF_GROUP *gf_group, int gf_index) {
return gf_group->layer_depth[gf_index];
}
static int get_active_cq_level(const RATE_CONTROL *rc,
const PRIMARY_RATE_CONTROL *p_rc,
const AV1EncoderConfig *const oxcf,
int intra_only, aom_superres_mode superres_mode,
int superres_denom) {
const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;
static const double cq_adjust_threshold = 0.1;
int active_cq_level = rc_cfg->cq_level;
if (rc_cfg->mode == AOM_CQ || rc_cfg->mode == AOM_Q) {
// printf("Superres %d %d %d = %d\n", superres_denom, intra_only,
// rc->frames_to_key, !(intra_only && rc->frames_to_key <= 1));
if ((superres_mode == AOM_SUPERRES_QTHRESH ||
superres_mode == AOM_SUPERRES_AUTO) &&
superres_denom != SCALE_NUMERATOR) {
int mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO;
if (intra_only && rc->frames_to_key <= 1) {
mult = 0;
} else if (intra_only) {
mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME;
} else {
mult = SUPERRES_QADJ_PER_DENOM_ARFFRAME;
}
active_cq_level = AOMMAX(
active_cq_level - ((superres_denom - SCALE_NUMERATOR) * mult), 0);
}
}
if (rc_cfg->mode == AOM_CQ && p_rc->total_target_bits > 0) {
const double x = (double)p_rc->total_actual_bits / p_rc->total_target_bits;
if (x < cq_adjust_threshold) {
active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
}
}
return active_cq_level;
}
/*!\brief Picks q and q bounds given non-CBR rate control params in \c cpi->rc.
*
* Handles the special case when using:
* - Any rate control other than constant bit-rate mode:
* \c cpi->oxcf.rc_cfg.mode != \ref AOM_CBR, and
* - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are
* NOT available.
*
* \ingroup rate_control
* \param[in] cpi Top level encoder structure
* \param[in] width Coded frame width
* \param[in] height Coded frame height
* \param[out] bottom_index Bottom bound for q index (best quality)
* \param[out] top_index Top bound for q index (worst quality)
* \return Returns selected q index to be used for encoding this frame.
*/
static int rc_pick_q_and_bounds_no_stats(const AV1_COMP *cpi, int width,
int height, int *bottom_index,
int *top_index) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const CurrentFrame *const current_frame = &cm->current_frame;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode;
assert(has_no_stats_stage(cpi));
assert(rc_mode == AOM_VBR ||
(!USE_UNRESTRICTED_Q_IN_CQ_MODE && rc_mode == AOM_CQ) ||
rc_mode == AOM_Q);
const int cq_level =
get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm),
cpi->superres_mode, cm->superres_scale_denominator);
const int bit_depth = cm->seq_params->bit_depth;
int active_best_quality;
int active_worst_quality = calc_active_worst_quality_no_stats_vbr(cpi);
int q;
int *inter_minq;
ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
if (frame_is_intra_only(cm)) {
if (rc_mode == AOM_Q) {
const int qindex = cq_level;
const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
const int delta_qindex =
av1_compute_qdelta(rc, q_val, q_val * 0.25, bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
} else if (p_rc->this_key_frame_forced) {
#if CONFIG_FPMT_TEST
const int simulate_parallel_frame =
cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
int qindex = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex
: p_rc->last_boosted_qindex;
#else
int qindex = p_rc->last_boosted_qindex;
#endif
const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
const int delta_qindex = av1_compute_qdelta(
rc, last_boosted_q, last_boosted_q * 0.75, bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
} else { // not first frame of one pass and kf_boost is set
double q_adj_factor = 1.0;
active_best_quality = get_kf_active_quality(
p_rc, p_rc->avg_frame_qindex[KEY_FRAME], bit_depth);
// Allow somewhat lower kf minq with small image formats.
if ((width * height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Convert the adjustment factor to a qindex delta on active_best_quality.
{
const double q_val =
av1_convert_qindex_to_q(active_best_quality, bit_depth);
active_best_quality +=
av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
}
}
} else if (!rc->is_src_frame_alt_ref &&
(refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) {
// Use the lower of active_worst_quality and recent
// average Q as basis for GF/ARF best Q limit unless last frame was
// a key frame.
q = (rc->frames_since_key > 1 &&
p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
? p_rc->avg_frame_qindex[INTER_FRAME]
: p_rc->avg_frame_qindex[KEY_FRAME];
// For constrained quality dont allow Q less than the cq level
if (rc_mode == AOM_CQ) {
if (q < cq_level) q = cq_level;
active_best_quality = get_gf_active_quality(p_rc, q, bit_depth);
// Constrained quality use slightly lower active best.
active_best_quality = active_best_quality * 15 / 16;
} else if (rc_mode == AOM_Q) {
const int qindex = cq_level;
const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
const int delta_qindex =
(refresh_frame->alt_ref_frame)
? av1_compute_qdelta(rc, q_val, q_val * 0.40, bit_depth)
: av1_compute_qdelta(rc, q_val, q_val * 0.50, bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
} else {
active_best_quality = get_gf_active_quality(p_rc, q, bit_depth);
}
} else {
if (rc_mode == AOM_Q) {
const int qindex = cq_level;
const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
const double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
0.70, 1.0, 0.85, 1.0 };
const int delta_qindex = av1_compute_qdelta(
rc, q_val,
q_val * delta_rate[current_frame->frame_number % FIXED_GF_INTERVAL],
bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
} else {
// Use the lower of active_worst_quality and recent/average Q.
active_best_quality =
(current_frame->frame_number > 1)
? inter_minq[p_rc->avg_frame_qindex[INTER_FRAME]]
: inter_minq[p_rc->avg_frame_qindex[KEY_FRAME]];
// For the constrained quality mode we don't want
// q to fall below the cq level.
if ((rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
active_best_quality = cq_level;
}
}
}
// Clip the active best and worst quality values to limits
active_best_quality =
clamp(active_best_quality, rc->best_quality, rc->worst_quality);
active_worst_quality =
clamp(active_worst_quality, active_best_quality, rc->worst_quality);
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
// Limit Q range for the adaptive loop.
{
int qdelta = 0;
if (current_frame->frame_type == KEY_FRAME &&
!p_rc->this_key_frame_forced && current_frame->frame_number != 0) {
qdelta = av1_compute_qdelta_by_rate(cpi, current_frame->frame_type,
active_worst_quality, 2.0);
} else if (!rc->is_src_frame_alt_ref &&
(refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) {
qdelta = av1_compute_qdelta_by_rate(cpi, current_frame->frame_type,
active_worst_quality, 1.75);
}
*top_index = active_worst_quality + qdelta;
*top_index = AOMMAX(*top_index, *bottom_index);
}
if (rc_mode == AOM_Q) {
q = active_best_quality;
// Special case code to try and match quality with forced key frames
} else if ((current_frame->frame_type == KEY_FRAME) &&
p_rc->this_key_frame_forced) {
#if CONFIG_FPMT_TEST
const int simulate_parallel_frame =
cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
q = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex
: p_rc->last_boosted_qindex;
#else
q = p_rc->last_boosted_qindex;
#endif
} else {
q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
active_worst_quality, width, height);
if (q > *top_index) {
// Special case when we are targeting the max allowed rate
if (rc->this_frame_target >= rc->max_frame_bandwidth)
*top_index = q;
else
q = *top_index;
}
}
assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
*bottom_index >= rc->best_quality);
assert(q <= rc->worst_quality && q >= rc->best_quality);
return q;
}
static const double arf_layer_deltas[MAX_ARF_LAYERS + 1] = { 2.50, 2.00, 1.75,
1.50, 1.25, 1.15,
1.0 };
int av1_frame_type_qdelta(const AV1_COMP *cpi, int q) {
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
const RATE_FACTOR_LEVEL rf_lvl =
get_rate_factor_level(gf_group, cpi->gf_frame_index);
const FRAME_TYPE frame_type = gf_group->frame_type[cpi->gf_frame_index];
const int arf_layer = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
const double rate_factor =
(rf_lvl == INTER_NORMAL) ? 1.0 : arf_layer_deltas[arf_layer];
return av1_compute_qdelta_by_rate(cpi, frame_type, q, rate_factor);
}
// This unrestricted Q selection on CQ mode is useful when testing new features,
// but may lead to Q being out of range on current RC restrictions
#if USE_UNRESTRICTED_Q_IN_CQ_MODE
static int rc_pick_q_and_bounds_no_stats_cq(const AV1_COMP *cpi, int width,
int height, int *bottom_index,
int *top_index) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const int cq_level =
get_active_cq_level(rc, oxcf, frame_is_intra_only(cm), cpi->superres_mode,
cm->superres_scale_denominator);
const int bit_depth = cm->seq_params->bit_depth;
const int q = (int)av1_convert_qindex_to_q(cq_level, bit_depth);
(void)width;
(void)height;
assert(has_no_stats_stage(cpi));
assert(cpi->oxcf.rc_cfg.mode == AOM_CQ);
*top_index = q;
*bottom_index = q;
return q;
}
#endif // USE_UNRESTRICTED_Q_IN_CQ_MODE
#define STATIC_MOTION_THRESH 95
static void get_intra_q_and_bounds(const AV1_COMP *cpi, int width, int height,
int *active_best, int *active_worst,
int cq_level) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
int active_best_quality;
int active_worst_quality = *active_worst;
const int bit_depth = cm->seq_params->bit_depth;
if (rc->frames_to_key <= 1 && oxcf->rc_cfg.mode == AOM_Q) {
// If the next frame is also a key frame or the current frame is the
// only frame in the sequence in AOM_Q mode, just use the cq_level
// as q.
active_best_quality = cq_level;
active_worst_quality = cq_level;
} else if (p_rc->this_key_frame_forced) {
// Handle the special case for key frames forced when we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping.
double last_boosted_q;
int delta_qindex;
int qindex;
#if CONFIG_FPMT_TEST
const int simulate_parallel_frame =
cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
int last_boosted_qindex = simulate_parallel_frame
? p_rc->temp_last_boosted_qindex
: p_rc->last_boosted_qindex;
#else
int last_boosted_qindex = p_rc->last_boosted_qindex;
#endif
if (is_stat_consumption_stage_twopass(cpi) &&
cpi->ppi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
qindex = AOMMIN(p_rc->last_kf_qindex, last_boosted_qindex);
active_best_quality = qindex;
last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
last_boosted_q * 1.25, bit_depth);
active_worst_quality =
AOMMIN(qindex + delta_qindex, active_worst_quality);
} else {
qindex = last_boosted_qindex;
last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
last_boosted_q * 0.50, bit_depth);
active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
}
} else {
// Not forced keyframe.
double q_adj_factor = 1.0;
double q_val;
// Baseline value derived from active_worst_quality and kf boost.
active_best_quality =
get_kf_active_quality(p_rc, active_worst_quality, bit_depth);
if (cpi->is_screen_content_type) {
active_best_quality /= 2;
}
if (is_stat_consumption_stage_twopass(cpi) &&
cpi->ppi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) {
active_best_quality /= 3;
}
// Allow somewhat lower kf minq with small image formats.
if ((width * height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Make a further adjustment based on the kf zero motion measure.
if (is_stat_consumption_stage_twopass(cpi))
q_adj_factor +=
0.05 - (0.001 * (double)cpi->ppi->twopass.kf_zeromotion_pct);
// Convert the adjustment factor to a qindex delta
// on active_best_quality.
q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
active_best_quality +=
av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
// Tweak active_best_quality for AOM_Q mode when superres is on, as this
// will be used directly as 'q' later.
if (oxcf->rc_cfg.mode == AOM_Q &&
(cpi->superres_mode == AOM_SUPERRES_QTHRESH ||
cpi->superres_mode == AOM_SUPERRES_AUTO) &&
cm->superres_scale_denominator != SCALE_NUMERATOR) {
active_best_quality =
AOMMAX(active_best_quality -
((cm->superres_scale_denominator - SCALE_NUMERATOR) *
SUPERRES_QADJ_PER_DENOM_KEYFRAME),
0);
}
}
*active_best = active_best_quality;
*active_worst = active_worst_quality;
}
static void adjust_active_best_and_worst_quality(const AV1_COMP *cpi,
const int is_intrl_arf_boost,
int *active_worst,
int *active_best) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
int active_best_quality = *active_best;
int active_worst_quality = *active_worst;
#if CONFIG_FPMT_TEST
const int simulate_parallel_frame =
cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
int extend_minq = simulate_parallel_frame ? p_rc->temp_extend_minq
: cpi->ppi->twopass.extend_minq;
int extend_maxq = simulate_parallel_frame ? p_rc->temp_extend_maxq
: cpi->ppi->twopass.extend_maxq;
#endif
// Extension to max or min Q if undershoot or overshoot is outside
// the permitted range.
if (cpi->oxcf.rc_cfg.mode != AOM_Q) {
if (frame_is_intra_only(cm) ||
(!rc->is_src_frame_alt_ref &&
(refresh_frame->golden_frame || is_intrl_arf_boost ||
refresh_frame->alt_ref_frame))) {
#if CONFIG_FPMT_TEST
active_best_quality -= extend_minq;
active_worst_quality += (extend_maxq / 2);
#else
active_best_quality -= cpi->ppi->twopass.extend_minq / 4;
active_worst_quality += (cpi->ppi->twopass.extend_maxq / 2);
#endif
} else {
#if CONFIG_FPMT_TEST
active_best_quality -= extend_minq / 2;
active_worst_quality += extend_maxq;
#else
active_best_quality -= cpi->ppi->twopass.extend_minq / 4;
active_worst_quality += cpi->ppi->twopass.extend_maxq;
#endif
}
}
#ifndef STRICT_RC
// Static forced key frames Q restrictions dealt with elsewhere.
if (!(frame_is_intra_only(cm)) || !p_rc->this_key_frame_forced ||
(cpi->ppi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
const int qdelta = av1_frame_type_qdelta(cpi, active_worst_quality);
active_worst_quality =
AOMMAX(active_worst_quality + qdelta, active_best_quality);
}
#endif
// Modify active_best_quality for downscaled normal frames.
if (av1_frame_scaled(cm) && !frame_is_kf_gf_arf(cpi)) {
int qdelta = av1_compute_qdelta_by_rate(cpi, cm->current_frame.frame_type,
active_best_quality, 2.0);
active_best_quality =
AOMMAX(active_best_quality + qdelta, rc->best_quality);
}
active_best_quality =
clamp(active_best_quality, rc->best_quality, rc->worst_quality);
active_worst_quality =
clamp(active_worst_quality, active_best_quality, rc->worst_quality);
*active_best = active_best_quality;
*active_worst = active_worst_quality;
}
/*!\brief Gets a Q value to use for the current frame
*
*
* Selects a Q value from a permitted range that we estimate
* will result in approximately the target number of bits.
*
* \ingroup rate_control
* \param[in] cpi Top level encoder instance structure
* \param[in] width Width of frame
* \param[in] height Height of frame
* \param[in] active_worst_quality Max Q allowed
* \param[in] active_best_quality Min Q allowed
*
* \return The suggested Q for this frame.
*/
static int get_q(const AV1_COMP *cpi, const int width, const int height,
const int active_worst_quality,
const int active_best_quality) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
int q;
#if CONFIG_FPMT_TEST
const int simulate_parallel_frame =
cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
cpi->ppi->fpmt_unit_test_cfg;
int last_boosted_qindex = simulate_parallel_frame
? p_rc->temp_last_boosted_qindex
: p_rc->last_boosted_qindex;
#else
int last_boosted_qindex = p_rc->last_boosted_qindex;
#endif
if (cpi->oxcf.rc_cfg.mode == AOM_Q ||
(frame_is_intra_only(cm) && !p_rc->this_key_frame_forced &&
cpi->ppi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH &&
rc->frames_to_key > 1)) {
q = active_best_quality;
// Special case code to try and match quality with forced key frames.
} else if (frame_is_intra_only(cm) && p_rc->this_key_frame_forced) {
// If static since last kf use better of last boosted and last kf q.
if (cpi->ppi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
q = AOMMIN(p_rc->last_kf_qindex, last_boosted_qindex);
} else {
q = AOMMIN(last_boosted_qindex,
(active_best_quality + active_worst_quality) / 2);
}
q = clamp(q, active_best_quality, active_worst_quality);
} else {
q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
active_worst_quality, width, height);
if (q > active_worst_quality) {
// Special case when we are targeting the max allowed rate.
if (rc->this_frame_target < rc->max_frame_bandwidth) {
q = active_worst_quality;
}
}
q = AOMMAX(q, active_best_quality);
}
return q;
}
// Returns |active_best_quality| for an inter frame.
// The |active_best_quality| depends on different rate control modes:
// VBR, Q, CQ, CBR.
// The returning active_best_quality could further be adjusted in
// adjust_active_best_and_worst_quality().
static int get_active_best_quality(const AV1_COMP *const cpi,
const int active_worst_quality,
const int cq_level, const int gf_index) {
const AV1_COMMON *const cm = &cpi->common;
const int bit_depth = cm->seq_params->bit_depth;
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
const GF_GROUP *gf_group = &cpi->ppi->gf_group;
const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode;
int *inter_minq;
ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
int active_best_quality = 0;
const int is_intrl_arf_boost =
gf_group->update_type[gf_index] == INTNL_ARF_UPDATE;
int is_leaf_frame =
!(gf_group->update_type[gf_index] == ARF_UPDATE ||
gf_group->update_type[gf_index] == GF_UPDATE || is_intrl_arf_boost);
// TODO(jingning): Consider to rework this hack that covers issues incurred
// in lightfield setting.
if (cm->tiles.large_scale) {
is_leaf_frame = !(refresh_frame->golden_frame ||
refresh_frame->alt_ref_frame || is_intrl_arf_boost);
}
const int is_overlay_frame = rc->is_src_frame_alt_ref;
if (is_leaf_frame || is_overlay_frame) {
if (rc_mode == AOM_Q) return cq_level;
active_best_quality = inter_minq[active_worst_quality];
// For the constrained quality mode we don't want
// q to fall below the cq level.
if ((rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
active_best_quality = cq_level;
}
return active_best_quality;
}
// Determine active_best_quality for frames that are not leaf or overlay.
int q = active_worst_quality;
// Use the lower of active_worst_quality and recent
// average Q as basis for GF/ARF best Q limit unless last frame was
// a key frame.
if (rc->frames_since_key > 1 &&
p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
q = p_rc->avg_frame_qindex[INTER_FRAME];
}
if (rc_mode == AOM_CQ && q < cq_level) q = cq_level;
active_best_quality = get_gf_active_quality(p_rc, q, bit_depth);
// Constrained quality use slightly lower active best.
if (rc_mode == AOM_CQ) active_best_quality = active_best_quality * 15 / 16;
const int min_boost = get_gf_high_motion_quality(q, bit_depth);
const int boost = min_boost - active_best_quality;
active_best_quality = min_boost - (int)(boost * p_rc->arf_boost_factor);
if (!is_intrl_arf_boost) return active_best_quality;
if (rc_mode == AOM_Q || rc_mode == AOM_CQ) active_best_quality = p_rc->arf_q;
int this_height = gf_group_pyramid_level(gf_group, gf_index);
while (this_height > 1) {
active_best_quality = (active_best_quality + active_worst_quality + 1) / 2;
--this_height;
}
return active_best_quality;
}
// Returns the q_index for a single frame in the GOP.
// This function assumes that rc_mode == AOM_Q mode.
int av1_q_mode_get_q_index(int base_q_index, int gf_update_type,
int gf_pyramid_level, int arf_q) {
const int is_intrl_arf_boost = gf_update_type == INTNL_ARF_UPDATE;
int is_leaf_or_overlay_frame = gf_update_type == LF_UPDATE ||
gf_update_type == OVERLAY_UPDATE ||
gf_update_type == INTNL_OVERLAY_UPDATE;
if (is_leaf_or_overlay_frame) return base_q_index;
if (!is_intrl_arf_boost) return arf_q;
int active_best_quality = arf_q;
int active_worst_quality = base_q_index;
while (gf_pyramid_level > 1) {
active_best_quality = (active_best_quality + active_worst_quality + 1) / 2;
--gf_pyramid_level;
}
return active_best_quality;
}
// Returns the q_index for the ARF in the GOP.
int av1_get_arf_q_index(int base_q_index, int gfu_boost, int bit_depth,
double arf_boost_factor) {
int active_best_quality =
get_gf_active_quality_no_rc(gfu_boost, base_q_index, bit_depth);
const int min_boost = get_gf_high_motion_quality(base_q_index, bit_depth);
const int boost = min_boost - active_best_quality;
return min_boost - (int)(boost * arf_boost_factor);
}
static int rc_pick_q_and_bounds_q_mode(const AV1_COMP *cpi, int width,
int height, int gf_index,
int *bottom_index, int *top_index) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const int cq_level =
get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm),
cpi->superres_mode, cm->superres_scale_denominator);
int active_best_quality = 0;
int active_worst_quality = rc->active_worst_quality;
int q;
if (frame_is_intra_only(cm)) {
get_intra_q_and_bounds(cpi, width, height, &active_best_quality,
&active_worst_quality, cq_level);
} else {
// Active best quality limited by previous layer.
active_best_quality =
get_active_best_quality(cpi, active_worst_quality, cq_level, gf_index);
}
if (cq_level > 0) active_best_quality = AOMMAX(1, active_best_quality);
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
*top_index = AOMMAX(*top_index, rc->best_quality);
*top_index = AOMMIN(*top_index, rc->worst_quality);
*bottom_index = AOMMAX(*bottom_index, rc->best_quality);
*bottom_index = AOMMIN(*bottom_index, rc->worst_quality);
q = active_best_quality;
q = AOMMAX(q, rc->best_quality);
q = AOMMIN(q, rc->worst_quality);
assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
*bottom_index >= rc->best_quality);
assert(q <= rc->worst_quality && q >= rc->best_quality);
return q;
}
/*!\brief Picks q and q bounds given rate control parameters in \c cpi->rc.
*
* Handles the the general cases not covered by
* \ref rc_pick_q_and_bounds_no_stats_cbr() and
* \ref rc_pick_q_and_bounds_no_stats()
*
* \ingroup rate_control
* \param[in] cpi Top level encoder structure
* \param[in] width Coded frame width
* \param[in] height Coded frame height
* \param[in] gf_index Index of this frame in the golden frame group
* \param[out] bottom_index Bottom bound for q index (best quality)
* \param[out] top_index Top bound for q index (worst quality)
* \return Returns selected q index to be used for encoding this frame.
*/
static int rc_pick_q_and_bounds(const AV1_COMP *cpi, int width, int height,
int gf_index, int *bottom_index,
int *top_index) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
const GF_GROUP *gf_group = &cpi->ppi->gf_group;
assert(IMPLIES(has_no_stats_stage(cpi),
cpi->oxcf.rc_cfg.mode == AOM_Q &&
gf_group->update_type[gf_index] != ARF_UPDATE));
const int cq_level =
get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm),
cpi->superres_mode, cm->superres_scale_denominator);
if (oxcf->rc_cfg.mode == AOM_Q) {
return rc_pick_q_and_bounds_q_mode(cpi, width, height, gf_index,
bottom_index, top_index);
}
int active_best_quality = 0;
int active_worst_quality = rc->active_worst_quality;
int q;
const int is_intrl_arf_boost =
gf_group->update_type[gf_index] == INTNL_ARF_UPDATE;
if (frame_is_intra_only(cm)) {
get_intra_q_and_bounds(cpi, width, height, &active_best_quality,
&active_worst_quality, cq_level);
#ifdef STRICT_RC
active_best_quality = 0;
#endif
} else {
// Active best quality limited by previous layer.
const int pyramid_level = gf_group_pyramid_level(gf_group, gf_index);
if ((pyramid_level <= 1) || (pyramid_level > MAX_ARF_LAYERS)) {
active_best_quality = get_active_best_quality(cpi, active_worst_quality,
cq_level, gf_index);
} else {
#if CONFIG_FPMT_TEST
const int simulate_parallel_frame =
cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
int local_active_best_quality =
simulate_parallel_frame
? p_rc->temp_active_best_quality[pyramid_level - 1]
: p_rc->active_best_quality[pyramid_level - 1];
active_best_quality = local_active_best_quality + 1;
#else
active_best_quality = p_rc->active_best_quality[pyramid_level - 1] + 1;
#endif
active_best_quality = AOMMIN(active_best_quality, active_worst_quality);
#ifdef STRICT_RC
active_best_quality += (active_worst_quality - active_best_quality) / 16;
#else
active_best_quality += (active_worst_quality - active_best_quality) / 2;
#endif
}
// For alt_ref and GF frames (including internal arf frames) adjust the
// worst allowed quality as well. This insures that even on hard
// sections we dont clamp the Q at the same value for arf frames and
// leaf (non arf) frames. This is important to the TPL model which assumes
// Q drops with each arf level.
if (!(rc->is_src_frame_alt_ref) &&
(refresh_frame->golden_frame || refresh_frame->alt_ref_frame ||
is_intrl_arf_boost)) {
active_worst_quality =
(active_best_quality + (3 * active_worst_quality) + 2) / 4;
}
}
adjust_active_best_and_worst_quality(
cpi, is_intrl_arf_boost, &active_worst_quality, &active_best_quality);
q = get_q(cpi, width, height, active_worst_quality, active_best_quality);
// Special case when we are targeting the max allowed rate.
if (rc->this_frame_target >= rc->max_frame_bandwidth &&
q > active_worst_quality) {
active_worst_quality = q;
}
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
*bottom_index >= rc->best_quality);
assert(q <= rc->worst_quality && q >= rc->best_quality);
return q;
}
static void rc_compute_variance_onepass_rt(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
YV12_BUFFER_CONFIG const *const unscaled_src = cpi->unscaled_source;
if (unscaled_src == NULL) return;
const uint8_t *src_y = unscaled_src->y_buffer;
const int src_ystride = unscaled_src->y_stride;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);
const uint8_t *pre_y = yv12->buffers[0];
const int pre_ystride = yv12->strides[0];
// TODO(yunqing): support scaled reference frames.
if (cpi->scaled_ref_buf[LAST_FRAME - 1]) return;
const int num_mi_cols = cm->mi_params.mi_cols;
const int num_mi_rows = cm->mi_params.mi_rows;
const BLOCK_SIZE bsize = BLOCK_64X64;
int num_samples = 0;
// sse is computed on 64x64 blocks
const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128)
? (cm->seq_params->mib_size >> 1)
: cm->seq_params->mib_size;
const int sb_cols = (num_mi_cols + sb_size_by_mb - 1) / sb_size_by_mb;
const int sb_rows = (num_mi_rows + sb_size_by_mb - 1) / sb_size_by_mb;
uint64_t fsse = 0;
cpi->rec_sse = 0;
for (int sbi_row = 0; sbi_row < sb_rows; ++sbi_row) {
for (int sbi_col = 0; sbi_col < sb_cols; ++sbi_col) {
unsigned int sse;
uint8_t src[64 * 64] = { 0 };
// Apply 4x4 block averaging/denoising on source frame.
for (int i = 0; i < 64; i += 4) {
for (int j = 0; j < 64; j += 4) {
const unsigned int avg =
aom_avg_4x4(src_y + i * src_ystride + j, src_ystride);
for (int m = 0; m < 4; ++m) {
for (int n = 0; n < 4; ++n) src[i * 64 + j + m * 64 + n] = avg;
}
}
}
cpi->ppi->fn_ptr[bsize].vf(src, 64, pre_y, pre_ystride, &sse);
fsse += sse;
num_samples++;
src_y += 64;
pre_y += 64;
}
src_y += (src_ystride << 6) - (sb_cols << 6);
pre_y += (pre_ystride << 6) - (sb_cols << 6);
}
assert(num_samples > 0);
// Ensure rec_sse > 0
if (num_samples > 0) cpi->rec_sse = fsse > 0 ? fsse : 1;
}
int av1_rc_pick_q_and_bounds(AV1_COMP *cpi, int width, int height, int gf_index,
int *bottom_index, int *top_index) {
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
int q;
// TODO(sarahparker) merge no-stats vbr and altref q computation
// with rc_pick_q_and_bounds().
const GF_GROUP *gf_group = &cpi->ppi->gf_group;
if ((cpi->oxcf.rc_cfg.mode != AOM_Q ||
gf_group->update_type[gf_index] == ARF_UPDATE) &&
has_no_stats_stage(cpi)) {
if (cpi->oxcf.rc_cfg.mode == AOM_CBR) {
// TODO(yunqing): the results could be used for encoder optimization.
cpi->rec_sse = UINT64_MAX;
if (cpi->sf.hl_sf.accurate_bit_estimate &&
cpi->common.current_frame.frame_type != KEY_FRAME)
rc_compute_variance_onepass_rt(cpi);
q = rc_pick_q_and_bounds_no_stats_cbr(cpi, width, height, bottom_index,
top_index);
// preserve copy of active worst quality selected.
cpi->rc.active_worst_quality = *top_index;
#if USE_UNRESTRICTED_Q_IN_CQ_MODE
} else if (cpi->oxcf.rc_cfg.mode == AOM_CQ) {
q = rc_pick_q_and_bounds_no_stats_cq(cpi, width, height, bottom_index,
top_index);
#endif // USE_UNRESTRICTED_Q_IN_CQ_MODE
} else {
q = rc_pick_q_and_bounds_no_stats(cpi, width, height, bottom_index,
top_index);
}
} else {
q = rc_pick_q_and_bounds(cpi, width, height, gf_index, bottom_index,
top_index);
}
if (gf_group->update_type[gf_index] == ARF_UPDATE) p_rc->arf_q = q;
return q;
}
void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target,
int *frame_under_shoot_limit,
int *frame_over_shoot_limit) {
if (cpi->oxcf.rc_cfg.mode == AOM_Q) {
*frame_under_shoot_limit = 0;
*frame_over_shoot_limit = INT_MAX;
} else {
// For very small rate targets where the fractional adjustment
// may be tiny make sure there is at least a minimum range.
assert(cpi->sf.hl_sf.recode_tolerance <= 100);
const int tolerance = (int)AOMMAX(
100, ((int64_t)cpi->sf.hl_sf.recode_tolerance * frame_target) / 100);
*frame_under_shoot_limit = AOMMAX(frame_target - tolerance, 0);
*frame_over_shoot_limit =
AOMMIN(frame_target + tolerance, cpi->rc.max_frame_bandwidth);
}
}
void av1_rc_set_frame_target(AV1_COMP *cpi, int target, int width, int height) {
const AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
rc->this_frame_target = target;
// Modify frame size target when down-scaled.
if (av1_frame_scaled(cm) && cpi->oxcf.rc_cfg.mode != AOM_CBR) {
rc->this_frame_target =
(int)(rc->this_frame_target *
resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height));
}
// Target rate per SB64 (including partial SB64s.
rc->sb64_target_rate =
(int)(((int64_t)rc->this_frame_target << 12) / (width * height));
}
static void update_alt_ref_frame_stats(AV1_COMP *cpi) {
// this frame refreshes means next frames don't unless specified by user
RATE_CONTROL *const rc = &cpi->rc;
rc->frames_since_golden = 0;
}
static void update_golden_frame_stats(AV1_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
// Update the Golden frame usage counts.
if (cpi->refresh_frame.golden_frame || rc->is_src_frame_alt_ref) {
rc->frames_since_golden = 0;
} else if (cpi->common.show_frame) {
rc->frames_since_golden++;
}
}
void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) {
const AV1_COMMON *const cm = &cpi->common;
const CurrentFrame *const current_frame = &cm->current_frame;
RATE_CONTROL *const rc = &cpi->rc;
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
const int is_intrnl_arf =
gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE;
const int qindex = cm->quant_params.base_qindex;
#if RT_PASSIVE_STRATEGY
const int frame_number = current_frame->frame_number % MAX_Q_HISTORY;
p_rc->q_history[frame_number] = qindex;
#endif // RT_PASSIVE_STRATEGY
// Update rate control heuristics
rc->projected_frame_size = (int)(bytes_used << 3);
// Post encode loop adjustment of Q prediction.
av1_rc_update_rate_correction_factors(cpi, 0, cm->width, cm->height);
// Update bit estimation ratio.
if (cm->current_frame.frame_type != KEY_FRAME &&
cpi->sf.hl_sf.accurate_bit_estimate) {
const double q = av1_convert_qindex_to_q(cm->quant_params.base_qindex,
cm->seq_params->bit_depth);
const int this_bit_est_ratio =
(int)(rc->projected_frame_size * q / sqrt((double)cpi->rec_sse));
cpi->rc.bit_est_ratio =
cpi->rc.bit_est_ratio == 0
? this_bit_est_ratio
: (7 * cpi->rc.bit_est_ratio + this_bit_est_ratio) / 8;
}
// Keep a record of last Q and ambient average Q.
if (current_frame->frame_type == KEY_FRAME) {
p_rc->last_q[KEY_FRAME] = qindex;
p_rc->avg_frame_qindex[KEY_FRAME] =
ROUND_POWER_OF_TWO(3 * p_rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
} else {
if ((cpi->ppi->use_svc && cpi->oxcf.rc_cfg.mode == AOM_CBR) ||
cpi->rc.rtc_external_ratectrl ||
(!rc->is_src_frame_alt_ref &&
!(refresh_frame->golden_frame || is_intrnl_arf ||
refresh_frame->alt_ref_frame))) {
p_rc->last_q[INTER_FRAME] = qindex;
p_rc->avg_frame_qindex[INTER_FRAME] = ROUND_POWER_OF_TWO(
3 * p_rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
p_rc->ni_frames++;
p_rc->tot_q += av1_convert_qindex_to_q(qindex, cm->seq_params->bit_depth);
p_rc->avg_q = p_rc->tot_q / p_rc->ni_frames;
// Calculate the average Q for normal inter frames (not key or GFU
// frames).
rc->ni_tot_qi += qindex;
rc->ni_av_qi = rc->ni_tot_qi / p_rc->ni_frames;
}
}
// Keep record of last boosted (KF/GF/ARF) Q value.
// If the current frame is coded at a lower Q then we also update it.
// If all mbs in this group are skipped only update if the Q value is
// better than that already stored.
// This is used to help set quality in forced key frames to reduce popping
if ((qindex < p_rc->last_boosted_qindex) ||
(current_frame->frame_type == KEY_FRAME) ||
(!p_rc->constrained_gf_group &&
(refresh_frame->alt_ref_frame || is_intrnl_arf ||
(refresh_frame->golden_frame && !rc->is_src_frame_alt_ref)))) {
p_rc->last_boosted_qindex = qindex;
}
if (current_frame->frame_type == KEY_FRAME) p_rc->last_kf_qindex = qindex;
update_buffer_level(cpi, rc->projected_frame_size);
rc->prev_avg_frame_bandwidth = rc->avg_frame_bandwidth;
// Rolling monitors of whether we are over or underspending used to help
// regulate min and Max Q in two pass.
if (av1_frame_scaled(cm))
rc->this_frame_target = (int)(rc->this_frame_target /
resize_rate_factor(&cpi->oxcf.frm_dim_cfg,
cm->width, cm->height));
if (current_frame->frame_type != KEY_FRAME) {
p_rc->rolling_target_bits = (int)ROUND_POWER_OF_TWO_64(
p_rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
p_rc->rolling_actual_bits = (int)ROUND_POWER_OF_TWO_64(
p_rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
}
// Actual bits spent
p_rc->total_actual_bits += rc->projected_frame_size;
p_rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
if (is_altref_enabled(cpi->oxcf.gf_cfg.lag_in_frames,
cpi->oxcf.gf_cfg.enable_auto_arf) &&
refresh_frame->alt_ref_frame &&
(current_frame->frame_type != KEY_FRAME && !frame_is_sframe(cm)))
// Update the alternate reference frame stats as appropriate.
update_alt_ref_frame_stats(cpi);
else
// Update the Golden frame stats as appropriate.
update_golden_frame_stats(cpi);
#if CONFIG_FPMT_TEST
/*The variables temp_avg_frame_qindex, temp_last_q, temp_avg_q,
* temp_last_boosted_qindex are introduced only for quality simulation
* purpose, it retains the value previous to the parallel encode frames. The
* variables are updated based on the update flag.
*
* If there exist show_existing_frames between parallel frames, then to
* retain the temp state do not update it. */
int show_existing_between_parallel_frames =
(cpi->ppi->gf_group.update_type[cpi->gf_frame_index] ==
INTNL_OVERLAY_UPDATE &&
cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2);
if (cpi->do_frame_data_update && !show_existing_between_parallel_frames &&
cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
for (int i = 0; i < FRAME_TYPES; i++) {
p_rc->temp_last_q[i] = p_rc->last_q[i];
}
p_rc->temp_avg_q = p_rc->avg_q;
p_rc->temp_last_boosted_qindex = p_rc->last_boosted_qindex;
p_rc->temp_total_actual_bits = p_rc->total_actual_bits;
p_rc->temp_projected_frame_size = rc->projected_frame_size;
for (int i = 0; i < RATE_FACTOR_LEVELS; i++)
p_rc->temp_rate_correction_factors[i] = p_rc->rate_correction_factors[i];
}
#endif
if (current_frame->frame_type == KEY_FRAME) rc->frames_since_key = 0;
if (cpi->refresh_frame.golden_frame)
rc->frame_num_last_gf_refresh = current_frame->frame_number;
rc->prev_coded_width = cm->width;
rc->prev_coded_height = cm->height;
rc->frame_number_encoded++;
rc->prev_frame_is_dropped = 0;
// if (current_frame->frame_number == 1 && cm->show_frame)
/*
rc->this_frame_target =
(int)(rc->this_frame_target / resize_rate_factor(&cpi->oxcf.frm_dim_cfg,
cm->width, cm->height));
*/
}
void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) {
// Update buffer level with zero size, update frame counters, and return.
update_buffer_level(cpi, 0);
if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) {
cpi->rc.frames_since_key++;
cpi->rc.frames_to_key--;
}
cpi->rc.rc_2_frame = 0;
cpi->rc.rc_1_frame = 0;
cpi->rc.prev_avg_frame_bandwidth = cpi->rc.avg_frame_bandwidth;
cpi->rc.prev_coded_width = cpi->common.width;
cpi->rc.prev_coded_height = cpi->common.height;
cpi->rc.prev_frame_is_dropped = 1;
// On a scene/slide change for dropped frame: reset the avg_source_sad to 0,
// otherwise the avg_source_sad can get too large and subsequent frames
// may miss the scene/slide detection.
if (cpi->rc.high_source_sad) cpi->rc.avg_source_sad = 0;
}
int av1_find_qindex(double desired_q, aom_bit_depth_t bit_depth,
int best_qindex, int worst_qindex) {
assert(best_qindex <= worst_qindex);
int low = best_qindex;
int high = worst_qindex;
while (low < high) {
const int mid = (low + high) >> 1;
const double mid_q = av1_convert_qindex_to_q(mid, bit_depth);
if (mid_q < desired_q) {
low = mid + 1;
} else {
high = mid;
}
}
assert(low == high);
assert(av1_convert_qindex_to_q(low, bit_depth) >= desired_q ||
low == worst_qindex);
return low;
}
int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
aom_bit_depth_t bit_depth) {
const int start_index =
av1_find_qindex(qstart, bit_depth, rc->best_quality, rc->worst_quality);
const int target_index =
av1_find_qindex(qtarget, bit_depth, rc->best_quality, rc->worst_quality);
return target_index - start_index;
}
// Find q_index for the desired_bits_per_mb, within [best_qindex, worst_qindex],
// assuming 'correction_factor' is 1.0.
// To be precise, 'q_index' is the smallest integer, for which the corresponding
// bits per mb <= desired_bits_per_mb.
// If no such q index is found, returns 'worst_qindex'.
static int find_qindex_by_rate(const AV1_COMP *const cpi,
int desired_bits_per_mb, FRAME_TYPE frame_type,
int best_qindex, int worst_qindex) {
assert(best_qindex <= worst_qindex);
int low = best_qindex;
int high = worst_qindex;
while (low < high) {
const int mid = (low + high) >> 1;
const int mid_bits_per_mb =
av1_rc_bits_per_mb(cpi, frame_type, mid, 1.0, 0);
if (mid_bits_per_mb > desired_bits_per_mb) {
low = mid + 1;
} else {
high = mid;
}
}
assert(low == high);
assert(av1_rc_bits_per_mb(cpi, frame_type, low, 1.0, 0) <=
desired_bits_per_mb ||
low == worst_qindex);
return low;
}
int av1_compute_qdelta_by_rate(const AV1_COMP *cpi, FRAME_TYPE frame_type,
int qindex, double rate_target_ratio) {
const RATE_CONTROL *rc = &cpi->rc;
// Look up the current projected bits per block for the base index
const int base_bits_per_mb =
av1_rc_bits_per_mb(cpi, frame_type, qindex, 1.0, 0);
// Find the target bits per mb based on the base value and given ratio.
const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
const int target_index = find_qindex_by_rate(
cpi, target_bits_per_mb, frame_type, rc->best_quality, rc->worst_quality);
return target_index - qindex;
}
void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi,
RATE_CONTROL *const rc) {
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
// Special case code for 1 pass fixed Q mode tests
if ((has_no_stats_stage(cpi)) && (oxcf->rc_cfg.mode == AOM_Q)) {
rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval;
rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval;
rc->static_scene_max_gf_interval = rc->min_gf_interval + 1;
} else {
// Set Maximum gf/arf interval
rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval;
rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval;
if (rc->min_gf_interval == 0)
rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, cpi->framerate);
if (rc->max_gf_interval == 0)
rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
cpi->framerate, rc->min_gf_interval);
/*
* Extended max interval for genuinely static scenes like slide shows.
* The no.of.stats available in the case of LAP is limited,
* hence setting to max_gf_interval.
*/
if (cpi->ppi->lap_enabled)
rc->static_scene_max_gf_interval = rc->max_gf_interval + 1;
else
rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
rc->max_gf_interval = rc->static_scene_max_gf_interval;
// Clamp min to max
rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval);
}
}
void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) {
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
RATE_CONTROL *const rc = &cpi->rc;
int vbr_max_bits;
const int MBs = av1_get_MBs(width, height);
rc->avg_frame_bandwidth =
(int)round(oxcf->rc_cfg.target_bandwidth / cpi->framerate);
rc->min_frame_bandwidth =
(int)(rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmin_section / 100);
rc->min_frame_bandwidth =
AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
// A maximum bitrate for a frame is defined.
// The baseline for this aligns with HW implementations that
// can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
// per 16x16 MB (averaged over a frame). However this limit is extended if
// a very high rate is given on the command line or the the rate cannnot
// be acheived because of a user specificed max q (e.g. when the user
// specifies lossless encode.
vbr_max_bits =
(int)(((int64_t)rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmax_section) /
100);
rc->max_frame_bandwidth =
AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
av1_rc_set_gf_interval_range(cpi, rc);
}
#define VBR_PCT_ADJUSTMENT_LIMIT 50
// For VBR...adjustment to the frame target based on error from previous frames
static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) {
RATE_CONTROL *const rc = &cpi->rc;
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
#if CONFIG_FPMT_TEST
const int simulate_parallel_frame =
cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
int64_t vbr_bits_off_target = simulate_parallel_frame
? cpi->ppi->p_rc.temp_vbr_bits_off_target
: p_rc->vbr_bits_off_target;
#else
int64_t vbr_bits_off_target = p_rc->vbr_bits_off_target;
#endif
const int stats_count =
cpi->ppi->twopass.stats_buf_ctx->total_stats != NULL
? (int)cpi->ppi->twopass.stats_buf_ctx->total_stats->count
: 0;
const int frame_window = AOMMIN(
16, (int)(stats_count - (int)cpi->common.current_frame.frame_number));
assert(VBR_PCT_ADJUSTMENT_LIMIT <= 100);
if (frame_window > 0) {
const int max_delta = (int)AOMMIN(
abs((int)(vbr_bits_off_target / frame_window)),
((int64_t)(*this_frame_target) * VBR_PCT_ADJUSTMENT_LIMIT) / 100);
// vbr_bits_off_target > 0 means we have extra bits to spend
// vbr_bits_off_target < 0 we are currently overshooting
*this_frame_target += (vbr_bits_off_target >= 0) ? max_delta : -max_delta;
}
#if CONFIG_FPMT_TEST
int64_t vbr_bits_off_target_fast =
simulate_parallel_frame ? cpi->ppi->p_rc.temp_vbr_bits_off_target_fast
: p_rc->vbr_bits_off_target_fast;
#endif
// Fast redistribution of bits arising from massive local undershoot.
// Dont do it for kf,arf,gf or overlay frames.
if (!frame_is_kf_gf_arf(cpi) &&
#if CONFIG_FPMT_TEST
vbr_bits_off_target_fast &&
#else
p_rc->vbr_bits_off_target_fast &&
#endif
!rc->is_src_frame_alt_ref) {
int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target);
int fast_extra_bits;
#if CONFIG_FPMT_TEST
fast_extra_bits = (int)AOMMIN(vbr_bits_off_target_fast, one_frame_bits);
fast_extra_bits =
(int)AOMMIN(fast_extra_bits,
AOMMAX(one_frame_bits / 8, vbr_bits_off_target_fast / 8));
#else
fast_extra_bits =
(int)AOMMIN(p_rc->vbr_bits_off_target_fast, one_frame_bits);
fast_extra_bits = (int)AOMMIN(
fast_extra_bits,
AOMMAX(one_frame_bits / 8, p_rc->vbr_bits_off_target_fast / 8));
#endif
if (fast_extra_bits > 0) {
// Update this_frame_target only if additional bits are available from
// local undershoot.
*this_frame_target += (int)fast_extra_bits;
}
// Store the fast_extra_bits of the frame and reduce it from
// vbr_bits_off_target_fast during postencode stage.
rc->frame_level_fast_extra_bits = fast_extra_bits;
// Retaining the condition to udpate during postencode stage since
// fast_extra_bits are calculated based on vbr_bits_off_target_fast.
cpi->do_update_vbr_bits_off_target_fast = 1;
}
}
void av1_set_target_rate(AV1_COMP *cpi, int width, int height) {
RATE_CONTROL *const rc = &cpi->rc;
int target_rate = rc->base_frame_target;
// Correction to rate target based on prior over or under shoot.
if (cpi->oxcf.rc_cfg.mode == AOM_VBR || cpi->oxcf.rc_cfg.mode == AOM_CQ)
vbr_rate_correction(cpi, &target_rate);
av1_rc_set_frame_target(cpi, target_rate, width, height);
}
int av1_calc_pframe_target_size_one_pass_vbr(
const AV1_COMP *const cpi, FRAME_UPDATE_TYPE frame_update_type) {
static const int af_ratio = 10;
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
int64_t target;
#if USE_ALTREF_FOR_ONE_PASS
if (frame_update_type == KF_UPDATE || frame_update_type == GF_UPDATE ||
frame_update_type == ARF_UPDATE) {
target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval *
af_ratio) /
(p_rc->baseline_gf_interval + af_ratio - 1);
} else {
target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval) /
(p_rc->baseline_gf_interval + af_ratio - 1);
}
if (target > INT_MAX) target = INT_MAX;
#else
target = rc->avg_frame_bandwidth;
#endif
return av1_rc_clamp_pframe_target_size(cpi, (int)target, frame_update_type);
}
int av1_calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) {
static const int kf_ratio = 25;
const RATE_CONTROL *rc = &cpi->rc;
const int64_t target = (int64_t)rc->avg_frame_bandwidth * kf_ratio;
return av1_rc_clamp_iframe_target_size(cpi, target);
}
int av1_calc_pframe_target_size_one_pass_cbr(
const AV1_COMP *cpi, FRAME_UPDATE_TYPE frame_update_type) {
const AV1EncoderConfig *oxcf = &cpi->oxcf;
const RATE_CONTROL *rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc;
const RateControlCfg *rc_cfg = &oxcf->rc_cfg;
const int64_t diff = p_rc->optimal_buffer_level - p_rc->buffer_level;
const int64_t one_pct_bits = 1 + p_rc->optimal_buffer_level / 100;
int min_frame_target =
AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
int target;
if (rc_cfg->gf_cbr_boost_pct) {
const int af_ratio_pct = rc_cfg->gf_cbr_boost_pct + 100;
if (frame_update_type == GF_UPDATE || frame_update_type == OVERLAY_UPDATE) {
target = (rc->avg_frame_bandwidth * p_rc->baseline_gf_interval *
af_ratio_pct) /
(p_rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
} else {
target = (rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * 100) /
(p_rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
}
} else {
target = rc->avg_frame_bandwidth;
}
if (cpi->ppi->use_svc) {
// Note that for layers, avg_frame_bandwidth is the cumulative
// per-frame-bandwidth. For the target size of this frame, use the
// layer average frame size (i.e., non-cumulative per-frame-bw).
int layer =
LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, cpi->svc.temporal_layer_id,
cpi->svc.number_temporal_layers);
const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
target = lc->avg_frame_size;
min_frame_target = AOMMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
}
if (diff > 0) {
// Lower the target bandwidth for this frame.
const int pct_low =
(int)AOMMIN(diff / one_pct_bits, rc_cfg->under_shoot_pct);
target -= (target * pct_low) / 200;
} else if (diff < 0) {
// Increase the target bandwidth for this frame.
const int pct_high =
(int)AOMMIN(-diff / one_pct_bits, rc_cfg->over_shoot_pct);
target += (target * pct_high) / 200;
}
if (rc_cfg->max_inter_bitrate_pct) {
const int max_rate =
rc->avg_frame_bandwidth * rc_cfg->max_inter_bitrate_pct / 100;
target = AOMMIN(target, max_rate);
}
return AOMMAX(min_frame_target, target);
}
int av1_calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) {
const RATE_CONTROL *rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc;
int64_t target;
if (cpi->common.current_frame.frame_number == 0) {
target = ((p_rc->starting_buffer_level / 2) > INT_MAX)
? INT_MAX
: (int)(p_rc->starting_buffer_level / 2);
if (cpi->svc.number_temporal_layers > 1 && target < (INT_MAX >> 2)) {
target = target << AOMMIN(2, (cpi->svc.number_temporal_layers - 1));
}
} else {
int kf_boost = 32;
int framerate = (int)round(cpi->framerate);
kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16));
if (rc->frames_since_key < framerate / 2) {
kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2));
}
target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
}
return av1_rc_clamp_iframe_target_size(cpi, target);
}
static void set_golden_update(AV1_COMP *const cpi) {
RATE_CONTROL *const rc = &cpi->rc;
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
int divisor = 10;
if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ)
divisor = cpi->cyclic_refresh->percent_refresh;
// Set minimum gf_interval for GF update to a multiple of the refresh period,
// with some max limit. Depending on past encoding stats, GF flag may be
// reset and update may not occur until next baseline_gf_interval.
const int gf_length_mult[2] = { 8, 4 };
if (divisor > 0)
p_rc->baseline_gf_interval =
AOMMIN(gf_length_mult[cpi->sf.rt_sf.gf_length_lvl] * (100 / divisor),
MAX_GF_INTERVAL_RT);
else
p_rc->baseline_gf_interval = FIXED_GF_INTERVAL_RT;
if (rc->avg_frame_low_motion && rc->avg_frame_low_motion < 40)
p_rc->baseline_gf_interval = 16;
}
static void set_baseline_gf_interval(AV1_COMP *cpi, FRAME_TYPE frame_type) {
RATE_CONTROL *const rc = &cpi->rc;
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
GF_GROUP *const gf_group = &cpi->ppi->gf_group;
set_golden_update(cpi);
if (p_rc->baseline_gf_interval > rc->frames_to_key &&
cpi->oxcf.kf_cfg.auto_key)
p_rc->baseline_gf_interval = rc->frames_to_key;
p_rc->gfu_boost = DEFAULT_GF_BOOST_RT;
p_rc->constrained_gf_group =
(p_rc->baseline_gf_interval >= rc->frames_to_key &&
cpi->oxcf.kf_cfg.auto_key)
? 1
: 0;
rc->frames_till_gf_update_due = p_rc->baseline_gf_interval;
cpi->gf_frame_index = 0;
// SVC does not use GF as periodic boost.
// TODO(marpan): Find better way to disable this for SVC.
if (cpi->ppi->use_svc) {
SVC *const svc = &cpi->svc;
p_rc->baseline_gf_interval = MAX_STATIC_GF_GROUP_LENGTH - 1;
p_rc->gfu_boost = 1;
p_rc->constrained_gf_group = 0;
rc->frames_till_gf_update_due = p_rc->baseline_gf_interval;
for (int layer = 0;
layer < svc->number_spatial_layers * svc->number_temporal_layers;
++layer) {
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
lc->p_rc.baseline_gf_interval = p_rc->baseline_gf_interval;
lc->p_rc.gfu_boost = p_rc->gfu_boost;
lc->p_rc.constrained_gf_group = p_rc->constrained_gf_group;
lc->rc.frames_till_gf_update_due = rc->frames_till_gf_update_due;
lc->group_index = 0;
}
}
gf_group->size = p_rc->baseline_gf_interval;
gf_group->update_type[0] = (frame_type == KEY_FRAME) ? KF_UPDATE : GF_UPDATE;
gf_group->refbuf_state[cpi->gf_frame_index] =
(frame_type == KEY_FRAME) ? REFBUF_RESET : REFBUF_UPDATE;
}
void av1_adjust_gf_refresh_qp_one_pass_rt(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref;
const int resize_pending = is_frame_resize_pending(cpi);
if (!resize_pending && !rc->high_source_sad) {
// Check if we should disable GF refresh (if period is up),
// or force a GF refresh update (if we are at least halfway through
// period) based on QP. Look into add info on segment deltaq.
PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc;
const int avg_qp = p_rc->avg_frame_qindex[INTER_FRAME];
const int allow_gf_update =
rc->frames_till_gf_update_due <= (p_rc->baseline_gf_interval - 10);
int gf_update_changed = 0;
int thresh = 87;
if ((cm->current_frame.frame_number - cpi->rc.frame_num_last_gf_refresh) <
FIXED_GF_INTERVAL_RT &&
rc->frames_till_gf_update_due == 1 &&
cm->quant_params.base_qindex > avg_qp) {
// Disable GF refresh since QP is above the running average QP.
rtc_ref->refresh[rtc_ref->gld_idx_1layer] = 0;
gf_update_changed = 1;
cpi->refresh_frame.golden_frame = 0;
} else if (allow_gf_update &&
((cm->quant_params.base_qindex < thresh * avg_qp / 100) ||
(rc->avg_frame_low_motion && rc->avg_frame_low_motion < 20))) {
// Force refresh since QP is well below average QP or this is a high
// motion frame.
rtc_ref->refresh[rtc_ref->gld_idx_1layer] = 1;
gf_update_changed = 1;
cpi->refresh_frame.golden_frame = 1;
}
if (gf_update_changed) {
set_baseline_gf_interval(cpi, INTER_FRAME);
int refresh_mask = 0;
for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) {
int ref_frame_map_idx = rtc_ref->ref_idx[i];
refresh_mask |= rtc_ref->refresh[ref_frame_map_idx]
<< ref_frame_map_idx;
}
cm->current_frame.refresh_frame_flags = refresh_mask;
}
}
}
/*!\brief Setup the reference prediction structure for 1 pass real-time
*
* Set the reference prediction structure for 1 layer.
* Current structue is to use 3 references (LAST, GOLDEN, ALTREF),
* where ALT_REF always behind current by lag_alt frames, and GOLDEN is
* either updated on LAST with period baseline_gf_interval (fixed slot)
* or always behind current by lag_gld (gld_fixed_slot = 0, lag_gld <= 7).
*
* \ingroup rate_control
* \param[in] cpi Top level encoder structure
* \param[in] gf_update Flag to indicate if GF is updated
*
* \remark Nothing is returned. Instead the settings for the prediction
* structure are set in \c cpi-ext_flags; and the buffer slot index
* (for each of 7 references) and refresh flags (for each of the 8 slots)
* are set in \c cpi->svc.ref_idx[] and \c cpi->svc.refresh[].
*/
void av1_set_rtc_reference_structure_one_layer(AV1_COMP *cpi, int gf_update) {
AV1_COMMON *const cm = &cpi->common;
ExternalFlags *const ext_flags = &cpi->ext_flags;
RATE_CONTROL *const rc = &cpi->rc;
ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags =
&ext_flags->refresh_frame;
RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref;
unsigned int frame_number = (cpi->oxcf.rc_cfg.drop_frames_water_mark)
? rc->frame_number_encoded
: cm->current_frame.frame_number;
unsigned int lag_alt = 4;
int last_idx = 0;
int last_idx_refresh = 0;
int gld_idx = 0;
int alt_ref_idx = 0;
int last2_idx = 0;
ext_refresh_frame_flags->update_pending = 1;
ext_flags->ref_frame_flags = 0;
ext_refresh_frame_flags->last_frame = 1;
ext_refresh_frame_flags->golden_frame = 0;
ext_refresh_frame_flags->alt_ref_frame = 0;
// Decide altref lag adaptively for rt
if (cpi->sf.rt_sf.sad_based_adp_altref_lag) {
lag_alt = 6;
const uint64_t th_frame_sad[4][3] = {
{ 18000, 18000, 18000 }, // HDRES CPU 9
{ 25000, 25000, 25000 }, // MIDRES CPU 9
{ 40000, 30000, 20000 }, // HDRES CPU10
{ 30000, 25000, 20000 } // MIDRES CPU 10
};
int th_idx = cpi->sf.rt_sf.sad_based_adp_altref_lag - 1;
assert(th_idx < 4);
if (rc->avg_source_sad > th_frame_sad[th_idx][0])
lag_alt = 3;
else if (rc->avg_source_sad > th_frame_sad[th_idx][1])
lag_alt = 4;
else if (rc->avg_source_sad > th_frame_sad[th_idx][2])
lag_alt = 5;
}
// This defines the reference structure for 1 layer (non-svc) RTC encoding.
// To avoid the internal/default reference structure for non-realtime
// overwriting this behavior, we use the "svc" ref parameters from the
// external control SET_SVC_REF_FRAME_CONFIG.
// TODO(marpan): rename that control and the related internal parameters
// to rtc_ref.
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) rtc_ref->ref_idx[i] = 7;
for (int i = 0; i < REF_FRAMES; ++i) rtc_ref->refresh[i] = 0;
// Set the reference frame flags.
ext_flags->ref_frame_flags ^= AOM_LAST_FLAG;
ext_flags->ref_frame_flags ^= AOM_ALT_FLAG;
ext_flags->ref_frame_flags ^= AOM_GOLD_FLAG;
if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1])
ext_flags->ref_frame_flags ^= AOM_LAST2_FLAG;
const int sh = 6;
// Moving index slot for last: 0 - (sh - 1).
if (frame_number > 1) last_idx = ((frame_number - 1) % sh);
// Moving index for refresh of last: one ahead for next frame.
last_idx_refresh = (frame_number % sh);
gld_idx = 6;
// Moving index for alt_ref, lag behind LAST by lag_alt frames.
if (frame_number > lag_alt) alt_ref_idx = ((frame_number - lag_alt) % sh);
if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) {
// Moving index for LAST2, lag behind LAST by 2 frames.
if (frame_number > 2) last2_idx = ((frame_number - 2) % sh);
}
rtc_ref->ref_idx[0] = last_idx; // LAST
rtc_ref->ref_idx[1] = last_idx_refresh; // LAST2 (for refresh of last).
if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) {
rtc_ref->ref_idx[1] = last2_idx; // LAST2
rtc_ref->ref_idx[2] = last_idx_refresh; // LAST3 (for refresh of last).
}
rtc_ref->ref_idx[3] = gld_idx; // GOLDEN
rtc_ref->ref_idx[6] = alt_ref_idx; // ALT_REF
// Refresh this slot, which will become LAST on next frame.
rtc_ref->refresh[last_idx_refresh] = 1;
// Update GOLDEN on period for fixed slot case.
if (gf_update && cm->current_frame.frame_type != KEY_FRAME) {
ext_refresh_frame_flags->golden_frame = 1;
rtc_ref->refresh[gld_idx] = 1;
}
rtc_ref->gld_idx_1layer = gld_idx;
// Set the flag to reduce the number of reference frame buffers used.
// This assumes that slot 7 is never used.
cpi->rt_reduce_num_ref_buffers = 1;
cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[0] < 7);
cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[1] < 7);
cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[3] < 7);
cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[6] < 7);
if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1])
cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[2] < 7);
}
/*!\brief Check for scene detection, for 1 pass real-time mode.
*
* Compute average source sad (temporal sad: between current source and
* previous source) over a subset of superblocks. Use this is detect big changes
* in content and set the \c cpi->rc.high_source_sad flag.
*
* \ingroup rate_control
* \param[in] cpi Top level encoder structure
* \param[in] frame_input Current and last input source frames
*
* \remark Nothing is returned. Instead the flag \c cpi->rc.high_source_sad
* is set if scene change is detected, and \c cpi->rc.avg_source_sad is updated.
*/
static void rc_scene_detection_onepass_rt(AV1_COMP *cpi,
const EncodeFrameInput *frame_input) {
AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
YV12_BUFFER_CONFIG const *const unscaled_src = frame_input->source;
YV12_BUFFER_CONFIG const *const unscaled_last_src = frame_input->last_source;
uint8_t *src_y;
int src_ystride;
int src_width;
int src_height;
uint8_t *last_src_y;
int last_src_ystride;
int last_src_width;
int last_src_height;
int width = cm->width;
int height = cm->height;
if (cpi->svc.number_spatial_layers > 1) {
width = cpi->oxcf.frm_dim_cfg.width;
height = cpi->oxcf.frm_dim_cfg.height;
}
if (width != cm->render_width || height != cm->render_height ||
unscaled_src == NULL || unscaled_last_src == NULL) {
if (cpi->src_sad_blk_64x64) {
aom_free(cpi->src_sad_blk_64x64);
cpi->src_sad_blk_64x64 = NULL;
}
}
if (unscaled_src == NULL || unscaled_last_src == NULL) return;
src_y = unscaled_src->y_buffer;
src_ystride = unscaled_src->y_stride;
src_width = unscaled_src->y_width;
src_height = unscaled_src->y_height;
last_src_y = unscaled_last_src->y_buffer;
last_src_ystride = unscaled_last_src->y_stride;
last_src_width = unscaled_last_src->y_width;
last_src_height = unscaled_last_src->y_height;
if (src_width != last_src_width || src_height != last_src_height) {
if (cpi->src_sad_blk_64x64) {
aom_free(cpi->src_sad_blk_64x64);
cpi->src_sad_blk_64x64 = NULL;
}
return;
}
rc->high_source_sad = 0;
rc->percent_blocks_with_motion = 0;
rc->max_block_source_sad = 0;
rc->prev_avg_source_sad = rc->avg_source_sad;
int num_mi_cols = cm->mi_params.mi_cols;
int num_mi_rows = cm->mi_params.mi_rows;
if (cpi->svc.number_spatial_layers > 1) {
num_mi_cols = cpi->svc.mi_cols_full_resoln;
num_mi_rows = cpi->svc.mi_rows_full_resoln;
}
int num_zero_temp_sad = 0;
uint32_t min_thresh = 10000;
if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) min_thresh = 100000;
const BLOCK_SIZE bsize = BLOCK_64X64;
// Loop over sub-sample of frame, compute average sad over 64x64 blocks.
uint64_t avg_sad = 0;
uint64_t tmp_sad = 0;
int num_samples = 0;
const int thresh = 6;
// SAD is computed on 64x64 blocks
const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128)
? (cm->seq_params->mib_size >> 1)
: cm->seq_params->mib_size;
const int sb_cols = (num_mi_cols + sb_size_by_mb - 1) / sb_size_by_mb;
const int sb_rows = (num_mi_rows + sb_size_by_mb - 1) / sb_size_by_mb;
uint64_t sum_sq_thresh = 10000; // sum = sqrt(thresh / 64*64)) ~1.5
int num_low_var_high_sumdiff = 0;
int light_change = 0;
// Flag to check light change or not.
const int check_light_change = 0;
// TODO(marpan): There seems some difference along the bottom border when
// using the source_last_tl0 for last_source (used for temporal layers or
// when previous frame is dropped).
// Remove this bord parameter when issue is resolved: difference is that
// non-zero sad exists along bottom border even though source is static.
const int border =
rc->prev_frame_is_dropped || cpi->svc.number_temporal_layers > 1;
// Store blkwise SAD for later use
if (width == cm->render_width && height == cm->render_height) {
if (cpi->src_sad_blk_64x64 == NULL) {
CHECK_MEM_ERROR(cm, cpi->src_sad_blk_64x64,
(uint64_t *)aom_calloc(sb_cols * sb_rows,
sizeof(*cpi->src_sad_blk_64x64)));
}
}
// Avoid bottom and right border.
for (int sbi_row = 0; sbi_row < sb_rows - border; ++sbi_row) {
for (int sbi_col = 0; sbi_col < sb_cols; ++sbi_col) {
tmp_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
last_src_ystride);
if (cpi->src_sad_blk_64x64 != NULL)
cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols] = tmp_sad;
if (check_light_change) {
unsigned int sse, variance;
variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y,
last_src_ystride, &sse);
// Note: sse - variance = ((sum * sum) >> 12)
// Detect large lighting change.
if (variance < (sse >> 1) && (sse - variance) > sum_sq_thresh) {
num_low_var_high_sumdiff++;
}
}
avg_sad += tmp_sad;
num_samples++;
if (tmp_sad == 0) num_zero_temp_sad++;
if (tmp_sad > rc->max_block_source_sad)
rc->max_block_source_sad = tmp_sad;
src_y += 64;
last_src_y += 64;
}
src_y += (src_ystride << 6) - (sb_cols << 6);
last_src_y += (last_src_ystride << 6) - (sb_cols << 6);
}
if (check_light_change && num_samples > 0 &&
num_low_var_high_sumdiff > (num_samples >> 1))
light_change = 1;
if (num_samples > 0) avg_sad = avg_sad / num_samples;
// Set high_source_sad flag if we detect very high increase in avg_sad
// between current and previous frame value(s). Use minimum threshold
// for cases where there is small change from content that is completely
// static.
if (!light_change &&
avg_sad >
AOMMAX(min_thresh, (unsigned int)(rc->avg_source_sad * thresh)) &&
rc->frames_since_key > 1 + cpi->svc.number_spatial_layers &&
num_zero_temp_sad < 3 * (num_samples >> 2))
rc->high_source_sad = 1;
else
rc->high_source_sad = 0;
rc->avg_source_sad = (3 * rc->avg_source_sad + avg_sad) >> 2;
rc->frame_source_sad = avg_sad;
if (num_samples > 0)
rc->percent_blocks_with_motion =
((num_samples - num_zero_temp_sad) * 100) / num_samples;
// Scene detection is only on base SLO, and using full/orignal resolution.
// Pass the state to the upper spatial layers.
if (cpi->svc.number_spatial_layers > 1) {
SVC *svc = &cpi->svc;
for (int sl = 0; sl < svc->number_spatial_layers; ++sl) {
int tl = svc->temporal_layer_id;
const int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
RATE_CONTROL *lrc = &lc->rc;
lrc->high_source_sad = rc->high_source_sad;
lrc->frame_source_sad = rc->frame_source_sad;
lrc->avg_source_sad = rc->avg_source_sad;
lrc->percent_blocks_with_motion = rc->percent_blocks_with_motion;
lrc->max_block_source_sad = rc->max_block_source_sad;
}
}
}
/*!\brief Set the GF baseline interval for 1 pass real-time mode.
*
*
* \ingroup rate_control
* \param[in] cpi Top level encoder structure
* \param[in] frame_type frame type
*
* \return Return GF update flag, and update the \c cpi->rc with
* the next GF interval settings.
*/
static int set_gf_interval_update_onepass_rt(AV1_COMP *cpi,
FRAME_TYPE frame_type) {
RATE_CONTROL *const rc = &cpi->rc;
int gf_update = 0;
const int resize_pending = is_frame_resize_pending(cpi);
// GF update based on frames_till_gf_update_due, also
// force upddate on resize pending frame or for scene change.
if ((resize_pending || rc->high_source_sad ||
rc->frames_till_gf_update_due == 0) &&
cpi->svc.temporal_layer_id == 0 && cpi->svc.spatial_layer_id == 0) {
set_baseline_gf_interval(cpi, frame_type);
gf_update = 1;
}
return gf_update;
}
static void resize_reset_rc(AV1_COMP *cpi, int resize_width, int resize_height,
int prev_width, int prev_height) {
RATE_CONTROL *const rc = &cpi->rc;
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
SVC *const svc = &cpi->svc;
int target_bits_per_frame;
int active_worst_quality;
int qindex;
double tot_scale_change = (double)(resize_width * resize_height) /
(double)(prev_width * prev_height);
// Reset buffer level to optimal, update target size.
p_rc->buffer_level = p_rc->optimal_buffer_level;
p_rc->bits_off_target = p_rc->optimal_buffer_level;
rc->this_frame_target =
av1_calc_pframe_target_size_one_pass_cbr(cpi, INTER_FRAME);
target_bits_per_frame = rc->this_frame_target;
if (tot_scale_change > 4.0)
p_rc->avg_frame_qindex[INTER_FRAME] = rc->worst_quality;
else if (tot_scale_change > 1.0)
p_rc->avg_frame_qindex[INTER_FRAME] =
(p_rc->avg_frame_qindex[INTER_FRAME] + rc->worst_quality) >> 1;
active_worst_quality = calc_active_worst_quality_no_stats_cbr(cpi);
qindex = av1_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality,
active_worst_quality, resize_width, resize_height);
// If resize is down, check if projected q index is close to worst_quality,
// and if so, reduce the rate correction factor (since likely can afford
// lower q for resized frame).
if (tot_scale_change < 1.0 && qindex > 90 * rc->worst_quality / 100)
p_rc->rate_correction_factors[INTER_NORMAL] *= 0.85;
// If resize is back up: check if projected q index is too much above the
// previous index, and if so, reduce the rate correction factor
// (since prefer to keep q for resized frame at least closet to previous q).
// Also check if projected qindex is close to previous qindex, if so
// increase correction factor (to push qindex higher and avoid overshoot).
if (tot_scale_change >= 1.0) {
if (tot_scale_change < 4.0 &&
qindex > 130 * p_rc->last_q[INTER_FRAME] / 100)
p_rc->rate_correction_factors[INTER_NORMAL] *= 0.8;
if (qindex <= 120 * p_rc->last_q[INTER_FRAME] / 100)
p_rc->rate_correction_factors[INTER_NORMAL] *= 1.5;
}
if (svc->number_temporal_layers > 1) {
// Apply the same rate control reset to all temporal layers.
for (int tl = 0; tl < svc->number_temporal_layers; tl++) {
LAYER_CONTEXT *lc = NULL;
lc = &svc->layer_context[svc->spatial_layer_id *
svc->number_temporal_layers +
tl];
lc->rc.resize_state = rc->resize_state;
lc->p_rc.buffer_level = lc->p_rc.optimal_buffer_level;
lc->p_rc.bits_off_target = lc->p_rc.optimal_buffer_level;
lc->p_rc.rate_correction_factors[INTER_NORMAL] =
p_rc->rate_correction_factors[INTER_NORMAL];
lc->p_rc.avg_frame_qindex[INTER_FRAME] =
p_rc->avg_frame_qindex[INTER_FRAME];
}
}
}
/*!\brief ChecK for resize based on Q, for 1 pass real-time mode.
*
* Check if we should resize, based on average QP from past x frames.
* Only allow for resize at most 1/2 scale down for now, Scaling factor
* for each step may be 3/4 or 1/2.
*
* \ingroup rate_control
* \param[in] cpi Top level encoder structure
*
* \remark Return resized width/height in \c cpi->resize_pending_params,
* and update some resize counters in \c rc.
*/
static void dynamic_resize_one_pass_cbr(AV1_COMP *cpi) {
const AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
RESIZE_ACTION resize_action = NO_RESIZE;
const int avg_qp_thr1 = 70;
const int avg_qp_thr2 = 50;
// Don't allow for resized frame to go below 160x90, resize in steps of 3/4.
const int min_width = (160 * 4) / 3;
const int min_height = (90 * 4) / 3;
int down_size_on = 1;
// Don't resize on key frame; reset the counters on key frame.
if (cm->current_frame.frame_type == KEY_FRAME) {
rc->resize_avg_qp = 0;
rc->resize_count = 0;
rc->resize_buffer_underflow = 0;
return;
}
// No resizing down if frame size is below some limit.
if ((cm->width * cm->height) < min_width * min_height) down_size_on = 0;
// Resize based on average buffer underflow and QP over some window.
// Ignore samples close to key frame, since QP is usually high after key.
if (cpi->rc.frames_since_key > cpi->framerate) {
const int window = AOMMIN(30, (int)(2 * cpi->framerate));
rc->resize_avg_qp += p_rc->last_q[INTER_FRAME];
if (cpi->ppi->p_rc.buffer_level <
(int)(30 * p_rc->optimal_buffer_level / 100))
++rc->resize_buffer_underflow;
++rc->resize_count;
// Check for resize action every "window" frames.
if (rc->resize_count >= window) {
int avg_qp = rc->resize_avg_qp / rc->resize_count;
// Resize down if buffer level has underflowed sufficient amount in past
// window, and we are at original or 3/4 of original resolution.
// Resize back up if average QP is low, and we are currently in a resized
// down state, i.e. 1/2 or 3/4 of original resolution.
// Currently, use a flag to turn 3/4 resizing feature on/off.
if (rc->resize_buffer_underflow > (rc->resize_count >> 2) &&
down_size_on) {
if (rc->resize_state == THREE_QUARTER) {
resize_action = DOWN_ONEHALF;
rc->resize_state = ONE_HALF;
} else if (rc->resize_state == ORIG) {
resize_action = DOWN_THREEFOUR;
rc->resize_state = THREE_QUARTER;
}
} else if (rc->resize_state != ORIG &&
avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) {
if (rc->resize_state == THREE_QUARTER ||
avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100) {
resize_action = UP_ORIG;
rc->resize_state = ORIG;
} else if (rc->resize_state == ONE_HALF) {
resize_action = UP_THREEFOUR;
rc->resize_state = THREE_QUARTER;
}
}
// Reset for next window measurement.
rc->resize_avg_qp = 0;
rc->resize_count = 0;
rc->resize_buffer_underflow = 0;
}
}
// If decision is to resize, reset some quantities, and check is we should
// reduce rate correction factor,
if (resize_action != NO_RESIZE) {
int resize_width = cpi->oxcf.frm_dim_cfg.width;
int resize_height = cpi->oxcf.frm_dim_cfg.height;
int resize_scale_num = 1;
int resize_scale_den = 1;
if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) {
resize_scale_num = 3;
resize_scale_den = 4;
} else if (resize_action == DOWN_ONEHALF) {
resize_scale_num = 1;
resize_scale_den = 2;
}
resize_width = resize_width * resize_scale_num / resize_scale_den;
resize_height = resize_height * resize_scale_num / resize_scale_den;
resize_reset_rc(cpi, resize_width, resize_height, cm->width, cm->height);
}
return;
}
static INLINE int set_key_frame(AV1_COMP *cpi, unsigned int frame_flags) {
RATE_CONTROL *const rc = &cpi->rc;
AV1_COMMON *const cm = &cpi->common;
SVC *const svc = &cpi->svc;
// Very first frame has to be key frame.
if (cm->current_frame.frame_number == 0) return 1;
// Set key frame if forced by frame flags.
if (frame_flags & FRAMEFLAGS_KEY) return 1;
if (!cpi->ppi->use_svc) {
// Non-SVC
if (cpi->oxcf.kf_cfg.auto_key && rc->frames_to_key == 0) return 1;
} else {
// SVC
if (svc->spatial_layer_id == 0 &&
(cpi->oxcf.kf_cfg.auto_key &&
(cpi->oxcf.kf_cfg.key_freq_max == 0 ||
svc->current_superframe % cpi->oxcf.kf_cfg.key_freq_max == 0)))
return 1;
}
return 0;
}
// Set to true if this frame is a recovery frame, for 1 layer RPS,
// and whether we should apply some boost (QP, adjust speed features, etc).
// Recovery frame here means frame whose closest reference suddenly
// switched from previous frame to one much further away.
// TODO(marpan): Consider adding on/off flag to SVC_REF_FRAME_CONFIG to
// allow more control for applications.
static bool set_flag_rps_bias_recovery_frame(const AV1_COMP *const cpi) {
if (cpi->ppi->rtc_ref.set_ref_frame_config &&
cpi->svc.number_temporal_layers == 1 &&
cpi->svc.number_spatial_layers == 1 &&
cpi->ppi->rtc_ref.reference_was_previous_frame) {
int min_dist = av1_svc_get_min_ref_dist(cpi);
// Only consider boost for this frame if its closest reference is further
// than x frames away, using x = 4 for now.
if (min_dist != INT_MAX && min_dist > 4) return true;
}
return false;
}
void av1_get_one_pass_rt_params(AV1_COMP *cpi, FRAME_TYPE *const frame_type,
const EncodeFrameInput *frame_input,
unsigned int frame_flags) {
RATE_CONTROL *const rc = &cpi->rc;
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
AV1_COMMON *const cm = &cpi->common;
GF_GROUP *const gf_group = &cpi->ppi->gf_group;
SVC *const svc = &cpi->svc;
ResizePendingParams *const resize_pending_params =
&cpi->resize_pending_params;
int target;
const int layer =
LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
svc->number_temporal_layers);
if (cpi->ppi->use_svc) {
av1_update_temporal_layer_framerate(cpi);
av1_restore_layer_context(cpi);
}
cpi->ppi->rtc_ref.bias_recovery_frame = set_flag_rps_bias_recovery_frame(cpi);
// Set frame type.
if (set_key_frame(cpi, frame_flags)) {
*frame_type = KEY_FRAME;
p_rc->this_key_frame_forced =
cm->current_frame.frame_number != 0 && rc->frames_to_key == 0;
rc->frames_to_key = cpi->oxcf.kf_cfg.key_freq_max;
p_rc->kf_boost = DEFAULT_KF_BOOST_RT;
gf_group->update_type[cpi->gf_frame_index] = KF_UPDATE;
gf_group->frame_type[cpi->gf_frame_index] = KEY_FRAME;
gf_group->refbuf_state[cpi->gf_frame_index] = REFBUF_RESET;
if (cpi->ppi->use_svc) {
if (cm->current_frame.frame_number > 0)
av1_svc_reset_temporal_layers(cpi, 1);
svc->layer_context[layer].is_key_frame = 1;
}
rc->frame_number_encoded = 0;
} else {
*frame_type = INTER_FRAME;
gf_group->update_type[cpi->gf_frame_index] = LF_UPDATE;
gf_group->frame_type[cpi->gf_frame_index] = INTER_FRAME;
gf_group->refbuf_state[cpi->gf_frame_index] = REFBUF_UPDATE;
if (cpi->ppi->use_svc) {
LAYER_CONTEXT *lc = &svc->layer_context[layer];
lc->is_key_frame =
svc->spatial_layer_id == 0
? 0
: svc->layer_context[svc->temporal_layer_id].is_key_frame;
// If the user is setting the reference structure with
// set_ref_frame_config and did not set any references, set the
// frame type to Intra-only.
if (cpi->ppi->rtc_ref.set_ref_frame_config) {
int no_references_set = 1;
for (int i = 0; i < INTER_REFS_PER_FRAME; i++) {
if (cpi->ppi->rtc_ref.reference[i]) {
no_references_set = 0;
break;
}
}
// Set to intra_only_frame if no references are set.
// The stream can start decoding on INTRA_ONLY_FRAME so long as the
// layer with the intra_only_frame doesn't signal a reference to a slot
// that hasn't been set yet.
if (no_references_set) *frame_type = INTRA_ONLY_FRAME;
}
}
}
// Check for scene change: for SVC check on base spatial layer only.
if (cpi->sf.rt_sf.check_scene_detection && svc->spatial_layer_id == 0) {
if (rc->prev_coded_width == cm->width &&
rc->prev_coded_height == cm->height) {
rc_scene_detection_onepass_rt(cpi, frame_input);
} else if (cpi->src_sad_blk_64x64) {
aom_free(cpi->src_sad_blk_64x64);
cpi->src_sad_blk_64x64 = NULL;
}
}
// Check for dynamic resize, for single spatial layer for now.
// For temporal layers only check on base temporal layer.
if (cpi->oxcf.resize_cfg.resize_mode == RESIZE_DYNAMIC) {
if (svc->number_spatial_layers == 1 && svc->temporal_layer_id == 0)
dynamic_resize_one_pass_cbr(cpi);
if (rc->resize_state == THREE_QUARTER) {
resize_pending_params->width = (3 + cpi->oxcf.frm_dim_cfg.width * 3) >> 2;
resize_pending_params->height =
(3 + cpi->oxcf.frm_dim_cfg.height * 3) >> 2;
} else if (rc->resize_state == ONE_HALF) {
resize_pending_params->width = (1 + cpi->oxcf.frm_dim_cfg.width) >> 1;
resize_pending_params->height = (1 + cpi->oxcf.frm_dim_cfg.height) >> 1;
} else {
resize_pending_params->width = cpi->oxcf.frm_dim_cfg.width;
resize_pending_params->height = cpi->oxcf.frm_dim_cfg.height;
}
} else if (is_frame_resize_pending(cpi)) {
resize_reset_rc(cpi, resize_pending_params->width,
resize_pending_params->height, cm->width, cm->height);
}
// Set the GF interval and update flag.
if (!rc->rtc_external_ratectrl)
set_gf_interval_update_onepass_rt(cpi, *frame_type);
// Set target size.
if (cpi->oxcf.rc_cfg.mode == AOM_CBR) {
if (*frame_type == KEY_FRAME || *frame_type == INTRA_ONLY_FRAME) {
target = av1_calc_iframe_target_size_one_pass_cbr(cpi);
} else {
target = av1_calc_pframe_target_size_one_pass_cbr(
cpi, gf_group->update_type[cpi->gf_frame_index]);
}
} else {
if (*frame_type == KEY_FRAME || *frame_type == INTRA_ONLY_FRAME) {
target = av1_calc_iframe_target_size_one_pass_vbr(cpi);
} else {
target = av1_calc_pframe_target_size_one_pass_vbr(
cpi, gf_group->update_type[cpi->gf_frame_index]);
}
}
if (cpi->oxcf.rc_cfg.mode == AOM_Q)
rc->active_worst_quality = cpi->oxcf.rc_cfg.cq_level;
av1_rc_set_frame_target(cpi, target, cm->width, cm->height);
rc->base_frame_target = target;
cm->current_frame.frame_type = *frame_type;
// For fixed mode SVC: if KSVC is enabled remove inter layer
// prediction on spatial enhancement layer frames for frames
// whose base is not KEY frame.
if (cpi->ppi->use_svc && !svc->use_flexible_mode && svc->ksvc_fixed_mode &&
svc->number_spatial_layers > 1 &&
!svc->layer_context[layer].is_key_frame) {
ExternalFlags *const ext_flags = &cpi->ext_flags;
ext_flags->ref_frame_flags ^= AOM_GOLD_FLAG;
}
}
int av1_encodedframe_overshoot_cbr(AV1_COMP *cpi, int *q) {
AV1_COMMON *const cm = &cpi->common;
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
double rate_correction_factor =
cpi->ppi->p_rc.rate_correction_factors[INTER_NORMAL];
const int target_size = cpi->rc.avg_frame_bandwidth;
double new_correction_factor;
int target_bits_per_mb;
double q2;
int enumerator;
int is_screen_content = (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN);
*q = (3 * cpi->rc.worst_quality + *q) >> 2;
// For screen content use the max-q set by the user to allow for less
// overshoot on slide changes.
if (is_screen_content) *q = cpi->rc.worst_quality;
cpi->cyclic_refresh->counter_encode_maxq_scene_change = 0;
// Adjust avg_frame_qindex, buffer_level, and rate correction factors, as
// these parameters will affect QP selection for subsequent frames. If they
// have settled down to a very different (low QP) state, then not adjusting
// them may cause next frame to select low QP and overshoot again.
p_rc->avg_frame_qindex[INTER_FRAME] = *q;
p_rc->buffer_level = p_rc->optimal_buffer_level;
p_rc->bits_off_target = p_rc->optimal_buffer_level;
// Reset rate under/over-shoot flags.
cpi->rc.rc_1_frame = 0;
cpi->rc.rc_2_frame = 0;
// Adjust rate correction factor.
target_bits_per_mb =
(int)(((uint64_t)target_size << BPER_MB_NORMBITS) / cm->mi_params.MBs);
// Reset rate correction factor: for now base it on target_bits_per_mb
// and qp (==max_QP). This comes from the inverse computation of
// av1_rc_bits_per_mb().
q2 = av1_convert_qindex_to_q(*q, cm->seq_params->bit_depth);
enumerator = av1_get_bpmb_enumerator(INTER_NORMAL, is_screen_content);
new_correction_factor = (double)target_bits_per_mb * q2 / enumerator;
if (new_correction_factor > rate_correction_factor) {
rate_correction_factor =
(new_correction_factor + rate_correction_factor) / 2.0;
if (rate_correction_factor > MAX_BPB_FACTOR)
rate_correction_factor = MAX_BPB_FACTOR;
cpi->ppi->p_rc.rate_correction_factors[INTER_NORMAL] =
rate_correction_factor;
}
// For temporal layers: reset the rate control parameters across all
// temporal layers.
if (cpi->svc.number_temporal_layers > 1) {
SVC *svc = &cpi->svc;
for (int tl = 0; tl < svc->number_temporal_layers; ++tl) {
int sl = svc->spatial_layer_id;
const int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
RATE_CONTROL *lrc = &lc->rc;
PRIMARY_RATE_CONTROL *lp_rc = &lc->p_rc;
lp_rc->avg_frame_qindex[INTER_FRAME] = *q;
lp_rc->buffer_level = lp_rc->optimal_buffer_level;
lp_rc->bits_off_target = lp_rc->optimal_buffer_level;
lrc->rc_1_frame = 0;
lrc->rc_2_frame = 0;
lp_rc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
}
}
return 1;
}