blob: 64e9ee6b8c45088cd30ee0f2b30025e49c7fa919 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/tile_common.h"
#include "av1/common/onyxc_int.h"
#if CONFIG_FRAME_SUPERRES
#include "av1/common/resize.h"
#endif
#include "aom_dsp/aom_dsp_common.h"
#if CONFIG_DEPENDENT_HORZTILES
void av1_tile_set_tg_boundary(TileInfo *tile, const AV1_COMMON *const cm,
int row, int col) {
const int tg_start_row = cm->tile_group_start_row[row][col];
const int tg_start_col = cm->tile_group_start_col[row][col];
tile->tg_horz_boundary = ((row == tg_start_row && col >= tg_start_col) ||
(row == tg_start_row + 1 && col < tg_start_col));
#if CONFIG_MAX_TILE
if (cm->tile_row_independent[row]) {
tile->tg_horz_boundary = 1; // this tile row is independent
}
#endif
}
#endif
void av1_tile_init(TileInfo *tile, const AV1_COMMON *cm, int row, int col) {
av1_tile_set_row(tile, cm, row);
av1_tile_set_col(tile, cm, col);
#if CONFIG_DEPENDENT_HORZTILES
av1_tile_set_tg_boundary(tile, cm, row, col);
#endif
}
#if CONFIG_MAX_TILE
// Find smallest k>=0 such that (blk_size << k) >= target
static int tile_log2(int blk_size, int target) {
int k;
for (k = 0; (blk_size << k) < target; k++) {
}
return k;
}
void av1_get_tile_limits(AV1_COMMON *const cm) {
int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2);
int sb_cols = mi_cols >> MAX_MIB_SIZE_LOG2;
int sb_rows = mi_rows >> MAX_MIB_SIZE_LOG2;
cm->min_log2_tile_cols = tile_log2(MAX_TILE_WIDTH_SB, sb_cols);
cm->max_log2_tile_cols = tile_log2(1, AOMMIN(sb_cols, MAX_TILE_COLS));
cm->max_log2_tile_rows = tile_log2(1, AOMMIN(sb_rows, MAX_TILE_ROWS));
cm->min_log2_tiles = tile_log2(MAX_TILE_AREA_SB, sb_cols * sb_rows);
cm->min_log2_tiles = AOMMAX(cm->min_log2_tiles, cm->min_log2_tile_cols);
// TODO(dominic.symes@arm.com):
// Add in levelMinLog2Tiles as a lower limit when levels are defined
}
void av1_calculate_tile_cols(AV1_COMMON *const cm) {
int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2);
int sb_cols = mi_cols >> MAX_MIB_SIZE_LOG2;
int sb_rows = mi_rows >> MAX_MIB_SIZE_LOG2;
int i;
if (cm->uniform_tile_spacing_flag) {
int start_sb;
int size_sb = ALIGN_POWER_OF_TWO(sb_cols, cm->log2_tile_cols);
size_sb >>= cm->log2_tile_cols;
assert(size_sb > 0);
for (i = 0, start_sb = 0; start_sb < sb_cols; i++) {
cm->tile_col_start_sb[i] = start_sb;
start_sb += size_sb;
}
cm->tile_cols = i;
cm->tile_col_start_sb[i] = sb_cols;
cm->min_log2_tile_rows = AOMMAX(cm->min_log2_tiles - cm->log2_tile_cols, 0);
cm->max_tile_height_sb = sb_rows >> cm->min_log2_tile_rows;
} else {
int max_tile_area_sb = (sb_rows * sb_cols);
int max_tile_width_sb = 0;
cm->log2_tile_cols = tile_log2(1, cm->tile_cols);
for (i = 0; i < cm->tile_cols; i++) {
int size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i];
max_tile_width_sb = AOMMAX(max_tile_width_sb, size_sb);
}
if (cm->min_log2_tiles) {
max_tile_area_sb >>= (cm->min_log2_tiles + 1);
}
cm->max_tile_height_sb = AOMMAX(max_tile_area_sb / max_tile_width_sb, 1);
}
}
void av1_calculate_tile_rows(AV1_COMMON *const cm) {
int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2);
int sb_rows = mi_rows >> MAX_MIB_SIZE_LOG2;
int start_sb, size_sb, i;
if (cm->uniform_tile_spacing_flag) {
size_sb = ALIGN_POWER_OF_TWO(sb_rows, cm->log2_tile_rows);
size_sb >>= cm->log2_tile_rows;
assert(size_sb > 0);
for (i = 0, start_sb = 0; start_sb < sb_rows; i++) {
cm->tile_row_start_sb[i] = start_sb;
start_sb += size_sb;
}
cm->tile_rows = i;
cm->tile_row_start_sb[i] = sb_rows;
} else {
cm->log2_tile_rows = tile_log2(1, cm->tile_rows);
}
#if CONFIG_DEPENDENT_HORZTILES
// Record which tile rows must be indpendent for parallelism
for (i = 0, start_sb = 0; i < cm->tile_rows; i++) {
cm->tile_row_independent[i] = 0;
if (cm->tile_row_start_sb[i + 1] - start_sb > cm->max_tile_height_sb) {
cm->tile_row_independent[i] = 1;
start_sb = cm->tile_row_start_sb[i];
}
}
#endif
}
void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) {
assert(row < cm->tile_rows);
int mi_row_start = cm->tile_row_start_sb[row] << MAX_MIB_SIZE_LOG2;
int mi_row_end = cm->tile_row_start_sb[row + 1] << MAX_MIB_SIZE_LOG2;
tile->mi_row_start = mi_row_start;
tile->mi_row_end = AOMMIN(mi_row_end, cm->mi_rows);
}
void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) {
assert(col < cm->tile_cols);
int mi_col_start = cm->tile_col_start_sb[col] << MAX_MIB_SIZE_LOG2;
int mi_col_end = cm->tile_col_start_sb[col + 1] << MAX_MIB_SIZE_LOG2;
tile->mi_col_start = mi_col_start;
tile->mi_col_end = AOMMIN(mi_col_end, cm->mi_cols);
}
#else
void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) {
tile->mi_row_start = row * cm->tile_height;
tile->mi_row_end = AOMMIN(tile->mi_row_start + cm->tile_height, cm->mi_rows);
}
void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) {
tile->mi_col_start = col * cm->tile_width;
tile->mi_col_end = AOMMIN(tile->mi_col_start + cm->tile_width, cm->mi_cols);
}
#if CONFIG_EXT_PARTITION
#define MIN_TILE_WIDTH_MAX_SB 2
#define MAX_TILE_WIDTH_MAX_SB 32
#else
#define MIN_TILE_WIDTH_MAX_SB 4
#define MAX_TILE_WIDTH_MAX_SB 64
#endif // CONFIG_EXT_PARTITION
static int get_min_log2_tile_cols(int max_sb_cols) {
int min_log2 = 0;
while ((MAX_TILE_WIDTH_MAX_SB << min_log2) < max_sb_cols) ++min_log2;
return min_log2;
}
static int get_max_log2_tile_cols(int max_sb_cols) {
int max_log2 = 1;
while ((max_sb_cols >> max_log2) >= MIN_TILE_WIDTH_MAX_SB) ++max_log2;
return max_log2 - 1;
}
void av1_get_tile_n_bits(int mi_cols, int *min_log2_tile_cols,
int *max_log2_tile_cols) {
const int max_sb_cols =
ALIGN_POWER_OF_TWO(mi_cols, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2;
*min_log2_tile_cols = get_min_log2_tile_cols(max_sb_cols);
*max_log2_tile_cols = get_max_log2_tile_cols(max_sb_cols);
assert(*min_log2_tile_cols <= *max_log2_tile_cols);
}
#endif // CONFIG_MAX_TILE
void av1_setup_frame_boundary_info(const AV1_COMMON *const cm) {
MODE_INFO *mi = cm->mi;
int col;
for (col = 0; col < cm->mi_cols; ++col) {
mi->mbmi.boundary_info |= FRAME_ABOVE_BOUNDARY | TILE_ABOVE_BOUNDARY;
mi += 1;
}
mi = cm->mi;
int row;
for (row = 0; row < cm->mi_rows; ++row) {
mi->mbmi.boundary_info |= FRAME_LEFT_BOUNDARY | TILE_LEFT_BOUNDARY;
mi += cm->mi_stride;
}
mi = cm->mi + (cm->mi_rows - 1) * cm->mi_stride;
for (col = 0; col < cm->mi_cols; ++col) {
mi->mbmi.boundary_info |= FRAME_BOTTOM_BOUNDARY | TILE_BOTTOM_BOUNDARY;
mi += 1;
}
mi = cm->mi + cm->mi_cols - 1;
for (row = 0; row < cm->mi_rows; ++row) {
mi->mbmi.boundary_info |= FRAME_RIGHT_BOUNDARY | TILE_RIGHT_BOUNDARY;
mi += cm->mi_stride;
}
}
int get_tile_size(int mi_frame_size, int log2_tile_num, int *ntiles) {
// Round the frame up to a whole number of max superblocks
mi_frame_size = ALIGN_POWER_OF_TWO(mi_frame_size, MAX_MIB_SIZE_LOG2);
// Divide by the signalled number of tiles, rounding up to the multiple of
// the max superblock size. To do this, shift right (and round up) to get the
// tile size in max super-blocks and then shift left again to convert it to
// mi units.
const int shift = log2_tile_num + MAX_MIB_SIZE_LOG2;
const int max_sb_tile_size =
ALIGN_POWER_OF_TWO(mi_frame_size, shift) >> shift;
const int mi_tile_size = max_sb_tile_size << MAX_MIB_SIZE_LOG2;
// The actual number of tiles is the ceiling of the frame size in mi units
// divided by mi_size. This is at most 1 << log2_tile_num but might be
// strictly less if max_sb_tile_size got rounded up significantly.
if (ntiles) {
*ntiles = (mi_frame_size + mi_tile_size - 1) / mi_tile_size;
assert(*ntiles <= (1 << log2_tile_num));
}
return mi_tile_size;
}
AV1PixelRect av1_get_tile_rect(const TileInfo *tile_info, const AV1_COMMON *cm,
int is_uv) {
AV1PixelRect r;
const int ss_x = is_uv && cm->subsampling_x;
const int ss_y = is_uv && cm->subsampling_y;
r.left = (tile_info->mi_col_start * MI_SIZE + ss_x) >> ss_x;
r.right = (tile_info->mi_col_end * MI_SIZE + ss_x) >> ss_x;
r.top = (tile_info->mi_row_start * MI_SIZE + ss_y) >> ss_y;
r.bottom = (tile_info->mi_row_end * MI_SIZE + ss_y) >> ss_y;
#if CONFIG_FRAME_SUPERRES
// If upscaling is enabled, the tile limits need scaling to match the
// upscaled frame where the restoration tiles live. To do this, scale up the
// top-left and bottom-right of the tile.
if (!av1_superres_unscaled(cm)) {
av1_calculate_unscaled_superres_size(&r.left, &r.top,
cm->superres_scale_denominator);
av1_calculate_unscaled_superres_size(&r.right, &r.bottom,
cm->superres_scale_denominator);
// Make sure we don't fall off the bottom-right of the frame.
const int plane_width = (cm->superres_upscaled_width + ss_x) >> ss_x;
const int plane_height = (cm->superres_upscaled_height + ss_y) >> ss_y;
r.right = AOMMIN(r.right, plane_width);
r.bottom = AOMMIN(r.bottom, plane_height);
}
#endif // CONFIG_FRAME_SUPERRES
return r;
}
#if CONFIG_LOOPFILTERING_ACROSS_TILES
void av1_setup_across_tile_boundary_info(const AV1_COMMON *const cm,
const TileInfo *const tile_info) {
if (cm->tile_cols * cm->tile_rows > 1) {
const int mi_row = tile_info->mi_row_start;
const int mi_col = tile_info->mi_col_start;
MODE_INFO *const mi_start = cm->mi + mi_row * cm->mi_stride + mi_col;
assert(mi_start < cm->mip + cm->mi_alloc_size);
MODE_INFO *mi = 0;
const int row_diff = tile_info->mi_row_end - tile_info->mi_row_start;
const int col_diff = tile_info->mi_col_end - tile_info->mi_col_start;
int row, col;
#if CONFIG_DEPENDENT_HORZTILES
if (!cm->dependent_horz_tiles || tile_info->tg_horz_boundary)
#endif // CONFIG_DEPENDENT_HORZTILES
{
mi = mi_start;
for (col = 0; col < col_diff; ++col) {
mi->mbmi.boundary_info |= TILE_ABOVE_BOUNDARY;
mi += 1;
}
}
mi = mi_start;
for (row = 0; row < row_diff; ++row) {
mi->mbmi.boundary_info |= TILE_LEFT_BOUNDARY;
mi += cm->mi_stride;
}
mi = mi_start + (row_diff - 1) * cm->mi_stride;
// explicit bounds checking
assert(mi + col_diff <= cm->mip + cm->mi_alloc_size);
for (col = 0; col < col_diff; ++col) {
mi->mbmi.boundary_info |= TILE_BOTTOM_BOUNDARY;
mi += 1;
}
mi = mi_start + col_diff - 1;
for (row = 0; row < row_diff; ++row) {
mi->mbmi.boundary_info |= TILE_RIGHT_BOUNDARY;
mi += cm->mi_stride;
}
}
}
int av1_disable_loopfilter_on_tile_boundary(const struct AV1Common *cm) {
return (!cm->loop_filter_across_tiles_enabled &&
(cm->tile_cols * cm->tile_rows > 1));
}
#endif // CONFIG_LOOPFILTERING_ACROSS_TILES