| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include "./vpx_config.h" |
| #include "vp9/encoder/vp9_encodeframe.h" |
| #include "vp9/encoder/vp9_encodemb.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/encoder/vp9_onyx_int.h" |
| #include "vp9/common/vp9_extend.h" |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/encoder/vp9_segmentation.h" |
| #include "vp9/encoder/vp9_encodeintra.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_invtrans.h" |
| #include "vp9/encoder/vp9_rdopt.h" |
| #include "vp9/common/vp9_findnearmv.h" |
| #include "vp9/common/vp9_reconintra.h" |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/common/vp9_tile_common.h" |
| #include "vp9/encoder/vp9_tokenize.h" |
| #include "./vp9_rtcd.h" |
| #include <stdio.h> |
| #include <math.h> |
| #include <limits.h> |
| #include "vpx_ports/vpx_timer.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| |
| #define DBG_PRNT_SEGMAP 0 |
| |
| // #define ENC_DEBUG |
| #ifdef ENC_DEBUG |
| int enc_debug = 0; |
| #endif |
| |
| void vp9_select_interp_filter_type(VP9_COMP *cpi); |
| |
| static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, |
| int output_enabled, int mi_row, int mi_col, |
| BLOCK_SIZE_TYPE bsize); |
| |
| static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x); |
| |
| #ifdef MODE_STATS |
| unsigned int inter_y_modes[MB_MODE_COUNT]; |
| unsigned int inter_uv_modes[VP9_UV_MODES]; |
| unsigned int inter_b_modes[B_MODE_COUNT]; |
| unsigned int y_modes[VP9_YMODES]; |
| unsigned int i8x8_modes[VP9_I8X8_MODES]; |
| unsigned int uv_modes[VP9_UV_MODES]; |
| unsigned int uv_modes_y[VP9_YMODES][VP9_UV_MODES]; |
| unsigned int b_modes[B_MODE_COUNT]; |
| #endif |
| |
| |
| /* activity_avg must be positive, or flat regions could get a zero weight |
| * (infinite lambda), which confounds analysis. |
| * This also avoids the need for divide by zero checks in |
| * vp9_activity_masking(). |
| */ |
| #define VP9_ACTIVITY_AVG_MIN (64) |
| |
| /* This is used as a reference when computing the source variance for the |
| * purposes of activity masking. |
| * Eventually this should be replaced by custom no-reference routines, |
| * which will be faster. |
| */ |
| static const uint8_t VP9_VAR_OFFS[16] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 |
| }; |
| |
| |
| // Original activity measure from Tim T's code. |
| static unsigned int tt_activity_measure(VP9_COMP *cpi, MACROBLOCK *x) { |
| unsigned int act; |
| unsigned int sse; |
| /* TODO: This could also be done over smaller areas (8x8), but that would |
| * require extensive changes elsewhere, as lambda is assumed to be fixed |
| * over an entire MB in most of the code. |
| * Another option is to compute four 8x8 variances, and pick a single |
| * lambda using a non-linear combination (e.g., the smallest, or second |
| * smallest, etc.). |
| */ |
| act = vp9_variance16x16(x->plane[0].src.buf, x->plane[0].src.stride, |
| VP9_VAR_OFFS, 0, &sse); |
| act <<= 4; |
| |
| /* If the region is flat, lower the activity some more. */ |
| if (act < 8 << 12) |
| act = act < 5 << 12 ? act : 5 << 12; |
| |
| return act; |
| } |
| |
| // Stub for alternative experimental activity measures. |
| static unsigned int alt_activity_measure(VP9_COMP *cpi, |
| MACROBLOCK *x, int use_dc_pred) { |
| return vp9_encode_intra(cpi, x, use_dc_pred); |
| } |
| |
| |
| // Measure the activity of the current macroblock |
| // What we measure here is TBD so abstracted to this function |
| #define ALT_ACT_MEASURE 1 |
| static unsigned int mb_activity_measure(VP9_COMP *cpi, MACROBLOCK *x, |
| int mb_row, int mb_col) { |
| unsigned int mb_activity; |
| |
| if (ALT_ACT_MEASURE) { |
| int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); |
| |
| // Or use and alternative. |
| mb_activity = alt_activity_measure(cpi, x, use_dc_pred); |
| } else { |
| // Original activity measure from Tim T's code. |
| mb_activity = tt_activity_measure(cpi, x); |
| } |
| |
| if (mb_activity < VP9_ACTIVITY_AVG_MIN) |
| mb_activity = VP9_ACTIVITY_AVG_MIN; |
| |
| return mb_activity; |
| } |
| |
| // Calculate an "average" mb activity value for the frame |
| #define ACT_MEDIAN 0 |
| static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) { |
| #if ACT_MEDIAN |
| // Find median: Simple n^2 algorithm for experimentation |
| { |
| unsigned int median; |
| unsigned int i, j; |
| unsigned int *sortlist; |
| unsigned int tmp; |
| |
| // Create a list to sort to |
| CHECK_MEM_ERROR(sortlist, |
| vpx_calloc(sizeof(unsigned int), |
| cpi->common.MBs)); |
| |
| // Copy map to sort list |
| vpx_memcpy(sortlist, cpi->mb_activity_map, |
| sizeof(unsigned int) * cpi->common.MBs); |
| |
| |
| // Ripple each value down to its correct position |
| for (i = 1; i < cpi->common.MBs; i ++) { |
| for (j = i; j > 0; j --) { |
| if (sortlist[j] < sortlist[j - 1]) { |
| // Swap values |
| tmp = sortlist[j - 1]; |
| sortlist[j - 1] = sortlist[j]; |
| sortlist[j] = tmp; |
| } else |
| break; |
| } |
| } |
| |
| // Even number MBs so estimate median as mean of two either side. |
| median = (1 + sortlist[cpi->common.MBs >> 1] + |
| sortlist[(cpi->common.MBs >> 1) + 1]) >> 1; |
| |
| cpi->activity_avg = median; |
| |
| vpx_free(sortlist); |
| } |
| #else |
| // Simple mean for now |
| cpi->activity_avg = (unsigned int)(activity_sum / cpi->common.MBs); |
| #endif |
| |
| if (cpi->activity_avg < VP9_ACTIVITY_AVG_MIN) |
| cpi->activity_avg = VP9_ACTIVITY_AVG_MIN; |
| |
| // Experimental code: return fixed value normalized for several clips |
| if (ALT_ACT_MEASURE) |
| cpi->activity_avg = 100000; |
| } |
| |
| #define USE_ACT_INDEX 0 |
| #define OUTPUT_NORM_ACT_STATS 0 |
| |
| #if USE_ACT_INDEX |
| // Calculate an activity index for each mb |
| static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) { |
| VP9_COMMON *const cm = &cpi->common; |
| int mb_row, mb_col; |
| |
| int64_t act; |
| int64_t a; |
| int64_t b; |
| |
| #if OUTPUT_NORM_ACT_STATS |
| FILE *f = fopen("norm_act.stt", "a"); |
| fprintf(f, "\n%12d\n", cpi->activity_avg); |
| #endif |
| |
| // Reset pointers to start of activity map |
| x->mb_activity_ptr = cpi->mb_activity_map; |
| |
| // Calculate normalized mb activity number. |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { |
| // for each macroblock col in image |
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { |
| // Read activity from the map |
| act = *(x->mb_activity_ptr); |
| |
| // Calculate a normalized activity number |
| a = act + 4 * cpi->activity_avg; |
| b = 4 * act + cpi->activity_avg; |
| |
| if (b >= a) |
| *(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1; |
| else |
| *(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b); |
| |
| #if OUTPUT_NORM_ACT_STATS |
| fprintf(f, " %6d", *(x->mb_activity_ptr)); |
| #endif |
| // Increment activity map pointers |
| x->mb_activity_ptr++; |
| } |
| |
| #if OUTPUT_NORM_ACT_STATS |
| fprintf(f, "\n"); |
| #endif |
| |
| } |
| |
| #if OUTPUT_NORM_ACT_STATS |
| fclose(f); |
| #endif |
| |
| } |
| #endif |
| |
| // Loop through all MBs. Note activity of each, average activity and |
| // calculate a normalized activity for each |
| static void build_activity_map(VP9_COMP *cpi) { |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| VP9_COMMON *const cm = &cpi->common; |
| |
| #if ALT_ACT_MEASURE |
| YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; |
| int recon_yoffset; |
| int recon_y_stride = new_yv12->y_stride; |
| #endif |
| |
| int mb_row, mb_col; |
| unsigned int mb_activity; |
| int64_t activity_sum = 0; |
| |
| x->mb_activity_ptr = cpi->mb_activity_map; |
| |
| // for each macroblock row in image |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { |
| #if ALT_ACT_MEASURE |
| // reset above block coeffs |
| xd->up_available = (mb_row != 0); |
| recon_yoffset = (mb_row * recon_y_stride * 16); |
| #endif |
| // for each macroblock col in image |
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { |
| #if ALT_ACT_MEASURE |
| xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; |
| xd->left_available = (mb_col != 0); |
| recon_yoffset += 16; |
| #endif |
| |
| // measure activity |
| mb_activity = mb_activity_measure(cpi, x, mb_row, mb_col); |
| |
| // Keep frame sum |
| activity_sum += mb_activity; |
| |
| // Store MB level activity details. |
| *x->mb_activity_ptr = mb_activity; |
| |
| // Increment activity map pointer |
| x->mb_activity_ptr++; |
| |
| // adjust to the next column of source macroblocks |
| x->plane[0].src.buf += 16; |
| } |
| |
| |
| // adjust to the next row of mbs |
| x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; |
| |
| #if ALT_ACT_MEASURE |
| // extend the recon for intra prediction |
| vp9_extend_mb_row(new_yv12, xd->plane[0].dst.buf + 16, |
| xd->plane[1].dst.buf + 8, xd->plane[2].dst.buf + 8); |
| #endif |
| |
| } |
| |
| // Calculate an "average" MB activity |
| calc_av_activity(cpi, activity_sum); |
| |
| #if USE_ACT_INDEX |
| // Calculate an activity index number of each mb |
| calc_activity_index(cpi, x); |
| #endif |
| |
| } |
| |
| // Macroblock activity masking |
| void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x) { |
| #if USE_ACT_INDEX |
| x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2); |
| x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); |
| x->errorperbit += (x->errorperbit == 0); |
| #else |
| int64_t a; |
| int64_t b; |
| int64_t act = *(x->mb_activity_ptr); |
| |
| // Apply the masking to the RD multiplier. |
| a = act + (2 * cpi->activity_avg); |
| b = (2 * act) + cpi->activity_avg; |
| |
| x->rdmult = (unsigned int)(((int64_t)x->rdmult * b + (a >> 1)) / a); |
| x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); |
| x->errorperbit += (x->errorperbit == 0); |
| #endif |
| |
| // Activity based Zbin adjustment |
| adjust_act_zbin(cpi, x); |
| } |
| |
| static void update_state(VP9_COMP *cpi, |
| PICK_MODE_CONTEXT *ctx, |
| BLOCK_SIZE_TYPE bsize, |
| int output_enabled) { |
| int i, x_idx, y; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *mi = &ctx->mic; |
| MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; |
| int mb_mode = mi->mbmi.mode; |
| int mb_mode_index = ctx->best_mode_index; |
| const int mis = cpi->common.mode_info_stride; |
| const int bh = 1 << mi_height_log2(bsize), bw = 1 << mi_width_log2(bsize); |
| |
| #if CONFIG_DEBUG |
| assert(mb_mode < MB_MODE_COUNT); |
| assert(mb_mode_index < MAX_MODES); |
| assert(mi->mbmi.ref_frame < MAX_REF_FRAMES); |
| #endif |
| assert(mi->mbmi.sb_type == bsize); |
| |
| // Restore the coding context of the MB to that that was in place |
| // when the mode was picked for it |
| for (y = 0; y < bh; y++) { |
| for (x_idx = 0; x_idx < bw; x_idx++) { |
| if ((xd->mb_to_right_edge >> (3 + LOG2_MI_SIZE)) + bw > x_idx && |
| (xd->mb_to_bottom_edge >> (3 + LOG2_MI_SIZE)) + bh > y) { |
| MODE_INFO *mi_addr = xd->mode_info_context + x_idx + y * mis; |
| |
| vpx_memcpy(mi_addr, mi, sizeof(MODE_INFO)); |
| } |
| } |
| } |
| if (bsize < BLOCK_SIZE_SB32X32) { |
| if (bsize < BLOCK_SIZE_MB16X16) |
| ctx->txfm_rd_diff[ALLOW_16X16] = ctx->txfm_rd_diff[ALLOW_8X8]; |
| ctx->txfm_rd_diff[ALLOW_32X32] = ctx->txfm_rd_diff[ALLOW_16X16]; |
| } |
| |
| if (mb_mode == SPLITMV) { |
| vpx_memcpy(x->partition_info, &ctx->partition_info, |
| sizeof(PARTITION_INFO)); |
| |
| mbmi->mv[0].as_int = |
| x->partition_info->bmi[3].mv.as_int; |
| mbmi->mv[1].as_int = |
| x->partition_info->bmi[3].second_mv.as_int; |
| } |
| |
| x->skip = ctx->skip; |
| if (!output_enabled) |
| return; |
| |
| { |
| int segment_id = mbmi->segment_id, ref_pred_flag; |
| if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) { |
| for (i = 0; i < NB_TXFM_MODES; i++) { |
| cpi->rd_tx_select_diff[i] += ctx->txfm_rd_diff[i]; |
| } |
| } |
| |
| // Did the chosen reference frame match its predicted value. |
| ref_pred_flag = ((xd->mode_info_context->mbmi.ref_frame == |
| vp9_get_pred_ref(cm, xd))); |
| vp9_set_pred_flag(xd, PRED_REF, ref_pred_flag); |
| if (!xd->segmentation_enabled || |
| !vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) || |
| vp9_check_segref(xd, segment_id, INTRA_FRAME) + |
| vp9_check_segref(xd, segment_id, LAST_FRAME) + |
| vp9_check_segref(xd, segment_id, GOLDEN_FRAME) + |
| vp9_check_segref(xd, segment_id, ALTREF_FRAME) > 1) { |
| // Get the prediction context and status |
| int pred_context = vp9_get_pred_context(cm, xd, PRED_REF); |
| |
| // Count prediction success |
| cpi->ref_pred_count[pred_context][ref_pred_flag]++; |
| } |
| } |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| // Restore the coding modes to that held in the coding context |
| // if (mb_mode == I4X4_PRED) |
| // for (i = 0; i < 16; i++) |
| // { |
| // xd->block[i].bmi.as_mode = |
| // xd->mode_info_context->bmi[i].as_mode; |
| // assert(xd->mode_info_context->bmi[i].as_mode < MB_MODE_COUNT); |
| // } |
| #if CONFIG_INTERNAL_STATS |
| static const int kf_mode_index[] = { |
| THR_DC /*DC_PRED*/, |
| THR_V_PRED /*V_PRED*/, |
| THR_H_PRED /*H_PRED*/, |
| THR_D45_PRED /*D45_PRED*/, |
| THR_D135_PRED /*D135_PRED*/, |
| THR_D117_PRED /*D117_PRED*/, |
| THR_D153_PRED /*D153_PRED*/, |
| THR_D27_PRED /*D27_PRED*/, |
| THR_D63_PRED /*D63_PRED*/, |
| THR_TM /*TM_PRED*/, |
| THR_B_PRED /*I4X4_PRED*/, |
| }; |
| cpi->mode_chosen_counts[kf_mode_index[mb_mode]]++; |
| #endif |
| } else { |
| /* |
| // Reduce the activation RD thresholds for the best choice mode |
| if ((cpi->rd_baseline_thresh[mb_mode_index] > 0) && |
| (cpi->rd_baseline_thresh[mb_mode_index] < (INT_MAX >> 2))) |
| { |
| int best_adjustment = (cpi->rd_thresh_mult[mb_mode_index] >> 2); |
| |
| cpi->rd_thresh_mult[mb_mode_index] = |
| (cpi->rd_thresh_mult[mb_mode_index] |
| >= (MIN_THRESHMULT + best_adjustment)) ? |
| cpi->rd_thresh_mult[mb_mode_index] - best_adjustment : |
| MIN_THRESHMULT; |
| cpi->rd_threshes[mb_mode_index] = |
| (cpi->rd_baseline_thresh[mb_mode_index] >> 7) |
| * cpi->rd_thresh_mult[mb_mode_index]; |
| |
| } |
| */ |
| // Note how often each mode chosen as best |
| cpi->mode_chosen_counts[mb_mode_index]++; |
| if (mbmi->mode == SPLITMV || mbmi->mode == NEWMV) { |
| int_mv best_mv, best_second_mv; |
| MV_REFERENCE_FRAME rf = mbmi->ref_frame; |
| best_mv.as_int = ctx->best_ref_mv.as_int; |
| best_second_mv.as_int = ctx->second_best_ref_mv.as_int; |
| if (mbmi->mode == NEWMV) { |
| best_mv.as_int = mbmi->ref_mvs[rf][0].as_int; |
| best_second_mv.as_int = mbmi->ref_mvs[mbmi->second_ref_frame][0].as_int; |
| } |
| mbmi->best_mv.as_int = best_mv.as_int; |
| mbmi->best_second_mv.as_int = best_second_mv.as_int; |
| vp9_update_nmv_count(cpi, x, &best_mv, &best_second_mv); |
| } |
| |
| if (bsize > BLOCK_SIZE_SB8X8 && mbmi->mode == NEWMV) { |
| int i, j; |
| for (j = 0; j < bh; ++j) |
| for (i = 0; i < bw; ++i) |
| xd->mode_info_context[mis * j + i].mbmi = *mbmi; |
| } |
| |
| if (cpi->common.mcomp_filter_type == SWITCHABLE && |
| is_inter_mode(mbmi->mode)) { |
| ++cpi->switchable_interp_count |
| [vp9_get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)] |
| [vp9_switchable_interp_map[mbmi->interp_filter]]; |
| } |
| |
| cpi->rd_comp_pred_diff[SINGLE_PREDICTION_ONLY] += ctx->single_pred_diff; |
| cpi->rd_comp_pred_diff[COMP_PREDICTION_ONLY] += ctx->comp_pred_diff; |
| cpi->rd_comp_pred_diff[HYBRID_PREDICTION] += ctx->hybrid_pred_diff; |
| } |
| } |
| |
| static unsigned find_seg_id(uint8_t *buf, BLOCK_SIZE_TYPE bsize, |
| int start_y, int height, int start_x, int width) { |
| const int bw = 1 << mi_width_log2(bsize), bh = 1 << mi_height_log2(bsize); |
| const int end_x = MIN(start_x + bw, width); |
| const int end_y = MIN(start_y + bh, height); |
| int x, y; |
| unsigned seg_id = -1; |
| |
| buf += width * start_y; |
| for (y = start_y; y < end_y; y++, buf += width) { |
| for (x = start_x; x < end_x; x++) { |
| seg_id = MIN(seg_id, buf[x]); |
| } |
| } |
| |
| return seg_id; |
| } |
| |
| void vp9_setup_src_planes(MACROBLOCK *x, |
| const YV12_BUFFER_CONFIG *src, |
| int mb_row, int mb_col) { |
| setup_pred_plane(&x->plane[0].src, |
| src->y_buffer, src->y_stride, |
| mb_row, mb_col, NULL, |
| x->e_mbd.plane[0].subsampling_x, |
| x->e_mbd.plane[0].subsampling_y); |
| setup_pred_plane(&x->plane[1].src, |
| src->u_buffer, src->uv_stride, |
| mb_row, mb_col, NULL, |
| x->e_mbd.plane[1].subsampling_x, |
| x->e_mbd.plane[1].subsampling_y); |
| setup_pred_plane(&x->plane[2].src, |
| src->v_buffer, src->uv_stride, |
| mb_row, mb_col, NULL, |
| x->e_mbd.plane[2].subsampling_x, |
| x->e_mbd.plane[2].subsampling_y); |
| } |
| |
| static INLINE void set_partition_seg_context(VP9_COMP *cpi, |
| int mi_row, int mi_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| |
| xd->above_seg_context = cm->above_seg_context + (mi_col >> 1); |
| xd->left_seg_context = cm->left_seg_context + ((mi_row >> 1) & 3); |
| } |
| |
| static void set_offsets(VP9_COMP *cpi, |
| int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize) { |
| MACROBLOCK *const x = &cpi->mb; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi; |
| const int dst_fb_idx = cm->new_fb_idx; |
| const int idx_str = xd->mode_info_stride * mi_row + mi_col; |
| const int bw = 1 << mi_width_log2(bsize), bh = 1 << mi_height_log2(bsize); |
| const int mb_row = mi_row >> 1; |
| const int mb_col = mi_col >> 1; |
| const int idx_map = mb_row * cm->mb_cols + mb_col; |
| int i; |
| |
| // entropy context structures |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].above_context = cm->above_context[i] + |
| (mi_col * 2 >> xd->plane[i].subsampling_x); |
| xd->plane[i].left_context = cm->left_context[i] + |
| (((mi_row * 2) & 15) >> xd->plane[i].subsampling_y); |
| } |
| |
| // partition contexts |
| set_partition_seg_context(cpi, mi_row, mi_col); |
| |
| // Activity map pointer |
| x->mb_activity_ptr = &cpi->mb_activity_map[idx_map]; |
| x->active_ptr = cpi->active_map + idx_map; |
| |
| /* pointers to mode info contexts */ |
| x->partition_info = x->pi + idx_str; |
| xd->mode_info_context = cm->mi + idx_str; |
| mbmi = &xd->mode_info_context->mbmi; |
| xd->prev_mode_info_context = cm->prev_mi + idx_str; |
| |
| // Set up destination pointers |
| setup_dst_planes(xd, &cm->yv12_fb[dst_fb_idx], mi_row, mi_col); |
| |
| /* Set up limit values for MV components to prevent them from |
| * extending beyond the UMV borders assuming 16x16 block size */ |
| x->mv_row_min = -((mi_row * MI_SIZE) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND); |
| x->mv_col_min = -((mi_col * MI_SIZE) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND); |
| x->mv_row_max = ((cm->mi_rows - mi_row) * MI_SIZE + |
| (VP9BORDERINPIXELS - MI_SIZE * bh - VP9_INTERP_EXTEND)); |
| x->mv_col_max = ((cm->mi_cols - mi_col) * MI_SIZE + |
| (VP9BORDERINPIXELS - MI_SIZE * bw - VP9_INTERP_EXTEND)); |
| |
| // Set up distance of MB to edge of frame in 1/8th pel units |
| assert(!(mi_col & (bw - 1)) && !(mi_row & (bh - 1))); |
| set_mi_row_col(cm, xd, mi_row, bh, mi_col, bw); |
| |
| /* set up source buffers */ |
| vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); |
| |
| /* R/D setup */ |
| x->rddiv = cpi->RDDIV; |
| x->rdmult = cpi->RDMULT; |
| |
| /* segment ID */ |
| if (xd->segmentation_enabled) { |
| uint8_t *map = xd->update_mb_segmentation_map ? cpi->segmentation_map |
| : cm->last_frame_seg_map; |
| mbmi->segment_id = find_seg_id(map, bsize, mi_row, |
| cm->mi_rows, mi_col, cm->mi_cols); |
| |
| assert(mbmi->segment_id <= (MAX_MB_SEGMENTS-1)); |
| vp9_mb_init_quantizer(cpi, x); |
| |
| if (xd->segmentation_enabled && cpi->seg0_cnt > 0 && |
| !vp9_segfeature_active(xd, 0, SEG_LVL_REF_FRAME) && |
| vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME) && |
| vp9_check_segref(xd, 1, INTRA_FRAME) + |
| vp9_check_segref(xd, 1, LAST_FRAME) + |
| vp9_check_segref(xd, 1, GOLDEN_FRAME) + |
| vp9_check_segref(xd, 1, ALTREF_FRAME) == 1) { |
| cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt; |
| } else { |
| const int y = mb_row & ~3; |
| const int x = mb_col & ~3; |
| const int p16 = ((mb_row & 1) << 1) + (mb_col & 1); |
| const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1); |
| const int tile_progress = |
| cm->cur_tile_mi_col_start * cm->mb_rows >> 1; |
| const int mb_cols = |
| (cm->cur_tile_mi_col_end - cm->cur_tile_mi_col_start) >> 1; |
| |
| cpi->seg0_progress = |
| ((y * mb_cols + x * 4 + p32 + p16 + tile_progress) << 16) / cm->MBs; |
| } |
| } else { |
| mbmi->segment_id = 0; |
| } |
| } |
| |
| static void pick_sb_modes(VP9_COMP *cpi, int mi_row, int mi_col, |
| TOKENEXTRA **tp, int *totalrate, int *totaldist, |
| BLOCK_SIZE_TYPE bsize, PICK_MODE_CONTEXT *ctx) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| set_offsets(cpi, mi_row, mi_col, bsize); |
| xd->mode_info_context->mbmi.sb_type = bsize; |
| if (cpi->oxcf.tuning == VP8_TUNE_SSIM) |
| vp9_activity_masking(cpi, x); |
| |
| /* Find best coding mode & reconstruct the MB so it is available |
| * as a predictor for MBs that follow in the SB */ |
| if (cm->frame_type == KEY_FRAME) { |
| vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx); |
| } else { |
| vp9_rd_pick_inter_mode_sb(cpi, x, mi_row, mi_col, totalrate, totaldist, |
| bsize, ctx); |
| } |
| } |
| |
| static void update_stats(VP9_COMP *cpi, int mi_row, int mi_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *mi = xd->mode_info_context; |
| MB_MODE_INFO *const mbmi = &mi->mbmi; |
| |
| if (cm->frame_type == KEY_FRAME) { |
| #ifdef MODE_STATS |
| y_modes[mbmi->mode]++; |
| #endif |
| } else { |
| int segment_id, seg_ref_active; |
| |
| if (mbmi->ref_frame) { |
| int pred_context = vp9_get_pred_context(cm, xd, PRED_COMP); |
| |
| if (mbmi->second_ref_frame <= INTRA_FRAME) |
| cpi->single_pred_count[pred_context]++; |
| else |
| cpi->comp_pred_count[pred_context]++; |
| } |
| |
| #ifdef MODE_STATS |
| inter_y_modes[mbmi->mode]++; |
| |
| if (mbmi->mode == SPLITMV) { |
| int b; |
| |
| for (b = 0; b < x->partition_info->count; b++) { |
| inter_b_modes[x->partition_info->bmi[b].mode]++; |
| } |
| } |
| #endif |
| |
| // If we have just a single reference frame coded for a segment then |
| // exclude from the reference frame counts used to work out |
| // probabilities. NOTE: At the moment we dont support custom trees |
| // for the reference frame coding for each segment but this is a |
| // possible future action. |
| segment_id = mbmi->segment_id; |
| seg_ref_active = vp9_segfeature_active(xd, segment_id, |
| SEG_LVL_REF_FRAME); |
| if (!seg_ref_active || |
| ((vp9_check_segref(xd, segment_id, INTRA_FRAME) + |
| vp9_check_segref(xd, segment_id, LAST_FRAME) + |
| vp9_check_segref(xd, segment_id, GOLDEN_FRAME) + |
| vp9_check_segref(xd, segment_id, ALTREF_FRAME)) > 1)) { |
| cpi->count_mb_ref_frame_usage[mbmi->ref_frame]++; |
| } |
| // Count of last ref frame 0,0 usage |
| if ((mbmi->mode == ZEROMV) && (mbmi->ref_frame == LAST_FRAME)) |
| cpi->inter_zz_count++; |
| } |
| } |
| |
| static void set_block_index(MACROBLOCKD *xd, int idx, |
| BLOCK_SIZE_TYPE bsize) { |
| if (bsize >= BLOCK_SIZE_SB32X32) { |
| xd->sb_index = idx; |
| } else if (bsize >= BLOCK_SIZE_MB16X16) { |
| xd->mb_index = idx; |
| } else { |
| xd->b_index = idx; |
| } |
| } |
| |
| static PICK_MODE_CONTEXT *get_block_context(MACROBLOCK *x, |
| BLOCK_SIZE_TYPE bsize) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| switch (bsize) { |
| case BLOCK_SIZE_SB64X64: |
| return &x->sb64_context; |
| case BLOCK_SIZE_SB64X32: |
| return &x->sb64x32_context[xd->sb_index]; |
| case BLOCK_SIZE_SB32X64: |
| return &x->sb32x64_context[xd->sb_index]; |
| case BLOCK_SIZE_SB32X32: |
| return &x->sb32_context[xd->sb_index]; |
| case BLOCK_SIZE_SB32X16: |
| return &x->sb32x16_context[xd->sb_index][xd->mb_index]; |
| case BLOCK_SIZE_SB16X32: |
| return &x->sb16x32_context[xd->sb_index][xd->mb_index]; |
| case BLOCK_SIZE_MB16X16: |
| return &x->mb_context[xd->sb_index][xd->mb_index]; |
| case BLOCK_SIZE_SB16X8: |
| return &x->sb16x8_context[xd->sb_index][xd->mb_index][xd->b_index]; |
| case BLOCK_SIZE_SB8X16: |
| return &x->sb8x16_context[xd->sb_index][xd->mb_index][xd->b_index]; |
| case BLOCK_SIZE_SB8X8: |
| return &x->sb8_context[xd->sb_index][xd->mb_index][xd->b_index]; |
| default: |
| assert(0); |
| return NULL; |
| } |
| } |
| |
| static void encode_b(VP9_COMP *cpi, TOKENEXTRA **tp, |
| int mi_row, int mi_col, int output_enabled, |
| BLOCK_SIZE_TYPE bsize, int sub_index) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
| return; |
| |
| if (sub_index != -1) |
| set_block_index(xd, sub_index, bsize); |
| set_offsets(cpi, mi_row, mi_col, bsize); |
| update_state(cpi, get_block_context(x, bsize), bsize, output_enabled); |
| encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize); |
| |
| if (output_enabled) { |
| update_stats(cpi, mi_row, mi_col); |
| |
| (*tp)->token = EOSB_TOKEN; |
| (*tp)++; |
| } |
| } |
| |
| static void encode_sb(VP9_COMP *cpi, TOKENEXTRA **tp, |
| int mi_row, int mi_col, int output_enabled, |
| BLOCK_SIZE_TYPE level, |
| BLOCK_SIZE_TYPE c1, BLOCK_SIZE_TYPE c2[4], |
| BLOCK_SIZE_TYPE c3[4][4] |
| ) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int bsl = mi_width_log2(level), bs = 1 << (bsl - 1); |
| const int bwl = mi_width_log2(c1), bhl = mi_height_log2(c1); |
| int UNINITIALIZED_IS_SAFE(pl); |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
| return; |
| |
| if (level > BLOCK_SIZE_SB8X8) { |
| set_partition_seg_context(cpi, mi_row, mi_col); |
| pl = partition_plane_context(xd, level); |
| } |
| |
| if (bsl == bwl && bsl == bhl) { |
| if (output_enabled && level > BLOCK_SIZE_SB8X8) |
| cpi->partition_count[pl][PARTITION_NONE]++; |
| encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, -1); |
| } else if (bsl == bhl && bsl > bwl) { |
| if (output_enabled) |
| cpi->partition_count[pl][PARTITION_VERT]++; |
| encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0); |
| encode_b(cpi, tp, mi_row, mi_col + bs, output_enabled, c1, 1); |
| } else if (bsl == bwl && bsl > bhl) { |
| if (output_enabled) |
| cpi->partition_count[pl][PARTITION_HORZ]++; |
| encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0); |
| encode_b(cpi, tp, mi_row + bs, mi_col, output_enabled, c1, 1); |
| } else { |
| BLOCK_SIZE_TYPE subsize; |
| int i; |
| |
| assert(bwl < bsl && bhl < bsl); |
| if (level == BLOCK_SIZE_SB64X64) { |
| subsize = BLOCK_SIZE_SB32X32; |
| } else if (level == BLOCK_SIZE_SB32X32) { |
| subsize = BLOCK_SIZE_MB16X16; |
| } else { |
| assert(level == BLOCK_SIZE_MB16X16); |
| subsize = BLOCK_SIZE_SB8X8; |
| } |
| |
| if (output_enabled) |
| cpi->partition_count[pl][PARTITION_SPLIT]++; |
| |
| for (i = 0; i < 4; i++) { |
| const int x_idx = i & 1, y_idx = i >> 1; |
| |
| set_block_index(xd, i, subsize); |
| encode_sb(cpi, tp, mi_row + y_idx * bs, mi_col + x_idx * bs, |
| output_enabled, subsize, |
| c2 ? c2[i] : c1, c3 ? c3[i] : NULL, NULL); |
| } |
| } |
| |
| if (level > BLOCK_SIZE_SB8X8 && |
| (level == BLOCK_SIZE_MB16X16 || bsl == bwl || bsl == bhl)) { |
| set_partition_seg_context(cpi, mi_row, mi_col); |
| update_partition_context(xd, c1, level); |
| } |
| } |
| |
| static void encode_sb_row(VP9_COMP *cpi, |
| int mi_row, |
| TOKENEXTRA **tp, |
| int *totalrate) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int mi_col, pl; |
| |
| // Initialize the left context for the new SB row |
| vpx_memset(&cm->left_context, 0, sizeof(cm->left_context)); |
| vpx_memset(cm->left_seg_context, 0, sizeof(cm->left_seg_context)); |
| |
| // Code each SB in the row |
| for (mi_col = cm->cur_tile_mi_col_start; |
| mi_col < cm->cur_tile_mi_col_end; mi_col += 8) { |
| int i, p; |
| BLOCK_SIZE_TYPE mb_partitioning[4][4]; |
| BLOCK_SIZE_TYPE sb_partitioning[4]; |
| BLOCK_SIZE_TYPE sb64_partitioning = BLOCK_SIZE_SB32X32; |
| int sb64_rate = 0, sb64_dist = 0; |
| int sb64_skip = 0; |
| ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; |
| PARTITION_CONTEXT seg_l[4], seg_a[4]; |
| TOKENEXTRA *tp_orig = *tp; |
| |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| memcpy(a + 16 * p, cm->above_context[p] + |
| (mi_col * 2 >> xd->plane[p].subsampling_x), |
| sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x); |
| memcpy(l + 16 * p, cm->left_context[p], |
| sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y); |
| } |
| memcpy(&seg_a, cm->above_seg_context + (mi_col >> 1), |
| sizeof(seg_a)); |
| memcpy(&seg_l, cm->left_seg_context, sizeof(seg_l)); |
| |
| // FIXME(rbultje): this function should probably be rewritten to be |
| // recursive at some point in the future. |
| for (i = 0; i < 4; i++) { |
| const int x_idx = (i & 1) << 2; |
| const int y_idx = (i & 2) << 1; |
| int sb32_rate = 0, sb32_dist = 0; |
| int splitmodes_used = 0; |
| int sb32_skip = 0; |
| int j; |
| ENTROPY_CONTEXT l2[8 * MAX_MB_PLANE], a2[8 * MAX_MB_PLANE]; |
| |
| sb_partitioning[i] = BLOCK_SIZE_MB16X16; |
| if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) |
| continue; |
| |
| xd->sb_index = i; |
| |
| /* Function should not modify L & A contexts; save and restore on exit */ |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| vpx_memcpy(l2 + 8 * p, |
| cm->left_context[p] + |
| (y_idx * 2 >> xd->plane[p].subsampling_y), |
| sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y); |
| vpx_memcpy(a2 + 8 * p, |
| cm->above_context[p] + |
| ((mi_col + x_idx) * 2 >> xd->plane[p].subsampling_x), |
| sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x); |
| } |
| |
| /* Encode MBs in raster order within the SB */ |
| for (j = 0; j < 4; j++) { |
| const int x_idx_m = x_idx + ((j & 1) << 1); |
| const int y_idx_m = y_idx + ((j >> 1) << 1); |
| int r, d; |
| int r2, d2, mb16_rate = 0, mb16_dist = 0, k; |
| ENTROPY_CONTEXT l3[4 * MAX_MB_PLANE], a3[4 * MAX_MB_PLANE]; |
| |
| mb_partitioning[i][j] = BLOCK_SIZE_SB8X8; |
| |
| if (mi_row + y_idx_m >= cm->mi_rows || |
| mi_col + x_idx_m >= cm->mi_cols) { |
| // MB lies outside frame, move on |
| continue; |
| } |
| |
| // Index of the MB in the SB 0..3 |
| xd->mb_index = j; |
| |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| vpx_memcpy(l3 + 4 * p, |
| cm->left_context[p] + |
| (y_idx_m * 2 >> xd->plane[p].subsampling_y), |
| sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_y); |
| vpx_memcpy(a3 + 4 * p, |
| cm->above_context[p] + |
| ((mi_col + x_idx_m) * 2 >> xd->plane[p].subsampling_x), |
| sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_x); |
| } |
| |
| for (k = 0; k < 4; k++) { |
| xd->b_index = k; |
| |
| // try 8x8 coding |
| pick_sb_modes(cpi, mi_row + y_idx_m + (k >> 1), |
| mi_col + x_idx_m + (k & 1), |
| tp, &r, &d, BLOCK_SIZE_SB8X8, |
| &x->sb8_context[xd->sb_index][xd->mb_index] |
| [xd->b_index]); |
| mb16_rate += r; |
| mb16_dist += d; |
| update_state(cpi, &x->sb8_context[xd->sb_index][xd->mb_index] |
| [xd->b_index], |
| BLOCK_SIZE_SB8X8, 0); |
| encode_superblock(cpi, tp, |
| 0, mi_row + y_idx_m + (k >> 1), |
| mi_col + x_idx_m + (k & 1), |
| BLOCK_SIZE_SB8X8); |
| } |
| set_partition_seg_context(cpi, mi_row + y_idx_m, mi_col + x_idx_m); |
| pl = partition_plane_context(xd, BLOCK_SIZE_MB16X16); |
| mb16_rate += x->partition_cost[pl][PARTITION_SPLIT]; |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| vpx_memcpy(cm->left_context[p] + |
| (y_idx_m * 2 >> xd->plane[p].subsampling_y), |
| l3 + 4 * p, |
| sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_y); |
| vpx_memcpy(cm->above_context[p] + |
| ((mi_col + x_idx_m) * 2 >> xd->plane[p].subsampling_x), |
| a3 + 4 * p, |
| sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_x); |
| } |
| |
| // try 8x16 coding |
| r2 = 0; |
| d2 = 0; |
| xd->b_index = 0; |
| pick_sb_modes(cpi, mi_row + y_idx_m, mi_col + x_idx_m, |
| tp, &r, &d, BLOCK_SIZE_SB8X16, |
| &x->sb8x16_context[xd->sb_index][xd->mb_index] |
| [xd->b_index]); |
| r2 += r; |
| d2 += d; |
| update_state(cpi, &x->sb8x16_context[xd->sb_index][xd->mb_index] |
| [xd->b_index], |
| BLOCK_SIZE_SB8X16, 0); |
| encode_superblock(cpi, tp, |
| 0, mi_row + y_idx_m, mi_col + x_idx_m, |
| BLOCK_SIZE_SB8X16); |
| xd->b_index = 1; |
| pick_sb_modes(cpi, mi_row + y_idx_m, mi_col + x_idx_m + 1, |
| tp, &r, &d, BLOCK_SIZE_SB8X16, |
| &x->sb8x16_context[xd->sb_index][xd->mb_index] |
| [xd->b_index]); |
| r2 += r; |
| d2 += d; |
| set_partition_seg_context(cpi, mi_row + y_idx_m, mi_col + x_idx_m); |
| pl = partition_plane_context(xd, BLOCK_SIZE_MB16X16); |
| r2 += x->partition_cost[pl][PARTITION_VERT]; |
| if (RDCOST(x->rdmult, x->rddiv, r2, d2) < |
| RDCOST(x->rdmult, x->rddiv, mb16_rate, mb16_dist)) { |
| mb16_rate = r2; |
| mb16_dist = d2; |
| mb_partitioning[i][j] = BLOCK_SIZE_SB8X16; |
| } |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| vpx_memcpy(cm->left_context[p] + |
| (y_idx_m * 2 >> xd->plane[p].subsampling_y), |
| l3 + 4 * p, |
| sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_y); |
| vpx_memcpy(cm->above_context[p] + |
| ((mi_col + x_idx_m) * 2 >> xd->plane[p].subsampling_x), |
| a3 + 4 * p, |
| sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_x); |
| } |
| |
| // try 16x8 coding |
| r2 = 0; |
| d2 = 0; |
| xd->b_index = 0; |
| pick_sb_modes(cpi, mi_row + y_idx_m, mi_col + x_idx_m, |
| tp, &r, &d, BLOCK_SIZE_SB16X8, |
| &x->sb16x8_context[xd->sb_index][xd->mb_index] |
| [xd->b_index]); |
| r2 += r; |
| d2 += d; |
| update_state(cpi, &x->sb16x8_context[xd->sb_index][xd->mb_index] |
| [xd->b_index], |
| BLOCK_SIZE_SB16X8, 0); |
| encode_superblock(cpi, tp, |
| 0, mi_row + y_idx_m, mi_col + x_idx_m, |
| BLOCK_SIZE_SB16X8); |
| xd->b_index = 1; |
| pick_sb_modes(cpi, mi_row + y_idx_m + 1, mi_col + x_idx_m, |
| tp, &r, &d, BLOCK_SIZE_SB16X8, |
| &x->sb16x8_context[xd->sb_index][xd->mb_index] |
| [xd->b_index]); |
| r2 += r; |
| d2 += d; |
| set_partition_seg_context(cpi, mi_row + y_idx_m, mi_col + x_idx_m); |
| pl = partition_plane_context(xd, BLOCK_SIZE_MB16X16); |
| r2 += x->partition_cost[pl][PARTITION_HORZ]; |
| if (RDCOST(x->rdmult, x->rddiv, r2, d2) < |
| RDCOST(x->rdmult, x->rddiv, mb16_rate, mb16_dist)) { |
| mb16_rate = r2; |
| mb16_dist = d2; |
| mb_partitioning[i][j] = BLOCK_SIZE_SB16X8; |
| } |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| vpx_memcpy(cm->left_context[p] + |
| (y_idx_m * 2 >> xd->plane[p].subsampling_y), |
| l3 + 4 * p, |
| sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_y); |
| vpx_memcpy(cm->above_context[p] + |
| ((mi_col + x_idx_m) * 2 >> xd->plane[p].subsampling_x), |
| a3 + 4 * p, |
| sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_x); |
| } |
| |
| // try as 16x16 |
| pick_sb_modes(cpi, mi_row + y_idx_m, mi_col + x_idx_m, |
| tp, &r, &d, BLOCK_SIZE_MB16X16, |
| &x->mb_context[xd->sb_index][xd->mb_index]); |
| set_partition_seg_context(cpi, mi_row + y_idx_m, mi_col + x_idx_m); |
| pl = partition_plane_context(xd, BLOCK_SIZE_MB16X16); |
| r += x->partition_cost[pl][PARTITION_NONE]; |
| if (RDCOST(x->rdmult, x->rddiv, r, d) < |
| RDCOST(x->rdmult, x->rddiv, mb16_rate, mb16_dist)) { |
| mb16_rate = r; |
| mb16_dist = d; |
| mb_partitioning[i][j] = BLOCK_SIZE_MB16X16; |
| } |
| sb32_rate += mb16_rate; |
| sb32_dist += mb16_dist; |
| |
| // Dummy encode, do not do the tokenization |
| encode_sb(cpi, tp, mi_row + y_idx_m, mi_col + x_idx_m, 0, |
| BLOCK_SIZE_MB16X16, mb_partitioning[i][j], NULL, NULL); |
| } |
| |
| /* Restore L & A coding context to those in place on entry */ |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| vpx_memcpy(cm->left_context[p] + |
| (y_idx * 2 >> xd->plane[p].subsampling_y), |
| l2 + 8 * p, |
| sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y); |
| vpx_memcpy(cm->above_context[p] + |
| ((mi_col + x_idx) * 2 >> xd->plane[p].subsampling_x), |
| a2 + 8 * p, |
| sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x); |
| } |
| |
| set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx); |
| pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32); |
| sb32_rate += x->partition_cost[pl][PARTITION_SPLIT]; |
| |
| if (cpi->sf.splitmode_breakout) { |
| sb32_skip = splitmodes_used; |
| sb64_skip += splitmodes_used; |
| } |
| |
| // check 32x16 |
| if (mi_col + x_idx + 4 <= cm->mi_cols) { |
| int r, d; |
| |
| xd->mb_index = 0; |
| pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx, |
| tp, &r, &d, BLOCK_SIZE_SB32X16, |
| &x->sb32x16_context[xd->sb_index][xd->mb_index]); |
| if (mi_row + y_idx + 2 < cm->mi_rows) { |
| int r2, d2; |
| |
| update_state(cpi, &x->sb32x16_context[xd->sb_index][xd->mb_index], |
| BLOCK_SIZE_SB32X16, 0); |
| encode_superblock(cpi, tp, |
| 0, mi_row + y_idx, mi_col + x_idx, |
| BLOCK_SIZE_SB32X16); |
| xd->mb_index = 1; |
| pick_sb_modes(cpi, mi_row + y_idx + 2, |
| mi_col + x_idx, tp, &r2, &d2, BLOCK_SIZE_SB32X16, |
| &x->sb32x16_context[xd->sb_index][xd->mb_index]); |
| r += r2; |
| d += d2; |
| } |
| |
| set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx); |
| pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32); |
| r += x->partition_cost[pl][PARTITION_HORZ]; |
| |
| /* is this better than MB coding? */ |
| if (RDCOST(x->rdmult, x->rddiv, r, d) < |
| RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) { |
| sb32_rate = r; |
| sb32_dist = d; |
| sb_partitioning[i] = BLOCK_SIZE_SB32X16; |
| } |
| |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| vpx_memcpy(cm->left_context[p] + |
| (y_idx * 2 >> xd->plane[p].subsampling_y), |
| l2 + 8 * p, |
| sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y); |
| vpx_memcpy(cm->above_context[p] + |
| ((mi_col + x_idx) * 2 >> xd->plane[p].subsampling_x), |
| a2 + 8 * p, |
| sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x); |
| } |
| } |
| |
| // check 16x32 |
| if (mi_row + y_idx + 4 <= cm->mi_rows) { |
| int r, d; |
| |
| xd->mb_index = 0; |
| pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx, |
| tp, &r, &d, BLOCK_SIZE_SB16X32, |
| &x->sb16x32_context[xd->sb_index][xd->mb_index]); |
| if (mi_col + x_idx + 2 < cm->mi_cols) { |
| int r2, d2; |
| |
| update_state(cpi, &x->sb16x32_context[xd->sb_index][xd->mb_index], |
| BLOCK_SIZE_SB16X32, 0); |
| encode_superblock(cpi, tp, |
| 0, mi_row + y_idx, mi_col + x_idx, |
| BLOCK_SIZE_SB16X32); |
| xd->mb_index = 1; |
| pick_sb_modes(cpi, mi_row + y_idx, |
| mi_col + x_idx + 2, |
| tp, &r2, &d2, BLOCK_SIZE_SB16X32, |
| &x->sb16x32_context[xd->sb_index][xd->mb_index]); |
| r += r2; |
| d += d2; |
| } |
| |
| set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx); |
| pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32); |
| r += x->partition_cost[pl][PARTITION_VERT]; |
| |
| /* is this better than MB coding? */ |
| if (RDCOST(x->rdmult, x->rddiv, r, d) < |
| RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) { |
| sb32_rate = r; |
| sb32_dist = d; |
| sb_partitioning[i] = BLOCK_SIZE_SB16X32; |
| } |
| |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| vpx_memcpy(cm->left_context[p] + |
| (y_idx * 2 >> xd->plane[p].subsampling_y), |
| l2 + 8 * p, |
| sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y); |
| vpx_memcpy(cm->above_context[p] + |
| ((mi_col + x_idx) * 2 >> xd->plane[p].subsampling_x), |
| a2 + 8 * p, |
| sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x); |
| } |
| } |
| |
| if (!sb32_skip && |
| mi_col + x_idx + 4 <= cm->mi_cols && |
| mi_row + y_idx + 4 <= cm->mi_rows) { |
| int r, d; |
| |
| /* Pick a mode assuming that it applies to all 4 of the MBs in the SB */ |
| pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx, |
| tp, &r, &d, BLOCK_SIZE_SB32X32, |
| &x->sb32_context[xd->sb_index]); |
| |
| set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx); |
| pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32); |
| r += x->partition_cost[pl][PARTITION_NONE]; |
| |
| if (RDCOST(x->rdmult, x->rddiv, r, d) < |
| RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) { |
| sb32_rate = r; |
| sb32_dist = d; |
| sb_partitioning[i] = BLOCK_SIZE_SB32X32; |
| } |
| } |
| |
| // If we used 16x16 instead of 32x32 then skip 64x64 (if enabled). |
| if (cpi->sf.mb16_breakout && sb_partitioning[i] != BLOCK_SIZE_SB32X32) { |
| ++sb64_skip; |
| } |
| |
| sb64_rate += sb32_rate; |
| sb64_dist += sb32_dist; |
| |
| /* Encode SB using best computed mode(s) */ |
| // FIXME(rbultje): there really shouldn't be any need to encode_mb/sb |
| // for each level that we go up, we can just keep tokens and recon |
| // pixels of the lower level; also, inverting SB/MB order (big->small |
| // instead of small->big) means we can use as threshold for small, which |
| // may enable breakouts if RD is not good enough (i.e. faster) |
| encode_sb(cpi, tp, mi_row + y_idx, mi_col + x_idx, 0, |
| BLOCK_SIZE_SB32X32, sb_partitioning[i], mb_partitioning[i], |
| NULL); |
| } |
| |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| memcpy(cm->above_context[p] + |
| (mi_col * 2 >> xd->plane[p].subsampling_x), |
| a + 16 * p, |
| sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x); |
| memcpy(cm->left_context[p], l + 16 * p, |
| sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y); |
| } |
| memcpy(cm->above_seg_context + (mi_col >> 1), &seg_a, |
| sizeof(seg_a)); |
| memcpy(cm->left_seg_context, &seg_l, sizeof(seg_l)); |
| |
| set_partition_seg_context(cpi, mi_row, mi_col); |
| pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64); |
| sb64_rate += x->partition_cost[pl][PARTITION_SPLIT]; |
| |
| // check 64x32 |
| if (mi_col + 8 <= cm->mi_cols && !(cm->mb_rows & 1)) { |
| int r, d; |
| |
| xd->sb_index = 0; |
| pick_sb_modes(cpi, mi_row, mi_col, |
| tp, &r, &d, BLOCK_SIZE_SB64X32, |
| &x->sb64x32_context[xd->sb_index]); |
| if (mi_row + 4 != cm->mi_rows) { |
| int r2, d2; |
| |
| update_state(cpi, &x->sb64x32_context[xd->sb_index], |
| BLOCK_SIZE_SB64X32, 0); |
| encode_superblock(cpi, tp, |
| 0, mi_row, mi_col, BLOCK_SIZE_SB64X32); |
| xd->sb_index = 1; |
| pick_sb_modes(cpi, mi_row + 4, mi_col, |
| tp, &r2, &d2, BLOCK_SIZE_SB64X32, |
| &x->sb64x32_context[xd->sb_index]); |
| r += r2; |
| d += d2; |
| } |
| |
| set_partition_seg_context(cpi, mi_row, mi_col); |
| pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64); |
| r += x->partition_cost[pl][PARTITION_HORZ]; |
| |
| /* is this better than MB coding? */ |
| if (RDCOST(x->rdmult, x->rddiv, r, d) < |
| RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist)) { |
| sb64_rate = r; |
| sb64_dist = d; |
| sb64_partitioning = BLOCK_SIZE_SB64X32; |
| } |
| |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| memcpy(cm->above_context[p] + |
| (mi_col * 2 >> xd->plane[p].subsampling_x), |
| a + 16 * p, |
| sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x); |
| memcpy(cm->left_context[p], l + 16 * p, |
| sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y); |
| } |
| } |
| |
| // check 32x64 |
| if (mi_row + 8 <= cm->mi_rows && !(cm->mb_cols & 1)) { |
| int r, d; |
| |
| xd->sb_index = 0; |
| pick_sb_modes(cpi, mi_row, mi_col, |
| tp, &r, &d, BLOCK_SIZE_SB32X64, |
| &x->sb32x64_context[xd->sb_index]); |
| if (mi_col + 4 != cm->mi_cols) { |
| int r2, d2; |
| |
| update_state(cpi, &x->sb32x64_context[xd->sb_index], |
| BLOCK_SIZE_SB32X64, 0); |
| encode_superblock(cpi, tp, |
| 0, mi_row, mi_col, BLOCK_SIZE_SB32X64); |
| xd->sb_index = 1; |
| pick_sb_modes(cpi, mi_row, mi_col + 4, |
| tp, &r2, &d2, BLOCK_SIZE_SB32X64, |
| &x->sb32x64_context[xd->sb_index]); |
| r += r2; |
| d += d2; |
| } |
| |
| set_partition_seg_context(cpi, mi_row, mi_col); |
| pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64); |
| r += x->partition_cost[pl][PARTITION_VERT]; |
| |
| /* is this better than MB coding? */ |
| if (RDCOST(x->rdmult, x->rddiv, r, d) < |
| RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist)) { |
| sb64_rate = r; |
| sb64_dist = d; |
| sb64_partitioning = BLOCK_SIZE_SB32X64; |
| } |
| |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| memcpy(cm->above_context[p] + |
| (mi_col * 2 >> xd->plane[p].subsampling_x), |
| a + 16 * p, |
| sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x); |
| memcpy(cm->left_context[p], l + 16 * p, |
| sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y); |
| } |
| } |
| |
| if (!sb64_skip && |
| mi_col + 8 <= cm->mi_cols && |
| mi_row + 8 <= cm->mi_rows) { |
| int r, d; |
| |
| pick_sb_modes(cpi, mi_row, mi_col, tp, &r, &d, |
| BLOCK_SIZE_SB64X64, &x->sb64_context); |
| |
| set_partition_seg_context(cpi, mi_row, mi_col); |
| pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64); |
| r += x->partition_cost[pl][PARTITION_NONE]; |
| |
| if (RDCOST(x->rdmult, x->rddiv, r, d) < |
| RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist)) { |
| sb64_rate = r; |
| sb64_dist = d; |
| sb64_partitioning = BLOCK_SIZE_SB64X64; |
| } |
| } |
| |
| assert(tp_orig == *tp); |
| encode_sb(cpi, tp, mi_row, mi_col, 1, BLOCK_SIZE_SB64X64, |
| sb64_partitioning, sb_partitioning, mb_partitioning); |
| assert(tp_orig < *tp); |
| } |
| } |
| |
| static void init_encode_frame_mb_context(VP9_COMP *cpi) { |
| MACROBLOCK *const x = &cpi->mb; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| x->act_zbin_adj = 0; |
| cpi->seg0_idx = 0; |
| vpx_memset(cpi->ref_pred_count, 0, sizeof(cpi->ref_pred_count)); |
| |
| xd->mode_info_stride = cm->mode_info_stride; |
| xd->frame_type = cm->frame_type; |
| |
| xd->frames_since_golden = cm->frames_since_golden; |
| xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame; |
| |
| // reset intra mode contexts |
| if (cm->frame_type == KEY_FRAME) |
| vp9_init_mbmode_probs(cm); |
| |
| // Copy data over into macro block data structures. |
| vp9_setup_src_planes(x, cpi->Source, 0, 0); |
| |
| // TODO(jkoleszar): are these initializations required? |
| setup_pre_planes(xd, &cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]], NULL, |
| 0, 0, NULL, NULL); |
| setup_dst_planes(xd, &cm->yv12_fb[cm->new_fb_idx], 0, 0); |
| |
| vp9_build_block_offsets(x); |
| |
| vp9_setup_block_dptrs(&x->e_mbd); |
| |
| xd->mode_info_context->mbmi.mode = DC_PRED; |
| xd->mode_info_context->mbmi.uv_mode = DC_PRED; |
| |
| vp9_zero(cpi->count_mb_ref_frame_usage) |
| vp9_zero(cpi->bmode_count) |
| vp9_zero(cpi->ymode_count) |
| vp9_zero(cpi->y_uv_mode_count) |
| vp9_zero(cpi->sub_mv_ref_count) |
| vp9_zero(cpi->common.fc.mv_ref_ct) |
| vp9_zero(cpi->sb_ymode_count) |
| vp9_zero(cpi->partition_count); |
| |
| // Note: this memset assumes above_context[0], [1] and [2] |
| // are allocated as part of the same buffer. |
| vpx_memset(cm->above_context[0], 0, sizeof(ENTROPY_CONTEXT) * 4 * |
| MAX_MB_PLANE * mb_cols_aligned_to_sb(cm)); |
| vpx_memset(cm->above_seg_context, 0, sizeof(PARTITION_CONTEXT) * |
| mb_cols_aligned_to_sb(cm)); |
| } |
| |
| static void switch_lossless_mode(VP9_COMP *cpi, int lossless) { |
| if (lossless) { |
| cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4; |
| cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4; |
| cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_iwalsh4x4_1; |
| cpi->mb.e_mbd.inv_txm4x4 = vp9_short_iwalsh4x4; |
| cpi->mb.optimize = 0; |
| cpi->common.filter_level = 0; |
| cpi->zbin_mode_boost_enabled = 0; |
| cpi->common.txfm_mode = ONLY_4X4; |
| } else { |
| cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4; |
| cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4; |
| cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_idct4x4_1; |
| cpi->mb.e_mbd.inv_txm4x4 = vp9_short_idct4x4; |
| } |
| } |
| |
| |
| static void encode_frame_internal(VP9_COMP *cpi) { |
| int mi_row; |
| MACROBLOCK *const x = &cpi->mb; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int totalrate; |
| |
| // fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n", |
| // cpi->common.current_video_frame, cpi->common.show_frame, |
| // cm->frame_type); |
| |
| // Compute a modified set of reference frame probabilities to use when |
| // prediction fails. These are based on the current general estimates for |
| // this frame which may be updated with each iteration of the recode loop. |
| vp9_compute_mod_refprobs(cm); |
| |
| // debug output |
| #if DBG_PRNT_SEGMAP |
| { |
| FILE *statsfile; |
| statsfile = fopen("segmap2.stt", "a"); |
| fprintf(statsfile, "\n"); |
| fclose(statsfile); |
| } |
| #endif |
| |
| totalrate = 0; |
| |
| // Reset frame count of inter 0,0 motion vector usage. |
| cpi->inter_zz_count = 0; |
| |
| cpi->skip_true_count[0] = cpi->skip_true_count[1] = cpi->skip_true_count[2] = 0; |
| cpi->skip_false_count[0] = cpi->skip_false_count[1] = cpi->skip_false_count[2] = 0; |
| |
| vp9_zero(cpi->switchable_interp_count); |
| vp9_zero(cpi->best_switchable_interp_count); |
| |
| xd->mode_info_context = cm->mi; |
| xd->prev_mode_info_context = cm->prev_mi; |
| |
| vp9_zero(cpi->NMVcount); |
| vp9_zero(cpi->coef_counts_4x4); |
| vp9_zero(cpi->coef_counts_8x8); |
| vp9_zero(cpi->coef_counts_16x16); |
| vp9_zero(cpi->coef_counts_32x32); |
| vp9_zero(cm->fc.eob_branch_counts); |
| #if CONFIG_CODE_ZEROGROUP |
| vp9_zero(cm->fc.zpc_counts_4x4); |
| vp9_zero(cm->fc.zpc_counts_8x8); |
| vp9_zero(cm->fc.zpc_counts_16x16); |
| vp9_zero(cm->fc.zpc_counts_32x32); |
| #endif |
| |
| cpi->mb.e_mbd.lossless = (cm->base_qindex == 0 && |
| cm->y_dc_delta_q == 0 && |
| cm->uv_dc_delta_q == 0 && |
| cm->uv_ac_delta_q == 0); |
| switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless); |
| |
| vp9_frame_init_quantizer(cpi); |
| |
| vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y_dc_delta_q); |
| vp9_initialize_me_consts(cpi, cm->base_qindex); |
| |
| if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { |
| // Initialize encode frame context. |
| init_encode_frame_mb_context(cpi); |
| |
| // Build a frame level activity map |
| build_activity_map(cpi); |
| } |
| |
| // re-initencode frame context. |
| init_encode_frame_mb_context(cpi); |
| |
| vpx_memset(cpi->rd_comp_pred_diff, 0, sizeof(cpi->rd_comp_pred_diff)); |
| vpx_memset(cpi->single_pred_count, 0, sizeof(cpi->single_pred_count)); |
| vpx_memset(cpi->comp_pred_count, 0, sizeof(cpi->comp_pred_count)); |
| vpx_memset(cpi->txfm_count_32x32p, 0, sizeof(cpi->txfm_count_32x32p)); |
| vpx_memset(cpi->txfm_count_16x16p, 0, sizeof(cpi->txfm_count_16x16p)); |
| vpx_memset(cpi->txfm_count_8x8p, 0, sizeof(cpi->txfm_count_8x8p)); |
| vpx_memset(cpi->rd_tx_select_diff, 0, sizeof(cpi->rd_tx_select_diff)); |
| { |
| struct vpx_usec_timer emr_timer; |
| vpx_usec_timer_start(&emr_timer); |
| |
| { |
| // Take tiles into account and give start/end MB |
| int tile_col, tile_row; |
| TOKENEXTRA *tp = cpi->tok; |
| |
| for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) { |
| vp9_get_tile_row_offsets(cm, tile_row); |
| |
| for (tile_col = 0; tile_col < cm->tile_columns; tile_col++) { |
| TOKENEXTRA *tp_old = tp; |
| |
| // For each row of SBs in the frame |
| vp9_get_tile_col_offsets(cm, tile_col); |
| for (mi_row = cm->cur_tile_mi_row_start; |
| mi_row < cm->cur_tile_mi_row_end; |
| mi_row += 8) { |
| encode_sb_row(cpi, mi_row, &tp, &totalrate); |
| } |
| cpi->tok_count[tile_col] = (unsigned int)(tp - tp_old); |
| assert(tp - cpi->tok <= |
| get_token_alloc(cm->mb_rows, cm->mb_cols)); |
| } |
| } |
| } |
| |
| vpx_usec_timer_mark(&emr_timer); |
| cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer); |
| } |
| |
| // 256 rate units to the bit, |
| // projected_frame_size in units of BYTES |
| cpi->projected_frame_size = totalrate >> 8; |
| |
| #if 0 |
| // Keep record of the total distortion this time around for future use |
| cpi->last_frame_distortion = cpi->frame_distortion; |
| #endif |
| |
| } |
| |
| static int check_dual_ref_flags(VP9_COMP *cpi) { |
| MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| int ref_flags = cpi->ref_frame_flags; |
| |
| if (vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME)) { |
| if ((ref_flags & (VP9_LAST_FLAG | VP9_GOLD_FLAG)) == (VP9_LAST_FLAG | VP9_GOLD_FLAG) && |
| vp9_check_segref(xd, 1, LAST_FRAME)) |
| return 1; |
| if ((ref_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) == (VP9_GOLD_FLAG | VP9_ALT_FLAG) && |
| vp9_check_segref(xd, 1, GOLDEN_FRAME)) |
| return 1; |
| if ((ref_flags & (VP9_ALT_FLAG | VP9_LAST_FLAG)) == (VP9_ALT_FLAG | VP9_LAST_FLAG) && |
| vp9_check_segref(xd, 1, ALTREF_FRAME)) |
| return 1; |
| return 0; |
| } else { |
| return (!!(ref_flags & VP9_GOLD_FLAG) + |
| !!(ref_flags & VP9_LAST_FLAG) + |
| !!(ref_flags & VP9_ALT_FLAG)) >= 2; |
| } |
| } |
| |
| static int get_skip_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs) { |
| int x, y; |
| |
| for (y = 0; y < ymbs; y++) { |
| for (x = 0; x < xmbs; x++) { |
| if (!mi[y * mis + x].mbmi.mb_skip_coeff) |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static void set_txfm_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs, |
| TX_SIZE txfm_size) { |
| int x, y; |
| |
| for (y = 0; y < ymbs; y++) { |
| for (x = 0; x < xmbs; x++) |
| mi[y * mis + x].mbmi.txfm_size = txfm_size; |
| } |
| } |
| |
| static void reset_skip_txfm_size_b(VP9_COMP *cpi, MODE_INFO *mi, |
| int mis, TX_SIZE txfm_max, |
| int bw, int bh, int mi_row, int mi_col, |
| BLOCK_SIZE_TYPE bsize) { |
| VP9_COMMON *const cm = &cpi->common; |
| MB_MODE_INFO *const mbmi = &mi->mbmi; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
| return; |
| |
| if (mbmi->txfm_size > txfm_max) { |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int segment_id = mbmi->segment_id; |
| const int ymbs = MIN(bh, cm->mi_rows - mi_row); |
| const int xmbs = MIN(bw, cm->mi_cols - mi_col); |
| |
| xd->mode_info_context = mi; |
| assert(vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP) || |
| get_skip_flag(mi, mis, ymbs, xmbs)); |
| set_txfm_flag(mi, mis, ymbs, xmbs, txfm_max); |
| } |
| } |
| |
| static void reset_skip_txfm_size_sb(VP9_COMP *cpi, MODE_INFO *mi, |
| TX_SIZE txfm_max, |
| int mi_row, int mi_col, |
| BLOCK_SIZE_TYPE bsize) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int mis = cm->mode_info_stride; |
| int bwl, bhl; |
| const int bsl = mi_width_log2(bsize), bs = 1 << (bsl - 1); |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
| return; |
| |
| bwl = mi_width_log2(mi->mbmi.sb_type); |
| bhl = mi_height_log2(mi->mbmi.sb_type); |
| |
| if (bwl == bsl && bhl == bsl) { |
| reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, 1 << bsl, 1 << bsl, |
| mi_row, mi_col, bsize); |
| } else if (bwl == bsl && bhl < bsl) { |
| reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, 1 << bsl, bs, |
| mi_row, mi_col, bsize); |
| reset_skip_txfm_size_b(cpi, mi + bs * mis, mis, txfm_max, 1 << bsl, bs, |
| mi_row + bs, mi_col, bsize); |
| } else if (bwl < bsl && bhl == bsl) { |
| reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, bs, 1 << bsl, |
| mi_row, mi_col, bsize); |
| reset_skip_txfm_size_b(cpi, mi + bs, mis, txfm_max, bs, 1 << bsl, |
| mi_row, mi_col + bs, bsize); |
| } else { |
| BLOCK_SIZE_TYPE subsize; |
| int n; |
| |
| assert(bwl < bsl && bhl < bsl); |
| if (bsize == BLOCK_SIZE_SB64X64) { |
| subsize = BLOCK_SIZE_SB32X32; |
| } else if (bsize == BLOCK_SIZE_SB32X32) { |
| subsize = BLOCK_SIZE_MB16X16; |
| } else { |
| assert(bsize == BLOCK_SIZE_MB16X16); |
| subsize = BLOCK_SIZE_SB8X8; |
| } |
| |
| for (n = 0; n < 4; n++) { |
| const int y_idx = n >> 1, x_idx = n & 0x01; |
| |
| reset_skip_txfm_size_sb(cpi, mi + y_idx * bs * mis + x_idx * bs, |
| txfm_max, mi_row + y_idx * bs, |
| mi_col + x_idx * bs, subsize); |
| } |
| } |
| } |
| |
| static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) { |
| VP9_COMMON *const cm = &cpi->common; |
| int mi_row, mi_col; |
| const int mis = cm->mode_info_stride; |
| MODE_INFO *mi, *mi_ptr = cm->mi; |
| |
| for (mi_row = 0; mi_row < cm->mi_rows; |
| mi_row += 8, mi_ptr += 8 * mis) { |
| mi = mi_ptr; |
| for (mi_col = 0; mi_col < cm->mi_cols; |
| mi_col += 8, mi += 8) { |
| reset_skip_txfm_size_sb(cpi, mi, txfm_max, |
| mi_row, mi_col, BLOCK_SIZE_SB64X64); |
| } |
| } |
| } |
| |
| void vp9_encode_frame(VP9_COMP *cpi) { |
| if (cpi->sf.RD) { |
| int i, frame_type, pred_type; |
| TXFM_MODE txfm_type; |
| |
| /* |
| * This code does a single RD pass over the whole frame assuming |
| * either compound, single or hybrid prediction as per whatever has |
| * worked best for that type of frame in the past. |
| * It also predicts whether another coding mode would have worked |
| * better that this coding mode. If that is the case, it remembers |
| * that for subsequent frames. |
| * It does the same analysis for transform size selection also. |
| */ |
| if (cpi->common.frame_type == KEY_FRAME) |
| frame_type = 0; |
| else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame) |
| frame_type = 3; |
| else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) |
| frame_type = 1; |
| else |
| frame_type = 2; |
| |
| /* prediction (compound, single or hybrid) mode selection */ |
| if (frame_type == 3) |
| pred_type = SINGLE_PREDICTION_ONLY; |
| else if (cpi->rd_prediction_type_threshes[frame_type][1] > |
| cpi->rd_prediction_type_threshes[frame_type][0] && |
| cpi->rd_prediction_type_threshes[frame_type][1] > |
| cpi->rd_prediction_type_threshes[frame_type][2] && |
| check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100) |
| pred_type = COMP_PREDICTION_ONLY; |
| else if (cpi->rd_prediction_type_threshes[frame_type][0] > |
| cpi->rd_prediction_type_threshes[frame_type][2]) |
| pred_type = SINGLE_PREDICTION_ONLY; |
| else |
| pred_type = HYBRID_PREDICTION; |
| |
| /* transform size (4x4, 8x8, 16x16 or select-per-mb) selection */ |
| |
| cpi->mb.e_mbd.lossless = 0; |
| if (cpi->oxcf.lossless) { |
| txfm_type = ONLY_4X4; |
| cpi->mb.e_mbd.lossless = 1; |
| } else |
| #if 0 |
| /* FIXME (rbultje): this code is disabled until we support cost updates |
| * while a frame is being encoded; the problem is that each time we |
| * "revert" to 4x4 only (or even 8x8 only), the coefficient probabilities |
| * for 16x16 (and 8x8) start lagging behind, thus leading to them lagging |
| * further behind and not being chosen for subsequent frames either. This |
| * is essentially a local minimum problem that we can probably fix by |
| * estimating real costs more closely within a frame, perhaps by re- |
| * calculating costs on-the-fly as frame encoding progresses. */ |
| if (cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] > |
| cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] && |
| cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] > |
| cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] && |
| cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] > |
| cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) { |
| txfm_type = TX_MODE_SELECT; |
| } else if (cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] > |
| cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8] |
| && cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] > |
| cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] |
| ) { |
| txfm_type = ONLY_4X4; |
| } else if (cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] >= |
| cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) { |
| txfm_type = ALLOW_16X16; |
| } else |
| txfm_type = ALLOW_8X8; |
| #else |
| txfm_type = cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32] >= |
| cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ? |
| ALLOW_32X32 : TX_MODE_SELECT; |
| #endif |
| cpi->common.txfm_mode = txfm_type; |
| if (txfm_type != TX_MODE_SELECT) { |
| cpi->common.prob_tx[0] = 128; |
| cpi->common.prob_tx[1] = 128; |
| } |
| cpi->common.comp_pred_mode = pred_type; |
| encode_frame_internal(cpi); |
| |
| for (i = 0; i < NB_PREDICTION_TYPES; ++i) { |
| const int diff = (int)(cpi->rd_comp_pred_diff[i] / cpi->common.MBs); |
| cpi->rd_prediction_type_threshes[frame_type][i] += diff; |
| cpi->rd_prediction_type_threshes[frame_type][i] >>= 1; |
| } |
| |
| for (i = 0; i < NB_TXFM_MODES; ++i) { |
| int64_t pd = cpi->rd_tx_select_diff[i]; |
| int diff; |
| if (i == TX_MODE_SELECT) |
| pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv, |
| 2048 * (TX_SIZE_MAX_SB - 1), 0); |
| diff = (int)(pd / cpi->common.MBs); |
| cpi->rd_tx_select_threshes[frame_type][i] += diff; |
| cpi->rd_tx_select_threshes[frame_type][i] /= 2; |
| } |
| |
| if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { |
| int single_count_zero = 0; |
| int comp_count_zero = 0; |
| |
| for (i = 0; i < COMP_PRED_CONTEXTS; i++) { |
| single_count_zero += cpi->single_pred_count[i]; |
| comp_count_zero += cpi->comp_pred_count[i]; |
| } |
| |
| if (comp_count_zero == 0) { |
| cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY; |
| } else if (single_count_zero == 0) { |
| cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY; |
| } |
| } |
| |
| if (cpi->common.txfm_mode == TX_MODE_SELECT) { |
| const int count4x4 = cpi->txfm_count_16x16p[TX_4X4] + |
| cpi->txfm_count_32x32p[TX_4X4] + |
| cpi->txfm_count_8x8p[TX_4X4]; |
| const int count8x8_lp = cpi->txfm_count_32x32p[TX_8X8] + |
| cpi->txfm_count_16x16p[TX_8X8]; |
| const int count8x8_8x8p = cpi->txfm_count_8x8p[TX_8X8]; |
| const int count16x16_16x16p = cpi->txfm_count_16x16p[TX_16X16]; |
| const int count16x16_lp = cpi->txfm_count_32x32p[TX_16X16]; |
| const int count32x32 = cpi->txfm_count_32x32p[TX_32X32]; |
| |
| if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 && |
| count32x32 == 0) { |
| cpi->common.txfm_mode = ALLOW_8X8; |
| reset_skip_txfm_size(cpi, TX_8X8); |
| } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 && |
| count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) { |
| cpi->common.txfm_mode = ONLY_4X4; |
| reset_skip_txfm_size(cpi, TX_4X4); |
| } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) { |
| cpi->common.txfm_mode = ALLOW_32X32; |
| } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) { |
| cpi->common.txfm_mode = ALLOW_16X16; |
| reset_skip_txfm_size(cpi, TX_16X16); |
| } |
| } |
| |
| // Update interpolation filter strategy for next frame. |
| if ((cpi->common.frame_type != KEY_FRAME) && (cpi->sf.search_best_filter)) |
| vp9_select_interp_filter_type(cpi); |
| } else { |
| encode_frame_internal(cpi); |
| } |
| |
| } |
| |
| void vp9_build_block_offsets(MACROBLOCK *x) { |
| } |
| |
| static void sum_intra_stats(VP9_COMP *cpi, MACROBLOCK *x) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode; |
| const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode; |
| |
| #ifdef MODE_STATS |
| const int is_key = cpi->common.frame_type == KEY_FRAME; |
| |
| ++ (is_key ? uv_modes : inter_uv_modes)[uvm]; |
| ++ uv_modes_y[m][uvm]; |
| |
| if (m == I4X4_PRED) { |
| unsigned int *const bct = is_key ? b_modes : inter_b_modes; |
| |
| int b = 0; |
| |
| do { |
| ++ bct[xd->block[b].bmi.as_mode.first]; |
| } while (++b < 4); |
| } |
| #endif |
| |
| if (xd->mode_info_context->mbmi.sb_type > BLOCK_SIZE_SB8X8) { |
| ++cpi->sb_ymode_count[m]; |
| } else { |
| ++cpi->ymode_count[m]; |
| } |
| ++cpi->y_uv_mode_count[m][uvm]; |
| if (m == I4X4_PRED) { |
| int b = 0; |
| do { |
| int m = xd->mode_info_context->bmi[b].as_mode.first; |
| ++cpi->bmode_count[m]; |
| } while (++b < 4); |
| } |
| } |
| |
| // Experimental stub function to create a per MB zbin adjustment based on |
| // some previously calculated measure of MB activity. |
| static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) { |
| #if USE_ACT_INDEX |
| x->act_zbin_adj = *(x->mb_activity_ptr); |
| #else |
| int64_t a; |
| int64_t b; |
| int64_t act = *(x->mb_activity_ptr); |
| |
| // Apply the masking to the RD multiplier. |
| a = act + 4 * cpi->activity_avg; |
| b = 4 * act + cpi->activity_avg; |
| |
| if (act > cpi->activity_avg) |
| x->act_zbin_adj = (int)(((int64_t)b + (a >> 1)) / a) - 1; |
| else |
| x->act_zbin_adj = 1 - (int)(((int64_t)a + (b >> 1)) / b); |
| #endif |
| } |
| |
| static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, |
| int output_enabled, int mi_row, int mi_col, |
| BLOCK_SIZE_TYPE bsize) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int n; |
| MODE_INFO *mi = x->e_mbd.mode_info_context; |
| unsigned int segment_id = mi->mbmi.segment_id; |
| const int mis = cm->mode_info_stride; |
| const int bwl = mi_width_log2(bsize); |
| const int bw = 1 << bwl, bh = 1 << mi_height_log2(bsize); |
| |
| if (cm->frame_type == KEY_FRAME) { |
| if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { |
| adjust_act_zbin(cpi, x); |
| vp9_update_zbin_extra(cpi, x); |
| } |
| } else { |
| vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, cm); |
| |
| if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { |
| // Adjust the zbin based on this MB rate. |
| adjust_act_zbin(cpi, x); |
| } |
| |
| // Experimental code. Special case for gf and arf zeromv modes. |
| // Increase zbin size to suppress noise |
| cpi->zbin_mode_boost = 0; |
| if (cpi->zbin_mode_boost_enabled) { |
| if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) { |
| if (xd->mode_info_context->mbmi.mode == ZEROMV) { |
| if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) |
| cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; |
| else |
| cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; |
| } else if (xd->mode_info_context->mbmi.mode == SPLITMV) { |
| cpi->zbin_mode_boost = SPLIT_MV_ZBIN_BOOST; |
| } else { |
| cpi->zbin_mode_boost = MV_ZBIN_BOOST; |
| } |
| } else { |
| cpi->zbin_mode_boost = INTRA_ZBIN_BOOST; |
| } |
| } |
| |
| vp9_update_zbin_extra(cpi, x); |
| } |
| |
| if (xd->mode_info_context->mbmi.mode == I4X4_PRED) { |
| assert(bsize == BLOCK_SIZE_SB8X8 && |
| xd->mode_info_context->mbmi.txfm_size == TX_4X4); |
| |
| vp9_encode_intra4x4mby(x, bsize); |
| vp9_build_intra_predictors_sbuv_s(&x->e_mbd, bsize); |
| vp9_encode_sbuv(cm, x, bsize); |
| |
| if (output_enabled) |
| sum_intra_stats(cpi, x); |
| } else if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { |
| vp9_build_intra_predictors_sby_s(&x->e_mbd, bsize); |
| vp9_build_intra_predictors_sbuv_s(&x->e_mbd, bsize); |
| if (output_enabled) |
| sum_intra_stats(cpi, x); |
| } else { |
| int ref_fb_idx, second_ref_fb_idx; |
| |
| assert(cm->frame_type != KEY_FRAME); |
| |
| if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) |
| ref_fb_idx = cpi->common.ref_frame_map[cpi->lst_fb_idx]; |
| else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) |
| ref_fb_idx = cpi->common.ref_frame_map[cpi->gld_fb_idx]; |
| else |
| ref_fb_idx = cpi->common.ref_frame_map[cpi->alt_fb_idx]; |
| |
| if (xd->mode_info_context->mbmi.second_ref_frame > 0) { |
| if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME) |
| second_ref_fb_idx = cpi->common.ref_frame_map[cpi->lst_fb_idx]; |
| else if (xd->mode_info_context->mbmi.second_ref_frame == GOLDEN_FRAME) |
| second_ref_fb_idx = cpi->common.ref_frame_map[cpi->gld_fb_idx]; |
| else |
| second_ref_fb_idx = cpi->common.ref_frame_map[cpi->alt_fb_idx]; |
| } |
| |
| setup_pre_planes(xd, |
| &cpi->common.yv12_fb[ref_fb_idx], |
| xd->mode_info_context->mbmi.second_ref_frame > 0 |
| ? &cpi->common.yv12_fb[second_ref_fb_idx] : NULL, |
| mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv); |
| |
| vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); |
| } |
| |
| if (xd->mode_info_context->mbmi.mode == I4X4_PRED) { |
| assert(bsize == BLOCK_SIZE_SB8X8); |
| vp9_tokenize_sb(cpi, &x->e_mbd, t, !output_enabled, bsize); |
| } else if (!x->skip) { |
| vp9_encode_sb(cm, x, bsize); |
| vp9_tokenize_sb(cpi, &x->e_mbd, t, !output_enabled, bsize); |
| } else { |
| // FIXME(rbultje): not tile-aware (mi - 1) |
| int mb_skip_context = |
| (mi - 1)->mbmi.mb_skip_coeff + (mi - mis)->mbmi.mb_skip_coeff; |
| |
| xd->mode_info_context->mbmi.mb_skip_coeff = 1; |
| if (output_enabled) |
| cpi->skip_true_count[mb_skip_context]++; |
| vp9_reset_sb_tokens_context(xd, bsize); |
| } |
| |
| // copy skip flag on all mb_mode_info contexts in this SB |
| // if this was a skip at this txfm size |
| for (n = 1; n < bw * bh; n++) { |
| const int x_idx = n & (bw - 1), y_idx = n >> bwl; |
| if (mi_col + x_idx < cm->mi_cols && mi_row + y_idx < cm->mi_rows) |
| mi[x_idx + y_idx * mis].mbmi.mb_skip_coeff = mi->mbmi.mb_skip_coeff; |
| } |
| |
| if (output_enabled) { |
| if (cm->txfm_mode == TX_MODE_SELECT && |
| !(mi->mbmi.mb_skip_coeff || |
| vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP))) { |
| if (bsize >= BLOCK_SIZE_SB32X32) { |
| cpi->txfm_count_32x32p[mi->mbmi.txfm_size]++; |
| } else if (bsize >= BLOCK_SIZE_MB16X16) { |
| cpi->txfm_count_16x16p[mi->mbmi.txfm_size]++; |
| } else { |
| cpi->txfm_count_8x8p[mi->mbmi.txfm_size]++; |
| } |
| } else { |
| int x, y; |
| TX_SIZE sz = (cm->txfm_mode == TX_MODE_SELECT) ? TX_32X32 : cm->txfm_mode; |
| |
| if (sz == TX_32X32 && bsize < BLOCK_SIZE_SB32X32) |
| sz = TX_16X16; |
| if (sz == TX_16X16 && bsize < BLOCK_SIZE_MB16X16) |
| sz = TX_8X8; |
| if (sz == TX_8X8 && (xd->mode_info_context->mbmi.mode == SPLITMV || |
| xd->mode_info_context->mbmi.mode == I4X4_PRED)) |
| sz = TX_4X4; |
| |
| for (y = 0; y < bh; y++) { |
| for (x = 0; x < bw; x++) { |
| if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows) { |
| mi[mis * y + x].mbmi.txfm_size = sz; |
| } |
| } |
| } |
| } |
| } |
| } |