| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/common/cfl.h" |
| #include "av1/common/common_data.h" |
| #include "av1/common/onyxc_int.h" |
| |
| void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm) { |
| if (!((cm->subsampling_x == 0 && cm->subsampling_y == 0) || |
| (cm->subsampling_x == 1 && cm->subsampling_y == 1) || |
| (cm->subsampling_x == 1 && cm->subsampling_y == 0))) { |
| aom_internal_error( |
| &cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Only 4:4:4, 4:2:2 and 4:2:0 are currently supported by CfL, %d %d " |
| "subsampling is not supported.\n", |
| cm->subsampling_x, cm->subsampling_y); |
| } |
| memset(&cfl->pred_buf_q3, 0, sizeof(cfl->pred_buf_q3)); |
| cfl->subsampling_x = cm->subsampling_x; |
| cfl->subsampling_y = cm->subsampling_y; |
| cfl->are_parameters_computed = 0; |
| cfl->store_y = 0; |
| #if CONFIG_DEBUG |
| cfl_clear_sub8x8_val(cfl); |
| cfl->store_counter = 0; |
| cfl->last_compute_counter = 0; |
| #endif // CONFIG_DEBUG |
| } |
| |
| // Due to frame boundary issues, it is possible that the total area covered by |
| // chroma exceeds that of luma. When this happens, we fill the missing pixels by |
| // repeating the last columns and/or rows. |
| static INLINE void cfl_pad(CFL_CTX *cfl, int width, int height) { |
| const int diff_width = width - cfl->buf_width; |
| const int diff_height = height - cfl->buf_height; |
| |
| if (diff_width > 0) { |
| const int min_height = height - diff_height; |
| int16_t *pred_buf_q3 = cfl->pred_buf_q3 + (width - diff_width); |
| for (int j = 0; j < min_height; j++) { |
| const int last_pixel = pred_buf_q3[-1]; |
| for (int i = 0; i < diff_width; i++) { |
| pred_buf_q3[i] = last_pixel; |
| } |
| pred_buf_q3 += MAX_SB_SIZE; |
| } |
| cfl->buf_width = width; |
| } |
| if (diff_height > 0) { |
| int16_t *pred_buf_q3 = |
| cfl->pred_buf_q3 + ((height - diff_height) * MAX_SB_SIZE); |
| for (int j = 0; j < diff_height; j++) { |
| const int16_t *last_row_q3 = pred_buf_q3 - MAX_SB_SIZE; |
| for (int i = 0; i < width; i++) { |
| pred_buf_q3[i] = last_row_q3[i]; |
| } |
| pred_buf_q3 += MAX_SB_SIZE; |
| } |
| cfl->buf_height = height; |
| } |
| } |
| |
| static void sum_above_row_lbd(const uint8_t *above_u, const uint8_t *above_v, |
| int width, int *out_sum_u, int *out_sum_v) { |
| int sum_u = 0; |
| int sum_v = 0; |
| for (int i = 0; i < width; i++) { |
| sum_u += above_u[i]; |
| sum_v += above_v[i]; |
| } |
| *out_sum_u += sum_u; |
| *out_sum_v += sum_v; |
| } |
| #if CONFIG_HIGHBITDEPTH |
| static void sum_above_row_hbd(const uint16_t *above_u, const uint16_t *above_v, |
| int width, int *out_sum_u, int *out_sum_v) { |
| int sum_u = 0; |
| int sum_v = 0; |
| for (int i = 0; i < width; i++) { |
| sum_u += above_u[i]; |
| sum_v += above_v[i]; |
| } |
| *out_sum_u += sum_u; |
| *out_sum_v += sum_v; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| |
| static void sum_above_row(const MACROBLOCKD *xd, int width, int *out_sum_u, |
| int *out_sum_v) { |
| const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U]; |
| const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V]; |
| #if CONFIG_HIGHBITDEPTH |
| if (get_bitdepth_data_path_index(xd)) { |
| const uint16_t *above_u_16 = |
| CONVERT_TO_SHORTPTR(pd_u->dst.buf) - pd_u->dst.stride; |
| const uint16_t *above_v_16 = |
| CONVERT_TO_SHORTPTR(pd_v->dst.buf) - pd_v->dst.stride; |
| sum_above_row_hbd(above_u_16, above_v_16, width, out_sum_u, out_sum_v); |
| return; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| const uint8_t *above_u = pd_u->dst.buf - pd_u->dst.stride; |
| const uint8_t *above_v = pd_v->dst.buf - pd_v->dst.stride; |
| sum_above_row_lbd(above_u, above_v, width, out_sum_u, out_sum_v); |
| } |
| |
| static void sum_left_col_lbd(const uint8_t *left_u, int u_stride, |
| const uint8_t *left_v, int v_stride, int height, |
| int *out_sum_u, int *out_sum_v) { |
| int sum_u = 0; |
| int sum_v = 0; |
| for (int i = 0; i < height; i++) { |
| sum_u += left_u[i * u_stride]; |
| sum_v += left_v[i * v_stride]; |
| } |
| *out_sum_u += sum_u; |
| *out_sum_v += sum_v; |
| } |
| #if CONFIG_HIGHBITDEPTH |
| static void sum_left_col_hbd(const uint16_t *left_u, int u_stride, |
| const uint16_t *left_v, int v_stride, int height, |
| int *out_sum_u, int *out_sum_v) { |
| int sum_u = 0; |
| int sum_v = 0; |
| for (int i = 0; i < height; i++) { |
| sum_u += left_u[i * u_stride]; |
| sum_v += left_v[i * v_stride]; |
| } |
| *out_sum_u += sum_u; |
| *out_sum_v += sum_v; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| static void sum_left_col(const MACROBLOCKD *xd, int height, int *out_sum_u, |
| int *out_sum_v) { |
| const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U]; |
| const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V]; |
| |
| #if CONFIG_HIGHBITDEPTH |
| if (get_bitdepth_data_path_index(xd)) { |
| const uint16_t *left_u_16 = CONVERT_TO_SHORTPTR(pd_u->dst.buf) - 1; |
| const uint16_t *left_v_16 = CONVERT_TO_SHORTPTR(pd_v->dst.buf) - 1; |
| sum_left_col_hbd(left_u_16, pd_u->dst.stride, left_v_16, pd_v->dst.stride, |
| height, out_sum_u, out_sum_v); |
| return; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| const uint8_t *left_u = pd_u->dst.buf - 1; |
| const uint8_t *left_v = pd_v->dst.buf - 1; |
| sum_left_col_lbd(left_u, pd_u->dst.stride, left_v, pd_v->dst.stride, height, |
| out_sum_u, out_sum_v); |
| } |
| |
| // CfL computes its own block-level DC_PRED. This is required to compute both |
| // alpha_cb and alpha_cr before the prediction are computed. |
| static void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { |
| CFL_CTX *const cfl = xd->cfl; |
| |
| // Compute DC_PRED until block boundary. We can't assume the neighbor will use |
| // the same transform size. |
| const int width = max_block_wide(xd, plane_bsize, AOM_PLANE_U) |
| << tx_size_wide_log2[0]; |
| const int height = max_block_high(xd, plane_bsize, AOM_PLANE_U) |
| << tx_size_high_log2[0]; |
| // Number of pixel on the top and left borders. |
| const int num_pel = width + height; |
| |
| int sum_u = 0; |
| int sum_v = 0; |
| |
| // Match behavior of build_intra_predictors_high (reconintra.c) at superblock |
| // boundaries: |
| // base-1 base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1 |
| // base+1 A B .. Y Z |
| // base+1 C D .. W X |
| // base+1 E F .. U V |
| // base+1 G H .. S T T T T T |
| // .. |
| |
| if (xd->chroma_up_available && xd->mb_to_right_edge >= 0) { |
| sum_above_row(xd, width, &sum_u, &sum_v); |
| } else { |
| const int base = 128 << (xd->bd - 8); |
| sum_u = width * (base - 1); |
| sum_v = width * (base - 1); |
| } |
| |
| if (xd->chroma_left_available && xd->mb_to_bottom_edge >= 0) { |
| sum_left_col(xd, height, &sum_u, &sum_v); |
| } else { |
| const int base = 128 << (xd->bd - 8); |
| sum_u += height * (base + 1); |
| sum_v += height * (base + 1); |
| } |
| |
| // TODO(ltrudeau) Because of max_block_wide and max_block_high, num_pel will |
| // not be a power of two. So these divisions will have to use a lookup table. |
| cfl->dc_pred[CFL_PRED_U] = (sum_u + (num_pel >> 1)) / num_pel; |
| cfl->dc_pred[CFL_PRED_V] = (sum_v + (num_pel >> 1)) / num_pel; |
| } |
| |
| static void cfl_subtract_averages(CFL_CTX *cfl, TX_SIZE tx_size) { |
| const int width = cfl->uv_width; |
| const int height = cfl->uv_height; |
| const int tx_height = tx_size_high[tx_size]; |
| const int tx_width = tx_size_wide[tx_size]; |
| const int block_row_stride = MAX_SB_SIZE << tx_size_high_log2[tx_size]; |
| const int num_pel_log2 = |
| (tx_size_high_log2[tx_size] + tx_size_wide_log2[tx_size]); |
| |
| int16_t *pred_buf_q3 = cfl->pred_buf_q3; |
| |
| cfl_pad(cfl, width, height); |
| |
| for (int b_j = 0; b_j < height; b_j += tx_height) { |
| for (int b_i = 0; b_i < width; b_i += tx_width) { |
| int sum_q3 = 0; |
| int16_t *tx_pred_buf_q3 = pred_buf_q3; |
| for (int t_j = 0; t_j < tx_height; t_j++) { |
| for (int t_i = b_i; t_i < b_i + tx_width; t_i++) { |
| sum_q3 += tx_pred_buf_q3[t_i]; |
| } |
| tx_pred_buf_q3 += MAX_SB_SIZE; |
| } |
| int avg_q3 = (sum_q3 + (1 << (num_pel_log2 - 1))) >> num_pel_log2; |
| // Loss is never more than 1/2 (in Q3) |
| assert(fabs((double)avg_q3 - (sum_q3 / ((double)(1 << num_pel_log2)))) <= |
| 0.5); |
| |
| tx_pred_buf_q3 = pred_buf_q3; |
| for (int t_j = 0; t_j < tx_height; t_j++) { |
| for (int t_i = b_i; t_i < b_i + tx_width; t_i++) { |
| tx_pred_buf_q3[t_i] -= avg_q3; |
| } |
| |
| tx_pred_buf_q3 += MAX_SB_SIZE; |
| } |
| } |
| pred_buf_q3 += block_row_stride; |
| } |
| } |
| |
| static INLINE int cfl_idx_to_alpha(int alpha_idx, int joint_sign, |
| CFL_PRED_TYPE pred_type) { |
| const int alpha_sign = (pred_type == CFL_PRED_U) ? CFL_SIGN_U(joint_sign) |
| : CFL_SIGN_V(joint_sign); |
| if (alpha_sign == CFL_SIGN_ZERO) return 0; |
| const int abs_alpha_q3 = |
| (pred_type == CFL_PRED_U) ? CFL_IDX_U(alpha_idx) : CFL_IDX_V(alpha_idx); |
| return (alpha_sign == CFL_SIGN_POS) ? abs_alpha_q3 + 1 : -abs_alpha_q3 - 1; |
| } |
| |
| static void cfl_build_prediction_lbd(const int16_t *pred_buf_q3, uint8_t *dst, |
| int dst_stride, int width, int height, |
| int alpha_q3, int dc_pred) { |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| dst[i] = |
| clip_pixel(get_scaled_luma_q0(alpha_q3, pred_buf_q3[i]) + dc_pred); |
| } |
| dst += dst_stride; |
| pred_buf_q3 += MAX_SB_SIZE; |
| } |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| static void cfl_build_prediction_hbd(const int16_t *pred_buf_q3, uint16_t *dst, |
| int dst_stride, int width, int height, |
| int alpha_q3, int dc_pred, int bit_depth) { |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| dst[i] = clip_pixel_highbd( |
| get_scaled_luma_q0(alpha_q3, pred_buf_q3[i]) + dc_pred, bit_depth); |
| } |
| dst += dst_stride; |
| pred_buf_q3 += MAX_SB_SIZE; |
| } |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| |
| static void cfl_build_prediction(const int16_t *pred_buf_q3, uint8_t *dst, |
| int dst_stride, int width, int height, |
| int alpha_q3, int dc_pred, int use_hbd, |
| int bit_depth) { |
| #if CONFIG_HIGHBITDEPTH |
| if (use_hbd) { |
| uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst); |
| cfl_build_prediction_hbd(pred_buf_q3, dst_16, dst_stride, width, height, |
| alpha_q3, dc_pred, bit_depth); |
| return; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| (void)use_hbd; |
| (void)bit_depth; |
| cfl_build_prediction_lbd(pred_buf_q3, dst, dst_stride, width, height, |
| alpha_q3, dc_pred); |
| } |
| |
| void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, |
| int row, int col, TX_SIZE tx_size, int plane) { |
| CFL_CTX *const cfl = xd->cfl; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| |
| // CfL parameters must be computed before prediction can be done. |
| assert(cfl->are_parameters_computed == 1); |
| |
| const int16_t *pred_buf_q3 = |
| cfl->pred_buf_q3 + ((row * MAX_SB_SIZE + col) << tx_size_wide_log2[0]); |
| const int alpha_q3 = |
| cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1); |
| |
| cfl_build_prediction(pred_buf_q3, dst, dst_stride, tx_size_wide[tx_size], |
| tx_size_high[tx_size], alpha_q3, cfl->dc_pred[plane - 1], |
| get_bitdepth_data_path_index(xd), xd->bd); |
| } |
| |
| static void cfl_luma_subsampling_420_lbd(const uint8_t *input, int input_stride, |
| int16_t *output_q3, int width, |
| int height) { |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| int top = i << 1; |
| int bot = top + input_stride; |
| output_q3[i] = (input[top] + input[top + 1] + input[bot] + input[bot + 1]) |
| << 1; |
| } |
| input += input_stride << 1; |
| output_q3 += MAX_SB_SIZE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_422_lbd(const uint8_t *input, int input_stride, |
| int16_t *output_q3, int width, |
| int height) { |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| int left = i << 1; |
| output_q3[i] = (input[left] + input[left + 1]) << 2; |
| } |
| input += input_stride; |
| output_q3 += MAX_SB_SIZE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_444_lbd(const uint8_t *input, int input_stride, |
| int16_t *output_q3, int width, |
| int height) { |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| output_q3[i] = input[i] << 3; |
| } |
| input += input_stride; |
| output_q3 += MAX_SB_SIZE; |
| } |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| static void cfl_luma_subsampling_420_hbd(const uint16_t *input, |
| int input_stride, int16_t *output_q3, |
| int width, int height) { |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| int top = i << 1; |
| int bot = top + input_stride; |
| output_q3[i] = (input[top] + input[top + 1] + input[bot] + input[bot + 1]) |
| << 1; |
| } |
| input += input_stride << 1; |
| output_q3 += MAX_SB_SIZE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_422_hbd(const uint16_t *input, |
| int input_stride, int16_t *output_q3, |
| int width, int height) { |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| int left = i << 1; |
| output_q3[i] = (input[left] + input[left + 1]) << 2; |
| } |
| input += input_stride; |
| output_q3 += MAX_SB_SIZE; |
| } |
| } |
| |
| static void cfl_luma_subsampling_444_hbd(const uint16_t *input, |
| int input_stride, int16_t *output_q3, |
| int width, int height) { |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| output_q3[i] = input[i] << 3; |
| } |
| input += input_stride; |
| output_q3 += MAX_SB_SIZE; |
| } |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| |
| static void cfl_luma_subsampling_420(const uint8_t *input, int input_stride, |
| int16_t *output_q3, int width, int height, |
| int use_hbd) { |
| #if CONFIG_HIGHBITDEPTH |
| if (use_hbd) { |
| const uint16_t *input_16 = CONVERT_TO_SHORTPTR(input); |
| cfl_luma_subsampling_420_hbd(input_16, input_stride, output_q3, width, |
| height); |
| return; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| (void)use_hbd; |
| cfl_luma_subsampling_420_lbd(input, input_stride, output_q3, width, height); |
| } |
| |
| static void cfl_luma_subsampling_422(const uint8_t *input, int input_stride, |
| int16_t *output_q3, int width, int height, |
| int use_hbd) { |
| #if CONFIG_HIGHBITDEPTH |
| if (use_hbd) { |
| const uint16_t *input_16 = CONVERT_TO_SHORTPTR(input); |
| cfl_luma_subsampling_422_hbd(input_16, input_stride, output_q3, width, |
| height); |
| return; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| (void)use_hbd; |
| cfl_luma_subsampling_422_lbd(input, input_stride, output_q3, width, height); |
| } |
| |
| static void cfl_luma_subsampling_444(const uint8_t *input, int input_stride, |
| int16_t *output_q3, int width, int height, |
| int use_hbd) { |
| #if CONFIG_HIGHBITDEPTH |
| if (use_hbd) { |
| uint16_t *input_16 = CONVERT_TO_SHORTPTR(input); |
| cfl_luma_subsampling_444_hbd(input_16, input_stride, output_q3, width, |
| height); |
| return; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| (void)use_hbd; |
| cfl_luma_subsampling_444_lbd(input, input_stride, output_q3, width, height); |
| } |
| |
| static INLINE void cfl_store(CFL_CTX *cfl, const uint8_t *input, |
| int input_stride, int row, int col, int width, |
| int height, int use_hbd) { |
| const int tx_off_log2 = tx_size_wide_log2[0]; |
| const int sub_x = cfl->subsampling_x; |
| const int sub_y = cfl->subsampling_y; |
| const int store_row = row << (tx_off_log2 - sub_y); |
| const int store_col = col << (tx_off_log2 - sub_x); |
| const int store_height = height >> sub_y; |
| const int store_width = width >> sub_x; |
| |
| // Invalidate current parameters |
| cfl->are_parameters_computed = 0; |
| |
| // Store the surface of the pixel buffer that was written to, this way we |
| // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the |
| // frame boundary) |
| if (col == 0 && row == 0) { |
| cfl->buf_width = store_width; |
| cfl->buf_height = store_height; |
| } else { |
| cfl->buf_width = OD_MAXI(store_col + store_width, cfl->buf_width); |
| cfl->buf_height = OD_MAXI(store_row + store_height, cfl->buf_height); |
| } |
| |
| // Check that we will remain inside the pixel buffer. |
| assert(store_row + store_height <= MAX_SB_SIZE); |
| assert(store_col + store_width <= MAX_SB_SIZE); |
| |
| // Store the input into the CfL pixel buffer |
| int16_t *pred_buf_q3 = |
| cfl->pred_buf_q3 + (store_row * MAX_SB_SIZE + store_col); |
| |
| if (sub_y == 0 && sub_x == 0) { |
| cfl_luma_subsampling_444(input, input_stride, pred_buf_q3, store_width, |
| store_height, use_hbd); |
| } else if (sub_y == 1 && sub_x == 1) { |
| cfl_luma_subsampling_420(input, input_stride, pred_buf_q3, store_width, |
| store_height, use_hbd); |
| } else if (sub_y == 0 && sub_x == 1) { |
| cfl_luma_subsampling_422(input, input_stride, pred_buf_q3, store_width, |
| store_height, use_hbd); |
| } else { |
| fprintf(stderr, |
| "Only 4:4:4, 4:2:2 and 4:2:0 are currently supported by CfL, %d %d " |
| "subsampling is not supported.\n", |
| sub_x, sub_y); |
| abort(); |
| } |
| } |
| |
| // Adjust the row and column of blocks smaller than 8X8, as chroma-referenced |
| // and non-chroma-referenced blocks are stored together in the CfL buffer. |
| static INLINE void sub8x8_adjust_offset(const CFL_CTX *cfl, int *row_out, |
| int *col_out) { |
| // Increment row index for bottom: 8x4, 16x4 or both bottom 4x4s. |
| if ((cfl->mi_row & 0x01) && cfl->subsampling_y) { |
| assert(*row_out == 0); |
| (*row_out)++; |
| } |
| |
| // Increment col index for right: 4x8, 4x16 or both right 4x4s. |
| if ((cfl->mi_col & 0x01) && cfl->subsampling_x) { |
| assert(*col_out == 0); |
| (*col_out)++; |
| } |
| } |
| #if CONFIG_DEBUG |
| // Since the chroma surface of sub8x8 block span across multiple luma blocks, |
| // this function validates that the reconstructed luma area required to predict |
| // the chroma block using CfL has been stored during the previous luma encode. |
| // |
| // Issue 1: Chroma intra prediction is not always performed after luma. One |
| // such example is when luma RD cost is really high and the mode decision |
| // algorithm decides to terminate instead of evaluating chroma. |
| // |
| // Issue 2: When multiple CfL predictions are computed for a given sub8x8 |
| // block. The reconstructed luma that belongs to the non-reference sub8x8 |
| // blocks must remain in the buffer (we cannot clear the buffer when we |
| // compute the CfL prediction |
| // |
| // To resolve these issues, we increment the store_counter on each store. if |
| // other sub8x8 blocks have already been coded and the counter corresponds to |
| // the previous value they are also set to the current value. If a sub8x8 block |
| // is not stored the store_counter won't match which will be detected when the |
| // CfL parements are computed. |
| static void sub8x8_set_val(CFL_CTX *cfl, int row, int col, TX_SIZE y_tx_size) { |
| const int y_tx_wide_unit = tx_size_wide_unit[y_tx_size]; |
| const int y_tx_high_unit = tx_size_high_unit[y_tx_size]; |
| |
| // How many 4x4 are in tx_size |
| const int y_tx_unit_len = y_tx_wide_unit * y_tx_high_unit; |
| assert(y_tx_unit_len == 1 || y_tx_unit_len == 2 || y_tx_unit_len == 4); |
| |
| // Invalidate other counters if (0,0) |
| const int is_first = row + col == 0; |
| cfl->store_counter += is_first ? 2 : 1; |
| |
| const int inc = |
| (y_tx_wide_unit >= y_tx_high_unit) ? 1 : CFL_SUB8X8_VAL_MI_SIZE; |
| uint16_t *sub8x8_val = cfl->sub8x8_val + (row * CFL_SUB8X8_VAL_MI_SIZE + col); |
| for (int i = 0; i < y_tx_unit_len; i++) { |
| *sub8x8_val = cfl->store_counter; |
| sub8x8_val += inc; |
| } |
| |
| if (!is_first) { |
| const uint16_t prev_store_counter = cfl->store_counter - 1; |
| int found = 0; |
| sub8x8_val = cfl->sub8x8_val; |
| for (int y = 0; y < CFL_SUB8X8_VAL_MI_SIZE; y++) { |
| for (int x = 0; x < CFL_SUB8X8_VAL_MI_SIZE; x++) { |
| if (sub8x8_val[x] == prev_store_counter) { |
| sub8x8_val[x] = cfl->store_counter; |
| found = 1; |
| } |
| } |
| sub8x8_val += CFL_SUB8X8_VAL_MI_SIZE; |
| } |
| // Something is wrong if (0,0) is missing |
| assert(found); |
| } |
| } |
| #endif // CONFIG_DEBUG |
| |
| void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size, |
| BLOCK_SIZE bsize) { |
| CFL_CTX *const cfl = xd->cfl; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; |
| uint8_t *dst = |
| &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]]; |
| if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) { |
| // Only dimensions of size 4 can have an odd offset. |
| assert(!((col & 1) && tx_size_wide[tx_size] != 4)); |
| assert(!((row & 1) && tx_size_high[tx_size] != 4)); |
| sub8x8_adjust_offset(cfl, &row, &col); |
| #if CONFIG_DEBUG |
| sub8x8_set_val(cfl, row, col, tx_size); |
| #endif // CONFIG_DEBUG |
| } |
| cfl_store(cfl, dst, pd->dst.stride, row, col, tx_size_wide[tx_size], |
| tx_size_high[tx_size], get_bitdepth_data_path_index(xd)); |
| } |
| |
| void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size) { |
| CFL_CTX *const cfl = xd->cfl; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; |
| int row = 0; |
| int col = 0; |
| bsize = AOMMAX(BLOCK_4X4, bsize); |
| if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) { |
| sub8x8_adjust_offset(cfl, &row, &col); |
| #if CONFIG_DEBUG |
| // Point to the last transform block inside the partition. |
| const int off_row = |
| row + (mi_size_high[bsize] - tx_size_high_unit[tx_size]); |
| const int off_col = |
| col + (mi_size_wide[bsize] - tx_size_wide_unit[tx_size]); |
| sub8x8_set_val(cfl, off_row, off_col, tx_size); |
| #endif // CONFIG_DEBUG |
| } |
| const int width = max_intra_block_width(xd, bsize, AOM_PLANE_Y, tx_size); |
| const int height = max_intra_block_height(xd, bsize, AOM_PLANE_Y, tx_size); |
| cfl_store(cfl, pd->dst.buf, pd->dst.stride, row, col, width, height, |
| get_bitdepth_data_path_index(xd)); |
| } |
| |
| void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) { |
| CFL_CTX *const cfl = xd->cfl; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| |
| // Do not call cfl_compute_parameters multiple time on the same values. |
| assert(cfl->are_parameters_computed == 0); |
| |
| const BLOCK_SIZE plane_bsize = AOMMAX( |
| BLOCK_4X4, get_plane_block_size(mbmi->sb_type, &xd->plane[AOM_PLANE_U])); |
| #if CONFIG_DEBUG |
| BLOCK_SIZE bsize = mbmi->sb_type; |
| if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) { |
| const uint16_t compute_counter = cfl->sub8x8_val[0]; |
| assert(compute_counter != cfl->last_compute_counter); |
| bsize = scale_chroma_bsize(bsize, cfl->subsampling_x, cfl->subsampling_y); |
| const int val_wide = mi_size_wide[bsize]; |
| const int val_high = mi_size_high[bsize]; |
| assert(val_wide <= CFL_SUB8X8_VAL_MI_SIZE); |
| assert(val_high <= CFL_SUB8X8_VAL_MI_SIZE); |
| for (int val_r = 0; val_r < val_high; val_r++) { |
| for (int val_c = 0; val_c < val_wide; val_c++) { |
| // If all counters in the validation buffer are equal then they are all |
| // related to the same chroma reference block. |
| assert(cfl->sub8x8_val[val_r * CFL_SUB8X8_VAL_MI_SIZE + val_c] == |
| compute_counter); |
| } |
| } |
| cfl->last_compute_counter = compute_counter; |
| } |
| #endif // CONFIG_DEBUG |
| // AOM_PLANE_U is used, but both planes will have the same sizes. |
| cfl->uv_width = max_intra_block_width(xd, plane_bsize, AOM_PLANE_U, tx_size); |
| cfl->uv_height = |
| max_intra_block_height(xd, plane_bsize, AOM_PLANE_U, tx_size); |
| |
| cfl_dc_pred(xd, plane_bsize); |
| cfl_subtract_averages(cfl, tx_size); |
| cfl->are_parameters_computed = 1; |
| } |