blob: 6e9b1c50042d1d1eeb56fa0aed4f22d20fefb476 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/cfl.h"
#include "av1/common/common_data.h"
#include "av1/common/onyxc_int.h"
void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm) {
if (!((cm->subsampling_x == 0 && cm->subsampling_y == 0) ||
(cm->subsampling_x == 1 && cm->subsampling_y == 1) ||
(cm->subsampling_x == 1 && cm->subsampling_y == 0))) {
aom_internal_error(
&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Only 4:4:4, 4:2:2 and 4:2:0 are currently supported by CfL, %d %d "
"subsampling is not supported.\n",
cm->subsampling_x, cm->subsampling_y);
}
memset(&cfl->pred_buf_q3, 0, sizeof(cfl->pred_buf_q3));
cfl->subsampling_x = cm->subsampling_x;
cfl->subsampling_y = cm->subsampling_y;
cfl->are_parameters_computed = 0;
cfl->store_y = 0;
#if CONFIG_DEBUG
cfl_clear_sub8x8_val(cfl);
cfl->store_counter = 0;
cfl->last_compute_counter = 0;
#endif // CONFIG_DEBUG
}
// Due to frame boundary issues, it is possible that the total area covered by
// chroma exceeds that of luma. When this happens, we fill the missing pixels by
// repeating the last columns and/or rows.
static INLINE void cfl_pad(CFL_CTX *cfl, int width, int height) {
const int diff_width = width - cfl->buf_width;
const int diff_height = height - cfl->buf_height;
if (diff_width > 0) {
const int min_height = height - diff_height;
int16_t *pred_buf_q3 = cfl->pred_buf_q3 + (width - diff_width);
for (int j = 0; j < min_height; j++) {
const int last_pixel = pred_buf_q3[-1];
for (int i = 0; i < diff_width; i++) {
pred_buf_q3[i] = last_pixel;
}
pred_buf_q3 += MAX_SB_SIZE;
}
cfl->buf_width = width;
}
if (diff_height > 0) {
int16_t *pred_buf_q3 =
cfl->pred_buf_q3 + ((height - diff_height) * MAX_SB_SIZE);
for (int j = 0; j < diff_height; j++) {
const int16_t *last_row_q3 = pred_buf_q3 - MAX_SB_SIZE;
for (int i = 0; i < width; i++) {
pred_buf_q3[i] = last_row_q3[i];
}
pred_buf_q3 += MAX_SB_SIZE;
}
cfl->buf_height = height;
}
}
static void sum_above_row_lbd(const uint8_t *above_u, const uint8_t *above_v,
int width, int *out_sum_u, int *out_sum_v) {
int sum_u = 0;
int sum_v = 0;
for (int i = 0; i < width; i++) {
sum_u += above_u[i];
sum_v += above_v[i];
}
*out_sum_u += sum_u;
*out_sum_v += sum_v;
}
#if CONFIG_HIGHBITDEPTH
static void sum_above_row_hbd(const uint16_t *above_u, const uint16_t *above_v,
int width, int *out_sum_u, int *out_sum_v) {
int sum_u = 0;
int sum_v = 0;
for (int i = 0; i < width; i++) {
sum_u += above_u[i];
sum_v += above_v[i];
}
*out_sum_u += sum_u;
*out_sum_v += sum_v;
}
#endif // CONFIG_HIGHBITDEPTH
static void sum_above_row(const MACROBLOCKD *xd, int width, int *out_sum_u,
int *out_sum_v) {
const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U];
const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V];
#if CONFIG_HIGHBITDEPTH
if (get_bitdepth_data_path_index(xd)) {
const uint16_t *above_u_16 =
CONVERT_TO_SHORTPTR(pd_u->dst.buf) - pd_u->dst.stride;
const uint16_t *above_v_16 =
CONVERT_TO_SHORTPTR(pd_v->dst.buf) - pd_v->dst.stride;
sum_above_row_hbd(above_u_16, above_v_16, width, out_sum_u, out_sum_v);
return;
}
#endif // CONFIG_HIGHBITDEPTH
const uint8_t *above_u = pd_u->dst.buf - pd_u->dst.stride;
const uint8_t *above_v = pd_v->dst.buf - pd_v->dst.stride;
sum_above_row_lbd(above_u, above_v, width, out_sum_u, out_sum_v);
}
static void sum_left_col_lbd(const uint8_t *left_u, int u_stride,
const uint8_t *left_v, int v_stride, int height,
int *out_sum_u, int *out_sum_v) {
int sum_u = 0;
int sum_v = 0;
for (int i = 0; i < height; i++) {
sum_u += left_u[i * u_stride];
sum_v += left_v[i * v_stride];
}
*out_sum_u += sum_u;
*out_sum_v += sum_v;
}
#if CONFIG_HIGHBITDEPTH
static void sum_left_col_hbd(const uint16_t *left_u, int u_stride,
const uint16_t *left_v, int v_stride, int height,
int *out_sum_u, int *out_sum_v) {
int sum_u = 0;
int sum_v = 0;
for (int i = 0; i < height; i++) {
sum_u += left_u[i * u_stride];
sum_v += left_v[i * v_stride];
}
*out_sum_u += sum_u;
*out_sum_v += sum_v;
}
#endif // CONFIG_HIGHBITDEPTH
static void sum_left_col(const MACROBLOCKD *xd, int height, int *out_sum_u,
int *out_sum_v) {
const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U];
const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V];
#if CONFIG_HIGHBITDEPTH
if (get_bitdepth_data_path_index(xd)) {
const uint16_t *left_u_16 = CONVERT_TO_SHORTPTR(pd_u->dst.buf) - 1;
const uint16_t *left_v_16 = CONVERT_TO_SHORTPTR(pd_v->dst.buf) - 1;
sum_left_col_hbd(left_u_16, pd_u->dst.stride, left_v_16, pd_v->dst.stride,
height, out_sum_u, out_sum_v);
return;
}
#endif // CONFIG_HIGHBITDEPTH
const uint8_t *left_u = pd_u->dst.buf - 1;
const uint8_t *left_v = pd_v->dst.buf - 1;
sum_left_col_lbd(left_u, pd_u->dst.stride, left_v, pd_v->dst.stride, height,
out_sum_u, out_sum_v);
}
// CfL computes its own block-level DC_PRED. This is required to compute both
// alpha_cb and alpha_cr before the prediction are computed.
static void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) {
CFL_CTX *const cfl = xd->cfl;
// Compute DC_PRED until block boundary. We can't assume the neighbor will use
// the same transform size.
const int width = max_block_wide(xd, plane_bsize, AOM_PLANE_U)
<< tx_size_wide_log2[0];
const int height = max_block_high(xd, plane_bsize, AOM_PLANE_U)
<< tx_size_high_log2[0];
// Number of pixel on the top and left borders.
const int num_pel = width + height;
int sum_u = 0;
int sum_v = 0;
// Match behavior of build_intra_predictors_high (reconintra.c) at superblock
// boundaries:
// base-1 base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1
// base+1 A B .. Y Z
// base+1 C D .. W X
// base+1 E F .. U V
// base+1 G H .. S T T T T T
// ..
if (xd->chroma_up_available && xd->mb_to_right_edge >= 0) {
sum_above_row(xd, width, &sum_u, &sum_v);
} else {
const int base = 128 << (xd->bd - 8);
sum_u = width * (base - 1);
sum_v = width * (base - 1);
}
if (xd->chroma_left_available && xd->mb_to_bottom_edge >= 0) {
sum_left_col(xd, height, &sum_u, &sum_v);
} else {
const int base = 128 << (xd->bd - 8);
sum_u += height * (base + 1);
sum_v += height * (base + 1);
}
// TODO(ltrudeau) Because of max_block_wide and max_block_high, num_pel will
// not be a power of two. So these divisions will have to use a lookup table.
cfl->dc_pred[CFL_PRED_U] = (sum_u + (num_pel >> 1)) / num_pel;
cfl->dc_pred[CFL_PRED_V] = (sum_v + (num_pel >> 1)) / num_pel;
}
static void cfl_subtract_averages(CFL_CTX *cfl, TX_SIZE tx_size) {
const int width = cfl->uv_width;
const int height = cfl->uv_height;
const int tx_height = tx_size_high[tx_size];
const int tx_width = tx_size_wide[tx_size];
const int block_row_stride = MAX_SB_SIZE << tx_size_high_log2[tx_size];
const int num_pel_log2 =
(tx_size_high_log2[tx_size] + tx_size_wide_log2[tx_size]);
int16_t *pred_buf_q3 = cfl->pred_buf_q3;
cfl_pad(cfl, width, height);
for (int b_j = 0; b_j < height; b_j += tx_height) {
for (int b_i = 0; b_i < width; b_i += tx_width) {
int sum_q3 = 0;
int16_t *tx_pred_buf_q3 = pred_buf_q3;
for (int t_j = 0; t_j < tx_height; t_j++) {
for (int t_i = b_i; t_i < b_i + tx_width; t_i++) {
sum_q3 += tx_pred_buf_q3[t_i];
}
tx_pred_buf_q3 += MAX_SB_SIZE;
}
int avg_q3 = (sum_q3 + (1 << (num_pel_log2 - 1))) >> num_pel_log2;
// Loss is never more than 1/2 (in Q3)
assert(fabs((double)avg_q3 - (sum_q3 / ((double)(1 << num_pel_log2)))) <=
0.5);
tx_pred_buf_q3 = pred_buf_q3;
for (int t_j = 0; t_j < tx_height; t_j++) {
for (int t_i = b_i; t_i < b_i + tx_width; t_i++) {
tx_pred_buf_q3[t_i] -= avg_q3;
}
tx_pred_buf_q3 += MAX_SB_SIZE;
}
}
pred_buf_q3 += block_row_stride;
}
}
static INLINE int cfl_idx_to_alpha(int alpha_idx, int joint_sign,
CFL_PRED_TYPE pred_type) {
const int alpha_sign = (pred_type == CFL_PRED_U) ? CFL_SIGN_U(joint_sign)
: CFL_SIGN_V(joint_sign);
if (alpha_sign == CFL_SIGN_ZERO) return 0;
const int abs_alpha_q3 =
(pred_type == CFL_PRED_U) ? CFL_IDX_U(alpha_idx) : CFL_IDX_V(alpha_idx);
return (alpha_sign == CFL_SIGN_POS) ? abs_alpha_q3 + 1 : -abs_alpha_q3 - 1;
}
static void cfl_build_prediction_lbd(const int16_t *pred_buf_q3, uint8_t *dst,
int dst_stride, int width, int height,
int alpha_q3, int dc_pred) {
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
dst[i] =
clip_pixel(get_scaled_luma_q0(alpha_q3, pred_buf_q3[i]) + dc_pred);
}
dst += dst_stride;
pred_buf_q3 += MAX_SB_SIZE;
}
}
#if CONFIG_HIGHBITDEPTH
static void cfl_build_prediction_hbd(const int16_t *pred_buf_q3, uint16_t *dst,
int dst_stride, int width, int height,
int alpha_q3, int dc_pred, int bit_depth) {
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
dst[i] = clip_pixel_highbd(
get_scaled_luma_q0(alpha_q3, pred_buf_q3[i]) + dc_pred, bit_depth);
}
dst += dst_stride;
pred_buf_q3 += MAX_SB_SIZE;
}
}
#endif // CONFIG_HIGHBITDEPTH
static void cfl_build_prediction(const int16_t *pred_buf_q3, uint8_t *dst,
int dst_stride, int width, int height,
int alpha_q3, int dc_pred, int use_hbd,
int bit_depth) {
#if CONFIG_HIGHBITDEPTH
if (use_hbd) {
uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst);
cfl_build_prediction_hbd(pred_buf_q3, dst_16, dst_stride, width, height,
alpha_q3, dc_pred, bit_depth);
return;
}
#endif // CONFIG_HIGHBITDEPTH
(void)use_hbd;
(void)bit_depth;
cfl_build_prediction_lbd(pred_buf_q3, dst, dst_stride, width, height,
alpha_q3, dc_pred);
}
void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride,
int row, int col, TX_SIZE tx_size, int plane) {
CFL_CTX *const cfl = xd->cfl;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
// CfL parameters must be computed before prediction can be done.
assert(cfl->are_parameters_computed == 1);
const int16_t *pred_buf_q3 =
cfl->pred_buf_q3 + ((row * MAX_SB_SIZE + col) << tx_size_wide_log2[0]);
const int alpha_q3 =
cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1);
cfl_build_prediction(pred_buf_q3, dst, dst_stride, tx_size_wide[tx_size],
tx_size_high[tx_size], alpha_q3, cfl->dc_pred[plane - 1],
get_bitdepth_data_path_index(xd), xd->bd);
}
static void cfl_luma_subsampling_420_lbd(const uint8_t *input, int input_stride,
int16_t *output_q3, int width,
int height) {
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
int top = i << 1;
int bot = top + input_stride;
output_q3[i] = (input[top] + input[top + 1] + input[bot] + input[bot + 1])
<< 1;
}
input += input_stride << 1;
output_q3 += MAX_SB_SIZE;
}
}
static void cfl_luma_subsampling_422_lbd(const uint8_t *input, int input_stride,
int16_t *output_q3, int width,
int height) {
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
int left = i << 1;
output_q3[i] = (input[left] + input[left + 1]) << 2;
}
input += input_stride;
output_q3 += MAX_SB_SIZE;
}
}
static void cfl_luma_subsampling_444_lbd(const uint8_t *input, int input_stride,
int16_t *output_q3, int width,
int height) {
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
output_q3[i] = input[i] << 3;
}
input += input_stride;
output_q3 += MAX_SB_SIZE;
}
}
#if CONFIG_HIGHBITDEPTH
static void cfl_luma_subsampling_420_hbd(const uint16_t *input,
int input_stride, int16_t *output_q3,
int width, int height) {
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
int top = i << 1;
int bot = top + input_stride;
output_q3[i] = (input[top] + input[top + 1] + input[bot] + input[bot + 1])
<< 1;
}
input += input_stride << 1;
output_q3 += MAX_SB_SIZE;
}
}
static void cfl_luma_subsampling_422_hbd(const uint16_t *input,
int input_stride, int16_t *output_q3,
int width, int height) {
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
int left = i << 1;
output_q3[i] = (input[left] + input[left + 1]) << 2;
}
input += input_stride;
output_q3 += MAX_SB_SIZE;
}
}
static void cfl_luma_subsampling_444_hbd(const uint16_t *input,
int input_stride, int16_t *output_q3,
int width, int height) {
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
output_q3[i] = input[i] << 3;
}
input += input_stride;
output_q3 += MAX_SB_SIZE;
}
}
#endif // CONFIG_HIGHBITDEPTH
static void cfl_luma_subsampling_420(const uint8_t *input, int input_stride,
int16_t *output_q3, int width, int height,
int use_hbd) {
#if CONFIG_HIGHBITDEPTH
if (use_hbd) {
const uint16_t *input_16 = CONVERT_TO_SHORTPTR(input);
cfl_luma_subsampling_420_hbd(input_16, input_stride, output_q3, width,
height);
return;
}
#endif // CONFIG_HIGHBITDEPTH
(void)use_hbd;
cfl_luma_subsampling_420_lbd(input, input_stride, output_q3, width, height);
}
static void cfl_luma_subsampling_422(const uint8_t *input, int input_stride,
int16_t *output_q3, int width, int height,
int use_hbd) {
#if CONFIG_HIGHBITDEPTH
if (use_hbd) {
const uint16_t *input_16 = CONVERT_TO_SHORTPTR(input);
cfl_luma_subsampling_422_hbd(input_16, input_stride, output_q3, width,
height);
return;
}
#endif // CONFIG_HIGHBITDEPTH
(void)use_hbd;
cfl_luma_subsampling_422_lbd(input, input_stride, output_q3, width, height);
}
static void cfl_luma_subsampling_444(const uint8_t *input, int input_stride,
int16_t *output_q3, int width, int height,
int use_hbd) {
#if CONFIG_HIGHBITDEPTH
if (use_hbd) {
uint16_t *input_16 = CONVERT_TO_SHORTPTR(input);
cfl_luma_subsampling_444_hbd(input_16, input_stride, output_q3, width,
height);
return;
}
#endif // CONFIG_HIGHBITDEPTH
(void)use_hbd;
cfl_luma_subsampling_444_lbd(input, input_stride, output_q3, width, height);
}
static INLINE void cfl_store(CFL_CTX *cfl, const uint8_t *input,
int input_stride, int row, int col, int width,
int height, int use_hbd) {
const int tx_off_log2 = tx_size_wide_log2[0];
const int sub_x = cfl->subsampling_x;
const int sub_y = cfl->subsampling_y;
const int store_row = row << (tx_off_log2 - sub_y);
const int store_col = col << (tx_off_log2 - sub_x);
const int store_height = height >> sub_y;
const int store_width = width >> sub_x;
// Invalidate current parameters
cfl->are_parameters_computed = 0;
// Store the surface of the pixel buffer that was written to, this way we
// can manage chroma overrun (e.g. when the chroma surfaces goes beyond the
// frame boundary)
if (col == 0 && row == 0) {
cfl->buf_width = store_width;
cfl->buf_height = store_height;
} else {
cfl->buf_width = OD_MAXI(store_col + store_width, cfl->buf_width);
cfl->buf_height = OD_MAXI(store_row + store_height, cfl->buf_height);
}
// Check that we will remain inside the pixel buffer.
assert(store_row + store_height <= MAX_SB_SIZE);
assert(store_col + store_width <= MAX_SB_SIZE);
// Store the input into the CfL pixel buffer
int16_t *pred_buf_q3 =
cfl->pred_buf_q3 + (store_row * MAX_SB_SIZE + store_col);
if (sub_y == 0 && sub_x == 0) {
cfl_luma_subsampling_444(input, input_stride, pred_buf_q3, store_width,
store_height, use_hbd);
} else if (sub_y == 1 && sub_x == 1) {
cfl_luma_subsampling_420(input, input_stride, pred_buf_q3, store_width,
store_height, use_hbd);
} else if (sub_y == 0 && sub_x == 1) {
cfl_luma_subsampling_422(input, input_stride, pred_buf_q3, store_width,
store_height, use_hbd);
} else {
fprintf(stderr,
"Only 4:4:4, 4:2:2 and 4:2:0 are currently supported by CfL, %d %d "
"subsampling is not supported.\n",
sub_x, sub_y);
abort();
}
}
// Adjust the row and column of blocks smaller than 8X8, as chroma-referenced
// and non-chroma-referenced blocks are stored together in the CfL buffer.
static INLINE void sub8x8_adjust_offset(const CFL_CTX *cfl, int *row_out,
int *col_out) {
// Increment row index for bottom: 8x4, 16x4 or both bottom 4x4s.
if ((cfl->mi_row & 0x01) && cfl->subsampling_y) {
assert(*row_out == 0);
(*row_out)++;
}
// Increment col index for right: 4x8, 4x16 or both right 4x4s.
if ((cfl->mi_col & 0x01) && cfl->subsampling_x) {
assert(*col_out == 0);
(*col_out)++;
}
}
#if CONFIG_DEBUG
// Since the chroma surface of sub8x8 block span across multiple luma blocks,
// this function validates that the reconstructed luma area required to predict
// the chroma block using CfL has been stored during the previous luma encode.
//
// Issue 1: Chroma intra prediction is not always performed after luma. One
// such example is when luma RD cost is really high and the mode decision
// algorithm decides to terminate instead of evaluating chroma.
//
// Issue 2: When multiple CfL predictions are computed for a given sub8x8
// block. The reconstructed luma that belongs to the non-reference sub8x8
// blocks must remain in the buffer (we cannot clear the buffer when we
// compute the CfL prediction
//
// To resolve these issues, we increment the store_counter on each store. if
// other sub8x8 blocks have already been coded and the counter corresponds to
// the previous value they are also set to the current value. If a sub8x8 block
// is not stored the store_counter won't match which will be detected when the
// CfL parements are computed.
static void sub8x8_set_val(CFL_CTX *cfl, int row, int col, TX_SIZE y_tx_size) {
const int y_tx_wide_unit = tx_size_wide_unit[y_tx_size];
const int y_tx_high_unit = tx_size_high_unit[y_tx_size];
// How many 4x4 are in tx_size
const int y_tx_unit_len = y_tx_wide_unit * y_tx_high_unit;
assert(y_tx_unit_len == 1 || y_tx_unit_len == 2 || y_tx_unit_len == 4);
// Invalidate other counters if (0,0)
const int is_first = row + col == 0;
cfl->store_counter += is_first ? 2 : 1;
const int inc =
(y_tx_wide_unit >= y_tx_high_unit) ? 1 : CFL_SUB8X8_VAL_MI_SIZE;
uint16_t *sub8x8_val = cfl->sub8x8_val + (row * CFL_SUB8X8_VAL_MI_SIZE + col);
for (int i = 0; i < y_tx_unit_len; i++) {
*sub8x8_val = cfl->store_counter;
sub8x8_val += inc;
}
if (!is_first) {
const uint16_t prev_store_counter = cfl->store_counter - 1;
int found = 0;
sub8x8_val = cfl->sub8x8_val;
for (int y = 0; y < CFL_SUB8X8_VAL_MI_SIZE; y++) {
for (int x = 0; x < CFL_SUB8X8_VAL_MI_SIZE; x++) {
if (sub8x8_val[x] == prev_store_counter) {
sub8x8_val[x] = cfl->store_counter;
found = 1;
}
}
sub8x8_val += CFL_SUB8X8_VAL_MI_SIZE;
}
// Something is wrong if (0,0) is missing
assert(found);
}
}
#endif // CONFIG_DEBUG
void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size,
BLOCK_SIZE bsize) {
CFL_CTX *const cfl = xd->cfl;
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
uint8_t *dst =
&pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]];
if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) {
// Only dimensions of size 4 can have an odd offset.
assert(!((col & 1) && tx_size_wide[tx_size] != 4));
assert(!((row & 1) && tx_size_high[tx_size] != 4));
sub8x8_adjust_offset(cfl, &row, &col);
#if CONFIG_DEBUG
sub8x8_set_val(cfl, row, col, tx_size);
#endif // CONFIG_DEBUG
}
cfl_store(cfl, dst, pd->dst.stride, row, col, tx_size_wide[tx_size],
tx_size_high[tx_size], get_bitdepth_data_path_index(xd));
}
void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size) {
CFL_CTX *const cfl = xd->cfl;
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
int row = 0;
int col = 0;
bsize = AOMMAX(BLOCK_4X4, bsize);
if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) {
sub8x8_adjust_offset(cfl, &row, &col);
#if CONFIG_DEBUG
// Point to the last transform block inside the partition.
const int off_row =
row + (mi_size_high[bsize] - tx_size_high_unit[tx_size]);
const int off_col =
col + (mi_size_wide[bsize] - tx_size_wide_unit[tx_size]);
sub8x8_set_val(cfl, off_row, off_col, tx_size);
#endif // CONFIG_DEBUG
}
const int width = max_intra_block_width(xd, bsize, AOM_PLANE_Y, tx_size);
const int height = max_intra_block_height(xd, bsize, AOM_PLANE_Y, tx_size);
cfl_store(cfl, pd->dst.buf, pd->dst.stride, row, col, width, height,
get_bitdepth_data_path_index(xd));
}
void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) {
CFL_CTX *const cfl = xd->cfl;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
// Do not call cfl_compute_parameters multiple time on the same values.
assert(cfl->are_parameters_computed == 0);
const BLOCK_SIZE plane_bsize = AOMMAX(
BLOCK_4X4, get_plane_block_size(mbmi->sb_type, &xd->plane[AOM_PLANE_U]));
#if CONFIG_DEBUG
BLOCK_SIZE bsize = mbmi->sb_type;
if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) {
const uint16_t compute_counter = cfl->sub8x8_val[0];
assert(compute_counter != cfl->last_compute_counter);
bsize = scale_chroma_bsize(bsize, cfl->subsampling_x, cfl->subsampling_y);
const int val_wide = mi_size_wide[bsize];
const int val_high = mi_size_high[bsize];
assert(val_wide <= CFL_SUB8X8_VAL_MI_SIZE);
assert(val_high <= CFL_SUB8X8_VAL_MI_SIZE);
for (int val_r = 0; val_r < val_high; val_r++) {
for (int val_c = 0; val_c < val_wide; val_c++) {
// If all counters in the validation buffer are equal then they are all
// related to the same chroma reference block.
assert(cfl->sub8x8_val[val_r * CFL_SUB8X8_VAL_MI_SIZE + val_c] ==
compute_counter);
}
}
cfl->last_compute_counter = compute_counter;
}
#endif // CONFIG_DEBUG
// AOM_PLANE_U is used, but both planes will have the same sizes.
cfl->uv_width = max_intra_block_width(xd, plane_bsize, AOM_PLANE_U, tx_size);
cfl->uv_height =
max_intra_block_height(xd, plane_bsize, AOM_PLANE_U, tx_size);
cfl_dc_pred(xd, plane_bsize);
cfl_subtract_averages(cfl, tx_size);
cfl->are_parameters_computed = 1;
}