blob: b8ca101f851611fa504d4bcab956abc8dcf13685 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#if CONFIG_EXT_INTRA
#include "av1/common/reconintra.h"
#endif // CONFIG_EXT_INTRA
#include "av1/common/seg_common.h"
#include "av1/common/warped_motion.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decodemv.h"
#include "aom_dsp/aom_dsp_common.h"
#define ACCT_STR __func__
#define DEC_MISMATCH_DEBUG 0
static PREDICTION_MODE read_intra_mode(aom_reader *r, aom_cdf_prob *cdf) {
return (PREDICTION_MODE)aom_read_symbol(r, cdf, INTRA_MODES, ACCT_STR);
}
static int read_delta_qindex(AV1_COMMON *cm, MACROBLOCKD *xd, aom_reader *r,
MB_MODE_INFO *const mbmi, int mi_col, int mi_row) {
FRAME_COUNTS *counts = xd->counts;
int sign, abs, reduced_delta_qindex = 0;
BLOCK_SIZE bsize = mbmi->sb_type;
const int b_col = mi_col & MAX_MIB_MASK;
const int b_row = mi_row & MAX_MIB_MASK;
const int read_delta_q_flag = (b_col == 0 && b_row == 0);
int rem_bits, thr;
int i, smallval;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
(void)cm;
if ((bsize != BLOCK_LARGEST || mbmi->skip == 0) && read_delta_q_flag) {
abs = aom_read_symbol(r, ec_ctx->delta_q_cdf, DELTA_Q_PROBS + 1, ACCT_STR);
smallval = (abs < DELTA_Q_SMALL);
if (counts) {
for (i = 0; i < abs; ++i) counts->delta_q[i][1]++;
if (smallval) counts->delta_q[abs][0]++;
}
if (!smallval) {
rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1;
thr = (1 << rem_bits) + 1;
abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr;
}
if (abs) {
sign = aom_read_bit(r, ACCT_STR);
} else {
sign = 1;
}
reduced_delta_qindex = sign ? -abs : abs;
}
return reduced_delta_qindex;
}
#if CONFIG_EXT_DELTA_Q
static int read_delta_lflevel(AV1_COMMON *cm, MACROBLOCKD *xd, aom_reader *r,
#if CONFIG_LOOPFILTER_LEVEL
int lf_id,
#endif
MB_MODE_INFO *const mbmi, int mi_col,
int mi_row) {
FRAME_COUNTS *counts = xd->counts;
int sign, abs, reduced_delta_lflevel = 0;
BLOCK_SIZE bsize = mbmi->sb_type;
const int b_col = mi_col & MAX_MIB_MASK;
const int b_row = mi_row & MAX_MIB_MASK;
const int read_delta_lf_flag = (b_col == 0 && b_row == 0);
int rem_bits, thr;
int i, smallval;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
(void)cm;
if ((bsize != cm->sb_size || mbmi->skip == 0) && read_delta_lf_flag) {
#if CONFIG_LOOPFILTER_LEVEL
if (cm->delta_lf_multi) {
assert(lf_id >= 0 && lf_id < FRAME_LF_COUNT);
abs = aom_read_symbol(r, ec_ctx->delta_lf_multi_cdf[lf_id],
DELTA_LF_PROBS + 1, ACCT_STR);
} else {
abs = aom_read_symbol(r, ec_ctx->delta_lf_cdf, DELTA_LF_PROBS + 1,
ACCT_STR);
}
#else
abs =
aom_read_symbol(r, ec_ctx->delta_lf_cdf, DELTA_LF_PROBS + 1, ACCT_STR);
#endif // CONFIG_LOOPFILTER_LEVEL
smallval = (abs < DELTA_LF_SMALL);
if (counts) {
#if CONFIG_LOOPFILTER_LEVEL
if (cm->delta_lf_multi) {
for (i = 0; i < abs; ++i) counts->delta_lf_multi[lf_id][i][1]++;
if (smallval) counts->delta_lf_multi[lf_id][abs][0]++;
} else {
for (i = 0; i < abs; ++i) counts->delta_lf[i][1]++;
if (smallval) counts->delta_lf[abs][0]++;
}
#else
for (i = 0; i < abs; ++i) counts->delta_lf[i][1]++;
if (smallval) counts->delta_lf[abs][0]++;
#endif // CONFIG_LOOPFILTER_LEVEL
}
if (!smallval) {
rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1;
thr = (1 << rem_bits) + 1;
abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr;
}
if (abs) {
sign = aom_read_bit(r, ACCT_STR);
} else {
sign = 1;
}
reduced_delta_lflevel = sign ? -abs : abs;
}
return reduced_delta_lflevel;
}
#endif
static UV_PREDICTION_MODE read_intra_mode_uv(FRAME_CONTEXT *ec_ctx,
aom_reader *r,
PREDICTION_MODE y_mode) {
const UV_PREDICTION_MODE uv_mode =
#if CONFIG_CFL
aom_read_symbol(r, ec_ctx->uv_mode_cdf[y_mode], UV_INTRA_MODES, ACCT_STR);
#else
read_intra_mode(r, ec_ctx->uv_mode_cdf[y_mode]);
#endif // CONFIG_CFL
return uv_mode;
}
#if CONFIG_CFL
static int read_cfl_alphas(FRAME_CONTEXT *const ec_ctx, aom_reader *r,
int *signs_out) {
const int joint_sign =
aom_read_symbol(r, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS, "cfl:signs");
int idx = 0;
// Magnitudes are only coded for nonzero values
if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
idx = aom_read_symbol(r, cdf_u, CFL_ALPHABET_SIZE, "cfl:alpha_u")
<< CFL_ALPHABET_SIZE_LOG2;
}
if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
idx += aom_read_symbol(r, cdf_v, CFL_ALPHABET_SIZE, "cfl:alpha_v");
}
*signs_out = joint_sign;
return idx;
}
#endif
#if CONFIG_INTERINTRA
static INTERINTRA_MODE read_interintra_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
aom_reader *r, int size_group) {
(void)cm;
const INTERINTRA_MODE ii_mode = (INTERINTRA_MODE)aom_read_symbol(
r, xd->tile_ctx->interintra_mode_cdf[size_group], INTERINTRA_MODES,
ACCT_STR);
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->interintra_mode[size_group][ii_mode];
return ii_mode;
}
#endif // CONFIG_INTERINTRA
static PREDICTION_MODE read_inter_mode(FRAME_CONTEXT *ec_ctx, MACROBLOCKD *xd,
aom_reader *r, int16_t ctx) {
FRAME_COUNTS *counts = xd->counts;
int16_t mode_ctx = ctx & NEWMV_CTX_MASK;
int is_newmv, is_zeromv, is_refmv;
#if CONFIG_NEW_MULTISYMBOL
is_newmv = aom_read_symbol(r, ec_ctx->newmv_cdf[mode_ctx], 2, ACCT_STR) == 0;
#else
is_newmv = aom_read(r, ec_ctx->newmv_prob[mode_ctx], ACCT_STR) == 0;
#endif
if (is_newmv) {
if (counts) ++counts->newmv_mode[mode_ctx][0];
return NEWMV;
}
if (counts) ++counts->newmv_mode[mode_ctx][1];
if (ctx & (1 << ALL_ZERO_FLAG_OFFSET)) return ZEROMV;
mode_ctx = (ctx >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
#if CONFIG_NEW_MULTISYMBOL
is_zeromv =
aom_read_symbol(r, ec_ctx->zeromv_cdf[mode_ctx], 2, ACCT_STR) == 0;
#else
is_zeromv = aom_read(r, ec_ctx->zeromv_prob[mode_ctx], ACCT_STR) == 0;
#endif
if (is_zeromv) {
if (counts) ++counts->zeromv_mode[mode_ctx][0];
return ZEROMV;
}
if (counts) ++counts->zeromv_mode[mode_ctx][1];
mode_ctx = (ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
if (ctx & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6;
if (ctx & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7;
if (ctx & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8;
#if CONFIG_NEW_MULTISYMBOL
is_refmv = aom_read_symbol(r, ec_ctx->refmv_cdf[mode_ctx], 2, ACCT_STR) == 0;
#else
is_refmv = aom_read(r, ec_ctx->refmv_prob[mode_ctx], ACCT_STR) == 0;
#endif
if (is_refmv) {
if (counts) ++counts->refmv_mode[mode_ctx][0];
return NEARESTMV;
} else {
if (counts) ++counts->refmv_mode[mode_ctx][1];
return NEARMV;
}
// Invalid prediction mode.
assert(0);
}
static void read_drl_idx(FRAME_CONTEXT *ec_ctx, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, aom_reader *r) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
mbmi->ref_mv_idx = 0;
if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV
#if CONFIG_COMPOUND_SINGLEREF
|| mbmi->mode == SR_NEW_NEWMV
#endif // CONFIG_COMPOUND_SINGLEREF
) {
int idx;
for (idx = 0; idx < 2; ++idx) {
if (xd->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(xd->ref_mv_stack[ref_frame_type], idx);
#if CONFIG_NEW_MULTISYMBOL
int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR);
#else
int drl_idx = aom_read(r, ec_ctx->drl_prob[drl_ctx], ACCT_STR);
#endif
mbmi->ref_mv_idx = idx + drl_idx;
if (xd->counts) ++xd->counts->drl_mode[drl_ctx][drl_idx];
if (!drl_idx) return;
}
}
}
if (have_nearmv_in_inter_mode(mbmi->mode)) {
int idx;
// Offset the NEARESTMV mode.
// TODO(jingning): Unify the two syntax decoding loops after the NEARESTMV
// mode is factored in.
for (idx = 1; idx < 3; ++idx) {
if (xd->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(xd->ref_mv_stack[ref_frame_type], idx);
#if CONFIG_NEW_MULTISYMBOL
int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR);
#else
int drl_idx = aom_read(r, ec_ctx->drl_prob[drl_ctx], ACCT_STR);
#endif
mbmi->ref_mv_idx = idx + drl_idx - 1;
if (xd->counts) ++xd->counts->drl_mode[drl_ctx][drl_idx];
if (!drl_idx) return;
}
}
}
}
static MOTION_MODE read_motion_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
MODE_INFO *mi, aom_reader *r) {
MB_MODE_INFO *mbmi = &mi->mbmi;
#if CONFIG_NEW_MULTISYMBOL || CONFIG_NCOBMC_ADAPT_WEIGHT
(void)cm;
#endif
const MOTION_MODE last_motion_mode_allowed =
motion_mode_allowed(0, xd->global_motion, xd, mi);
int motion_mode;
FRAME_COUNTS *counts = xd->counts;
if (last_motion_mode_allowed == SIMPLE_TRANSLATION) return SIMPLE_TRANSLATION;
#if CONFIG_NCOBMC_ADAPT_WEIGHT
if (last_motion_mode_allowed == NCOBMC_ADAPT_WEIGHT) {
motion_mode = aom_read_symbol(r, xd->tile_ctx->ncobmc_cdf[mbmi->sb_type],
OBMC_FAMILY_MODES, ACCT_STR);
if (counts) ++counts->ncobmc[mbmi->sb_type][motion_mode];
return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
} else if (last_motion_mode_allowed == OBMC_CAUSAL) {
motion_mode =
aom_read_symbol(r, xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2, ACCT_STR);
if (counts) ++counts->obmc[mbmi->sb_type][motion_mode];
return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
} else {
#else
if (last_motion_mode_allowed == OBMC_CAUSAL) {
#if CONFIG_NEW_MULTISYMBOL
motion_mode =
aom_read_symbol(r, xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2, ACCT_STR);
#else
motion_mode = aom_read(r, cm->fc->obmc_prob[mbmi->sb_type], ACCT_STR);
#endif
if (counts) ++counts->obmc[mbmi->sb_type][motion_mode];
return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
} else {
#endif // CONFIG_NCOBMC_ADAPT_WEIGHT
motion_mode =
aom_read_symbol(r, xd->tile_ctx->motion_mode_cdf[mbmi->sb_type],
MOTION_MODES, ACCT_STR);
if (counts) ++counts->motion_mode[mbmi->sb_type][motion_mode];
return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
}
}
#if CONFIG_NCOBMC_ADAPT_WEIGHT
static void read_ncobmc_mode(MACROBLOCKD *xd, MODE_INFO *mi,
NCOBMC_MODE ncobmc_mode[2], aom_reader *r) {
MB_MODE_INFO *mbmi = &mi->mbmi;
FRAME_COUNTS *counts = xd->counts;
ADAPT_OVERLAP_BLOCK ao_block = adapt_overlap_block_lookup[mbmi->sb_type];
if (mbmi->motion_mode != NCOBMC_ADAPT_WEIGHT) return;
ncobmc_mode[0] = aom_read_symbol(r, xd->tile_ctx->ncobmc_mode_cdf[ao_block],
MAX_NCOBMC_MODES, ACCT_STR);
if (counts) ++counts->ncobmc_mode[ao_block][ncobmc_mode[0]];
if (mi_size_wide[mbmi->sb_type] != mi_size_high[mbmi->sb_type]) {
ncobmc_mode[1] = aom_read_symbol(r, xd->tile_ctx->ncobmc_mode_cdf[ao_block],
MAX_NCOBMC_MODES, ACCT_STR);
if (counts) ++counts->ncobmc_mode[ao_block][ncobmc_mode[1]];
}
}
#endif // CONFIG_NCOBMC_ADAPT_WEIGHT
static PREDICTION_MODE read_inter_compound_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
aom_reader *r, int16_t ctx) {
(void)cm;
const int mode =
aom_read_symbol(r, xd->tile_ctx->inter_compound_mode_cdf[ctx],
INTER_COMPOUND_MODES, ACCT_STR);
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->inter_compound_mode[ctx][mode];
assert(is_inter_compound_mode(NEAREST_NEARESTMV + mode));
return NEAREST_NEARESTMV + mode;
}
#if CONFIG_COMPOUND_SINGLEREF
static PREDICTION_MODE read_inter_singleref_comp_mode(MACROBLOCKD *xd,
aom_reader *r,
int16_t ctx) {
const int mode =
aom_read_symbol(r, xd->tile_ctx->inter_singleref_comp_mode_cdf[ctx],
INTER_SINGLEREF_COMP_MODES, ACCT_STR);
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->inter_singleref_comp_mode[ctx][mode];
assert(is_inter_singleref_comp_mode(SR_NEAREST_NEARMV + mode));
return SR_NEAREST_NEARMV + mode;
}
#endif // CONFIG_COMPOUND_SINGLEREF
static int read_segment_id(aom_reader *r, struct segmentation_probs *segp) {
return aom_read_symbol(r, segp->tree_cdf, MAX_SEGMENTS, ACCT_STR);
}
static void read_tx_size_vartx(AV1_COMMON *cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, FRAME_COUNTS *counts,
TX_SIZE tx_size, int depth, int blk_row,
int blk_col, aom_reader *r) {
#if CONFIG_NEW_MULTISYMBOL
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
(void)cm;
#endif
int is_split = 0;
const int tx_row = blk_row >> 1;
const int tx_col = blk_col >> 1;
const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0);
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0);
int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row,
mbmi->sb_type, tx_size);
TX_SIZE(*const inter_tx_size)
[MAX_MIB_SIZE] =
(TX_SIZE(*)[MAX_MIB_SIZE]) & mbmi->inter_tx_size[tx_row][tx_col];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
assert(tx_size > TX_4X4);
if (depth == MAX_VARTX_DEPTH) {
int idx, idy;
inter_tx_size[0][0] = tx_size;
for (idy = 0; idy < tx_size_high_unit[tx_size] / 2; ++idy)
for (idx = 0; idx < tx_size_wide_unit[tx_size] / 2; ++idx)
inter_tx_size[idy][idx] = tx_size;
mbmi->tx_size = tx_size;
mbmi->min_tx_size = AOMMIN(mbmi->min_tx_size, get_min_tx_size(tx_size));
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
#if CONFIG_NEW_MULTISYMBOL
is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2, ACCT_STR);
#else
is_split = aom_read(r, cm->fc->txfm_partition_prob[ctx], ACCT_STR);
#endif
if (is_split) {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsl = tx_size_wide_unit[sub_txs];
int i;
if (counts) ++counts->txfm_partition[ctx][1];
if (sub_txs == TX_4X4) {
int idx, idy;
inter_tx_size[0][0] = sub_txs;
for (idy = 0; idy < tx_size_high_unit[tx_size] / 2; ++idy)
for (idx = 0; idx < tx_size_wide_unit[tx_size] / 2; ++idx)
inter_tx_size[idy][idx] = inter_tx_size[0][0];
mbmi->tx_size = sub_txs;
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, sub_txs, tx_size);
return;
}
assert(bsl > 0);
for (i = 0; i < 4; ++i) {
int offsetr = blk_row + (i >> 1) * bsl;
int offsetc = blk_col + (i & 0x01) * bsl;
read_tx_size_vartx(cm, xd, mbmi, counts, sub_txs, depth + 1, offsetr,
offsetc, r);
}
} else {
int idx, idy;
inter_tx_size[0][0] = tx_size;
for (idy = 0; idy < tx_size_high_unit[tx_size] / 2; ++idy)
for (idx = 0; idx < tx_size_wide_unit[tx_size] / 2; ++idx)
inter_tx_size[idy][idx] = tx_size;
mbmi->tx_size = tx_size;
mbmi->min_tx_size = AOMMIN(mbmi->min_tx_size, get_min_tx_size(tx_size));
if (counts) ++counts->txfm_partition[ctx][0];
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
}
}
static TX_SIZE read_selected_tx_size(AV1_COMMON *cm, MACROBLOCKD *xd,
int32_t tx_size_cat, aom_reader *r) {
const int ctx = get_tx_size_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
(void)cm;
const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx],
tx_size_cat + 2, ACCT_STR);
const TX_SIZE tx_size = depth_to_tx_size(depth);
assert(!is_rect_tx(tx_size));
return tx_size;
}
static TX_SIZE read_tx_size(AV1_COMMON *cm, MACROBLOCKD *xd, int is_inter,
int allow_select_inter, aom_reader *r) {
const TX_MODE tx_mode = cm->tx_mode;
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) return TX_4X4;
if (block_signals_txsize(bsize)) {
if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) {
const int32_t tx_size_cat = is_inter ? inter_tx_size_cat_lookup[bsize]
: intra_tx_size_cat_lookup[bsize];
const TX_SIZE coded_tx_size =
read_selected_tx_size(cm, xd, tx_size_cat, r);
if (coded_tx_size > max_txsize_lookup[bsize]) {
assert(coded_tx_size == max_txsize_lookup[bsize] + 1);
#if CONFIG_RECT_TX_EXT
if (is_quarter_tx_allowed(xd, &xd->mi[0]->mbmi, is_inter)) {
int quarter_tx;
if (quarter_txsize_lookup[bsize] != max_txsize_lookup[bsize]) {
#if CONFIG_NEW_MULTISYMBOL
quarter_tx =
aom_read_symbol(r, cm->fc->quarter_tx_size_cdf, 2, ACCT_STR);
#else
quarter_tx = aom_read(r, cm->fc->quarter_tx_size_prob, ACCT_STR);
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->quarter_tx_size[quarter_tx];
#endif
} else {
quarter_tx = 1;
}
return quarter_tx ? quarter_txsize_lookup[bsize]
: max_txsize_rect_lookup[bsize];
}
#endif // CONFIG_RECT_TX_EXT
return max_txsize_rect_lookup[bsize];
}
return coded_tx_size;
} else {
return tx_size_from_tx_mode(bsize, tx_mode, is_inter);
}
} else {
#if CONFIG_EXT_TX
assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4));
return max_txsize_rect_lookup[bsize];
#else
return TX_4X4;
#endif // CONFIG_EXT_TX
}
}
static int dec_get_segment_id(const AV1_COMMON *cm, const uint8_t *segment_ids,
int mi_offset, int x_mis, int y_mis) {
int x, y, segment_id = INT_MAX;
for (y = 0; y < y_mis; y++)
for (x = 0; x < x_mis; x++)
segment_id =
AOMMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]);
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
return segment_id;
}
static void set_segment_id(AV1_COMMON *cm, int mi_offset, int x_mis, int y_mis,
int segment_id) {
int x, y;
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
for (y = 0; y < y_mis; y++)
for (x = 0; x < x_mis; x++)
cm->current_frame_seg_map[mi_offset + y * cm->mi_cols + x] = segment_id;
}
static int read_intra_segment_id(AV1_COMMON *const cm, MACROBLOCKD *const xd,
int mi_offset, int x_mis, int y_mis,
aom_reader *r) {
struct segmentation *const seg = &cm->seg;
FRAME_COUNTS *counts = xd->counts;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
struct segmentation_probs *const segp = &ec_ctx->seg;
int segment_id;
if (!seg->enabled) return 0; // Default for disabled segmentation
assert(seg->update_map && !seg->temporal_update);
segment_id = read_segment_id(r, segp);
if (counts) ++counts->seg.tree_total[segment_id];
set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id);
return segment_id;
}
static void copy_segment_id(const AV1_COMMON *cm,
const uint8_t *last_segment_ids,
uint8_t *current_segment_ids, int mi_offset,
int x_mis, int y_mis) {
int x, y;
for (y = 0; y < y_mis; y++)
for (x = 0; x < x_mis; x++)
current_segment_ids[mi_offset + y * cm->mi_cols + x] =
last_segment_ids ? last_segment_ids[mi_offset + y * cm->mi_cols + x]
: 0;
}
static int read_inter_segment_id(AV1_COMMON *const cm, MACROBLOCKD *const xd,
int mi_row, int mi_col, aom_reader *r) {
struct segmentation *const seg = &cm->seg;
FRAME_COUNTS *counts = xd->counts;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
struct segmentation_probs *const segp = &ec_ctx->seg;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int predicted_segment_id, segment_id;
const int mi_offset = mi_row * cm->mi_cols + mi_col;
const int bw = mi_size_wide[mbmi->sb_type];
const int bh = mi_size_high[mbmi->sb_type];
// TODO(slavarnway): move x_mis, y_mis into xd ?????
const int x_mis = AOMMIN(cm->mi_cols - mi_col, bw);
const int y_mis = AOMMIN(cm->mi_rows - mi_row, bh);
if (!seg->enabled) return 0; // Default for disabled segmentation
predicted_segment_id = cm->last_frame_seg_map
? dec_get_segment_id(cm, cm->last_frame_seg_map,
mi_offset, x_mis, y_mis)
: 0;
if (!seg->update_map) {
copy_segment_id(cm, cm->last_frame_seg_map, cm->current_frame_seg_map,
mi_offset, x_mis, y_mis);
return predicted_segment_id;
}
if (seg->temporal_update) {
const int ctx = av1_get_pred_context_seg_id(xd);
#if CONFIG_NEW_MULTISYMBOL
aom_cdf_prob *pred_cdf = segp->pred_cdf[ctx];
mbmi->seg_id_predicted = aom_read_symbol(r, pred_cdf, 2, ACCT_STR);
#else
const aom_prob pred_prob = segp->pred_probs[ctx];
mbmi->seg_id_predicted = aom_read(r, pred_prob, ACCT_STR);
#endif
if (counts) ++counts->seg.pred[ctx][mbmi->seg_id_predicted];
if (mbmi->seg_id_predicted) {
segment_id = predicted_segment_id;
} else {
segment_id = read_segment_id(r, segp);
if (counts) ++counts->seg.tree_mispred[segment_id];
}
} else {
segment_id = read_segment_id(r, segp);
if (counts) ++counts->seg.tree_total[segment_id];
}
set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id);
return segment_id;
}
static int read_skip(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
aom_reader *r) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int ctx = av1_get_skip_context(xd);
#if CONFIG_NEW_MULTISYMBOL
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const int skip = aom_read_symbol(r, ec_ctx->skip_cdfs[ctx], 2, ACCT_STR);
#else
const int skip = aom_read(r, cm->fc->skip_probs[ctx], ACCT_STR);
#endif
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->skip[ctx][skip];
return skip;
}
}
#if CONFIG_PALETTE_DELTA_ENCODING
// Merge the sorted list of cached colors(cached_colors[0...n_cached_colors-1])
// and the sorted list of transmitted colors(colors[n_cached_colors...n-1]) into
// one single sorted list(colors[...]).
static void merge_colors(uint16_t *colors, uint16_t *cached_colors,
int n_colors, int n_cached_colors) {
if (n_cached_colors == 0) return;
int cache_idx = 0, trans_idx = n_cached_colors;
for (int i = 0; i < n_colors; ++i) {
if (cache_idx < n_cached_colors &&
(trans_idx >= n_colors ||
cached_colors[cache_idx] <= colors[trans_idx])) {
colors[i] = cached_colors[cache_idx++];
} else {
assert(trans_idx < n_colors);
colors[i] = colors[trans_idx++];
}
}
}
static void read_palette_colors_y(MACROBLOCKD *const xd, int bit_depth,
PALETTE_MODE_INFO *const pmi, aom_reader *r) {
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
uint16_t cached_colors[PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
const int n = pmi->palette_size[0];
int idx = 0;
for (int i = 0; i < n_cache && idx < n; ++i)
if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i];
if (idx < n) {
const int n_cached_colors = idx;
pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR);
if (idx < n) {
const int min_bits = bit_depth - 3;
int bits = min_bits + aom_read_literal(r, 2, ACCT_STR);
int range = (1 << bit_depth) - pmi->palette_colors[idx - 1] - 1;
for (; idx < n; ++idx) {
assert(range >= 0);
const int delta = aom_read_literal(r, bits, ACCT_STR) + 1;
pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta,
0, (1 << bit_depth) - 1);
range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]);
bits = AOMMIN(bits, av1_ceil_log2(range));
}
}
merge_colors(pmi->palette_colors, cached_colors, n, n_cached_colors);
} else {
memcpy(pmi->palette_colors, cached_colors, n * sizeof(cached_colors[0]));
}
}
static void read_palette_colors_uv(MACROBLOCKD *const xd, int bit_depth,
PALETTE_MODE_INFO *const pmi,
aom_reader *r) {
const int n = pmi->palette_size[1];
// U channel colors.
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
uint16_t cached_colors[PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
int idx = 0;
for (int i = 0; i < n_cache && idx < n; ++i)
if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i];
if (idx < n) {
const int n_cached_colors = idx;
idx += PALETTE_MAX_SIZE;
pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR);
if (idx < PALETTE_MAX_SIZE + n) {
const int min_bits = bit_depth - 3;
int bits = min_bits + aom_read_literal(r, 2, ACCT_STR);
int range = (1 << bit_depth) - pmi->palette_colors[idx - 1];
for (; idx < PALETTE_MAX_SIZE + n; ++idx) {
assert(range >= 0);
const int delta = aom_read_literal(r, bits, ACCT_STR);
pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta,
0, (1 << bit_depth) - 1);
range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]);
bits = AOMMIN(bits, av1_ceil_log2(range));
}
}
merge_colors(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors, n,
n_cached_colors);
} else {
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors,
n * sizeof(cached_colors[0]));
}
// V channel colors.
if (aom_read_bit(r, ACCT_STR)) { // Delta encoding.
const int min_bits_v = bit_depth - 4;
const int max_val = 1 << bit_depth;
int bits = min_bits_v + aom_read_literal(r, 2, ACCT_STR);
pmi->palette_colors[2 * PALETTE_MAX_SIZE] =
aom_read_literal(r, bit_depth, ACCT_STR);
for (int i = 1; i < n; ++i) {
int delta = aom_read_literal(r, bits, ACCT_STR);
if (delta && aom_read_bit(r, ACCT_STR)) delta = -delta;
int val = (int)pmi->palette_colors[2 * PALETTE_MAX_SIZE + i - 1] + delta;
if (val < 0) val += max_val;
if (val >= max_val) val -= max_val;
pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] = val;
}
} else {
for (int i = 0; i < n; ++i) {
pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] =
aom_read_literal(r, bit_depth, ACCT_STR);
}
}
}
#endif // CONFIG_PALETTE_DELTA_ENCODING
static void read_palette_mode_info(AV1_COMMON *const cm, MACROBLOCKD *const xd,
aom_reader *r) {
MODE_INFO *const mi = xd->mi[0];
MB_MODE_INFO *const mbmi = &mi->mbmi;
const MODE_INFO *const above_mi = xd->above_mi;
const MODE_INFO *const left_mi = xd->left_mi;
const BLOCK_SIZE bsize = mbmi->sb_type;
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_LARGEST);
const int block_palette_idx = bsize - BLOCK_8X8;
int modev;
if (mbmi->mode == DC_PRED) {
int palette_y_mode_ctx = 0;
if (above_mi) {
palette_y_mode_ctx +=
(above_mi->mbmi.palette_mode_info.palette_size[0] > 0);
}
if (left_mi) {
palette_y_mode_ctx +=
(left_mi->mbmi.palette_mode_info.palette_size[0] > 0);
}
#if CONFIG_NEW_MULTISYMBOL
modev = aom_read_symbol(
r,
xd->tile_ctx->palette_y_mode_cdf[block_palette_idx][palette_y_mode_ctx],
2, ACCT_STR);
#else
modev = aom_read(
r,
av1_default_palette_y_mode_prob[block_palette_idx][palette_y_mode_ctx],
ACCT_STR);
#endif
if (modev) {
pmi->palette_size[0] =
aom_read_symbol(r,
xd->tile_ctx->palette_y_size_cdf[block_palette_idx],
PALETTE_SIZES, ACCT_STR) +
2;
#if CONFIG_PALETTE_DELTA_ENCODING
read_palette_colors_y(xd, cm->bit_depth, pmi, r);
#else
for (int i = 0; i < pmi->palette_size[0]; ++i)
pmi->palette_colors[i] = aom_read_literal(r, cm->bit_depth, ACCT_STR);
#endif // CONFIG_PALETTE_DELTA_ENCODING
}
}
if (mbmi->uv_mode == UV_DC_PRED) {
const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
#if CONFIG_NEW_MULTISYMBOL
modev = aom_read_symbol(
r, xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2, ACCT_STR);
#else
modev = aom_read(r, av1_default_palette_uv_mode_prob[palette_uv_mode_ctx],
ACCT_STR);
#endif
if (modev) {
pmi->palette_size[1] =
aom_read_symbol(r,
xd->tile_ctx->palette_uv_size_cdf[block_palette_idx],
PALETTE_SIZES, ACCT_STR) +
2;
#if CONFIG_PALETTE_DELTA_ENCODING
read_palette_colors_uv(xd, cm->bit_depth, pmi, r);
#else
for (int i = 0; i < pmi->palette_size[1]; ++i) {
pmi->palette_colors[PALETTE_MAX_SIZE + i] =
aom_read_literal(r, cm->bit_depth, ACCT_STR);
pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] =
aom_read_literal(r, cm->bit_depth, ACCT_STR);
}
#endif // CONFIG_PALETTE_DELTA_ENCODING
}
}
}
#if CONFIG_FILTER_INTRA
static void read_filter_intra_mode_info(AV1_COMMON *const cm,
MACROBLOCKD *const xd, aom_reader *r) {
MODE_INFO *const mi = xd->mi[0];
MB_MODE_INFO *const mbmi = &mi->mbmi;
FRAME_COUNTS *counts = xd->counts;
FILTER_INTRA_MODE_INFO *filter_intra_mode_info =
&mbmi->filter_intra_mode_info;
if (mbmi->mode == DC_PRED && mbmi->palette_mode_info.palette_size[0] == 0) {
filter_intra_mode_info->use_filter_intra_mode[0] =
aom_read(r, cm->fc->filter_intra_probs[0], ACCT_STR);
if (filter_intra_mode_info->use_filter_intra_mode[0]) {
filter_intra_mode_info->filter_intra_mode[0] =
aom_read_symbol(r, xd->tile_ctx->filter_intra_mode_cdf[0],
FILTER_INTRA_MODES, ACCT_STR);
}
if (counts) {
++counts
->filter_intra[0][filter_intra_mode_info->use_filter_intra_mode[0]];
}
}
}
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
#if CONFIG_EXT_INTRA_MOD
static int read_angle_delta(aom_reader *r, aom_cdf_prob *cdf) {
const int sym = aom_read_symbol(r, cdf, 2 * MAX_ANGLE_DELTA + 1, ACCT_STR);
return sym - MAX_ANGLE_DELTA;
}
#endif // CONFIG_EXT_INTRA_MOD
static void read_intra_angle_info(MACROBLOCKD *const xd, aom_reader *r) {
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
#if CONFIG_EXT_INTRA_MOD
FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
#endif // CONFIG_EXT_INTRA_MOD
mbmi->angle_delta[0] = 0;
mbmi->angle_delta[1] = 0;
if (!av1_use_angle_delta(bsize)) return;
if (av1_is_directional_mode(mbmi->mode, bsize)) {
#if CONFIG_EXT_INTRA_MOD
mbmi->angle_delta[0] =
read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->mode - V_PRED]);
#else
mbmi->angle_delta[0] =
av1_read_uniform(r, 2 * MAX_ANGLE_DELTA + 1) - MAX_ANGLE_DELTA;
#endif // CONFIG_EXT_INTRA_MOD
}
if (av1_is_directional_mode(get_uv_mode(mbmi->uv_mode), bsize)) {
#if CONFIG_EXT_INTRA_MOD
mbmi->angle_delta[1] =
read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->uv_mode - V_PRED]);
#else
mbmi->angle_delta[1] =
av1_read_uniform(r, 2 * MAX_ANGLE_DELTA + 1) - MAX_ANGLE_DELTA;
#endif // CONFIG_EXT_INTRA_MOD
}
}
#endif // CONFIG_EXT_INTRA
void av1_read_tx_type(const AV1_COMMON *const cm, MACROBLOCKD *xd,
#if CONFIG_TXK_SEL
int blk_row, int blk_col, int block, int plane,
TX_SIZE tx_size,
#endif
aom_reader *r) {
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const int inter_block = is_inter_block(mbmi);
#if !CONFIG_TXK_SEL
const TX_SIZE tx_size = inter_block ? mbmi->min_tx_size : mbmi->tx_size;
#endif // !CONFIG_TXK_SEL
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
#if !CONFIG_TXK_SEL
TX_TYPE *tx_type = &mbmi->tx_type;
#else
// only y plane's tx_type is transmitted
if (plane > 0) return;
(void)block;
TX_TYPE *tx_type = &mbmi->txk_type[(blk_row << 4) + blk_col];
#endif
#if CONFIG_LGT_FROM_PRED
mbmi->use_lgt = 0;
#endif
if (!FIXED_TX_TYPE) {
#if CONFIG_EXT_TX
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
if (get_ext_tx_types(tx_size, mbmi->sb_type, inter_block,
cm->reduced_tx_set_used) > 1 &&
((!cm->seg.enabled && cm->base_qindex > 0) ||
(cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
!mbmi->skip &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
const TxSetType tx_set_type = get_ext_tx_set_type(
tx_size, mbmi->sb_type, inter_block, cm->reduced_tx_set_used);
const int eset = get_ext_tx_set(tx_size, mbmi->sb_type, inter_block,
cm->reduced_tx_set_used);
// eset == 0 should correspond to a set with only DCT_DCT and
// there is no need to read the tx_type
assert(eset != 0);
#if !CONFIG_LGT_FROM_PRED
if (inter_block) {
*tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
r, ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
} else if (ALLOW_INTRA_EXT_TX) {
#if CONFIG_FILTER_INTRA
PREDICTION_MODE intra_dir;
if (mbmi->filter_intra_mode_info.use_filter_intra_mode[0])
intra_dir = fimode_to_intradir[mbmi->filter_intra_mode_info
.filter_intra_mode[0]];
else
intra_dir = mbmi->mode;
*tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
#else
*tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][mbmi->mode],
av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
#endif
}
#else
// only signal tx_type when lgt is not allowed or not selected
if (inter_block) {
if (LGT_FROM_PRED_INTER) {
if (is_lgt_allowed(mbmi->mode, tx_size) && !cm->reduced_tx_set_used) {
mbmi->use_lgt =
aom_read(r, ec_ctx->inter_lgt_prob[square_tx_size], ACCT_STR);
#if CONFIG_ENTROPY_STATS
if (counts) ++counts->inter_lgt[square_tx_size][mbmi->use_lgt];
#endif // CONFIG_ENTROPY_STATS
}
if (!mbmi->use_lgt) {
*tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
r, ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
#if CONFIG_ENTROPY_STATS
if (counts) ++counts->inter_ext_tx[eset][square_tx_size][*tx_type];
#endif // CONFIG_ENTROPY_STATS
} else {
*tx_type = DCT_DCT; // assign a dummy tx_type
}
} else {
*tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
r, ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
#if CONFIG_ENTROPY_STATS
if (counts) ++counts->inter_ext_tx[eset][square_tx_size][*tx_type];
#endif // CONFIG_ENTROPY_STATS
}
} else if (ALLOW_INTRA_EXT_TX) {
if (LGT_FROM_PRED_INTRA) {
if (is_lgt_allowed(mbmi->mode, tx_size) && !cm->reduced_tx_set_used) {
mbmi->use_lgt =
aom_read(r, ec_ctx->intra_lgt_prob[square_tx_size][mbmi->mode],
ACCT_STR);
#if CONFIG_ENTROPY_STATS
if (counts)
++counts->intra_lgt[square_tx_size][mbmi->mode][mbmi->use_lgt];
#endif // CONFIG_ENTROPY_STATS
}
if (!mbmi->use_lgt) {
*tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][mbmi->mode],
av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
#if CONFIG_ENTROPY_STATS
if (counts)
++counts
->intra_ext_tx[eset][square_tx_size][mbmi->mode][*tx_type];
#endif // CONFIG_ENTROPY_STATS
} else {
*tx_type = DCT_DCT; // assign a dummy tx_type
}
} else {
*tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][mbmi->mode],
av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
#if CONFIG_ENTROPY_STATS
if (counts)
++counts->intra_ext_tx[eset][square_tx_size][mbmi->mode][*tx_type];
#endif // CONFIG_ENTROPY_STATS
}
}
#endif // CONFIG_LGT_FROM_PRED
} else {
*tx_type = DCT_DCT;
}
#else // CONFIG_EXT_TX
if (tx_size < TX_32X32 &&
((!cm->seg.enabled && cm->base_qindex > 0) ||
(cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
!mbmi->skip &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
#if CONFIG_ENTROPY_STATS
FRAME_COUNTS *counts = xd->counts;
#endif // CONFIG_ENTROPY_STATS
if (inter_block) {
*tx_type = av1_ext_tx_inv[aom_read_symbol(
r, ec_ctx->inter_ext_tx_cdf[tx_size], TX_TYPES, ACCT_STR)];
#if CONFIG_ENTROPY_STATS
if (counts) ++counts->inter_ext_tx[tx_size][*tx_type];
#endif // CONFIG_ENTROPY_STATS
} else {
const TX_TYPE tx_type_nom = intra_mode_to_tx_type_context[mbmi->mode];
*tx_type = av1_ext_tx_inv[aom_read_symbol(
r, ec_ctx->intra_ext_tx_cdf[tx_size][tx_type_nom], TX_TYPES,
ACCT_STR)];
#if CONFIG_ENTROPY_STATS
if (counts) ++counts->intra_ext_tx[tx_size][tx_type_nom][*tx_type];
#endif // CONFIG_ENTROPY_STATS
}
} else {
*tx_type = DCT_DCT;
}
#endif // CONFIG_EXT_TX
}
#if FIXED_TX_TYPE
assert(mbmi->tx_type == DCT_DCT);
#endif
}
#if CONFIG_INTRABC
static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref,
nmv_context *ctx, nmv_context_counts *counts,
MvSubpelPrecision precision);
static INLINE int is_mv_valid(const MV *mv);
static INLINE int assign_dv(AV1_COMMON *cm, MACROBLOCKD *xd, int_mv *mv,
const int_mv *ref_mv, int mi_row, int mi_col,
BLOCK_SIZE bsize, aom_reader *r) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
(void)cm;
FRAME_COUNTS *counts = xd->counts;
nmv_context_counts *const dv_counts = counts ? &counts->dv : NULL;
read_mv(r, &mv->as_mv, &ref_mv->as_mv, &ec_ctx->ndvc, dv_counts,
MV_SUBPEL_NONE);
int valid = is_mv_valid(&mv->as_mv) &&
is_dv_valid(mv->as_mv, &xd->tile, mi_row, mi_col, bsize);
return valid;
}
#endif // CONFIG_INTRABC
#if CONFIG_INTRABC
static void read_intrabc_info(AV1_COMMON *const cm, MACROBLOCKD *const xd,
int mi_row, int mi_col, aom_reader *r) {
MODE_INFO *const mi = xd->mi[0];
MB_MODE_INFO *const mbmi = &mi->mbmi;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
mbmi->use_intrabc = aom_read_symbol(r, ec_ctx->intrabc_cdf, 2, ACCT_STR);
if (mbmi->use_intrabc) {
const BLOCK_SIZE bsize = mbmi->sb_type;
const int width = block_size_wide[bsize] >> tx_size_wide_log2[0];
const int height = block_size_high[bsize] >> tx_size_high_log2[0];
int idx, idy;
if ((cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
!xd->lossless[mbmi->segment_id] && !mbmi->skip)) {
const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
int init_depth =
(height != width) ? RECT_VARTX_DEPTH_INIT : SQR_VARTX_DEPTH_INIT;
mbmi->min_tx_size = TX_SIZES_ALL;
for (idy = 0; idy < height; idy += bh) {
for (idx = 0; idx < width; idx += bw) {
read_tx_size_vartx(cm, xd, mbmi, xd->counts, max_tx_size, init_depth,
idy, idx, r);
}
}
} else {
mbmi->tx_size = read_tx_size(cm, xd, 1, !mbmi->skip, r);
for (idy = 0; idy < height; ++idy)
for (idx = 0; idx < width; ++idx)
mbmi->inter_tx_size[idy >> 1][idx >> 1] = mbmi->tx_size;
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, mbmi->skip, xd);
}
mbmi->mode = mbmi->uv_mode = UV_DC_PRED;
mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES];
int_mv ref_mvs[MAX_MV_REF_CANDIDATES];
av1_find_mv_refs(cm, xd, mi, INTRA_FRAME, &xd->ref_mv_count[INTRA_FRAME],
xd->ref_mv_stack[INTRA_FRAME], NULL, ref_mvs, mi_row,
mi_col, NULL, NULL, inter_mode_ctx);
int_mv nearestmv, nearmv;
#if CONFIG_AMVR
av1_find_best_ref_mvs(0, ref_mvs, &nearestmv, &nearmv, 0);
#else
av1_find_best_ref_mvs(0, ref_mvs, &nearestmv, &nearmv);
#endif
int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv;
if (dv_ref.as_int == 0) av1_find_ref_dv(&dv_ref, mi_row, mi_col);
xd->corrupted |=
!assign_dv(cm, xd, &mbmi->mv[0], &dv_ref, mi_row, mi_col, bsize, r);
#if CONFIG_EXT_TX && !CONFIG_TXK_SEL
av1_read_tx_type(cm, xd, r);
#endif // CONFIG_EXT_TX && !CONFIG_TXK_SEL
}
}
#endif // CONFIG_INTRABC
static void read_intra_frame_mode_info(AV1_COMMON *const cm,
MACROBLOCKD *const xd, int mi_row,
int mi_col, aom_reader *r) {
MODE_INFO *const mi = xd->mi[0];
MB_MODE_INFO *const mbmi = &mi->mbmi;
const MODE_INFO *above_mi = xd->above_mi;
const MODE_INFO *left_mi = xd->left_mi;
const BLOCK_SIZE bsize = mbmi->sb_type;
int i;
const int mi_offset = mi_row * cm->mi_cols + mi_col;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
// TODO(slavarnway): move x_mis, y_mis into xd ?????
const int x_mis = AOMMIN(cm->mi_cols - mi_col, bw);
const int y_mis = AOMMIN(cm->mi_rows - mi_row, bh);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
mbmi->segment_id = read_intra_segment_id(cm, xd, mi_offset, x_mis, y_mis, r);
mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r);
if (cm->delta_q_present_flag) {
xd->current_qindex =
xd->prev_qindex +
read_delta_qindex(cm, xd, r, mbmi, mi_col, mi_row) * cm->delta_q_res;
/* Normative: Clamp to [1,MAXQ] to not interfere with lossless mode */
xd->current_qindex = clamp(xd->current_qindex, 1, MAXQ);
xd->prev_qindex = xd->current_qindex;
#if CONFIG_EXT_DELTA_Q
if (cm->delta_lf_present_flag) {
#if CONFIG_LOOPFILTER_LEVEL
if (cm->delta_lf_multi) {
for (int lf_id = 0; lf_id < FRAME_LF_COUNT; ++lf_id) {
const int tmp_lvl =
xd->prev_delta_lf[lf_id] +
read_delta_lflevel(cm, xd, r, lf_id, mbmi, mi_col, mi_row) *
cm->delta_lf_res;
mbmi->curr_delta_lf[lf_id] = xd->curr_delta_lf[lf_id] =
clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
xd->prev_delta_lf[lf_id] = xd->curr_delta_lf[lf_id];
}
} else {
const int tmp_lvl =
xd->prev_delta_lf_from_base +
read_delta_lflevel(cm, xd, r, -1, mbmi, mi_col, mi_row) *
cm->delta_lf_res;
mbmi->current_delta_lf_from_base = xd->current_delta_lf_from_base =
clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
xd->prev_delta_lf_from_base = xd->current_delta_lf_from_base;
}
#else
const int current_delta_lf_from_base =
xd->prev_delta_lf_from_base +
read_delta_lflevel(cm, xd, r, mbmi, mi_col, mi_row) *
cm->delta_lf_res;
mbmi->current_delta_lf_from_base = xd->current_delta_lf_from_base =
clamp(current_delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
xd->prev_delta_lf_from_base = xd->current_delta_lf_from_base;
#endif // CONFIG_LOOPFILTER_LEVEL
}
#endif
}
mbmi->current_q_index = xd->current_qindex;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE_FRAME;
#if CONFIG_INTRABC
if (cm->allow_screen_content_tools) {
xd->above_txfm_context =
cm->above_txfm_context + (mi_col << TX_UNIT_WIDE_LOG2);
xd->left_txfm_context = xd->left_txfm_context_buffer +
((mi_row & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2);
}
if (av1_allow_intrabc(bsize, cm)) {
read_intrabc_info(cm, xd, mi_row, mi_col, r);
if (is_intrabc_block(mbmi)) return;
}
#endif // CONFIG_INTRABC
mbmi->tx_size = read_tx_size(cm, xd, 0, 1, r);
#if CONFIG_INTRABC
if (cm->allow_screen_content_tools)
set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, mbmi->skip, xd);
#endif // CONFIG_INTRABC
(void)i;
mbmi->mode =
read_intra_mode(r, get_y_mode_cdf(ec_ctx, mi, above_mi, left_mi, 0));
if (is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y)) {
#if CONFIG_CFL
xd->cfl->is_chroma_reference = 1;
#endif // CONFIG_CFL
mbmi->uv_mode = read_intra_mode_uv(ec_ctx, r, mbmi->mode);
#if CONFIG_CFL
if (mbmi->uv_mode == UV_CFL_PRED) {
mbmi->cfl_alpha_idx = read_cfl_alphas(ec_ctx, r, &mbmi->cfl_alpha_signs);
xd->cfl->store_y = 1;
} else {
xd->cfl->store_y = 0;
}
#endif // CONFIG_CFL
} else {
// Avoid decoding angle_info if there is is no chroma prediction
mbmi->uv_mode = UV_DC_PRED;
#if CONFIG_CFL
xd->cfl->is_chroma_reference = 0;
xd->cfl->store_y = 1;
#endif
}
#if CONFIG_EXT_INTRA
read_intra_angle_info(xd, r);
#endif // CONFIG_EXT_INTRA
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
if (av1_allow_palette(cm->allow_screen_content_tools, bsize))
read_palette_mode_info(cm, xd, r);
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
read_filter_intra_mode_info(cm, xd, r);
#endif // CONFIG_FILTER_INTRA
#if !CONFIG_TXK_SEL
av1_read_tx_type(cm, xd, r);
#endif // !CONFIG_TXK_SEL
}
static int read_mv_component(aom_reader *r, nmv_component *mvcomp,
#if CONFIG_INTRABC || CONFIG_AMVR
int use_subpel,
#endif // CONFIG_INTRABC || CONFIG_AMVR
int usehp) {
int mag, d, fr, hp;
#if CONFIG_NEW_MULTISYMBOL
const int sign = aom_read_bit(r, ACCT_STR);
#else
const int sign = aom_read(r, mvcomp->sign, ACCT_STR);
#endif
const int mv_class =
aom_read_symbol(r, mvcomp->class_cdf, MV_CLASSES, ACCT_STR);
const int class0 = mv_class == MV_CLASS_0;
// Integer part
if (class0) {
#if CONFIG_NEW_MULTISYMBOL
d = aom_read_symbol(r, mvcomp->class0_cdf, CLASS0_SIZE, ACCT_STR);
#else
d = aom_read(r, mvcomp->class0[0], ACCT_STR);
#endif
mag = 0;
} else {
int i;
const int n = mv_class + CLASS0_BITS - 1; // number of bits
d = 0;
#if CONFIG_NEW_MULTISYMBOL
for (i = 0; i < n; ++i)
d |= aom_read_symbol(r, mvcomp->bits_cdf[(i + 1) / 2], 2, ACCT_STR) << i;
#else
for (i = 0; i < n; ++i) d |= aom_read(r, mvcomp->bits[i], ACCT_STR) << i;
#endif
mag = CLASS0_SIZE << (mv_class + 2);
}
#if CONFIG_INTRABC || CONFIG_AMVR
if (use_subpel) {
#endif // CONFIG_INTRABC || CONFIG_AMVR
// Fractional part
fr = aom_read_symbol(r, class0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf,
MV_FP_SIZE, ACCT_STR);
// High precision part (if hp is not used, the default value of the hp is 1)
#if CONFIG_NEW_MULTISYMBOL
hp = usehp ? aom_read_symbol(
r, class0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf, 2,
ACCT_STR)
: 1;
#else
hp = usehp ? aom_read(r, class0 ? mvcomp->class0_hp : mvcomp->hp, ACCT_STR)
: 1;
#endif
#if CONFIG_INTRABC || CONFIG_AMVR
} else {
fr = 3;
hp = 1;
}
#endif // CONFIG_INTRABC || CONFIG_AMVR
// Result
mag += ((d << 3) | (fr << 1) | hp) + 1;
return sign ? -mag : mag;
}
static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref,
nmv_context *ctx, nmv_context_counts *counts,
MvSubpelPrecision precision) {
MV_JOINT_TYPE joint_type;
MV diff = { 0, 0 };
joint_type =
(MV_JOINT_TYPE)aom_read_symbol(r, ctx->joint_cdf, MV_JOINTS, ACCT_STR);
if (mv_joint_vertical(joint_type))
diff.row = read_mv_component(r, &ctx->comps[0],
#if CONFIG_INTRABC || CONFIG_AMVR
precision > MV_SUBPEL_NONE,
#endif // CONFIG_INTRABC || CONFIG_AMVR
precision > MV_SUBPEL_LOW_PRECISION);
if (mv_joint_horizontal(joint_type))
diff.col = read_mv_component(r, &ctx->comps[1],
#if CONFIG_INTRABC || CONFIG_AMVR
precision > MV_SUBPEL_NONE,
#endif // CONFIG_INTRABC || CONFIG_AMVR
precision > MV_SUBPEL_LOW_PRECISION);
av1_inc_mv(&diff, counts, precision);
mv->row = ref->row + diff.row;
mv->col = ref->col + diff.col;
}
static REFERENCE_MODE read_block_reference_mode(AV1_COMMON *cm,
const MACROBLOCKD *xd,
aom_reader *r) {
if (!is_comp_ref_allowed(xd->mi[0]->mbmi.sb_type)) return SINGLE_REFERENCE;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
const int ctx = av1_get_reference_mode_context(cm, xd);
#if CONFIG_NEW_MULTISYMBOL
const REFERENCE_MODE mode = (REFERENCE_MODE)aom_read_symbol(
r, xd->tile_ctx->comp_inter_cdf[ctx], 2, ACCT_STR);
#else
const REFERENCE_MODE mode =
(REFERENCE_MODE)aom_read(r, cm->fc->comp_inter_prob[ctx], ACCT_STR);
#endif
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->comp_inter[ctx][mode];
return mode; // SINGLE_REFERENCE or COMPOUND_REFERENCE
} else {
return cm->reference_mode;
}
}
#if CONFIG_NEW_MULTISYMBOL
#define READ_REF_BIT(pname) \
aom_read_symbol(r, av1_get_pred_cdf_##pname(cm, xd), 2, ACCT_STR)
#define READ_REF_BIT2(pname) \
aom_read_symbol(r, av1_get_pred_cdf_##pname(xd), 2, ACCT_STR)
#else
#define READ_REF_BIT(pname) \
aom_read(r, av1_get_pred_prob_##pname(cm, xd), ACCT_STR)
#define READ_REF_BIT2(pname) \
aom_read(r, av1_get_pred_prob_##pname(cm, xd), ACCT_STR)
#endif
#if CONFIG_EXT_COMP_REFS
static COMP_REFERENCE_TYPE read_comp_reference_type(AV1_COMMON *cm,
const MACROBLOCKD *xd,
aom_reader *r) {
const int ctx = av1_get_comp_reference_type_context(xd);
#if USE_UNI_COMP_REFS
COMP_REFERENCE_TYPE comp_ref_type;
#if CONFIG_VAR_REFS
if ((L_OR_L2(cm) || L3_OR_G(cm)) && BWD_OR_ALT(cm)) {
if (L_AND_L2(cm) || L_AND_L3(cm) || L_AND_G(cm) || BWD_AND_ALT(cm)) {
#endif // CONFIG_VAR_REFS
#if CONFIG_NEW_MULTISYMBOL
(void)cm;
comp_ref_type = (COMP_REFERENCE_TYPE)aom_read_symbol(
r, xd->tile_ctx->comp_ref_type_cdf[ctx], 2, ACCT_STR);
#else
comp_ref_type = (COMP_REFERENCE_TYPE)aom_read(
r, cm->fc->comp_ref_type_prob[ctx], ACCT_STR);
#endif
#if CONFIG_VAR_REFS
} else {
comp_ref_type = BIDIR_COMP_REFERENCE;
}
} else {
comp_ref_type = UNIDIR_COMP_REFERENCE;
}
#endif // CONFIG_VAR_REFS
#else // !USE_UNI_COMP_REFS
// TODO(zoeliu): Temporarily turn off uni-directional comp refs
const COMP_REFERENCE_TYPE comp_ref_type = BIDIR_COMP_REFERENCE;
#endif // USE_UNI_COMP_REFS
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->comp_ref_type[ctx][comp_ref_type];
return comp_ref_type; // UNIDIR_COMP_REFERENCE or BIDIR_COMP_REFERENCE
}
#endif // CONFIG_EXT_COMP_REFS
// Read the referncence frame
static void read_ref_frames(AV1_COMMON *const cm, MACROBLOCKD *const xd,
aom_reader *r, int segment_id,
MV_REFERENCE_FRAME ref_frame[2]) {
FRAME_COUNTS *counts = xd->counts;
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
ref_frame[0] = (MV_REFERENCE_FRAME)get_segdata(&cm->seg, segment_id,
SEG_LVL_REF_FRAME);
ref_frame[1] = NONE_FRAME;
}
#if CONFIG_SEGMENT_ZEROMV
else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
segfeature_active(&cm->seg, segment_id, SEG_LVL_ZEROMV))
#else
else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP))
#endif
{
ref_frame[0] = LAST_FRAME;
ref_frame[1] = NONE_FRAME;
} else {
const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r);
// FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding
if (mode == COMPOUND_REFERENCE) {
#if CONFIG_EXT_COMP_REFS
const COMP_REFERENCE_TYPE comp_ref_type =
read_comp_reference_type(cm, xd, r);
#if !USE_UNI_COMP_REFS
// TODO(zoeliu): Temporarily turn off uni-directional comp refs
assert(comp_ref_type == BIDIR_COMP_REFERENCE);
#endif // !USE_UNI_COMP_REFS
if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
const int ctx = av1_get_pred_context_uni_comp_ref_p(xd);
int bit;
#if CONFIG_VAR_REFS
if ((L_AND_L2(cm) || L_AND_L3(cm) || L_AND_G(cm)) && BWD_AND_ALT(cm))
#endif // CONFIG_VAR_REFS
bit = READ_REF_BIT2(uni_comp_ref_p);
#if CONFIG_VAR_REFS
else
bit = BWD_AND_ALT(cm);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->uni_comp_ref[ctx][0][bit];
if (bit) {
ref_frame[0] = BWDREF_FRAME;
ref_frame[1] = ALTREF_FRAME;
} else {
const int ctx1 = av1_get_pred_context_uni_comp_ref_p1(xd);
int bit1;
#if CONFIG_VAR_REFS
if (L_AND_L2(cm) && (L_AND_L3(cm) || L_AND_G(cm)))
#endif // CONFIG_VAR_REFS
bit1 = READ_REF_BIT2(uni_comp_ref_p1);
#if CONFIG_VAR_REFS
else
bit1 = L_AND_L3(cm) || L_AND_G(cm);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->uni_comp_ref[ctx1][1][bit1];
if (bit1) {
const int ctx2 = av1_get_pred_context_uni_comp_ref_p2(xd);
int bit2;
#if CONFIG_VAR_REFS
if (L_AND_L3(cm) && L_AND_G(cm))
#endif // CONFIG_VAR_REFS
bit2 = READ_REF_BIT2(uni_comp_ref_p2);
#if CONFIG_VAR_REFS
else
bit2 = L_AND_G(cm);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->uni_comp_ref[ctx2][2][bit2];
if (bit2) {
ref_frame[0] = LAST_FRAME;
ref_frame[1] = GOLDEN_FRAME;
} else {
ref_frame[0] = LAST_FRAME;
ref_frame[1] = LAST3_FRAME;
}
} else {
ref_frame[0] = LAST_FRAME;
ref_frame[1] = LAST2_FRAME;
}
}
return;
}
assert(comp_ref_type == BIDIR_COMP_REFERENCE);
#endif // CONFIG_EXT_COMP_REFS
// Normative in decoder (for low delay)
#if CONFIG_ONE_SIDED_COMPOUND || CONFIG_FRAME_SIGN_BIAS
const int idx = 1;
#else // !(CONFIG_ONE_SIDED_COMPOUND || CONFIG_FRAME_SIGN_BIAS)
const int idx = cm->ref_frame_sign_bias[cm->comp_bwd_ref[0]];
#endif // CONFIG_ONE_SIDED_COMPOUND || CONFIG_FRAME_SIGN_BIAS)
const int ctx = av1_get_pred_context_comp_ref_p(cm, xd);
#if CONFIG_VAR_REFS
int bit;
// Test need to explicitly code (L,L2) vs (L3,G) branch node in tree
if (L_OR_L2(cm) && L3_OR_G(cm))
bit = READ_REF_BIT(comp_ref_p);
else
bit = L3_OR_G(cm);
#else // !CONFIG_VAR_REFS
const int bit = READ_REF_BIT(comp_ref_p);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->comp_ref[ctx][0][bit];
// Decode forward references.
if (!bit) {
const int ctx1 = av1_get_pred_context_comp_ref_p1(cm, xd);
#if CONFIG_VAR_REFS
int bit1;
// Test need to explicitly code (L) vs (L2) branch node in tree
if (L_AND_L2(cm))
bit1 = READ_REF_BIT(comp_ref_p1);
else
bit1 = LAST_IS_VALID(cm);
#else // !CONFIG_VAR_REFS
const int bit1 = READ_REF_BIT(comp_ref_p1);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->comp_ref[ctx1][1][bit1];
ref_frame[!idx] = cm->comp_fwd_ref[bit1 ? 0 : 1];
} else {
const int ctx2 = av1_get_pred_context_comp_ref_p2(cm, xd);
#if CONFIG_VAR_REFS
int bit2;
// Test need to explicitly code (L3) vs (G) branch node in tree
if (L3_AND_G(cm))
bit2 = READ_REF_BIT(comp_ref_p2);
else
bit2 = GOLDEN_IS_VALID(cm);
#else // !CONFIG_VAR_REFS
const int bit2 = READ_REF_BIT(comp_ref_p2);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->comp_ref[ctx2][2][bit2];
ref_frame[!idx] = cm->comp_fwd_ref[bit2 ? 3 : 2];
}
// Decode backward references.
const int ctx_bwd = av1_get_pred_context_comp_bwdref_p(cm, xd);
#if CONFIG_VAR_REFS
int bit_bwd;
// Test need to explicitly code (BWD/ALT2) vs (ALT) branch node in tree
const int bit_bwd_uncertain = BWD_OR_ALT2(cm) && ALTREF_IS_VALID(cm);
if (bit_bwd_uncertain)
bit_bwd = READ_REF_BIT(comp_bwdref_p);
else
bit_bwd = ALTREF_IS_VALID(cm);
#else // !CONFIG_VAR_REFS
const int bit_bwd = READ_REF_BIT(comp_bwdref_p);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->comp_bwdref[ctx_bwd][0][bit_bwd];
if (!bit_bwd) {
const int ctx1_bwd = av1_get_pred_context_comp_bwdref_p1(cm, xd);
#if CONFIG_VAR_REFS
int bit1_bwd;
if (BWD_AND_ALT2(cm))
bit1_bwd = READ_REF_BIT(comp_bwdref_p1);
else
bit1_bwd = ALTREF2_IS_VALID(cm);
#else // !CONFIG_VAR_REFS
const int bit1_bwd = READ_REF_BIT(comp_bwdref_p1);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->comp_bwdref[ctx1_bwd][1][bit1_bwd];
ref_frame[idx] = cm->comp_bwd_ref[bit1_bwd];
} else {
ref_frame[idx] = cm->comp_bwd_ref[2];
}
} else if (mode == SINGLE_REFERENCE) {
const int ctx0 = av1_get_pred_context_single_ref_p1(xd);
#if CONFIG_VAR_REFS
int bit0;
// Test need to explicitly code (L,L2,L3,G) vs (BWD,ALT2,ALT) branch node
// in tree
if ((L_OR_L2(cm) || L3_OR_G(cm)) &&
(BWD_OR_ALT2(cm) || ALTREF_IS_VALID(cm)))
bit0 = READ_REF_BIT(single_ref_p1);
else
bit0 = (BWD_OR_ALT2(cm) || ALTREF_IS_VALID(cm));
#else // !CONFIG_VAR_REFS
const int bit0 = READ_REF_BIT(single_ref_p1);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->single_ref[ctx0][0][bit0];
if (bit0) {
const int ctx1 = av1_get_pred_context_single_ref_p2(xd);
#if CONFIG_VAR_REFS
int bit1;
// Test need to explicitly code (BWD/ALT2) vs (ALT) branch node in tree
const int bit1_uncertain = BWD_OR_ALT2(cm) && ALTREF_IS_VALID(cm);
if (bit1_uncertain)
bit1 = READ_REF_BIT(single_ref_p2);
else
bit1 = ALTREF_IS_VALID(cm);
#else // !CONFIG_VAR_REFS
const int bit1 = READ_REF_BIT(single_ref_p2);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->single_ref[ctx1][1][bit1];
if (!bit1) {
const int ctx5 = av1_get_pred_context_single_ref_p6(xd);
#if CONFIG_VAR_REFS
int bit5;
if (BWD_AND_ALT2(cm))
bit5 = READ_REF_BIT(single_ref_p6);
else
bit5 = ALTREF2_IS_VALID(cm);
#else // !CONFIG_VAR_REFS
const int bit5 = READ_REF_BIT(single_ref_p6);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->single_ref[ctx5][5][bit5];
ref_frame[0] = bit5 ? ALTREF2_FRAME : BWDREF_FRAME;
} else {
ref_frame[0] = ALTREF_FRAME;
}
} else {
const int ctx2 = av1_get_pred_context_single_ref_p3(xd);
#if CONFIG_VAR_REFS
int bit2;
// Test need to explicitly code (L,L2) vs (L3,G) branch node in tree
if (L_OR_L2(cm) && L3_OR_G(cm))
bit2 = READ_REF_BIT(single_ref_p3);
else
bit2 = L3_OR_G(cm);
#else // !CONFIG_VAR_REFS
const int bit2 = READ_REF_BIT(single_ref_p3);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->single_ref[ctx2][2][bit2];
if (bit2) {
const int ctx4 = av1_get_pred_context_single_ref_p5(xd);
#if CONFIG_VAR_REFS
int bit4;
// Test need to explicitly code (L3) vs (G) branch node in tree
if (L3_AND_G(cm))
bit4 = READ_REF_BIT(single_ref_p5);
else
bit4 = GOLDEN_IS_VALID(cm);
#else // !CONFIG_VAR_REFS
const int bit4 = READ_REF_BIT(single_ref_p5);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->single_ref[ctx4][4][bit4];
ref_frame[0] = bit4 ? GOLDEN_FRAME : LAST3_FRAME;
} else {
const int ctx3 = av1_get_pred_context_single_ref_p4(xd);
#if CONFIG_VAR_REFS
int bit3;
// Test need to explicitly code (L) vs (L2) branch node in tree
if (L_AND_L2(cm))
bit3 = READ_REF_BIT(single_ref_p4);
else
bit3 = LAST2_IS_VALID(cm);
#else // !CONFIG_VAR_REFS
const int bit3 = READ_REF_BIT(single_ref_p4);
#endif // CONFIG_VAR_REFS
if (counts) ++counts->single_ref[ctx3][3][bit3];
ref_frame[0] = bit3 ? LAST2_FRAME : LAST_FRAME;
}
}
ref_frame[1] = NONE_FRAME;
} else {
assert(0 && "Invalid prediction mode.");
}
}
}
static INLINE void read_mb_interp_filter(AV1_COMMON *const cm,
MACROBLOCKD *const xd,
MB_MODE_INFO *const mbmi,
aom_reader *r) {
FRAME_COUNTS *counts = xd->counts;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (!av1_is_interp_needed(xd)) {
set_default_interp_filters(mbmi, cm->interp_filter);
return;
}
if (cm->interp_filter != SWITCHABLE) {
mbmi->interp_filters = av1_broadcast_interp_filter(cm->interp_filter);
} else {
#if CONFIG_DUAL_FILTER
InterpFilter ref0_filter[2] = { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR };
for (int dir = 0; dir < 2; ++dir) {
if (has_subpel_mv_component(xd->mi[0], xd, dir) ||
(mbmi->ref_frame[1] > INTRA_FRAME &&
has_subpel_mv_component(xd->mi[0], xd, dir + 2))) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
ref0_filter[dir] =
(InterpFilter)aom_read_symbol(r, ec_ctx->switchable_interp_cdf[ctx],
SWITCHABLE_FILTERS, ACCT_STR);
if (counts) ++counts->switchable_interp[ctx][ref0_filter[dir]];
}
}
// The index system works as: (0, 1) -> (vertical, horizontal) filter types
mbmi->interp_filters =
av1_make_interp_filters(ref0_filter[0], ref0_filter[1]);
#else // CONFIG_DUAL_FILTER
const int ctx = av1_get_pred_context_switchable_interp(xd);
InterpFilter filter = (InterpFilter)aom_read_symbol(
r, ec_ctx->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS, ACCT_STR);
mbmi->interp_filters = av1_broadcast_interp_filter(filter);
if (counts) ++counts->switchable_interp[ctx][filter];
#endif // CONFIG_DUAL_FILTER
}
}
static void read_intra_block_mode_info(AV1_COMMON *const cm, const int mi_row,
const int mi_col, MACROBLOCKD *const xd,
MODE_INFO *mi, aom_reader *r) {
MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
int i;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE_FRAME;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
(void)i;
mbmi->mode = read_intra_mode(r, ec_ctx->y_mode_cdf[size_group_lookup[bsize]]);
if (is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y)) {
mbmi->uv_mode = read_intra_mode_uv(ec_ctx, r, mbmi->mode);
#if CONFIG_CFL
if (mbmi->uv_mode == UV_CFL_PRED) {
mbmi->cfl_alpha_idx =
read_cfl_alphas(xd->tile_ctx, r, &mbmi->cfl_alpha_signs);
xd->cfl->store_y = 1;
} else {
xd->cfl->store_y = 0;
}
#endif // CONFIG_CFL
} else {
// Avoid decoding angle_info if there is is no chroma prediction
mbmi->uv_mode = UV_DC_PRED;
#if CONFIG_CFL
xd->cfl->is_chroma_reference = 0;
xd->cfl->store_y = 1;
#endif
}
// Explicitly ignore cm here to avoid a compile warning if none of
// ext-intra, palette and filter-intra are enabled.
(void)cm;
#if CONFIG_EXT_INTRA
read_intra_angle_info(xd, r);
#endif // CONFIG_EXT_INTRA
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
if (av1_allow_palette(cm->allow_screen_content_tools, bsize))
read_palette_mode_info(cm, xd, r);
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
read_filter_intra_mode_info(cm, xd, r);
#endif // CONFIG_FILTER_INTRA
}
static INLINE int is_mv_valid(const MV *mv) {
return mv->row > MV_LOW && mv->row < MV_UPP && mv->col > MV_LOW &&
mv->col < MV_UPP;
}
static INLINE int assign_mv(AV1_COMMON *cm, MACROBLOCKD *xd,
PREDICTION_MODE mode,
MV_REFERENCE_FRAME ref_frame[2], int block,
int_mv mv[2], int_mv ref_mv[2],
int_mv nearest_mv[2], int_mv near_mv[2], int mi_row,
int mi_col, int is_compound, int allow_hp,
aom_reader *r) {
int i;
int ret = 1;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
int_mv *pred_mv = mbmi->pred_mv;
(void)block;
(void)ref_frame;
(void)cm;
(void)mi_row;
(void)mi_col;
(void)bsize;
#if CONFIG_AMVR
if (cm->cur_frame_force_integer_mv) {
allow_hp = MV_SUBPEL_NONE;
}
#endif
switch (mode) {
case NEWMV: {
FRAME_COUNTS *counts = xd->counts;
for (i = 0; i < 1 + is_compound; ++i) {
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], i,
mbmi->ref_mv_idx);
nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx];
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, nmvc, mv_counts, allow_hp);
ret = ret && is_mv_valid(&mv[i].as_mv);
pred_mv[i].as_int = ref_mv[i].as_int;
}
break;
}
case NEARESTMV: {
mv[0].as_int = nearest_mv[0].as_int;
if (is_compound) mv[1].as_int = nearest_mv[1].as_int;
pred_mv[0].as_int = nearest_mv[0].as_int;
if (is_compound) pred_mv[1].as_int = nearest_mv[1].as_int;
break;
}
case NEARMV: {
mv[0].as_int = near_mv[0].as_int;
if (is_compound) mv[1].as_int = near_mv[1].as_int;
pred_mv[0].as_int = near_mv[0].as_int;
if (is_compound) pred_mv[1].as_int = near_mv[1].as_int;
break;
}
case ZEROMV: {
mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]],
cm->allow_high_precision_mv, bsize,
mi_col, mi_row, block
#if CONFIG_AMVR
,
cm->cur_frame_force_integer_mv
#endif
)
.as_int;
if (is_compound)
mv[1].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[1]],
cm->allow_high_precision_mv, bsize,
mi_col, mi_row, block
#if CONFIG_AMVR
,
cm->cur_frame_force_integer_mv
#endif
)
.as_int;
pred_mv[0].as_int = mv[0].as_int;
if (is_compound) pred_mv[1].as_int = mv[1].as_int;
break;
}
#if CONFIG_COMPOUND_SINGLEREF
case SR_NEAREST_NEARMV: {
assert(!is_compound);
mv[0].as_int = nearest_mv[0].as_int;
mv[1].as_int = near_mv[0].as_int;
break;
}
/*
case SR_NEAREST_NEWMV: {
assert(!is_compound);
mv[0].as_int = nearest_mv[0].as_int;
FRAME_COUNTS *counts = xd->counts;
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type],
xd->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx);
nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx];
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
read_mv(r, &mv[1].as_mv, &ref_mv[0].as_mv, nmvc, mv_counts, allow_hp);
ret = ret && is_mv_valid(&mv[1].as_mv);
break;
}*/
case SR_NEAR_NEWMV: {
assert(!is_compound);
mv[0].as_int = near_mv[0].as_int;
FRAME_COUNTS *counts = xd->counts;
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type],
xd->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx);
nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx];
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
read_mv(r, &mv[1].as_mv, &ref_mv[0].as_mv, nmvc, mv_counts, allow_hp);
ret = ret && is_mv_valid(&mv[1].as_mv);
break;
}
case SR_ZERO_NEWMV: {
assert(!is_compound);
mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]],
cm->allow_high_precision_mv, bsize,
mi_col, mi_row, block)
.as_int;
FRAME_COUNTS *counts = xd->counts;
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type],
xd->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx);
nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx];
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
read_mv(r, &mv[1].as_mv, &ref_mv[0].as_mv, nmvc, mv_counts, allow_hp);
ret = ret && is_mv_valid(&mv[1].as_mv);
break;
}
case SR_NEW_NEWMV: {
assert(!is_compound);
FRAME_COUNTS *counts = xd->counts;
for (i = 0; i < 2; ++i) {
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], 0,
mbmi->ref_mv_idx);
nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx];
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
read_mv(r, &mv[i].as_mv, &ref_mv[0].as_mv, nmvc, mv_counts, allow_hp);
ret = ret && is_mv_valid(&mv[i].as_mv);
}
break;
}
#endif // CONFIG_COMPOUND_SINGLEREF
case NEW_NEWMV: {
FRAME_COUNTS *counts = xd->counts;
assert(is_compound);
for (i = 0; i < 2; ++i) {
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], i,
mbmi->ref_mv_idx);
nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx];
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, nmvc, mv_counts, allow_hp);
ret = ret && is_mv_valid(&mv[i].as_mv);
}
break;
}
case NEAREST_NEARESTMV: {
assert(is_compound);
mv[0].as_int = nearest_mv[0].as_int;
mv[1].as_int = nearest_mv[1].as_int;
break;
}
case NEAR_NEARMV: {
assert(is_compound);
mv[0].as_int = near_mv[0].as_int;
mv[1].as_int = near_mv[1].as_int;
break;
}
case NEW_NEARESTMV: {
FRAME_COUNTS *counts = xd->counts;
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type],
xd->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx);
nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx];
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, mv_counts, allow_hp);
assert(is_compound);
ret = ret && is_mv_valid(&mv[0].as_mv);
mv[1].as_int = nearest_mv[1].as_int;
break;
}
case NEAREST_NEWMV: {
FRAME_COUNTS *counts = xd->counts;
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type],
xd->ref_mv_stack[rf_type], 1, mbmi->ref_mv_idx);
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx];
mv[0].as_int = nearest_mv[0].as_int;
read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, mv_counts, allow_hp);
assert(is_compound);
ret = ret && is_mv_valid(&mv[1].as_mv);
break;
}
case NEAR_NEWMV: {
FRAME_COUNTS *counts = xd->counts;
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type],
xd->ref_mv_stack[rf_type], 1, mbmi->ref_mv_idx);
nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx];
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
mv[0].as_int = near_mv[0].as_int;
read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, mv_counts, allow_hp);
assert(is_compound);
ret = ret && is_mv_valid(&mv[1].as_mv);
break;
}
case NEW_NEARMV: {
FRAME_COUNTS *counts = xd->counts;
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type],
xd->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx);
nmv_context *const nmvc = &ec_ctx->nmvc[nmv_ctx];
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, mv_counts, allow_hp);
assert(is_compound);
ret = ret && is_mv_valid(&mv[0].as_mv);
mv[1].as_int = near_mv[1].as_int;
break;
}
case ZERO_ZEROMV: {
assert(is_compound);
mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]],
cm->allow_high_precision_mv, bsize,
mi_col, mi_row, block
#if CONFIG_AMVR
,
cm->cur_frame_force_integer_mv
#endif
)
.as_int;
mv[1].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[1]],
cm->allow_high_precision_mv, bsize,
mi_col, mi_row, block
#if CONFIG_AMVR
,
cm->cur_frame_force_integer_mv
#endif
)
.as_int;
break;
}
default: { return 0; }
}
return ret;
}
static int read_is_inter_block(AV1_COMMON *const cm, MACROBLOCKD *const xd,
int segment_id, aom_reader *r) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
return get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) != INTRA_FRAME;
} else {
const int ctx = av1_get_intra_inter_context(xd);
#if CONFIG_NEW_MULTISYMBOL
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const int is_inter =
aom_read_symbol(r, ec_ctx->intra_inter_cdf[ctx], 2, ACCT_STR);
#else
const int is_inter = aom_read(r, cm->fc->intra_inter_prob[ctx], ACCT_STR);
#endif
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->intra_inter[ctx][is_inter];
return is_inter;
}
}
#if CONFIG_COMPOUND_SINGLEREF
static int read_is_inter_singleref_comp_mode(AV1_COMMON *const cm,
MACROBLOCKD *const xd,
int segment_id, aom_reader *r) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) return 0;
const int ctx = av1_get_inter_mode_context(xd);
const int is_singleref_comp_mode =
aom_read(r, cm->fc->comp_inter_mode_prob[ctx], ACCT_STR);
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->comp_inter_mode[ctx][is_singleref_comp_mode];
return is_singleref_comp_mode;
}
#endif // CONFIG_COMPOUND_SINGLEREF
static void fpm_sync(void *const data, int mi_row) {
AV1Decoder *const pbi = (AV1Decoder *)data;
av1_frameworker_wait(pbi->frame_worker_owner, pbi->common.prev_frame,
mi_row << pbi->common.mib_size_log2);
}
#if DEC_MISMATCH_DEBUG
static void dec_dump_logs(AV1_COMMON *cm, MODE_INFO *const mi, int mi_row,
int mi_col,
int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES],
int16_t mode_ctx) {
int_mv mv[2] = { { 0 } };
int ref;
MB_MODE_INFO *const mbmi = &mi->mbmi;
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref)
mv[ref].as_mv = mbmi->mv[ref].as_mv;
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
int16_t zeromv_ctx = -1;
int16_t refmv_ctx = -1;
if (mbmi->mode != NEWMV) {
if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) assert(mbmi->mode == ZEROMV);
zeromv_ctx = (mode_ctx >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
if (mbmi->mode != ZEROMV) {
refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
if (mode_ctx & (1 << SKIP_NEARESTMV_OFFSET)) refmv_ctx = 6;
if (mode_ctx & (1 << SKIP_NEARMV_OFFSET)) refmv_ctx = 7;
if (mode_ctx & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) refmv_ctx = 8;
}
}
int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
#define FRAME_TO_CHECK 1
if (cm->current_video_frame == FRAME_TO_CHECK && cm->show_frame == 1) {
printf(
"=== DECODER ===: "
"Frame=%d, (mi_row,mi_col)=(%d,%d), mode=%d, bsize=%d, "
"show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
"ref[1]=%d, motion_mode=%d, inter_mode_ctx=%d, mode_ctx=%d, "
"newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d\n",
cm->current_video_frame, mi_row, mi_col, mbmi->mode, mbmi->sb_type,
cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, mv[1].as_mv.row,
mv[1].as_mv.col, mbmi->ref_frame[0], mbmi->ref_frame[1],
mbmi->motion_mode, inter_mode_ctx[ref_frame_type], mode_ctx, newmv_ctx,
zeromv_ctx, refmv_ctx);
}
}
#endif // DEC_MISMATCH_DEBUG
static void read_inter_block_mode_info(AV1Decoder *const pbi,
MACROBLOCKD *const xd,
MODE_INFO *const mi, int mi_row,
int mi_col, aom_reader *r) {
AV1_COMMON *const cm = &pbi->common;
MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int allow_hp = cm->allow_high_precision_mv;
int_mv nearestmv[2], nearmv[2];
int_mv ref_mvs[MODE_CTX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
int ref, is_compound;
#if CONFIG_COMPOUND_SINGLEREF
int is_singleref_comp_mode = 0;
#endif // CONFIG_COMPOUND_SINGLEREF
int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES];
int16_t compound_inter_mode_ctx[MODE_CTX_REF_FRAMES];
int mode_ctx = 0;
int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
#if CONFIG_EXT_WARPED_MOTION
int pts_mv[SAMPLES_ARRAY_SIZE];
#endif // CONFIG_EXT_WARPED_MOTION
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
assert(NELEMENTS(mode_2_counter) == MB_MODE_COUNT);
mbmi->uv_mode = UV_DC_PRED;
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
memset(ref_mvs, 0, sizeof(ref_mvs));
read_ref_frames(cm, xd, r, mbmi->segment_id, mbmi->ref_frame);
is_compound = has_second_ref(mbmi);
#if CONFIG_JNT_COMP
if (is_compound) {
const int comp_index_ctx = get_comp_index_context(cm, xd);
mbmi->compound_idx =
aom_read(r, ec_ctx->compound_index_probs[comp_index_ctx], ACCT_STR);
if (xd->counts)
++xd->counts->compound_index[comp_index_ctx][mbmi->compound_idx];
}
#endif // CONFIG_JNT_COMP
#if CONFIG_EXT_COMP_REFS
#if !USE_UNI_COMP_REFS
// NOTE: uni-directional comp refs disabled
if (is_compound)
assert(mbmi->ref_frame[0] < BWDREF_FRAME &&
mbmi->ref_frame[1] >= BWDREF_FRAME);
#endif // !USE_UNI_COMP_REFS
#endif // CONFIG_EXT_COMP_REFS
#if CONFIG_COMPOUND_SINGLEREF
if (!is_compound)
is_singleref_comp_mode =
read_is_inter_singleref_comp_mode(cm, xd, mbmi->segment_id, r);
#endif // CONFIG_COMPOUND_SINGLEREF
for (ref = 0; ref < 1 + is_compound; ++ref) {
MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
av1_find_mv_refs(cm, xd, mi, frame, &xd->ref_mv_count[frame],
xd->ref_mv_stack[frame], compound_inter_mode_ctx,
ref_mvs[frame], mi_row, mi_col, fpm_sync, (void *)pbi,
inter_mode_ctx);
}
if (is_compound) {
MV_REFERENCE_FRAME ref_frame = av1_ref_frame_type(mbmi->ref_frame);
av1_find_mv_refs(cm, xd, mi, ref_frame, &xd->ref_mv_count[ref_frame],
xd->ref_mv_stack[ref_frame], compound_inter_mode_ctx,
ref_mvs[ref_frame], mi_row, mi_col, fpm_sync, (void *)pbi,
inter_mode_ctx);
if (xd->ref_mv_count[ref_frame] < 2) {
MV_REFERENCE_FRAME rf[2];
int_mv zeromv[2];
av1_set_ref_frame(rf, ref_frame);
zeromv[0].as_int = gm_get_motion_vector(&cm->global_motion[rf[0]],
cm->allow_high_precision_mv,
bsize, mi_col, mi_row, 0
#if CONFIG_AMVR
,
cm->cur_frame_force_integer_mv
#endif
)
.as_int;
zeromv[1].as_int =
(rf[1] != NONE_FRAME)
? gm_get_motion_vector(&cm->global_motion[rf[1]],
cm->allow_high_precision_mv, bsize, mi_col,
mi_row, 0
#if CONFIG_AMVR
,
cm->cur_frame_force_integer_mv
#endif
)
.as_int
: 0;
for (ref = 0; ref < 2; ++ref) {
if (rf[ref] == NONE_FRAME) continue;
#if CONFIG_AMVR
lower_mv_precision(&ref_mvs[rf[ref]][0].as_mv, allow_hp,
cm->cur_frame_force_integer_mv);
lower_mv_precision(&ref_mvs[rf[ref]][1].as_mv, allow_hp,
cm->cur_frame_force_integer_mv);
#else
lower_mv_precision(&ref_mvs[rf[ref]][0].as_mv, allow_hp);
lower_mv_precision(&ref_mvs[rf[ref]][1].as_mv, allow_hp);
#endif
if (ref_mvs[rf[ref]][0].as_int != zeromv[ref].as_int ||
ref_mvs[rf[ref]][1].as_int != zeromv[ref].as_int)
inter_mode_ctx[ref_frame] &= ~(1 << ALL_ZERO_FLAG_OFFSET);
}
}
}
#if CONFIG_COMPOUND_SINGLEREF
if (is_compound || is_singleref_comp_mode)
#else // !CONFIG_COMPOUND_SINGLEREF
if (is_compound)
#endif // CONFIG_COMPOUND_SINGLEREF
mode_ctx = compound_inter_mode_ctx[mbmi->ref_frame[0]];
else
mode_ctx =
av1_mode_context_analyzer(inter_mode_ctx, mbmi->ref_frame, bsize, -1);
mbmi->ref_mv_idx = 0;
#if CONFIG_SEGMENT_ZEROMV
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) ||
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_ZEROMV))
#else
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
#endif
{
mbmi->mode = ZEROMV;
} else {
if (is_compound) mbmi->mode = read_inter_compound_mode(cm, xd, r, mode_ctx);
#if CONFIG_COMPOUND_SINGLEREF
else if (is_singleref_comp_mode)
mbmi->mode = read_inter_singleref_comp_mode(xd, r, mode_ctx);
#endif // CONFIG_COMPOUND_SINGLEREF
else
mbmi->mode = read_inter_mode(ec_ctx, xd, r, mode_ctx);
if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV ||
#if CONFIG_COMPOUND_SINGLEREF
mbmi->mode == SR_NEW_NEWMV ||
#endif // CONFIG_COMPOUND_SINGLEREF
have_nearmv_in_inter_mode(mbmi->mode))
read_drl_idx(ec_ctx, xd, mbmi, r);
}
if (mbmi->mode != ZEROMV && mbmi->mode != ZERO_ZEROMV) {
for (ref = 0; ref < 1 + is_compound; ++ref) {
#if CONFIG_AMVR
av1_find_best_ref_mvs(allow_hp, ref_mvs[mbmi->ref_frame[ref]],
&nearestmv[ref], &nearmv[ref],
cm->cur_frame_force_integer_mv);
#else
av1_find_best_ref_mvs(allow_hp, ref_mvs[mbmi->ref_frame[ref]],
&nearestmv[ref], &nearmv[ref]);
#endif
}
}
#if CONFIG_COMPOUND_SINGLEREF
if ((is_compound || is_singleref_comp_mode) && mbmi->mode != ZERO_ZEROMV)
#else // !CONFIG_COMPOUND_SINGLEREF
if (is_compound && mbmi->mode != ZERO_ZEROMV)
#endif // CONFIG_COMPOUND_SINGLEREF
{
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
if (xd->ref_mv_count[ref_frame_type] > 0) {
if (mbmi->mode == NEAREST_NEARESTMV) {
nearestmv[0] = xd->ref_mv_stack[ref_frame_type][0].this_mv;
nearestmv[1] = xd->ref_mv_stack[ref_frame_type][0].comp_mv;
#if CONFIG_AMVR
lower_mv_precision(&nearestmv[0].as_mv, allow_hp,
cm->cur_frame_force_integer_mv);
lower_mv_precision(&nearestmv[1].as_mv, allow_hp,
cm->cur_frame_force_integer_mv);
#else
lower_mv_precision(&nearestmv[0].as_mv, allow_hp);
lower_mv_precision(&nearestmv[1].as_mv, allow_hp);
#endif
} else if (mbmi->mode == NEAREST_NEWMV
#if CONFIG_COMPOUND_SINGLEREF
|| mbmi->mode == SR_NEAREST_NEARMV
// || mbmi->mode == SR_NEAREST_NEWMV
#endif // CONFIG_COMPOUND_SINGLEREF
) {
nearestmv[0] = xd->ref_mv_stack[ref_frame_type][0].this_mv;
#if CONFIG_AMVR
lower_mv_precision(&nearestmv[0].as_mv, allow_hp,
cm->cur_frame_force_integer_mv);
#else
lower_mv_precision(&nearestmv[0].as_mv, allow_hp);
#endif
} else if (mbmi->mode == NEW_NEARESTMV) {
nearestmv[1] = xd->ref_mv_stack[ref_frame_type][0].comp_mv;
#if CONFIG_AMVR
lower_mv_precision(&nearestmv[1].as_mv, allow_hp,
cm->cur_frame_force_integer_mv);
#else
lower_mv_precision(&nearestmv[1].as_mv, allow_hp);
#endif
}
}
if (xd->ref_mv_count[ref_frame_type] > 1) {
int ref_mv_idx = 1 + mbmi->ref_mv_idx;
#if CONFIG_COMPOUND_SINGLEREF
if (is_compound) {
#endif // CONFIG_COMPOUND_SINGLEREF
if (compound_ref0_mode(mbmi->mode) == NEARMV) {
nearmv[0] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv;
#if CONFIG_AMVR
lower_mv_precision(&nearmv[0].as_mv, allow_hp,
cm->cur_frame_force_integer_mv);
#else
lower_mv_precision(&nearmv[0].as_mv, allow_hp);
#endif
}
if (compound_ref1_mode(mbmi->mode) == NEARMV) {
nearmv[1] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv;
#if CONFIG_AMVR
lower_mv_precision(&nearmv[1].as_mv, allow_hp,
cm->cur_frame_force_integer_mv);
#else
lower_mv_precision(&nearmv[1].as_mv, allow_hp);
#endif
}
#if CONFIG_COMPOUND_SINGLEREF
} else {
assert(is_singleref_comp_mode);
if (compound_ref0_mode(mbmi->mode) == NEARMV ||
compound_ref1_mode(mbmi->mode) == NEARMV) {
nearmv[0] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv;
lower_mv_precision(&nearmv[0].as_mv, allow_hp);
}
}
#endif // CONFIG_COMPOUND_SINGLEREF
}
} else if (mbmi->ref_mv_idx > 0 && mbmi->mode == NEARMV) {
int_mv cur_mv =
xd->ref_mv_stack[mbmi->ref_frame[0]][1 + mbmi->ref_mv_idx].this_mv;
nearmv[0] = cur_mv;
}
int_mv ref_mv[2];
ref_mv[0] = nearestmv[0];
ref_mv[1] = nearestmv[1];
if (is_compound) {
int ref_mv_idx = mbmi->ref_mv_idx;
// Special case: NEAR_NEWMV and NEW_NEARMV modes use
// 1 + mbmi->ref_mv_idx (like NEARMV) instead of
// mbmi->ref_mv_idx (like NEWMV)
if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV)
ref_mv_idx = 1 + mbmi->ref_mv_idx;
if (compound_ref0_mode(mbmi->mode) == NEWMV) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
if (xd->ref_mv_count[ref_frame_type] > 1) {
ref_mv[0] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv;
clamp_mv_ref(&ref_mv[0].as_mv, xd->n8_w << MI_SIZE_LOG2,
xd->n8_h << MI_SIZE_LOG2, xd);
}
nearestmv[0] = ref_mv[0];
}
if (compound_ref1_mode(mbmi->mode) == NEWMV) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
if (xd->ref_mv_count[ref_frame_type] > 1) {
ref_mv[1] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv;
clamp_mv_ref(&ref_mv[1].as_mv, xd->n8_w << MI_SIZE_LOG2,
xd->n8_h << MI_SIZE_LOG2, xd);
}
nearestmv[1] = ref_mv[1];
}
#if CONFIG_COMPOUND_SINGLEREF
} else if (is_singleref_comp_mode) {
int ref_mv_idx = mbmi->ref_mv_idx;
// Special case: SR_NEAR_NEWMV use 1 + mbmi->ref_mv_idx (like NEARMV)
// instead of mbmi->ref_mv_idx (like NEWMV)
if (mbmi->mode == SR_NEAR_NEWMV) ref_mv_idx = 1 + mbmi->ref_mv_idx;
if (compound_ref0_mode(mbmi->mode) == NEWMV ||
compound_ref1_mode(mbmi->mode) == NEWMV) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
if (xd->ref_mv_count[ref_frame_type] > 1) {
ref_mv[0] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv;
clamp_mv_ref(&ref_mv[0].as_mv, xd->n8_w << MI_SIZE_LOG2,
xd->n8_h << MI_SIZE_LOG2, xd);
}
// TODO(zoeliu): To further investigate why this would not cause a
// mismatch for the mode of SR_NEAREST_NEWMV.
nearestmv[0] = ref_mv[0];
}
#endif // CONFIG_COMPOUND_SINGLEREF
} else {
if (mbmi->mode == NEWMV) {
for (ref = 0; ref < 1 + is_compound; ++ref) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
if (xd->ref_mv_count[ref_frame_type] > 1) {
ref_mv[ref] =
(ref == 0)
? xd->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx].this_mv
: xd->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx].comp_mv;
clamp_mv_ref(&ref_mv[ref].as_mv, xd->n8_w << MI_SIZE_LOG2,
xd->n8_h << MI_SIZE_LOG2, xd);
}
nearestmv[ref] = ref_mv[ref];
}
}
}
int mv_corrupted_flag =
!assign_mv(cm, xd, mbmi->mode, mbmi->ref_frame, 0, mbmi->mv, ref_mv,
nearestmv, nearmv, mi_row, mi_col, is_compound, allow_hp, r);
aom_merge_corrupted_flag(&xd->corrupted, mv_corrupted_flag);
#if CONFIG_INTERINTRA
mbmi->use_wedge_interintra = 0;
if (cm->reference_mode != COMPOUND_REFERENCE &&
cm->allow_interintra_compound && is_interintra_allowed(mbmi)) {
const int bsize_group = size_group_lookup[bsize];
#if CONFIG_NEW_MULTISYMBOL
const int interintra =
aom_read_symbol(r, ec_ctx->interintra_cdf[bsize_group], 2, ACCT_STR);
#else
const int interintra =
aom_read(r, cm->fc->interintra_prob[bsize_group], ACCT_STR);
#endif
if (xd->counts) xd->counts->interintra[bsize_group][interintra]++;
assert(mbmi->ref_frame[1] == NONE_FRAME);
if (interintra) {
const INTERINTRA_MODE interintra_mode =
read_interintra_mode(cm, xd, r, bsize_group);
mbmi->ref_frame[1] = INTRA_FRAME;
mbmi->interintra_mode = interintra_mode;
#if CONFIG_EXT_INTRA
mbmi->angle_delta[0] = 0;
mbmi->angle_delta[1] = 0;
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
#endif // CONFIG_FILTER_INTRA
if (is_interintra_wedge_used(bsize)) {
#if CONFIG_NEW_MULTISYMBOL
mbmi->use_wedge_interintra = aom_read_symbol(
r, ec_ctx->wedge_interintra_cdf[bsize], 2, ACCT_STR);
#else
mbmi->use_wedge_interintra =
aom_read(r, cm->fc->wedge_interintra_prob[bsize], ACCT_STR);
#endif
if (xd->counts)
xd->counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
if (mbmi->use_wedge_interintra) {
mbmi->interintra_wedge_index =
aom_read_literal(r, get_wedge_bits_lookup(bsize), ACCT_STR);
mbmi->interintra_wedge_sign = 0;
}
}
}
}
#endif // CONFIG_INTERINTRA
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
}
mbmi->