| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "./av1_rtcd.h" |
| #include "aom_dsp/inv_txfm.h" |
| #include "av1/common/enums.h" |
| #include "av1/common/av1_txfm.h" |
| #include "av1/common/av1_inv_txfm1d.h" |
| #include "av1/common/av1_inv_txfm1d_cfg.h" |
| |
| static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) { |
| switch (txfm_type) { |
| case TXFM_TYPE_DCT4: return av1_idct4_new; |
| case TXFM_TYPE_DCT8: return av1_idct8_new; |
| case TXFM_TYPE_DCT16: return av1_idct16_new; |
| case TXFM_TYPE_DCT32: return av1_idct32_new; |
| #if CONFIG_TX64X64 |
| case TXFM_TYPE_DCT64: return av1_idct64_new; |
| #endif // CONFIG_TX64X64 |
| case TXFM_TYPE_ADST4: return av1_iadst4_new; |
| case TXFM_TYPE_ADST8: return av1_iadst8_new; |
| case TXFM_TYPE_ADST16: return av1_iadst16_new; |
| case TXFM_TYPE_ADST32: return av1_iadst32_new; |
| #if CONFIG_EXT_TX |
| case TXFM_TYPE_IDENTITY4: return av1_iidentity4_c; |
| case TXFM_TYPE_IDENTITY8: return av1_iidentity8_c; |
| case TXFM_TYPE_IDENTITY16: return av1_iidentity16_c; |
| case TXFM_TYPE_IDENTITY32: return av1_iidentity32_c; |
| #if CONFIG_TX64X64 |
| case TXFM_TYPE_IDENTITY64: return av1_iidentity64_c; |
| #endif // CONFIG_TX64X64 |
| #endif // CONFIG_EXT_TX |
| default: assert(0); return NULL; |
| } |
| } |
| |
| static const TXFM_1D_CFG *inv_txfm_col_cfg_ls[TX_TYPES_1D][TX_SIZES] = { |
| // DCT |
| { &inv_txfm_1d_col_cfg_dct_4, &inv_txfm_1d_col_cfg_dct_8, |
| &inv_txfm_1d_col_cfg_dct_16, &inv_txfm_1d_col_cfg_dct_32, |
| #if CONFIG_TX64X64 |
| &inv_txfm_1d_col_cfg_dct_64 |
| #endif // CONFIG_TX64X64 |
| }, |
| // ADST |
| { &inv_txfm_1d_col_cfg_adst_4, &inv_txfm_1d_col_cfg_adst_8, |
| &inv_txfm_1d_col_cfg_adst_16, &inv_txfm_1d_col_cfg_adst_32, |
| #if CONFIG_TX64X64 |
| NULL |
| #endif // CONFIG_TX64X64 |
| }, |
| #if CONFIG_EXT_TX |
| // FLIPADST |
| { &inv_txfm_1d_col_cfg_adst_4, &inv_txfm_1d_col_cfg_adst_8, |
| &inv_txfm_1d_col_cfg_adst_16, &inv_txfm_1d_col_cfg_adst_32, |
| #if CONFIG_TX64X64 |
| NULL |
| #endif // CONFIG_TX64X64 |
| }, |
| // IDENTITY |
| { &inv_txfm_1d_cfg_identity_4, &inv_txfm_1d_cfg_identity_8, |
| &inv_txfm_1d_cfg_identity_16, &inv_txfm_1d_cfg_identity_32, |
| #if CONFIG_TX64X64 |
| &inv_txfm_1d_cfg_identity_64 |
| #endif // CONFIG_TX64X64 |
| }, |
| #endif // CONFIG_EXT_TX |
| }; |
| |
| static const TXFM_1D_CFG *inv_txfm_row_cfg_ls[TX_TYPES_1D][TX_SIZES] = { |
| // DCT |
| { |
| &inv_txfm_1d_row_cfg_dct_4, &inv_txfm_1d_row_cfg_dct_8, |
| &inv_txfm_1d_row_cfg_dct_16, &inv_txfm_1d_row_cfg_dct_32, |
| #if CONFIG_TX64X64 |
| &inv_txfm_1d_row_cfg_dct_64, |
| #endif // CONFIG_TX64X64 |
| }, |
| // ADST |
| { &inv_txfm_1d_row_cfg_adst_4, &inv_txfm_1d_row_cfg_adst_8, |
| &inv_txfm_1d_row_cfg_adst_16, &inv_txfm_1d_row_cfg_adst_32, |
| #if CONFIG_TX64X64 |
| NULL |
| #endif // CONFIG_TX64X64 |
| }, |
| #if CONFIG_EXT_TX |
| // FLIPADST |
| { &inv_txfm_1d_row_cfg_adst_4, &inv_txfm_1d_row_cfg_adst_8, |
| &inv_txfm_1d_row_cfg_adst_16, &inv_txfm_1d_row_cfg_adst_32, |
| #if CONFIG_TX64X64 |
| NULL |
| #endif // CONFIG_TX64X64 |
| }, |
| // IDENTITY |
| { &inv_txfm_1d_cfg_identity_4, &inv_txfm_1d_cfg_identity_8, |
| &inv_txfm_1d_cfg_identity_16, &inv_txfm_1d_cfg_identity_32, |
| #if CONFIG_TX64X64 |
| &inv_txfm_1d_cfg_identity_64 |
| #endif // CONFIG_TX64X64 |
| }, |
| #endif // CONFIG_EXT_TX |
| }; |
| |
| TXFM_2D_FLIP_CFG av1_get_inv_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size) { |
| TXFM_2D_FLIP_CFG cfg; |
| set_flip_cfg(tx_type, &cfg); |
| const TX_TYPE_1D tx_type_col = vtx_tab[tx_type]; |
| const TX_TYPE_1D tx_type_row = htx_tab[tx_type]; |
| const TX_SIZE tx_size_col = txsize_vert_map[tx_size]; |
| const TX_SIZE tx_size_row = txsize_horz_map[tx_size]; |
| cfg.col_cfg = inv_txfm_col_cfg_ls[tx_type_col][tx_size_col]; |
| cfg.row_cfg = inv_txfm_row_cfg_ls[tx_type_row][tx_size_row]; |
| return cfg; |
| } |
| |
| #if CONFIG_TX64X64 |
| TXFM_2D_FLIP_CFG av1_get_inv_txfm_64x64_cfg(TX_TYPE tx_type) { |
| TXFM_2D_FLIP_CFG cfg = { 0, 0, NULL, NULL }; |
| switch (tx_type) { |
| case DCT_DCT: |
| cfg.col_cfg = &inv_txfm_1d_col_cfg_dct_64; |
| cfg.row_cfg = &inv_txfm_1d_row_cfg_dct_64; |
| set_flip_cfg(tx_type, &cfg); |
| break; |
| default: assert(0); |
| } |
| return cfg; |
| } |
| |
| TXFM_2D_FLIP_CFG av1_get_inv_txfm_32x64_cfg(int tx_type) { |
| TXFM_2D_FLIP_CFG cfg = { 0, 0, NULL, NULL }; |
| switch (tx_type) { |
| case DCT_DCT: |
| cfg.col_cfg = &inv_txfm_1d_col_cfg_dct_64; |
| cfg.row_cfg = &inv_txfm_1d_row_cfg_dct_32; |
| set_flip_cfg(tx_type, &cfg); |
| break; |
| default: assert(0); |
| } |
| return cfg; |
| } |
| |
| TXFM_2D_FLIP_CFG av1_get_inv_txfm_64x32_cfg(int tx_type) { |
| TXFM_2D_FLIP_CFG cfg = { 0, 0, NULL, NULL }; |
| switch (tx_type) { |
| case DCT_DCT: |
| cfg.col_cfg = &inv_txfm_1d_col_cfg_dct_32; |
| cfg.row_cfg = &inv_txfm_1d_row_cfg_dct_64; |
| set_flip_cfg(tx_type, &cfg); |
| break; |
| default: assert(0); |
| } |
| return cfg; |
| } |
| #endif // CONFIG_TX64X64 |
| |
| void av1_gen_inv_stage_range(int8_t *stage_range_col, int8_t *stage_range_row, |
| const TXFM_2D_FLIP_CFG *cfg, int8_t fwd_shift, |
| int bd) { |
| // Note when assigning txfm_size_col, we use the txfm_size from the |
| // row configuration and vice versa. This is intentionally done to |
| // accurately perform rectangular transforms. When the transform is |
| // rectangular, the number of columns will be the same as the |
| // txfm_size stored in the row cfg struct. It will make no difference |
| // for square transforms. |
| const int txfm_size_col = cfg->row_cfg->txfm_size; |
| const int txfm_size_row = cfg->col_cfg->txfm_size; |
| // Take the shift from the larger dimension in the rectangular case. |
| const int8_t *shift = (txfm_size_col > txfm_size_row) ? cfg->row_cfg->shift |
| : cfg->col_cfg->shift; |
| // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning |
| for (int i = 0; i < cfg->row_cfg->stage_num && i < MAX_TXFM_STAGE_NUM; ++i) { |
| stage_range_row[i] = cfg->row_cfg->stage_range[i] + fwd_shift + bd + 1; |
| } |
| // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning |
| for (int i = 0; i < cfg->col_cfg->stage_num && i < MAX_TXFM_STAGE_NUM; ++i) { |
| stage_range_col[i] = |
| cfg->col_cfg->stage_range[i] + fwd_shift + shift[0] + bd + 1; |
| } |
| } |
| |
| static INLINE void inv_txfm2d_add_c(const int32_t *input, uint16_t *output, |
| int stride, TXFM_2D_FLIP_CFG *cfg, |
| int32_t *txfm_buf, int8_t fwd_shift, |
| int bd) { |
| // Note when assigning txfm_size_col, we use the txfm_size from the |
| // row configuration and vice versa. This is intentionally done to |
| // accurately perform rectangular transforms. When the transform is |
| // rectangular, the number of columns will be the same as the |
| // txfm_size stored in the row cfg struct. It will make no difference |
| // for square transforms. |
| const int txfm_size_col = cfg->row_cfg->txfm_size; |
| const int txfm_size_row = cfg->col_cfg->txfm_size; |
| // Take the shift from the larger dimension in the rectangular case. |
| const int8_t *shift = (txfm_size_col > txfm_size_row) ? cfg->row_cfg->shift |
| : cfg->col_cfg->shift; |
| int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; |
| int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; |
| assert(cfg->row_cfg->stage_num <= MAX_TXFM_STAGE_NUM); |
| assert(cfg->col_cfg->stage_num <= MAX_TXFM_STAGE_NUM); |
| av1_gen_inv_stage_range(stage_range_col, stage_range_row, cfg, fwd_shift, bd); |
| |
| const int8_t *cos_bit_col = cfg->col_cfg->cos_bit; |
| const int8_t *cos_bit_row = cfg->row_cfg->cos_bit; |
| const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->col_cfg->txfm_type); |
| const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->row_cfg->txfm_type); |
| |
| // txfm_buf's length is txfm_size_row * txfm_size_col + 2 * txfm_size_row |
| // it is used for intermediate data buffering |
| int32_t *temp_in = txfm_buf; |
| int32_t *temp_out = temp_in + txfm_size_row; |
| int32_t *buf = temp_out + txfm_size_row; |
| int32_t *buf_ptr = buf; |
| int c, r; |
| |
| // Rows |
| for (r = 0; r < txfm_size_row; ++r) { |
| txfm_func_row(input, buf_ptr, cos_bit_row, stage_range_row); |
| round_shift_array(buf_ptr, txfm_size_col, -shift[0]); |
| // Multiply everything by Sqrt2 if the transform is rectangular |
| if (txfm_size_row != txfm_size_col) { |
| for (c = 0; c < txfm_size_col; ++c) |
| buf_ptr[c] = (int32_t)dct_const_round_shift(buf_ptr[c] * Sqrt2); |
| } |
| input += txfm_size_col; |
| buf_ptr += txfm_size_col; |
| } |
| |
| // Columns |
| for (c = 0; c < txfm_size_col; ++c) { |
| if (cfg->lr_flip == 0) { |
| for (r = 0; r < txfm_size_row; ++r) |
| temp_in[r] = buf[r * txfm_size_col + c]; |
| } else { |
| // flip left right |
| for (r = 0; r < txfm_size_row; ++r) |
| temp_in[r] = buf[r * txfm_size_col + (txfm_size_col - c - 1)]; |
| } |
| txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col); |
| round_shift_array(temp_out, txfm_size_row, -shift[1]); |
| if (cfg->ud_flip == 0) { |
| for (r = 0; r < txfm_size_row; ++r) { |
| output[r * stride + c] = |
| highbd_clip_pixel_add(output[r * stride + c], temp_out[r], bd); |
| } |
| } else { |
| // flip upside down |
| for (r = 0; r < txfm_size_row; ++r) { |
| output[r * stride + c] = highbd_clip_pixel_add( |
| output[r * stride + c], temp_out[txfm_size_row - r - 1], bd); |
| } |
| } |
| } |
| } |
| |
| static INLINE void inv_txfm2d_add_facade(const int32_t *input, uint16_t *output, |
| int stride, int32_t *txfm_buf, |
| TX_TYPE tx_type, TX_SIZE tx_size, |
| int bd) { |
| TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_cfg(tx_type, tx_size); |
| TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size]; |
| inv_txfm2d_add_c(input, output, stride, &cfg, txfm_buf, |
| fwd_shift_sum[tx_size_sqr], bd); |
| } |
| |
| void av1_inv_txfm2d_add_4x8_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| int txfm_buf[4 * 8 + 8 + 8]; |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X8, bd); |
| } |
| |
| void av1_inv_txfm2d_add_8x4_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| #if CONFIG_TXMG |
| int txfm_buf[8 * 4 + 8 + 8]; |
| int32_t rinput[8 * 4]; |
| uint16_t routput[8 * 4]; |
| TX_SIZE tx_size = TX_8X4; |
| TX_SIZE rtx_size = av1_rotate_tx_size(tx_size); |
| TX_TYPE rtx_type = av1_rotate_tx_type(tx_type); |
| int w = tx_size_wide[tx_size]; |
| int h = tx_size_high[tx_size]; |
| int rw = h; |
| int rh = w; |
| transpose_int32(rinput, rw, input, w, w, h); |
| transpose_uint16(routput, rw, output, stride, w, h); |
| inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd); |
| transpose_uint16(output, stride, routput, rw, rw, rh); |
| #else |
| int txfm_buf[8 * 4 + 4 + 4]; |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X4, bd); |
| #endif |
| } |
| |
| void av1_inv_txfm2d_add_8x16_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| int txfm_buf[8 * 16 + 16 + 16]; |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X16, bd); |
| } |
| |
| void av1_inv_txfm2d_add_16x8_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| #if CONFIG_TXMG |
| int txfm_buf[16 * 8 + 16 + 16]; |
| int32_t rinput[16 * 8]; |
| uint16_t routput[16 * 8]; |
| TX_SIZE tx_size = TX_16X8; |
| TX_SIZE rtx_size = av1_rotate_tx_size(tx_size); |
| TX_TYPE rtx_type = av1_rotate_tx_type(tx_type); |
| int w = tx_size_wide[tx_size]; |
| int h = tx_size_high[tx_size]; |
| int rw = h; |
| int rh = w; |
| transpose_int32(rinput, rw, input, w, w, h); |
| transpose_uint16(routput, rw, output, stride, w, h); |
| inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd); |
| transpose_uint16(output, stride, routput, rw, rw, rh); |
| #else |
| int txfm_buf[16 * 8 + 8 + 8]; |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X8, bd); |
| #endif |
| } |
| |
| void av1_inv_txfm2d_add_16x32_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| int txfm_buf[16 * 32 + 32 + 32]; |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X32, bd); |
| } |
| |
| void av1_inv_txfm2d_add_32x16_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| #if CONFIG_TXMG |
| int txfm_buf[32 * 16 + 32 + 32]; |
| int32_t rinput[32 * 16]; |
| uint16_t routput[32 * 16]; |
| TX_SIZE tx_size = TX_32X16; |
| TX_SIZE rtx_size = av1_rotate_tx_size(tx_size); |
| TX_TYPE rtx_type = av1_rotate_tx_type(tx_type); |
| int w = tx_size_wide[tx_size]; |
| int h = tx_size_high[tx_size]; |
| int rw = h; |
| int rh = w; |
| transpose_int32(rinput, rw, input, w, w, h); |
| transpose_uint16(routput, rw, output, stride, w, h); |
| inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd); |
| transpose_uint16(output, stride, routput, rw, rw, rh); |
| #else |
| int txfm_buf[32 * 16 + 16 + 16]; |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X16, bd); |
| #endif |
| } |
| |
| void av1_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| int txfm_buf[4 * 4 + 4 + 4]; |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X4, bd); |
| } |
| |
| void av1_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| int txfm_buf[8 * 8 + 8 + 8]; |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X8, bd); |
| } |
| |
| void av1_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| int txfm_buf[16 * 16 + 16 + 16]; |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X16, bd); |
| } |
| |
| void av1_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| int txfm_buf[32 * 32 + 32 + 32]; |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X32, bd); |
| } |
| |
| #if CONFIG_TX64X64 |
| void av1_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| int txfm_buf[64 * 64 + 64 + 64]; |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_64X64, bd); |
| } |
| |
| void av1_inv_txfm2d_add_64x32_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| #if CONFIG_TXMG |
| int txfm_buf[64 * 32 + 64 + 64]; |
| int32_t rinput[64 * 32]; |
| uint16_t routput[64 * 32]; |
| TX_SIZE tx_size = TX_64X32; |
| TX_SIZE rtx_size = av1_rotate_tx_size(tx_size); |
| TX_TYPE rtx_type = av1_rotate_tx_type(tx_type); |
| int w = tx_size_wide[tx_size]; |
| int h = tx_size_high[tx_size]; |
| int rw = h; |
| int rh = w; |
| transpose_int32(rinput, rw, input, w, w, h); |
| transpose_uint16(routput, rw, output, stride, w, h); |
| inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd); |
| transpose_uint16(output, stride, routput, rw, rw, rh); |
| #else |
| int txfm_buf[64 * 32 + 64 + 64]; |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_64X32, bd); |
| #endif |
| } |
| |
| void av1_inv_txfm2d_add_32x64_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| int txfm_buf[64 * 32 + 64 + 64]; |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X64, bd); |
| } |
| #endif // CONFIG_TX64X64 |