| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AV1_COMMON_RECONINTER_H_ |
| #define AV1_COMMON_RECONINTER_H_ |
| |
| #include "av1/common/filter.h" |
| #include "av1/common/onyxc_int.h" |
| #include "av1/common/convolve.h" |
| #include "av1/common/warped_motion.h" |
| #include "aom/aom_integer.h" |
| |
| #define WARP_WM_NEIGHBORS_WITH_OBMC 0 |
| |
| #define WARP_GM_NEIGHBORS_WITH_OBMC 0 |
| |
| #define AOM_LEFT_TOP_MARGIN_SCALED \ |
| ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS) |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| static INLINE int has_scale(int xs, int ys) { |
| return xs != SCALE_SUBPEL_SHIFTS || ys != SCALE_SUBPEL_SHIFTS; |
| } |
| |
| static INLINE void inter_predictor(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, int subpel_x, |
| int subpel_y, const struct scale_factors *sf, |
| int w, int h, ConvolveParams *conv_params, |
| InterpFilters interp_filters, int xs, |
| int ys) { |
| assert(conv_params->do_average == 0 || conv_params->do_average == 1); |
| assert(sf); |
| if (has_scale(xs, ys)) { |
| // TODO(afergs, debargha): Use a different scale convolve function |
| // that uses higher precision for subpel_x, subpel_y, xs, ys |
| if (conv_params->round == CONVOLVE_OPT_NO_ROUND) { |
| #if CONFIG_CONVOLVE_ROUND |
| av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, |
| interp_filters, subpel_x, xs, subpel_y, ys, 1, |
| conv_params); |
| conv_params->do_post_rounding = 1; |
| #else |
| assert(0); |
| #endif // CONFIG_CONVOLVE_ROUND |
| } else { |
| assert(conv_params->round == CONVOLVE_OPT_ROUND); |
| av1_convolve_scale(src, src_stride, dst, dst_stride, w, h, interp_filters, |
| subpel_x, xs, subpel_y, ys, conv_params); |
| } |
| } else { |
| subpel_x >>= SCALE_EXTRA_BITS; |
| subpel_y >>= SCALE_EXTRA_BITS; |
| xs >>= SCALE_EXTRA_BITS; |
| ys >>= SCALE_EXTRA_BITS; |
| assert(subpel_x < SUBPEL_SHIFTS); |
| assert(subpel_y < SUBPEL_SHIFTS); |
| assert(xs <= SUBPEL_SHIFTS); |
| assert(ys <= SUBPEL_SHIFTS); |
| if (conv_params->round == CONVOLVE_OPT_NO_ROUND) { |
| #if CONFIG_CONVOLVE_ROUND |
| av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, |
| interp_filters, subpel_x, xs, subpel_y, ys, 0, |
| conv_params); |
| conv_params->do_post_rounding = 1; |
| #else |
| assert(0); |
| #endif // CONFIG_CONVOLVE_ROUND |
| } else { |
| assert(conv_params->round == CONVOLVE_OPT_ROUND); |
| |
| InterpFilterParams filter_params_x, filter_params_y; |
| #if CONFIG_SHORT_FILTER |
| av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x, |
| &filter_params_y, w, h); |
| #else |
| av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x, |
| &filter_params_y); |
| |
| #endif |
| |
| if (w <= 2 || h <= 2) { |
| av1_convolve_c(src, src_stride, dst, dst_stride, w, h, interp_filters, |
| subpel_x, xs, subpel_y, ys, conv_params); |
| } else if (filter_params_x.taps == SUBPEL_TAPS && |
| filter_params_y.taps == SUBPEL_TAPS) { |
| const int16_t *kernel_x = |
| av1_get_interp_filter_subpel_kernel(filter_params_x, subpel_x); |
| const int16_t *kernel_y = |
| av1_get_interp_filter_subpel_kernel(filter_params_y, subpel_y); |
| sf->predict[subpel_x != 0][subpel_y != 0][conv_params->do_average]( |
| src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h); |
| } else { |
| av1_convolve(src, src_stride, dst, dst_stride, w, h, interp_filters, |
| subpel_x, xs, subpel_y, ys, conv_params); |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| static INLINE void highbd_inter_predictor(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, |
| int subpel_x, int subpel_y, |
| const struct scale_factors *sf, int w, |
| int h, ConvolveParams *conv_params, |
| InterpFilters interp_filters, int xs, |
| int ys, int bd) { |
| const int avg = conv_params->do_average; |
| assert(avg == 0 || avg == 1); |
| |
| if (has_scale(xs, ys)) { |
| if (conv_params->round == CONVOLVE_OPT_NO_ROUND) { |
| #if CONFIG_CONVOLVE_ROUND |
| av1_highbd_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, |
| interp_filters, subpel_x, xs, subpel_y, ys, |
| 1, conv_params, bd); |
| conv_params->do_post_rounding = 1; |
| #else |
| assert(0); |
| #endif // CONFIG_CONVOLVE_ROUND |
| } else { |
| av1_highbd_convolve_scale(src, src_stride, dst, dst_stride, w, h, |
| interp_filters, subpel_x, xs, subpel_y, ys, avg, |
| bd); |
| } |
| } else { |
| subpel_x >>= SCALE_EXTRA_BITS; |
| subpel_y >>= SCALE_EXTRA_BITS; |
| xs >>= SCALE_EXTRA_BITS; |
| ys >>= SCALE_EXTRA_BITS; |
| assert(subpel_x < SUBPEL_SHIFTS); |
| assert(subpel_y < SUBPEL_SHIFTS); |
| assert(xs <= SUBPEL_SHIFTS); |
| assert(ys <= SUBPEL_SHIFTS); |
| if (conv_params->round == CONVOLVE_OPT_NO_ROUND) { |
| #if CONFIG_CONVOLVE_ROUND |
| av1_highbd_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, |
| interp_filters, subpel_x, xs, subpel_y, ys, |
| 0, conv_params, bd); |
| conv_params->do_post_rounding = 1; |
| #else |
| assert(0); |
| #endif // CONFIG_CONVOLVE_ROUND |
| } else { |
| InterpFilterParams filter_params_x, filter_params_y; |
| #if CONFIG_SHORT_FILTER |
| av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x, |
| &filter_params_y, w, h); |
| #else |
| av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x, |
| &filter_params_y); |
| #endif |
| |
| if (filter_params_x.taps == SUBPEL_TAPS && |
| filter_params_y.taps == SUBPEL_TAPS && w > 2 && h > 2) { |
| const int16_t *kernel_x = |
| av1_get_interp_filter_subpel_kernel(filter_params_x, subpel_x); |
| const int16_t *kernel_y = |
| av1_get_interp_filter_subpel_kernel(filter_params_y, subpel_y); |
| sf->highbd_predict[subpel_x != 0][subpel_y != 0][avg]( |
| src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h, |
| bd); |
| } else { |
| av1_highbd_convolve(src, src_stride, dst, dst_stride, w, h, |
| interp_filters, subpel_x, xs, subpel_y, ys, avg, |
| bd); |
| } |
| } |
| } |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| |
| // Set to (1 << 5) if the 32-ary codebooks are used for any bock size |
| #define MAX_WEDGE_TYPES (1 << 4) |
| |
| #define MAX_WEDGE_SIZE_LOG2 5 // 32x32 |
| #define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2) |
| #define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE) |
| |
| #define WEDGE_WEIGHT_BITS 6 |
| |
| #define WEDGE_NONE -1 |
| |
| // Angles are with respect to horizontal anti-clockwise |
| typedef enum { |
| WEDGE_HORIZONTAL = 0, |
| WEDGE_VERTICAL = 1, |
| WEDGE_OBLIQUE27 = 2, |
| WEDGE_OBLIQUE63 = 3, |
| WEDGE_OBLIQUE117 = 4, |
| WEDGE_OBLIQUE153 = 5, |
| WEDGE_DIRECTIONS |
| } WedgeDirectionType; |
| |
| // 3-tuple: {direction, x_offset, y_offset} |
| typedef struct { |
| WedgeDirectionType direction; |
| int x_offset; |
| int y_offset; |
| } wedge_code_type; |
| |
| typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES]; |
| |
| typedef struct { |
| int bits; |
| const wedge_code_type *codebook; |
| uint8_t *signflip; |
| int smoother; |
| wedge_masks_type *masks; |
| } wedge_params_type; |
| |
| extern const wedge_params_type wedge_params_lookup[BLOCK_SIZES_ALL]; |
| |
| static INLINE int is_interinter_compound_used(COMPOUND_TYPE type, |
| BLOCK_SIZE sb_type) { |
| (void)sb_type; |
| switch (type) { |
| case COMPOUND_AVERAGE: return sb_type >= BLOCK_4X4; |
| case COMPOUND_WEDGE: return wedge_params_lookup[sb_type].bits > 0; |
| case COMPOUND_SEG: |
| return AOMMIN(block_size_wide[sb_type], block_size_high[sb_type]) >= 8; |
| default: assert(0); return 0; |
| } |
| } |
| |
| static INLINE int is_any_masked_compound_used(BLOCK_SIZE sb_type) { |
| COMPOUND_TYPE comp_type; |
| if (sb_type < BLOCK_4X4) return 0; |
| for (comp_type = 0; comp_type < COMPOUND_TYPES; comp_type++) { |
| if (is_masked_compound_type(comp_type) && |
| is_interinter_compound_used(comp_type, sb_type)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static INLINE int get_wedge_bits_lookup(BLOCK_SIZE sb_type) { |
| return wedge_params_lookup[sb_type].bits; |
| } |
| |
| static INLINE int get_interinter_wedge_bits(BLOCK_SIZE sb_type) { |
| const int wbits = wedge_params_lookup[sb_type].bits; |
| return (wbits > 0) ? wbits + 1 : 0; |
| } |
| |
| static INLINE int is_interintra_wedge_used(BLOCK_SIZE sb_type) { |
| (void)sb_type; |
| return wedge_params_lookup[sb_type].bits > 0; |
| } |
| |
| static INLINE int get_interintra_wedge_bits(BLOCK_SIZE sb_type) { |
| return wedge_params_lookup[sb_type].bits; |
| } |
| |
| void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type, |
| const uint8_t *src0, int src0_stride, |
| const uint8_t *src1, int src1_stride, |
| BLOCK_SIZE sb_type, int h, int w); |
| #if CONFIG_HIGHBITDEPTH |
| void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type, |
| const uint8_t *src0, int src0_stride, |
| const uint8_t *src1, int src1_stride, |
| BLOCK_SIZE sb_type, int h, int w, int bd); |
| #endif // CONFIG_HIGHBITDEPTH |
| |
| void av1_make_masked_inter_predictor( |
| const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride, |
| const int subpel_x, const int subpel_y, const struct scale_factors *sf, |
| int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, |
| int xs, int ys, int plane, const WarpTypesAllowed *warp_types, int p_col, |
| int p_row, int ref, MACROBLOCKD *xd); |
| |
| static INLINE int round_mv_comp_q4(int value) { |
| return (value < 0 ? value - 2 : value + 2) / 4; |
| } |
| |
| static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) { |
| MV res = { |
| round_mv_comp_q4( |
| mi->bmi[0].as_mv[idx].as_mv.row + mi->bmi[1].as_mv[idx].as_mv.row + |
| mi->bmi[2].as_mv[idx].as_mv.row + mi->bmi[3].as_mv[idx].as_mv.row), |
| round_mv_comp_q4( |
| mi->bmi[0].as_mv[idx].as_mv.col + mi->bmi[1].as_mv[idx].as_mv.col + |
| mi->bmi[2].as_mv[idx].as_mv.col + mi->bmi[3].as_mv[idx].as_mv.col) |
| }; |
| return res; |
| } |
| |
| static INLINE int round_mv_comp_q2(int value) { |
| return (value < 0 ? value - 1 : value + 1) / 2; |
| } |
| |
| static MV mi_mv_pred_q2(const MODE_INFO *mi, int idx, int block0, int block1) { |
| MV res = { round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.row + |
| mi->bmi[block1].as_mv[idx].as_mv.row), |
| round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.col + |
| mi->bmi[block1].as_mv[idx].as_mv.col) }; |
| return res; |
| } |
| |
| // TODO(jkoleszar): yet another mv clamping function :-( |
| static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, |
| const MV *src_mv, int bw, int bh, |
| int ss_x, int ss_y) { |
| // If the MV points so far into the UMV border that no visible pixels |
| // are used for reconstruction, the subpel part of the MV can be |
| // discarded and the MV limited to 16 pixels with equivalent results. |
| const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS; |
| const int spel_right = spel_left - SUBPEL_SHIFTS; |
| const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS; |
| const int spel_bottom = spel_top - SUBPEL_SHIFTS; |
| MV clamped_mv = { src_mv->row * (1 << (1 - ss_y)), |
| src_mv->col * (1 << (1 - ss_x)) }; |
| assert(ss_x <= 1); |
| assert(ss_y <= 1); |
| |
| clamp_mv(&clamped_mv, xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left, |
| xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right, |
| xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top, |
| xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom); |
| |
| return clamped_mv; |
| } |
| |
| static INLINE MV average_split_mvs(const struct macroblockd_plane *pd, |
| const MODE_INFO *mi, int ref, int block) { |
| const int ss_idx = ((pd->subsampling_x > 0) << 1) | (pd->subsampling_y > 0); |
| MV res = { 0, 0 }; |
| switch (ss_idx) { |
| case 0: res = mi->bmi[block].as_mv[ref].as_mv; break; |
| case 1: res = mi_mv_pred_q2(mi, ref, block, block + 2); break; |
| case 2: res = mi_mv_pred_q2(mi, ref, block, block + 1); break; |
| case 3: res = mi_mv_pred_q4(mi, ref); break; |
| default: assert(ss_idx <= 3 && ss_idx >= 0); |
| } |
| return res; |
| } |
| |
| void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, BUFFER_SET *ctx, |
| BLOCK_SIZE bsize); |
| |
| void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, BUFFER_SET *ctx, |
| BLOCK_SIZE bsize); |
| |
| void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, BUFFER_SET *ctx, |
| BLOCK_SIZE bsize); |
| |
| void av1_build_inter_predictor( |
| const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, |
| const MV *src_mv, const struct scale_factors *sf, int w, int h, |
| ConvolveParams *conv_params, InterpFilters interp_filters, |
| const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane, |
| int ref, enum mv_precision precision, int x, int y, const MACROBLOCKD *xd); |
| |
| #if CONFIG_HIGHBITDEPTH |
| void av1_highbd_build_inter_predictor( |
| const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, |
| const MV *mv_q3, const struct scale_factors *sf, int w, int h, int do_avg, |
| InterpFilters interp_filters, const WarpTypesAllowed *warp_types, int p_col, |
| int p_row, int plane, enum mv_precision precision, int x, int y, |
| const MACROBLOCKD *xd); |
| #endif |
| |
| static INLINE int scaled_buffer_offset(int x_offset, int y_offset, int stride, |
| const struct scale_factors *sf) { |
| const int x = |
| sf ? sf->scale_value_x(x_offset, sf) >> SCALE_EXTRA_BITS : x_offset; |
| const int y = |
| sf ? sf->scale_value_y(y_offset, sf) >> SCALE_EXTRA_BITS : y_offset; |
| return y * stride + x; |
| } |
| |
| static INLINE void setup_pred_plane(struct buf_2d *dst, BLOCK_SIZE bsize, |
| uint8_t *src, int width, int height, |
| int stride, int mi_row, int mi_col, |
| const struct scale_factors *scale, |
| int subsampling_x, int subsampling_y) { |
| // Offset the buffer pointer |
| if (subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1)) |
| mi_row -= 1; |
| if (subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1)) |
| mi_col -= 1; |
| |
| const int x = (MI_SIZE * mi_col) >> subsampling_x; |
| const int y = (MI_SIZE * mi_row) >> subsampling_y; |
| dst->buf = src + scaled_buffer_offset(x, y, stride, scale); |
| dst->buf0 = src; |
| dst->width = width; |
| dst->height = height; |
| dst->stride = stride; |
| } |
| |
| void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize, |
| const YV12_BUFFER_CONFIG *src, int mi_row, |
| int mi_col); |
| |
| void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const struct scale_factors *sf); |
| |
| // Detect if the block have sub-pixel level motion vectors |
| // per component. |
| #define CHECK_SUBPEL 0 |
| static INLINE int has_subpel_mv_component(const MODE_INFO *const mi, |
| const MACROBLOCKD *const xd, |
| int dir) { |
| #if CHECK_SUBPEL |
| const MB_MODE_INFO *const mbmi = &mi->mbmi; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| int plane; |
| int ref = (dir >> 1); |
| |
| if (dir & 0x01) { |
| if (mbmi->mv[ref].as_mv.col & SUBPEL_MASK) return 1; |
| } else { |
| if (mbmi->mv[ref].as_mv.row & SUBPEL_MASK) return 1; |
| } |
| |
| return 0; |
| #else |
| (void)mi; |
| (void)xd; |
| (void)dir; |
| return 1; |
| #endif |
| } |
| |
| static INLINE void set_default_interp_filters( |
| MB_MODE_INFO *const mbmi, InterpFilter frame_interp_filter) { |
| mbmi->interp_filters = |
| av1_broadcast_interp_filter(av1_unswitchable_filter(frame_interp_filter)); |
| } |
| |
| static INLINE int av1_is_interp_needed(const MACROBLOCKD *const xd) { |
| (void)xd; |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| if (mbmi->motion_mode == WARPED_CAUSAL) return 0; |
| if (is_nontrans_global_motion(xd)) return 0; |
| return 1; |
| } |
| |
| static INLINE int av1_is_interp_search_needed(const MACROBLOCKD *const xd) { |
| MODE_INFO *const mi = xd->mi[0]; |
| const int is_compound = has_second_ref(&mi->mbmi); |
| int ref; |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| int row_col; |
| for (row_col = 0; row_col < 2; ++row_col) { |
| const int dir = (ref << 1) + row_col; |
| if (has_subpel_mv_component(mi, xd, dir)) { |
| return 1; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| const uint8_t *av1_get_obmc_mask(int length); |
| void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col); |
| void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *above[MAX_MB_PLANE], |
| int above_stride[MAX_MB_PLANE], |
| uint8_t *left[MAX_MB_PLANE], |
| int left_stride[MAX_MB_PLANE]); |
| void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *tmp_buf[MAX_MB_PLANE], |
| int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], |
| int tmp_stride[MAX_MB_PLANE]); |
| void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *tmp_buf[MAX_MB_PLANE], |
| int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], |
| int tmp_stride[MAX_MB_PLANE]); |
| void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col); |
| #if CONFIG_NCOBMC |
| void av1_build_ncobmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col); |
| #endif |
| |
| #define MASK_MASTER_SIZE ((MAX_WEDGE_SIZE) << 1) |
| #define MASK_MASTER_STRIDE (MASK_MASTER_SIZE) |
| |
| void av1_init_wedge_masks(); |
| |
| static INLINE const uint8_t *av1_get_contiguous_soft_mask(int wedge_index, |
| int wedge_sign, |
| BLOCK_SIZE sb_type) { |
| return wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index]; |
| } |
| |
| const uint8_t *av1_get_soft_mask(int wedge_index, int wedge_sign, |
| BLOCK_SIZE sb_type, int wedge_offset_x, |
| int wedge_offset_y); |
| |
| const uint8_t *av1_get_compound_type_mask_inverse( |
| const INTERINTER_COMPOUND_DATA *const comp_data, uint8_t *mask_buffer, |
| int h, int w, int stride, BLOCK_SIZE sb_type); |
| |
| const uint8_t *av1_get_compound_type_mask( |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type); |
| #if CONFIG_INTERINTRA |
| void av1_build_interintra_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint8_t *ypred, uint8_t *upred, |
| uint8_t *vpred, int ystride, int ustride, |
| int vstride, BUFFER_SET *ctx, |
| BLOCK_SIZE bsize); |
| void av1_build_interintra_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint8_t *ypred, int ystride, |
| BUFFER_SET *ctx, BLOCK_SIZE bsize); |
| void av1_build_interintra_predictors_sbc(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint8_t *upred, int ustride, |
| BUFFER_SET *ctx, int plane, |
| BLOCK_SIZE bsize); |
| void av1_build_interintra_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint8_t *upred, uint8_t *vpred, |
| int ustride, int vstride, |
| BUFFER_SET *ctx, BLOCK_SIZE bsize); |
| |
| void av1_build_intra_predictors_for_interintra( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, |
| BUFFER_SET *ctx, uint8_t *intra_pred, int intra_stride); |
| void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, |
| const uint8_t *inter_pred, int inter_stride, |
| const uint8_t *intra_pred, int intra_stride); |
| #endif // CONFIG_INTERINTRA |
| // Encoder only |
| void av1_build_inter_predictors_for_planes_single_buf( |
| MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row, |
| int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]); |
| void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| int plane_from, int plane_to, |
| uint8_t *ext_dst0[3], |
| int ext_dst_stride0[3], |
| uint8_t *ext_dst1[3], |
| int ext_dst_stride1[3]); |
| |
| #if CONFIG_NCOBMC_ADAPT_WEIGHT |
| #define ASSIGN_ALIGNED_PTRS(p, a, s) \ |
| p[0] = a; \ |
| p[1] = a + s; \ |
| p[2] = a + 2 * s; |
| |
| #define ASSIGN_ALIGNED_PTRS_HBD(p, a, s, l) \ |
| p[0] = CONVERT_TO_BYTEPTR(a); \ |
| p[1] = CONVERT_TO_BYTEPTR(a + s * l); \ |
| p[2] = CONVERT_TO_BYTEPTR(a + 2 * s * l); |
| |
| void alloc_ncobmc_pred_buffer(MACROBLOCKD *const xd); |
| void free_ncobmc_pred_buffer(MACROBLOCKD *const xd); |
| void set_sb_mi_boundaries(const AV1_COMMON *const cm, MACROBLOCKD *const xd, |
| const int mi_row, const int mi_col); |
| |
| void reset_xd_boundary(MACROBLOCKD *xd, int mi_row, int bh, int mi_col, int bw, |
| int mi_rows, int mi_cols); |
| |
| void get_pred_from_intrpl_buf(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int plane); |
| |
| void build_ncobmc_intrpl_pred(const AV1_COMMON *const cm, MACROBLOCKD *xd, |
| int plane, int pxl_row, int pxl_col, |
| BLOCK_SIZE bsize, uint8_t *preds[][MAX_MB_PLANE], |
| int ps[MAX_MB_PLANE], // pred buffer strides |
| int mode); |
| |
| void av1_get_ext_blk_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize, |
| int mi_row, int mi_col, |
| uint8_t *dst_buf[][MAX_MB_PLANE], |
| int dst_stride[MAX_MB_PLANE]); |
| |
| void av1_get_ori_blk_pred(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize, |
| int mi_row, int mi_col, |
| uint8_t *dst_buf[MAX_MB_PLANE], |
| int dst_stride[MAX_MB_PLANE]); |
| #endif // CONFIG_NCOBMC_ADAPT_WEIGHT |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |
| |
| #endif // AV1_COMMON_RECONINTER_H_ |