| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "./av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/bitops.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/system_state.h" |
| |
| #include "av1/common/common.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/seg_common.h" |
| |
| #include "av1/encoder/av1_quantize.h" |
| #include "av1/encoder/cost.h" |
| #include "av1/encoder/encodemb.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encoder.h" |
| #if CONFIG_LV_MAP |
| #include "av1/encoder/encodetxb.h" |
| #endif |
| #include "av1/encoder/mcomp.h" |
| #include "av1/encoder/ratectrl.h" |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/tokenize.h" |
| |
| #define RD_THRESH_POW 1.25 |
| |
| // Factor to weigh the rate for switchable interp filters. |
| #define SWITCHABLE_INTERP_RATE_FACTOR 1 |
| |
| // The baseline rd thresholds for breaking out of the rd loop for |
| // certain modes are assumed to be based on 8x8 blocks. |
| // This table is used to correct for block size. |
| // The factors here are << 2 (2 = x0.5, 32 = x8 etc). |
| static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES_ALL] = { |
| 2, 2, 2, 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32, |
| #if CONFIG_EXT_PARTITION |
| 48, 48, 64, |
| #endif // CONFIG_EXT_PARTITION |
| 4, 4, 8, 8, 16, 16, |
| #if CONFIG_EXT_PARTITION |
| 32, 32 |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| |
| #if CONFIG_EXT_TX |
| static const int use_intra_ext_tx_for_txsize[EXT_TX_SETS_INTRA][EXT_TX_SIZES] = |
| { |
| { 1, 1, 1, 1 }, // unused |
| { 1, 1, 0, 0 }, |
| { 0, 0, 1, 0 }, |
| #if CONFIG_MRC_TX |
| { 0, 0, 0, 1 }, |
| #endif // CONFIG_MRC_TX |
| }; |
| |
| static const int use_inter_ext_tx_for_txsize[EXT_TX_SETS_INTER][EXT_TX_SIZES] = |
| { |
| { 1, 1, 1, 1 }, // unused |
| { 1, 1, 0, 0 }, { 0, 0, 1, 0 }, { 0, 0, 0, 1 }, |
| #if CONFIG_MRC_TX |
| { 0, 0, 0, 1 }, |
| #endif // CONFIG_MRC_TX |
| }; |
| #endif // CONFIG_EXT_TX |
| |
| void av1_fill_mode_rates(AV1_COMMON *const cm, MACROBLOCK *x, |
| FRAME_CONTEXT *fc) { |
| int i, j; |
| |
| if (cm->frame_type == KEY_FRAME) { |
| for (i = 0; i < PARTITION_CONTEXTS_PRIMARY; ++i) |
| av1_cost_tokens_from_cdf(x->partition_cost[i], fc->partition_cdf[i], |
| NULL); |
| #if CONFIG_UNPOISON_PARTITION_CTX |
| for (; i < PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES; ++i) { |
| aom_prob p = fc->partition_prob[i][PARTITION_VERT]; |
| assert(p > 0); |
| x->partition_cost[i][PARTITION_NONE] = INT_MAX; |
| x->partition_cost[i][PARTITION_HORZ] = INT_MAX; |
| x->partition_cost[i][PARTITION_VERT] = av1_cost_bit(p, 0); |
| x->partition_cost[i][PARTITION_SPLIT] = av1_cost_bit(p, 1); |
| } |
| for (; i < PARTITION_CONTEXTS_PRIMARY + 2 * PARTITION_BLOCK_SIZES; ++i) { |
| aom_prob p = fc->partition_prob[i][PARTITION_HORZ]; |
| assert(p > 0); |
| x->partition_cost[i][PARTITION_NONE] = INT_MAX; |
| x->partition_cost[i][PARTITION_HORZ] = av1_cost_bit(p, 0); |
| x->partition_cost[i][PARTITION_VERT] = INT_MAX; |
| x->partition_cost[i][PARTITION_SPLIT] = av1_cost_bit(p, 1); |
| } |
| x->partition_cost[PARTITION_CONTEXTS][PARTITION_NONE] = INT_MAX; |
| x->partition_cost[PARTITION_CONTEXTS][PARTITION_HORZ] = INT_MAX; |
| x->partition_cost[PARTITION_CONTEXTS][PARTITION_VERT] = INT_MAX; |
| x->partition_cost[PARTITION_CONTEXTS][PARTITION_SPLIT] = 0; |
| #endif // CONFIG_UNPOISON_PARTITION_CTX |
| } |
| |
| for (i = 0; i < SKIP_CONTEXTS; ++i) { |
| #if CONFIG_NEW_MULTISYMBOL |
| av1_cost_tokens_from_cdf(x->skip_cost[i], fc->skip_cdfs[i], NULL); |
| #else |
| x->skip_cost[i][0] = av1_cost_bit(fc->skip_probs[i], 0); |
| x->skip_cost[i][1] = av1_cost_bit(fc->skip_probs[i], 1); |
| #endif // CONFIG_NEW_MULTISYMBOL |
| } |
| |
| #if CONFIG_KF_CTX |
| for (i = 0; i < KF_MODE_CONTEXTS; ++i) |
| for (j = 0; j < KF_MODE_CONTEXTS; ++j) |
| av1_cost_tokens_from_cdf(x->y_mode_costs[i][j], fc->kf_y_cdf[i][j], NULL); |
| #else |
| for (i = 0; i < INTRA_MODES; ++i) |
| for (j = 0; j < INTRA_MODES; ++j) |
| av1_cost_tokens_from_cdf(x->y_mode_costs[i][j], fc->kf_y_cdf[i][j], NULL); |
| #endif |
| |
| for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) |
| av1_cost_tokens_from_cdf(x->mbmode_cost[i], fc->y_mode_cdf[i], NULL); |
| for (i = 0; i < INTRA_MODES; ++i) |
| av1_cost_tokens_from_cdf(x->intra_uv_mode_cost[i], fc->uv_mode_cdf[i], |
| NULL); |
| |
| #if CONFIG_FILTER_INTRA |
| av1_cost_tokens_from_cdf(x->filter_intra_mode_cost[0], |
| fc->filter_intra_mode_cdf[0], NULL); |
| #endif |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) |
| av1_cost_tokens_from_cdf(x->switchable_interp_costs[i], |
| fc->switchable_interp_cdf[i], NULL); |
| |
| for (i = 0; i < PALETTE_BLOCK_SIZES; ++i) { |
| av1_cost_tokens_from_cdf(x->palette_y_size_cost[i], |
| fc->palette_y_size_cdf[i], NULL); |
| av1_cost_tokens_from_cdf(x->palette_uv_size_cost[i], |
| fc->palette_uv_size_cdf[i], NULL); |
| for (j = 0; j < PALETTE_Y_MODE_CONTEXTS; ++j) { |
| #if CONFIG_NEW_MULTISYMBOL |
| av1_cost_tokens_from_cdf(x->palette_y_mode_cost[i][j], |
| fc->palette_y_mode_cdf[i][j], NULL); |
| #else |
| x->palette_y_mode_cost[i][j][0] = |
| av1_cost_bit(av1_default_palette_y_mode_prob[i][j], 0); |
| x->palette_y_mode_cost[i][j][1] = |
| av1_cost_bit(av1_default_palette_y_mode_prob[i][j], 1); |
| #endif |
| } |
| } |
| |
| for (i = 0; i < PALETTE_UV_MODE_CONTEXTS; ++i) { |
| #if CONFIG_NEW_MULTISYMBOL |
| av1_cost_tokens_from_cdf(x->palette_uv_mode_cost[i], |
| fc->palette_uv_mode_cdf[i], NULL); |
| #else |
| x->palette_uv_mode_cost[i][0] = |
| av1_cost_bit(av1_default_palette_uv_mode_prob[i], 0); |
| x->palette_uv_mode_cost[i][1] = |
| av1_cost_bit(av1_default_palette_uv_mode_prob[i], 1); |
| #endif |
| } |
| |
| for (i = 0; i < PALETTE_SIZES; ++i) { |
| for (j = 0; j < PALETTE_COLOR_INDEX_CONTEXTS; ++j) { |
| av1_cost_tokens_from_cdf(x->palette_y_color_cost[i][j], |
| fc->palette_y_color_index_cdf[i][j], NULL); |
| av1_cost_tokens_from_cdf(x->palette_uv_color_cost[i][j], |
| fc->palette_uv_color_index_cdf[i][j], NULL); |
| } |
| } |
| #if CONFIG_MRC_TX |
| for (i = 0; i < PALETTE_SIZES; ++i) { |
| for (j = 0; j < PALETTE_COLOR_INDEX_CONTEXTS; ++j) { |
| av1_cost_tokens_from_cdf(x->mrc_mask_inter_cost[i][j], |
| fc->mrc_mask_inter_cdf[i][j], NULL); |
| av1_cost_tokens_from_cdf(x->mrc_mask_intra_cost[i][j], |
| fc->mrc_mask_intra_cdf[i][j], NULL); |
| } |
| } |
| #endif // CONFIG_MRC_TX |
| |
| #if CONFIG_CFL |
| int sign_cost[CFL_JOINT_SIGNS]; |
| av1_cost_tokens_from_cdf(sign_cost, fc->cfl_sign_cdf, NULL); |
| for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) { |
| const aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; |
| const aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; |
| int *cost_u = x->cfl_cost[joint_sign][CFL_PRED_U]; |
| int *cost_v = x->cfl_cost[joint_sign][CFL_PRED_V]; |
| if (CFL_SIGN_U(joint_sign) == CFL_SIGN_ZERO) |
| memset(cost_u, 0, CFL_ALPHABET_SIZE * sizeof(*cost_u)); |
| else |
| av1_cost_tokens_from_cdf(cost_u, cdf_u, NULL); |
| if (CFL_SIGN_V(joint_sign) == CFL_SIGN_ZERO) |
| memset(cost_v, 0, CFL_ALPHABET_SIZE * sizeof(*cost_v)); |
| else |
| av1_cost_tokens_from_cdf(cost_v, cdf_v, NULL); |
| for (int u = 0; u < CFL_ALPHABET_SIZE; u++) |
| cost_u[u] += sign_cost[joint_sign]; |
| } |
| #endif // CONFIG_CFL |
| |
| for (i = 0; i < MAX_TX_DEPTH; ++i) |
| for (j = 0; j < TX_SIZE_CONTEXTS; ++j) |
| av1_cost_tokens_from_cdf(x->tx_size_cost[i][j], fc->tx_size_cdf[i][j], |
| NULL); |
| |
| #if CONFIG_RECT_TX_EXT |
| #if CONFIG_NEW_MULTISYMBOL |
| av1_cost_tokens_from_cdf(x->quarter_tx_size_cost, fc->quarter_tx_size_cdf, |
| NULL); |
| #else |
| x->quarter_tx_size_cost[0] = av1_cost_bit(fc->quarter_tx_size_prob, 0); |
| x->quarter_tx_size_cost[1] = av1_cost_bit(fc->quarter_tx_size_prob, 1); |
| #endif |
| #endif |
| |
| for (i = 0; i < TXFM_PARTITION_CONTEXTS; ++i) { |
| #if CONFIG_NEW_MULTISYMBOL |
| av1_cost_tokens_from_cdf(x->txfm_partition_cost[i], |
| fc->txfm_partition_cdf[i], NULL); |
| #else |
| x->txfm_partition_cost[i][0] = av1_cost_bit(fc->txfm_partition_prob[i], 0); |
| x->txfm_partition_cost[i][1] = av1_cost_bit(fc->txfm_partition_prob[i], 1); |
| #endif |
| } |
| |
| #if CONFIG_EXT_TX |
| #if CONFIG_LGT_FROM_PRED |
| if (LGT_FROM_PRED_INTRA) { |
| for (i = 0; i < LGT_SIZES; ++i) { |
| for (j = 0; j < INTRA_MODES; ++j) { |
| x->intra_lgt_cost[i][j][0] = av1_cost_bit(fc->intra_lgt_prob[i][j], 0); |
| x->intra_lgt_cost[i][j][1] = av1_cost_bit(fc->intra_lgt_prob[i][j], 1); |
| } |
| } |
| } |
| if (LGT_FROM_PRED_INTER) { |
| for (i = 0; i < LGT_SIZES; ++i) { |
| x->inter_lgt_cost[i][0] = av1_cost_bit(fc->inter_lgt_prob[i], 0); |
| x->inter_lgt_cost[i][1] = av1_cost_bit(fc->inter_lgt_prob[i], 1); |
| } |
| } |
| #endif // CONFIG_LGT_FROM_PRED |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| int s; |
| for (s = 1; s < EXT_TX_SETS_INTER; ++s) { |
| if (use_inter_ext_tx_for_txsize[s][i]) { |
| av1_cost_tokens_from_cdf( |
| x->inter_tx_type_costs[s][i], fc->inter_ext_tx_cdf[s][i], |
| av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[1][s]]); |
| } |
| } |
| for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { |
| if (use_intra_ext_tx_for_txsize[s][i]) { |
| for (j = 0; j < INTRA_MODES; ++j) { |
| av1_cost_tokens_from_cdf( |
| x->intra_tx_type_costs[s][i][j], fc->intra_ext_tx_cdf[s][i][j], |
| av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[0][s]]); |
| } |
| } |
| } |
| } |
| #else |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| for (j = 0; j < TX_TYPES; ++j) |
| av1_cost_tokens_from_cdf(x->intra_tx_type_costs[i][j], |
| fc->intra_ext_tx_cdf[i][j], av1_ext_tx_inv); |
| } |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| av1_cost_tokens_from_cdf(x->inter_tx_type_costs[i], fc->inter_ext_tx_cdf[i], |
| av1_ext_tx_inv); |
| } |
| #endif // CONFIG_EXT_TX |
| #if CONFIG_EXT_INTRA && CONFIG_EXT_INTRA_MOD |
| for (i = 0; i < DIRECTIONAL_MODES; ++i) { |
| av1_cost_tokens_from_cdf(x->angle_delta_cost[i], fc->angle_delta_cdf[i], |
| NULL); |
| } |
| #endif // CONFIG_EXT_INTRA && CONFIG_EXT_INTRA_MOD |
| #if CONFIG_LOOP_RESTORATION |
| av1_cost_tokens_from_cdf(x->switchable_restore_cost, |
| fc->switchable_restore_cdf, NULL); |
| #if CONFIG_NEW_MULTISYMBOL |
| av1_cost_tokens_from_cdf(x->wiener_restore_cost, fc->wiener_restore_cdf, |
| NULL); |
| av1_cost_tokens_from_cdf(x->sgrproj_restore_cost, fc->sgrproj_restore_cdf, |
| NULL); |
| #else |
| x->wiener_restore_cost[0] = av1_cost_bit(RESTORE_NONE_WIENER_PROB, 0); |
| x->wiener_restore_cost[1] = av1_cost_bit(RESTORE_NONE_WIENER_PROB, 1); |
| x->sgrproj_restore_cost[0] = av1_cost_bit(RESTORE_NONE_SGRPROJ_PROB, 0); |
| x->sgrproj_restore_cost[1] = av1_cost_bit(RESTORE_NONE_SGRPROJ_PROB, 1); |
| #endif // CONFIG_NEW_MULTISYMBOL |
| #endif // CONFIG_LOOP_RESTORATION |
| #if CONFIG_INTRABC |
| av1_cost_tokens_from_cdf(x->intrabc_cost, fc->intrabc_cdf, NULL); |
| #endif // CONFIG_INTRABC |
| |
| if (!frame_is_intra_only(cm)) { |
| for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) { |
| #if CONFIG_NEW_MULTISYMBOL |
| av1_cost_tokens_from_cdf(x->intra_inter_cost[i], fc->intra_inter_cdf[i], |
| NULL); |
| #else |
| x->intra_inter_cost[i][0] = av1_cost_bit(fc->intra_inter_prob[i], 0); |
| x->intra_inter_cost[i][1] = av1_cost_bit(fc->intra_inter_prob[i], 1); |
| #endif |
| } |
| |
| for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) { |
| #if CONFIG_NEW_MULTISYMBOL |
| av1_cost_tokens_from_cdf(x->newmv_mode_cost[i], fc->newmv_cdf[i], NULL); |
| #else |
| x->newmv_mode_cost[i][0] = av1_cost_bit(fc->newmv_prob[i], 0); |
| x->newmv_mode_cost[i][1] = av1_cost_bit(fc->newmv_prob[i], 1); |
| #endif |
| } |
| |
| for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i) { |
| #if CONFIG_NEW_MULTISYMBOL |
| av1_cost_tokens_from_cdf(x->zeromv_mode_cost[i], fc->zeromv_cdf[i], NULL); |
| #else |
| x->zeromv_mode_cost[i][0] = av1_cost_bit(fc->zeromv_prob[i], 0); |
| x->zeromv_mode_cost[i][1] = av1_cost_bit(fc->zeromv_prob[i], 1); |
| #endif |
| } |
| |
| for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) { |
| #if CONFIG_NEW_MULTISYMBOL |
| av1_cost_tokens_from_cdf(x->refmv_mode_cost[i], fc->refmv_cdf[i], NULL); |
| #else |
| x->refmv_mode_cost[i][0] = av1_cost_bit(fc->refmv_prob[i], 0); |
| x->refmv_mode_cost[i][1] = av1_cost_bit(fc->refmv_prob[i], 1); |
| #endif |
| } |
| |
| for (i = 0; i < DRL_MODE_CONTEXTS; ++i) { |
| #if CONFIG_NEW_MULTISYMBOL |
| av1_cost_tokens_from_cdf(x->drl_mode_cost0[i], fc->drl_cdf[i], NULL); |
| #else |
| x->drl_mode_cost0[i][0] = av1_cost_bit(fc->drl_prob[i], 0); |
| x->drl_mode_cost0[i][1] = av1_cost_bit(fc->drl_prob[i], 1); |
| #endif |
| } |
| for (i = 0; i < INTER_MODE_CONTEXTS; ++i) |
| av1_cost_tokens_from_cdf(x->inter_compound_mode_cost[i], |
| fc->inter_compound_mode_cdf[i], NULL); |
| for (i = 0; i < BLOCK_SIZES_ALL; ++i) |
| av1_cost_tokens_from_cdf(x->compound_type_cost[i], |
| fc->compound_type_cdf[i], NULL); |
| #if CONFIG_COMPOUND_SINGLEREF |
| for (i = 0; i < INTER_MODE_CONTEXTS; ++i) |
| av1_cost_tokens_from_cdf(x->inter_singleref_comp_mode_cost[i], |
| fc->inter_singleref_comp_mode_cdf[i], NULL); |
| #endif // CONFIG_COMPOUND_SINGLEREF |
| #if CONFIG_INTERINTRA |
| for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) { |
| #if CONFIG_NEW_MULTISYMBOL |
| av1_cost_tokens_from_cdf(x->interintra_cost[i], fc->interintra_cdf[i], |
| NULL); |
| #else |
| x->interintra_cost[i][0] = av1_cost_bit(fc->interintra_prob[i], 0); |
| x->interintra_cost[i][1] = av1_cost_bit(fc->interintra_prob[i], 1); |
| #endif |
| av1_cost_tokens_from_cdf(x->interintra_mode_cost[i], |
| fc->interintra_mode_cdf[i], NULL); |
| } |
| for (i = 0; i < BLOCK_SIZES_ALL; ++i) { |
| #if CONFIG_NEW_MULTISYMBOL |
| av1_cost_tokens_from_cdf(x->wedge_interintra_cost[i], |
| fc->wedge_interintra_cdf[i], NULL); |
| #else |
| x->wedge_interintra_cost[i][0] = |
| av1_cost_bit(fc->wedge_interintra_prob[i], 0); |
| x->wedge_interintra_cost[i][1] = |
| av1_cost_bit(fc->wedge_interintra_prob[i], 1); |
| #endif |
| } |
| #endif // CONFIG_INTERINTRA |
| for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { |
| av1_cost_tokens_from_cdf(x->motion_mode_cost[i], fc->motion_mode_cdf[i], |
| NULL); |
| } |
| for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { |
| #if CONFIG_NCOBMC_ADAPT_WEIGHT |
| av1_cost_tokens_from_cdf(x->motion_mode_cost2[i], fc->ncobmc_cdf[i], |
| NULL); |
| #endif |
| #if CONFIG_NEW_MULTISYMBOL || CONFIG_NCOBMC_ADAPT_WEIGHT |
| av1_cost_tokens_from_cdf(x->motion_mode_cost1[i], fc->obmc_cdf[i], NULL); |
| #else |
| x->motion_mode_cost1[i][0] = av1_cost_bit(fc->obmc_prob[i], 0); |
| x->motion_mode_cost1[i][1] = av1_cost_bit(fc->obmc_prob[i], 1); |
| #endif |
| } |
| #if CONFIG_NCOBMC_ADAPT_WEIGHT |
| for (i = ADAPT_OVERLAP_BLOCK_8X8; i < ADAPT_OVERLAP_BLOCKS; ++i) { |
| av1_cost_tokens_from_cdf(x->ncobmc_mode_cost[i], fc->ncobmc_mode_cdf[i], |
| NULL); |
| } |
| #endif // CONFIG_NCOBMC_ADAPT_WEIGHT |
| } |
| } |
| |
| // Values are now correlated to quantizer. |
| static int sad_per_bit16lut_8[QINDEX_RANGE]; |
| static int sad_per_bit4lut_8[QINDEX_RANGE]; |
| |
| #if CONFIG_HIGHBITDEPTH |
| static int sad_per_bit16lut_10[QINDEX_RANGE]; |
| static int sad_per_bit4lut_10[QINDEX_RANGE]; |
| static int sad_per_bit16lut_12[QINDEX_RANGE]; |
| static int sad_per_bit4lut_12[QINDEX_RANGE]; |
| #endif |
| |
| static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range, |
| aom_bit_depth_t bit_depth) { |
| int i; |
| // Initialize the sad lut tables using a formulaic calculation for now. |
| // This is to make it easier to resolve the impact of experimental changes |
| // to the quantizer tables. |
| for (i = 0; i < range; i++) { |
| const double q = av1_convert_qindex_to_q(i, bit_depth); |
| bit16lut[i] = (int)(0.0418 * q + 2.4107); |
| bit4lut[i] = (int)(0.063 * q + 2.742); |
| } |
| } |
| |
| void av1_init_me_luts(void) { |
| init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE, |
| AOM_BITS_8); |
| #if CONFIG_HIGHBITDEPTH |
| init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE, |
| AOM_BITS_10); |
| init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE, |
| AOM_BITS_12); |
| #endif |
| } |
| |
| static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12, |
| 8, 8, 4, 4, 2, 2, 1, 0 }; |
| static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = { |
| 128, 144, 128, 128, 144, |
| // TODO(zoeliu): To adjust further following factor values. |
| 128, 128, 128, |
| // TODO(weitinglin): We should investigate if the values should be the same |
| // as the value used by OVERLAY frame |
| 144, // INTNL_OVERLAY_UPDATE |
| 128 // INTNL_ARF_UPDATE |
| }; |
| |
| int av1_compute_rd_mult(const AV1_COMP *cpi, int qindex) { |
| const int64_t q = av1_dc_quant(qindex, 0, cpi->common.bit_depth); |
| #if CONFIG_HIGHBITDEPTH |
| int64_t rdmult = 0; |
| switch (cpi->common.bit_depth) { |
| case AOM_BITS_8: rdmult = 88 * q * q / 24; break; |
| case AOM_BITS_10: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 4); break; |
| case AOM_BITS_12: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 8); break; |
| default: |
| assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
| return -1; |
| } |
| #else |
| int64_t rdmult = 88 * q * q / 24; |
| #endif // CONFIG_HIGHBITDEPTH |
| if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { |
| const GF_GROUP *const gf_group = &cpi->twopass.gf_group; |
| const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index]; |
| const int boost_index = AOMMIN(15, (cpi->rc.gfu_boost / 100)); |
| |
| rdmult = (rdmult * rd_frame_type_factor[frame_type]) >> 7; |
| rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7); |
| } |
| if (rdmult < 1) rdmult = 1; |
| return (int)rdmult; |
| } |
| |
| static int compute_rd_thresh_factor(int qindex, aom_bit_depth_t bit_depth) { |
| double q; |
| #if CONFIG_HIGHBITDEPTH |
| switch (bit_depth) { |
| case AOM_BITS_8: q = av1_dc_quant(qindex, 0, AOM_BITS_8) / 4.0; break; |
| case AOM_BITS_10: q = av1_dc_quant(qindex, 0, AOM_BITS_10) / 16.0; break; |
| case AOM_BITS_12: q = av1_dc_quant(qindex, 0, AOM_BITS_12) / 64.0; break; |
| default: |
| assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
| return -1; |
| } |
| #else |
| (void)bit_depth; |
| q = av1_dc_quant(qindex, 0, AOM_BITS_8) / 4.0; |
| #endif // CONFIG_HIGHBITDEPTH |
| // TODO(debargha): Adjust the function below. |
| return AOMMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8); |
| } |
| |
| void av1_initialize_me_consts(const AV1_COMP *cpi, MACROBLOCK *x, int qindex) { |
| #if CONFIG_HIGHBITDEPTH |
| switch (cpi->common.bit_depth) { |
| case AOM_BITS_8: |
| x->sadperbit16 = sad_per_bit16lut_8[qindex]; |
| x->sadperbit4 = sad_per_bit4lut_8[qindex]; |
| break; |
| case AOM_BITS_10: |
| x->sadperbit16 = sad_per_bit16lut_10[qindex]; |
| x->sadperbit4 = sad_per_bit4lut_10[qindex]; |
| break; |
| case AOM_BITS_12: |
| x->sadperbit16 = sad_per_bit16lut_12[qindex]; |
| x->sadperbit4 = sad_per_bit4lut_12[qindex]; |
| break; |
| default: |
| assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
| } |
| #else |
| (void)cpi; |
| x->sadperbit16 = sad_per_bit16lut_8[qindex]; |
| x->sadperbit4 = sad_per_bit4lut_8[qindex]; |
| #endif // CONFIG_HIGHBITDEPTH |
| } |
| |
| static void set_block_thresholds(const AV1_COMMON *cm, RD_OPT *rd) { |
| int i, bsize, segment_id; |
| |
| for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) { |
| const int qindex = |
| clamp(av1_get_qindex(&cm->seg, segment_id, cm->base_qindex) + |
| cm->y_dc_delta_q, |
| 0, MAXQ); |
| const int q = compute_rd_thresh_factor(qindex, cm->bit_depth); |
| |
| for (bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) { |
| // Threshold here seems unnecessarily harsh but fine given actual |
| // range of values used for cpi->sf.thresh_mult[]. |
| const int t = q * rd_thresh_block_size_factor[bsize]; |
| const int thresh_max = INT_MAX / t; |
| |
| for (i = 0; i < MAX_MODES; ++i) |
| rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max |
| ? rd->thresh_mult[i] * t / 4 |
| : INT_MAX; |
| } |
| } |
| } |
| |
| void av1_set_mvcost(MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, int ref, |
| int ref_mv_idx) { |
| MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext; |
| int8_t rf_type = av1_ref_frame_type(x->e_mbd.mi[0]->mbmi.ref_frame); |
| int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type], |
| mbmi_ext->ref_mv_stack[rf_type], ref, ref_mv_idx); |
| (void)ref_frame; |
| x->mvcost = x->mv_cost_stack[nmv_ctx]; |
| x->nmvjointcost = x->nmv_vec_cost[nmv_ctx]; |
| } |
| |
| #if CONFIG_LV_MAP |
| void av1_fill_coeff_costs(MACROBLOCK *x, FRAME_CONTEXT *fc) { |
| for (int tx_size = 0; tx_size < TX_SIZES; ++tx_size) { |
| for (int plane = 0; plane < PLANE_TYPES; ++plane) { |
| LV_MAP_COEFF_COST *pcost = &x->coeff_costs[tx_size][plane]; |
| |
| for (int ctx = 0; ctx < TXB_SKIP_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->txb_skip_cost[ctx], |
| fc->txb_skip_cdf[tx_size][ctx], NULL); |
| |
| for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->nz_map_cost[ctx], |
| fc->nz_map_cdf[tx_size][plane][ctx], NULL); |
| |
| for (int ctx = 0; ctx < EOB_COEF_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->eob_cost[ctx], |
| fc->eob_flag_cdf[tx_size][plane][ctx], NULL); |
| |
| for (int ctx = 0; ctx < EOB_COEF_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->eob_extra_cost[ctx], |
| fc->eob_extra_cdf[tx_size][plane][ctx], NULL); |
| |
| for (int ctx = 0; ctx < DC_SIGN_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->dc_sign_cost[ctx], |
| fc->dc_sign_cdf[plane][ctx], NULL); |
| |
| for (int layer = 0; layer < NUM_BASE_LEVELS; ++layer) |
| for (int ctx = 0; ctx < COEFF_BASE_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf( |
| pcost->base_cost[layer][ctx], |
| fc->coeff_base_cdf[tx_size][plane][layer][ctx], NULL); |
| |
| for (int br = 0; br < BASE_RANGE_SETS; ++br) |
| for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf(pcost->br_cost[br][ctx], |
| fc->coeff_br_cdf[tx_size][plane][br][ctx], |
| NULL); |
| |
| for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) { |
| int lps_rate[2]; |
| av1_cost_tokens_from_cdf(lps_rate, |
| fc->coeff_lps_cdf[tx_size][plane][ctx], NULL); |
| |
| for (int base_range = 0; base_range < COEFF_BASE_RANGE + 1; |
| ++base_range) { |
| int br_set_idx = base_range < COEFF_BASE_RANGE |
| ? coeff_to_br_index[base_range] |
| : BASE_RANGE_SETS; |
| |
| pcost->lps_cost[ctx][base_range] = 0; |
| |
| for (int idx = 0; idx < BASE_RANGE_SETS; ++idx) { |
| if (idx == br_set_idx) { |
| pcost->lps_cost[ctx][base_range] += pcost->br_cost[idx][ctx][1]; |
| |
| int br_base = br_index_to_coeff[br_set_idx]; |
| int br_offset = base_range - br_base; |
| int extra_bits = (1 << br_extra_bits[idx]) - 1; |
| for (int tok = 0; tok < extra_bits; ++tok) { |
| if (tok == br_offset) { |
| pcost->lps_cost[ctx][base_range] += lps_rate[1]; |
| break; |
| } else { |
| pcost->lps_cost[ctx][base_range] += lps_rate[0]; |
| } |
| } |
| break; |
| } else { |
| pcost->lps_cost[ctx][base_range] += pcost->br_cost[idx][ctx][0]; |
| } |
| } |
| // load the base range cost |
| } |
| } |
| #if CONFIG_CTX1D |
| for (int tx_class = 0; tx_class < TX_CLASSES; ++tx_class) |
| av1_cost_tokens_from_cdf(pcost->eob_mode_cost[tx_class], |
| fc->eob_mode_cdf[tx_size][plane][tx_class], |
| NULL); |
| |
| for (int tx_class = 0; tx_class < TX_CLASSES; ++tx_class) |
| for (int ctx = 0; ctx < EMPTY_LINE_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf( |
| pcost->empty_line_cost[tx_class][ctx], |
| fc->empty_line_cdf[tx_size][plane][tx_class][ctx], NULL); |
| |
| for (int tx_class = 0; tx_class < TX_CLASSES; ++tx_class) |
| for (int ctx = 0; ctx < HV_EOB_CONTEXTS; ++ctx) |
| av1_cost_tokens_from_cdf( |
| pcost->hv_eob_cost[tx_class][ctx], |
| fc->hv_eob_cdf[tx_size][plane][tx_class][ctx], NULL); |
| #endif // CONFIG_CTX1D |
| } |
| } |
| } |
| #endif // CONFIG_LV_MAP |
| |
| void av1_fill_token_costs_from_cdf(av1_coeff_cost *cost, |
| coeff_cdf_model (*cdf)[PLANE_TYPES]) { |
| for (int tx = 0; tx < TX_SIZES; ++tx) { |
| for (int pt = 0; pt < PLANE_TYPES; ++pt) { |
| for (int rt = 0; rt < REF_TYPES; ++rt) { |
| for (int band = 0; band < COEF_BANDS; ++band) { |
| for (int ctx = 0; ctx < BAND_COEFF_CONTEXTS(band); ++ctx) { |
| av1_cost_tokens_from_cdf(cost[tx][pt][rt][band][ctx], |
| cdf[tx][pt][rt][band][ctx], NULL); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void av1_initialize_rd_consts(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->td.mb; |
| RD_OPT *const rd = &cpi->rd; |
| int nmv_ctx; |
| |
| aom_clear_system_state(); |
| |
| rd->RDMULT = av1_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q); |
| |
| set_error_per_bit(x, rd->RDMULT); |
| |
| set_block_thresholds(cm, rd); |
| |
| for (nmv_ctx = 0; nmv_ctx < NMV_CONTEXTS; ++nmv_ctx) { |
| #if CONFIG_AMVR |
| if (cm->cur_frame_force_integer_mv) { |
| av1_build_nmv_cost_table(x->nmv_vec_cost[nmv_ctx], x->nmvcost[nmv_ctx], |
| &cm->fc->nmvc[nmv_ctx], MV_SUBPEL_NONE); |
| } else { |
| av1_build_nmv_cost_table( |
| x->nmv_vec_cost[nmv_ctx], |
| cm->allow_high_precision_mv ? x->nmvcost_hp[nmv_ctx] |
| : x->nmvcost[nmv_ctx], |
| &cm->fc->nmvc[nmv_ctx], cm->allow_high_precision_mv); |
| } |
| |
| #else |
| av1_build_nmv_cost_table( |
| x->nmv_vec_cost[nmv_ctx], |
| cm->allow_high_precision_mv ? x->nmvcost_hp[nmv_ctx] |
| : x->nmvcost[nmv_ctx], |
| &cm->fc->nmvc[nmv_ctx], cm->allow_high_precision_mv); |
| #endif |
| } |
| x->mvcost = x->mv_cost_stack[0]; |
| x->nmvjointcost = x->nmv_vec_cost[0]; |
| |
| #if CONFIG_INTRABC |
| if (frame_is_intra_only(cm) && cm->allow_screen_content_tools && |
| cpi->oxcf.pass != 1) { |
| av1_build_nmv_cost_table( |
| x->nmv_vec_cost[0], |
| cm->allow_high_precision_mv ? x->nmvcost_hp[0] : x->nmvcost[0], |
| &cm->fc->ndvc, MV_SUBPEL_NONE); |
| } |
| #endif |
| |
| if (cpi->oxcf.pass != 1) { |
| for (int i = 0; i < TRANS_TYPES; ++i) |
| #if GLOBAL_TRANS_TYPES > 4 |
| cpi->gmtype_cost[i] = (1 + (i > 0 ? GLOBAL_TYPE_BITS : 0)) |
| << AV1_PROB_COST_SHIFT; |
| #else |
| // IDENTITY: 1 bit |
| // TRANSLATION: 3 bits |
| // ROTZOOM: 2 bits |
| // AFFINE: 3 bits |
| cpi->gmtype_cost[i] = (1 + (i > 0 ? (i == ROTZOOM ? 1 : 2) : 0)) |
| << AV1_PROB_COST_SHIFT; |
| #endif // GLOBAL_TRANS_TYPES > 4 |
| } |
| } |
| |
| static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) { |
| // NOTE: The tables below must be of the same size. |
| |
| // The functions described below are sampled at the four most significant |
| // bits of x^2 + 8 / 256. |
| |
| // Normalized rate: |
| // This table models the rate for a Laplacian source with given variance |
| // when quantized with a uniform quantizer with given stepsize. The |
| // closed form expression is: |
| // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)], |
| // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance), |
| // and H(x) is the binary entropy function. |
| static const int rate_tab_q10[] = { |
| 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, |
| 4044, 3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, |
| 3133, 3037, 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, |
| 2290, 2232, 2179, 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, |
| 1608, 1530, 1460, 1398, 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, |
| 911, 864, 821, 781, 745, 680, 623, 574, 530, 490, 455, 424, |
| 395, 345, 304, 269, 239, 213, 190, 171, 154, 126, 104, 87, |
| 73, 61, 52, 44, 38, 28, 21, 16, 12, 10, 8, 6, |
| 5, 3, 2, 1, 1, 1, 0, 0, |
| }; |
| // Normalized distortion: |
| // This table models the normalized distortion for a Laplacian source |
| // with given variance when quantized with a uniform quantizer |
| // with given stepsize. The closed form expression is: |
| // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2)) |
| // where x = qpstep / sqrt(variance). |
| // Note the actual distortion is Dn * variance. |
| static const int dist_tab_q10[] = { |
| 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, |
| 5, 6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17, |
| 18, 21, 24, 26, 29, 31, 34, 36, 39, 44, 49, 54, |
| 59, 64, 69, 73, 78, 88, 97, 106, 115, 124, 133, 142, |
| 151, 167, 184, 200, 215, 231, 245, 260, 274, 301, 327, 351, |
| 375, 397, 418, 439, 458, 495, 528, 559, 587, 613, 637, 659, |
| 680, 717, 749, 777, 801, 823, 842, 859, 874, 899, 919, 936, |
| 949, 960, 969, 977, 983, 994, 1001, 1006, 1010, 1013, 1015, 1017, |
| 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024, |
| }; |
| static const int xsq_iq_q10[] = { |
| 0, 4, 8, 12, 16, 20, 24, 28, 32, |
| 40, 48, 56, 64, 72, 80, 88, 96, 112, |
| 128, 144, 160, 176, 192, 208, 224, 256, 288, |
| 320, 352, 384, 416, 448, 480, 544, 608, 672, |
| 736, 800, 864, 928, 992, 1120, 1248, 1376, 1504, |
| 1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296, |
| 3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136, |
| 7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328, |
| 16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736, |
| 36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696, |
| 81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808, |
| 180192, 196576, 212960, 229344, 245728, |
| }; |
| const int tmp = (xsq_q10 >> 2) + 8; |
| const int k = get_msb(tmp) - 3; |
| const int xq = (k << 3) + ((tmp >> k) & 0x7); |
| const int one_q10 = 1 << 10; |
| const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k); |
| const int b_q10 = one_q10 - a_q10; |
| *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10; |
| *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10; |
| } |
| |
| void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n_log2, |
| unsigned int qstep, int *rate, |
| int64_t *dist) { |
| // This function models the rate and distortion for a Laplacian |
| // source with given variance when quantized with a uniform quantizer |
| // with given stepsize. The closed form expressions are in: |
| // Hang and Chen, "Source Model for transform video coder and its |
| // application - Part I: Fundamental Theory", IEEE Trans. Circ. |
| // Sys. for Video Tech., April 1997. |
| if (var == 0) { |
| *rate = 0; |
| *dist = 0; |
| } else { |
| int d_q10, r_q10; |
| static const uint32_t MAX_XSQ_Q10 = 245727; |
| const uint64_t xsq_q10_64 = |
| (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var; |
| const int xsq_q10 = (int)AOMMIN(xsq_q10_64, MAX_XSQ_Q10); |
| model_rd_norm(xsq_q10, &r_q10, &d_q10); |
| *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - AV1_PROB_COST_SHIFT); |
| *dist = (var * (int64_t)d_q10 + 512) >> 10; |
| } |
| } |
| |
| static void get_entropy_contexts_plane( |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, const struct macroblockd_plane *pd, |
| ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE], |
| ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE]) { |
| const int num_4x4_w = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| const int num_4x4_h = block_size_high[plane_bsize] >> tx_size_high_log2[0]; |
| const ENTROPY_CONTEXT *const above = pd->above_context; |
| const ENTROPY_CONTEXT *const left = pd->left_context; |
| |
| #if CONFIG_LV_MAP |
| memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); |
| memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); |
| return; |
| #endif // CONFIG_LV_MAP |
| |
| int i; |
| |
| switch (tx_size) { |
| case TX_4X4: |
| memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); |
| memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); |
| break; |
| case TX_8X8: |
| for (i = 0; i < num_4x4_w; i += 2) |
| t_above[i] = !!*(const uint16_t *)&above[i]; |
| for (i = 0; i < num_4x4_h; i += 2) |
| t_left[i] = !!*(const uint16_t *)&left[i]; |
| break; |
| case TX_16X16: |
| for (i = 0; i < num_4x4_w; i += 4) |
| t_above[i] = !!*(const uint32_t *)&above[i]; |
| for (i = 0; i < num_4x4_h; i += 4) |
| t_left[i] = !!*(const uint32_t *)&left[i]; |
| break; |
| case TX_32X32: |
| for (i = 0; i < num_4x4_w; i += 8) |
| t_above[i] = !!*(const uint64_t *)&above[i]; |
| for (i = 0; i < num_4x4_h; i += 8) |
| t_left[i] = !!*(const uint64_t *)&left[i]; |
| break; |
| #if CONFIG_TX64X64 |
| case TX_32X64: |
| for (i = 0; i < num_4x4_w; i += 8) |
| t_above[i] = !!*(const uint64_t *)&above[i]; |
| for (i = 0; i < num_4x4_h; i += 16) |
| t_left[i] = |
| !!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8]); |
| break; |
| case TX_64X32: |
| for (i = 0; i < num_4x4_w; i += 16) |
| t_above[i] = |
| !!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8]); |
| for (i = 0; i < num_4x4_h; i += 8) |
| t_left[i] = !!*(const uint64_t *)&left[i]; |
| break; |
| case TX_64X64: |
| for (i = 0; i < num_4x4_w; i += 16) |
| t_above[i] = |
| !!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8]); |
| for (i = 0; i < num_4x4_h; i += 16) |
| t_left[i] = |
| !!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8]); |
| break; |
| #endif // CONFIG_TX64X64 |
| case TX_4X8: |
| memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); |
| for (i = 0; i < num_4x4_h; i += 2) |
| t_left[i] = !!*(const uint16_t *)&left[i]; |
| break; |
| case TX_8X4: |
| for (i = 0; i < num_4x4_w; i += 2) |
| t_above[i] = !!*(const uint16_t *)&above[i]; |
| memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); |
| break; |
| case TX_8X16: |
| for (i = 0; i < num_4x4_w; i += 2) |
| t_above[i] = !!*(const uint16_t *)&above[i]; |
| for (i = 0; i < num_4x4_h; i += 4) |
| t_left[i] = !!*(const uint32_t *)&left[i]; |
| break; |
| case TX_16X8: |
| for (i = 0; i < num_4x4_w; i += 4) |
| t_above[i] = !!*(const uint32_t *)&above[i]; |
| for (i = 0; i < num_4x4_h; i += 2) |
| t_left[i] = !!*(const uint16_t *)&left[i]; |
| break; |
| case TX_16X32: |
| for (i = 0; i < num_4x4_w; i += 4) |
| t_above[i] = !!*(const uint32_t *)&above[i]; |
| for (i = 0; i < num_4x4_h; i += 8) |
| t_left[i] = !!*(const uint64_t *)&left[i]; |
| break; |
| case TX_32X16: |
| for (i = 0; i < num_4x4_w; i += 8) |
| t_above[i] = !!*(const uint64_t *)&above[i]; |
| for (i = 0; i < num_4x4_h; i += 4) |
| t_left[i] = !!*(const uint32_t *)&left[i]; |
| break; |
| #if CONFIG_RECT_TX_EXT |
| case TX_4X16: |
| memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); |
| for (i = 0; i < num_4x4_h; i += 4) |
| t_left[i] = !!*(const uint32_t *)&left[i]; |
| break; |
| case TX_16X4: |
| for (i = 0; i < num_4x4_w; i += 4) |
| t_above[i] = !!*(const uint32_t *)&above[i]; |
| memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); |
| break; |
| case TX_8X32: |
| for (i = 0; i < num_4x4_w; i += 2) |
| t_above[i] = !!*(const uint16_t *)&above[i]; |
| for (i = 0; i < num_4x4_h; i += 8) |
| t_left[i] = !!*(const uint64_t *)&left[i]; |
| break; |
| case TX_32X8: |
| for (i = 0; i < num_4x4_w; i += 8) |
| t_above[i] = !!*(const uint64_t *)&above[i]; |
| for (i = 0; i < num_4x4_h; i += 2) |
| t_left[i] = !!*(const uint16_t *)&left[i]; |
| break; |
| #endif |
| default: assert(0 && "Invalid transform size."); break; |
| } |
| } |
| |
| void av1_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size, |
| const struct macroblockd_plane *pd, |
| ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE], |
| ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE]) { |
| const BLOCK_SIZE plane_bsize = |
| AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd)); |
| get_entropy_contexts_plane(plane_bsize, tx_size, pd, t_above, t_left); |
| } |
| |
| void av1_mv_pred(const AV1_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer, |
| int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) { |
| int i; |
| int zero_seen = 0; |
| int best_index = 0; |
| int best_sad = INT_MAX; |
| int this_sad = INT_MAX; |
| int max_mv = 0; |
| uint8_t *src_y_ptr = x->plane[0].src.buf; |
| uint8_t *ref_y_ptr; |
| MV pred_mv[MAX_MV_REF_CANDIDATES + 1]; |
| int num_mv_refs = 0; |
| |
| pred_mv[num_mv_refs++] = x->mbmi_ext->ref_mvs[ref_frame][0].as_mv; |
| if (x->mbmi_ext->ref_mvs[ref_frame][0].as_int != |
| x->mbmi_ext->ref_mvs[ref_frame][1].as_int) { |
| pred_mv[num_mv_refs++] = x->mbmi_ext->ref_mvs[ref_frame][1].as_mv; |
| } |
| if (cpi->sf.adaptive_motion_search && block_size < x->max_partition_size) |
| pred_mv[num_mv_refs++] = x->pred_mv[ref_frame]; |
| |
| assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0]))); |
| |
| // Get the sad for each candidate reference mv. |
| for (i = 0; i < num_mv_refs; ++i) { |
| const MV *this_mv = &pred_mv[i]; |
| int fp_row, fp_col; |
| fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3; |
| fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3; |
| max_mv = AOMMAX(max_mv, AOMMAX(abs(this_mv->row), abs(this_mv->col)) >> 3); |
| |
| if (fp_row == 0 && fp_col == 0 && zero_seen) continue; |
| zero_seen |= (fp_row == 0 && fp_col == 0); |
| |
| ref_y_ptr = &ref_y_buffer[ref_y_stride * fp_row + fp_col]; |
| // Find sad for current vector. |
| this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride, |
| ref_y_ptr, ref_y_stride); |
| // Note if it is the best so far. |
| if (this_sad < best_sad) { |
| best_sad = this_sad; |
| best_index = i; |
| } |
| } |
| |
| // Note the index of the mv that worked best in the reference list. |
| x->mv_best_ref_index[ref_frame] = best_index; |
| x->max_mv_context[ref_frame] = max_mv; |
| x->pred_mv_sad[ref_frame] = best_sad; |
| } |
| |
| void av1_setup_pred_block(const MACROBLOCKD *xd, |
| struct buf_2d dst[MAX_MB_PLANE], |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const struct scale_factors *scale, |
| const struct scale_factors *scale_uv) { |
| int i; |
| |
| dst[0].buf = src->y_buffer; |
| dst[0].stride = src->y_stride; |
| dst[1].buf = src->u_buffer; |
| dst[2].buf = src->v_buffer; |
| dst[1].stride = dst[2].stride = src->uv_stride; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| setup_pred_plane(dst + i, xd->mi[0]->mbmi.sb_type, dst[i].buf, |
| i ? src->uv_crop_width : src->y_crop_width, |
| i ? src->uv_crop_height : src->y_crop_height, |
| dst[i].stride, mi_row, mi_col, i ? scale_uv : scale, |
| xd->plane[i].subsampling_x, xd->plane[i].subsampling_y); |
| } |
| } |
| |
| int av1_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block, |
| int stride) { |
| const int bw = b_width_log2_lookup[plane_bsize]; |
| const int y = 4 * (raster_block >> bw); |
| const int x = 4 * (raster_block & ((1 << bw) - 1)); |
| return y * stride + x; |
| } |
| |
| int16_t *av1_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block, |
| int16_t *base) { |
| const int stride = block_size_wide[plane_bsize]; |
| return base + av1_raster_block_offset(plane_bsize, raster_block, stride); |
| } |
| |
| YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const AV1_COMP *cpi, |
| int ref_frame) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1]; |
| const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame); |
| return (scaled_idx != ref_idx && scaled_idx != INVALID_IDX) |
| ? &cm->buffer_pool->frame_bufs[scaled_idx].buf |
| : NULL; |
| } |
| |
| #if CONFIG_DUAL_FILTER |
| int av1_get_switchable_rate(const AV1_COMMON *const cm, MACROBLOCK *x, |
| const MACROBLOCKD *xd) { |
| if (cm->interp_filter == SWITCHABLE) { |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| int inter_filter_cost = 0; |
| int dir; |
| |
| for (dir = 0; dir < 2; ++dir) { |
| if (has_subpel_mv_component(xd->mi[0], xd, dir) || |
| (mbmi->ref_frame[1] > INTRA_FRAME && |
| has_subpel_mv_component(xd->mi[0], xd, dir + 2))) { |
| const int ctx = av1_get_pred_context_switchable_interp(xd, dir); |
| const InterpFilter filter = |
| av1_extract_interp_filter(mbmi->interp_filters, dir); |
| inter_filter_cost += x->switchable_interp_costs[ctx][filter]; |
| } |
| } |
| return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost; |
| } else { |
| return 0; |
| } |
| } |
| #else |
| int av1_get_switchable_rate(const AV1_COMMON *const cm, MACROBLOCK *x, |
| const MACROBLOCKD *xd) { |
| if (cm->interp_filter == SWITCHABLE) { |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const int ctx = av1_get_pred_context_switchable_interp(xd); |
| const InterpFilter filter = |
| av1_extract_interp_filter(mbmi->interp_filters, 0); |
| return SWITCHABLE_INTERP_RATE_FACTOR * |
| x->switchable_interp_costs[ctx][filter]; |
| } |
| return 0; |
| } |
| #endif |
| |
| void av1_set_rd_speed_thresholds(AV1_COMP *cpi) { |
| int i; |
| RD_OPT *const rd = &cpi->rd; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| |
| // Set baseline threshold values. |
| for (i = 0; i < MAX_MODES; ++i) rd->thresh_mult[i] = cpi->oxcf.mode == 0; |
| |
| if (sf->adaptive_rd_thresh) { |
| rd->thresh_mult[THR_NEARESTMV] = 300; |
| rd->thresh_mult[THR_NEARESTL2] = 300; |
| rd->thresh_mult[THR_NEARESTL3] = 300; |
| rd->thresh_mult[THR_NEARESTB] = 300; |
| rd->thresh_mult[THR_NEARESTA2] = 300; |
| rd->thresh_mult[THR_NEARESTA] = 300; |
| rd->thresh_mult[THR_NEARESTG] = 300; |
| } else { |
| rd->thresh_mult[THR_NEARESTMV] = 0; |
| rd->thresh_mult[THR_NEARESTL2] = 0; |
| rd->thresh_mult[THR_NEARESTL3] = 0; |
| rd->thresh_mult[THR_NEARESTB] = 0; |
| rd->thresh_mult[THR_NEARESTA2] = 0; |
| rd->thresh_mult[THR_NEARESTA] = 0; |
| rd->thresh_mult[THR_NEARESTG] = 0; |
| } |
| |
| rd->thresh_mult[THR_DC] += 1000; |
| |
| rd->thresh_mult[THR_NEWMV] += 1000; |
| rd->thresh_mult[THR_NEWL2] += 1000; |
| rd->thresh_mult[THR_NEWL3] += 1000; |
| rd->thresh_mult[THR_NEWB] += 1000; |
| rd->thresh_mult[THR_NEWA2] = 1000; |
| rd->thresh_mult[THR_NEWA] += 1000; |
| rd->thresh_mult[THR_NEWG] += 1000; |
| |
| rd->thresh_mult[THR_NEARMV] += 1000; |
| rd->thresh_mult[THR_NEARL2] += 1000; |
| rd->thresh_mult[THR_NEARL3] += 1000; |
| rd->thresh_mult[THR_NEARB] += 1000; |
| rd->thresh_mult[THR_NEARA2] = 1000; |
| rd->thresh_mult[THR_NEARA] += 1000; |
| rd->thresh_mult[THR_NEARG] += 1000; |
| |
| rd->thresh_mult[THR_ZEROMV] += 2000; |
| rd->thresh_mult[THR_ZEROL2] += 2000; |
| rd->thresh_mult[THR_ZEROL3] += 2000; |
| rd->thresh_mult[THR_ZEROB] += 2000; |
| rd->thresh_mult[THR_ZEROA2] = 2000; |
| rd->thresh_mult[THR_ZEROG] += 2000; |
| rd->thresh_mult[THR_ZEROA] += 2000; |
| |
| rd->thresh_mult[THR_PAETH] += 1000; |
| |
| #if CONFIG_COMPOUND_SINGLEREF |
| rd->thresh_mult[THR_SR_NEAREST_NEARMV] += 1200; |
| rd->thresh_mult[THR_SR_NEAREST_NEARL2] += 1200; |
| rd->thresh_mult[THR_SR_NEAREST_NEARL3] += 1200; |
| rd->thresh_mult[THR_SR_NEAREST_NEARB] += 1200; |
| rd->thresh_mult[THR_SR_NEAREST_NEARA] += 1200; |
| rd->thresh_mult[THR_SR_NEAREST_NEARG] += 1200; |
| |
| /* |
| rd->thresh_mult[THR_SR_NEAREST_NEWMV] += 1200; |
| rd->thresh_mult[THR_SR_NEAREST_NEWL2] += 1200; |
| rd->thresh_mult[THR_SR_NEAREST_NEWL3] += 1200; |
| rd->thresh_mult[THR_SR_NEAREST_NEWB] += 1200; |
| rd->thresh_mult[THR_SR_NEAREST_NEWA] += 1200; |
| rd->thresh_mult[THR_SR_NEAREST_NEWG] += 1200;*/ |
| |
| rd->thresh_mult[THR_SR_NEAR_NEWMV] += 1500; |
| rd->thresh_mult[THR_SR_NEAR_NEWL2] += 1500; |
| rd->thresh_mult[THR_SR_NEAR_NEWL3] += 1500; |
| rd->thresh_mult[THR_SR_NEAR_NEWB] += 1500; |
| rd->thresh_mult[THR_SR_NEAR_NEWA] += 1500; |
| rd->thresh_mult[THR_SR_NEAR_NEWG] += 1500; |
| |
| rd->thresh_mult[THR_SR_ZERO_NEWMV] += 2000; |
| rd->thresh_mult[THR_SR_ZERO_NEWL2] += 2000; |
| rd->thresh_mult[THR_SR_ZERO_NEWL3] += 2000; |
| rd->thresh_mult[THR_SR_ZERO_NEWB] += 2000; |
| rd->thresh_mult[THR_SR_ZERO_NEWA] += 2000; |
| rd->thresh_mult[THR_SR_ZERO_NEWG] += 2000; |
| |
| rd->thresh_mult[THR_SR_NEW_NEWMV] += 1700; |
| rd->thresh_mult[THR_SR_NEW_NEWL2] += 1700; |
| rd->thresh_mult[THR_SR_NEW_NEWL3] += 1700; |
| rd->thresh_mult[THR_SR_NEW_NEWB] += 1700; |
| rd->thresh_mult[THR_SR_NEW_NEWA] += 1700; |
| rd->thresh_mult[THR_SR_NEW_NEWG] += 1700; |
| #endif // CONFIG_COMPOUND_SINGLEREF |
| |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTLB] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2B] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3B] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTGB] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA2] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A2] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A2] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA2] += 1000; |
| |
| #if CONFIG_EXT_COMP_REFS |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL2] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL3] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTLG] += 1000; |
| rd->thresh_mult[THR_COMP_NEAREST_NEARESTBA] += 1000; |
| #endif // CONFIG_EXT_COMP_REFS |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARLA] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWLA] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTLA] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWLA] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARLA] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWLA] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROLA] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARL2A] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWL2A] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTL2A] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWL2A] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARL2A] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWL2A] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROL2A] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARL3A] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWL3A] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTL3A] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWL3A] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARL3A] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWL3A] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROL3A] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARGA] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWGA] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTGA] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWGA] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARGA] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWGA] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROGA] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARLB] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWLB] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTLB] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWLB] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARLB] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWLB] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROLB] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARL2B] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWL2B] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTL2B] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWL2B] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARL2B] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWL2B] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROL2B] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARL3B] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWL3B] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTL3B] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWL3B] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARL3B] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWL3B] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROL3B] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARGB] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWGB] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTGB] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWGB] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARGB] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWGB] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROGB] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARLA2] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWLA2] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTLA2] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWLA2] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARLA2] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWLA2] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROLA2] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARL2A2] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWL2A2] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTL2A2] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWL2A2] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARL2A2] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWL2A2] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROL2A2] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARL3A2] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWL3A2] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTL3A2] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWL3A2] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARL3A2] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWL3A2] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROL3A2] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARGA2] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWGA2] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTGA2] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWGA2] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARGA2] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWGA2] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROGA2] += 2500; |
| |
| #if CONFIG_EXT_COMP_REFS |
| rd->thresh_mult[THR_COMP_NEAR_NEARLL2] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWLL2] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTLL2] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWLL2] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARLL2] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWLL2] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROLL2] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARLL3] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWLL3] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTLL3] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWLL3] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARLL3] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWLL3] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROLL3] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARLG] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWLG] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTLG] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWLG] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARLG] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWLG] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROLG] += 2500; |
| |
| rd->thresh_mult[THR_COMP_NEAR_NEARBA] += 1200; |
| rd->thresh_mult[THR_COMP_NEAREST_NEWBA] += 1500; |
| rd->thresh_mult[THR_COMP_NEW_NEARESTBA] += 1500; |
| rd->thresh_mult[THR_COMP_NEAR_NEWBA] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEARBA] += 1700; |
| rd->thresh_mult[THR_COMP_NEW_NEWBA] += 2000; |
| rd->thresh_mult[THR_COMP_ZERO_ZEROBA] += 2500; |
| #endif // CONFIG_EXT_COMP_REFS |
| |
| rd->thresh_mult[THR_H_PRED] += 2000; |
| rd->thresh_mult[THR_V_PRED] += 2000; |
| rd->thresh_mult[THR_D135_PRED] += 2500; |
| rd->thresh_mult[THR_D207_PRED] += 2500; |
| rd->thresh_mult[THR_D153_PRED] += 2500; |
| rd->thresh_mult[THR_D63_PRED] += 2500; |
| rd->thresh_mult[THR_D117_PRED] += 2500; |
| rd->thresh_mult[THR_D45_PRED] += 2500; |
| |
| rd->thresh_mult[THR_COMP_INTERINTRA_ZEROL] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTL] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARL] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEWL] += 2000; |
| |
| rd->thresh_mult[THR_COMP_INTERINTRA_ZEROL2] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTL2] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARL2] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEWL2] += 2000; |
| |
| rd->thresh_mult[THR_COMP_INTERINTRA_ZEROL3] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTL3] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARL3] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEWL3] += 2000; |
| |
| rd->thresh_mult[THR_COMP_INTERINTRA_ZEROG] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTG] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARG] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEWG] += 2000; |
| |
| rd->thresh_mult[THR_COMP_INTERINTRA_ZEROB] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTB] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARB] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEWB] += 2000; |
| |
| rd->thresh_mult[THR_COMP_INTERINTRA_ZEROA2] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTA2] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARA2] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEWA2] += 2000; |
| |
| rd->thresh_mult[THR_COMP_INTERINTRA_ZEROA] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTA] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEARA] += 1500; |
| rd->thresh_mult[THR_COMP_INTERINTRA_NEWA] += 2000; |
| } |
| |
| void av1_set_rd_speed_thresholds_sub8x8(AV1_COMP *cpi) { |
| static const int thresh_mult[MAX_REFS] = { 2500, 2500, 2500, 2500, 2500, |
| 2500, 2500, 4500, 4500, 4500, |
| 4500, 4500, 4500, 4500, 4500, |
| 4500, 4500, 4500, 4500, 2500 }; |
| RD_OPT *const rd = &cpi->rd; |
| memcpy(rd->thresh_mult_sub8x8, thresh_mult, sizeof(thresh_mult)); |
| } |
| |
| void av1_update_rd_thresh_fact(const AV1_COMMON *const cm, |
| int (*factor_buf)[MAX_MODES], int rd_thresh, |
| int bsize, int best_mode_index) { |
| if (rd_thresh > 0) { |
| const int top_mode = MAX_MODES; |
| int mode; |
| for (mode = 0; mode < top_mode; ++mode) { |
| const BLOCK_SIZE min_size = AOMMAX(bsize - 1, BLOCK_4X4); |
| const BLOCK_SIZE max_size = AOMMIN(bsize + 2, (int)cm->sb_size); |
| BLOCK_SIZE bs; |
| for (bs = min_size; bs <= max_size; ++bs) { |
| int *const fact = &factor_buf[bs][mode]; |
| if (mode == best_mode_index) { |
| *fact -= (*fact >> 4); |
| } else { |
| *fact = AOMMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT); |
| } |
| } |
| } |
| } |
| } |
| |
| int av1_get_intra_cost_penalty(int qindex, int qdelta, |
| aom_bit_depth_t bit_depth) { |
| const int q = av1_dc_quant(qindex, qdelta, bit_depth); |
| #if CONFIG_HIGHBITDEPTH |
| switch (bit_depth) { |
| case AOM_BITS_8: return 20 * q; |
| case AOM_BITS_10: return 5 * q; |
| case AOM_BITS_12: return ROUND_POWER_OF_TWO(5 * q, 2); |
| default: |
| assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
| return -1; |
| } |
| #else |
| return 20 * q; |
| #endif // CONFIG_HIGHBITDEPTH |
| } |