| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <string.h> |
| #include <tuple> |
| |
| #include "third_party/googletest/src/googletest/include/gtest/gtest.h" |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/aom_filter.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/aom_timer.h" |
| #include "aom_ports/mem.h" |
| #include "av1/common/filter.h" |
| #include "test/acm_random.h" |
| #include "test/register_state_check.h" |
| #include "test/util.h" |
| |
| namespace { |
| |
| static const unsigned int kMaxDimension = MAX_SB_SIZE; |
| |
| typedef void (*ConvolveFunc)(const uint8_t *src, ptrdiff_t src_stride, |
| uint8_t *dst, ptrdiff_t dst_stride, |
| const int16_t *filter_x, int filter_x_stride, |
| const int16_t *filter_y, int filter_y_stride, |
| int w, int h); |
| |
| struct ConvolveFunctions { |
| ConvolveFunctions(ConvolveFunc h8, ConvolveFunc v8, int bd) |
| : h8_(h8), v8_(v8), use_highbd_(bd) {} |
| |
| ConvolveFunc h8_; |
| ConvolveFunc v8_; |
| int use_highbd_; // 0 if high bitdepth not used, else the actual bit depth. |
| }; |
| |
| typedef std::tuple<int, int, const ConvolveFunctions *> ConvolveParam; |
| |
| #define ALL_SIZES_64(convolve_fn) \ |
| make_tuple(4, 4, &convolve_fn), make_tuple(8, 4, &convolve_fn), \ |
| make_tuple(4, 8, &convolve_fn), make_tuple(8, 8, &convolve_fn), \ |
| make_tuple(16, 8, &convolve_fn), make_tuple(8, 16, &convolve_fn), \ |
| make_tuple(16, 16, &convolve_fn), make_tuple(32, 16, &convolve_fn), \ |
| make_tuple(16, 32, &convolve_fn), make_tuple(32, 32, &convolve_fn), \ |
| make_tuple(64, 32, &convolve_fn), make_tuple(32, 64, &convolve_fn), \ |
| make_tuple(64, 64, &convolve_fn) |
| |
| #define ALL_SIZES(convolve_fn) \ |
| make_tuple(128, 64, &convolve_fn), make_tuple(64, 128, &convolve_fn), \ |
| make_tuple(128, 128, &convolve_fn), ALL_SIZES_64(convolve_fn) |
| |
| // Reference 8-tap subpixel filter, slightly modified to fit into this test. |
| #define AV1_FILTER_WEIGHT 128 |
| #define AV1_FILTER_SHIFT 7 |
| uint8_t clip_pixel(int x) { return x < 0 ? 0 : x > 255 ? 255 : x; } |
| |
| void filter_block2d_8_c(const uint8_t *src_ptr, unsigned int src_stride, |
| const int16_t *HFilter, const int16_t *VFilter, |
| uint8_t *dst_ptr, unsigned int dst_stride, |
| unsigned int output_width, unsigned int output_height) { |
| // Between passes, we use an intermediate buffer whose height is extended to |
| // have enough horizontally filtered values as input for the vertical pass. |
| // This buffer is allocated to be big enough for the largest block type we |
| // support. |
| const int kInterp_Extend = 4; |
| const unsigned int intermediate_height = |
| (kInterp_Extend - 1) + output_height + kInterp_Extend; |
| unsigned int i, j; |
| |
| assert(intermediate_height > 7); |
| |
| // Size of intermediate_buffer is max_intermediate_height * filter_max_width, |
| // where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height |
| // + kInterp_Extend |
| // = 3 + 16 + 4 |
| // = 23 |
| // and filter_max_width = 16 |
| // |
| uint8_t intermediate_buffer[(kMaxDimension + 8) * kMaxDimension]; |
| const int intermediate_next_stride = |
| 1 - static_cast<int>(intermediate_height * output_width); |
| |
| // Horizontal pass (src -> transposed intermediate). |
| uint8_t *output_ptr = intermediate_buffer; |
| const int src_next_row_stride = src_stride - output_width; |
| src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1); |
| for (i = 0; i < intermediate_height; ++i) { |
| for (j = 0; j < output_width; ++j) { |
| // Apply filter... |
| const int temp = (src_ptr[0] * HFilter[0]) + (src_ptr[1] * HFilter[1]) + |
| (src_ptr[2] * HFilter[2]) + (src_ptr[3] * HFilter[3]) + |
| (src_ptr[4] * HFilter[4]) + (src_ptr[5] * HFilter[5]) + |
| (src_ptr[6] * HFilter[6]) + (src_ptr[7] * HFilter[7]) + |
| (AV1_FILTER_WEIGHT >> 1); // Rounding |
| |
| // Normalize back to 0-255... |
| *output_ptr = clip_pixel(temp >> AV1_FILTER_SHIFT); |
| ++src_ptr; |
| output_ptr += intermediate_height; |
| } |
| src_ptr += src_next_row_stride; |
| output_ptr += intermediate_next_stride; |
| } |
| |
| // Vertical pass (transposed intermediate -> dst). |
| src_ptr = intermediate_buffer; |
| const int dst_next_row_stride = dst_stride - output_width; |
| for (i = 0; i < output_height; ++i) { |
| for (j = 0; j < output_width; ++j) { |
| // Apply filter... |
| const int temp = (src_ptr[0] * VFilter[0]) + (src_ptr[1] * VFilter[1]) + |
| (src_ptr[2] * VFilter[2]) + (src_ptr[3] * VFilter[3]) + |
| (src_ptr[4] * VFilter[4]) + (src_ptr[5] * VFilter[5]) + |
| (src_ptr[6] * VFilter[6]) + (src_ptr[7] * VFilter[7]) + |
| (AV1_FILTER_WEIGHT >> 1); // Rounding |
| |
| // Normalize back to 0-255... |
| *dst_ptr++ = clip_pixel(temp >> AV1_FILTER_SHIFT); |
| src_ptr += intermediate_height; |
| } |
| src_ptr += intermediate_next_stride; |
| dst_ptr += dst_next_row_stride; |
| } |
| } |
| |
| void block2d_average_c(uint8_t *src, unsigned int src_stride, |
| uint8_t *output_ptr, unsigned int output_stride, |
| unsigned int output_width, unsigned int output_height) { |
| unsigned int i, j; |
| for (i = 0; i < output_height; ++i) { |
| for (j = 0; j < output_width; ++j) { |
| output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1; |
| } |
| output_ptr += output_stride; |
| } |
| } |
| |
| void filter_average_block2d_8_c(const uint8_t *src_ptr, |
| const unsigned int src_stride, |
| const int16_t *HFilter, const int16_t *VFilter, |
| uint8_t *dst_ptr, unsigned int dst_stride, |
| unsigned int output_width, |
| unsigned int output_height) { |
| uint8_t tmp[kMaxDimension * kMaxDimension]; |
| |
| assert(output_width <= kMaxDimension); |
| assert(output_height <= kMaxDimension); |
| filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, tmp, kMaxDimension, |
| output_width, output_height); |
| block2d_average_c(tmp, kMaxDimension, dst_ptr, dst_stride, output_width, |
| output_height); |
| } |
| |
| void highbd_filter_block2d_8_c(const uint16_t *src_ptr, |
| const unsigned int src_stride, |
| const int16_t *HFilter, const int16_t *VFilter, |
| uint16_t *dst_ptr, unsigned int dst_stride, |
| unsigned int output_width, |
| unsigned int output_height, int bd) { |
| // Between passes, we use an intermediate buffer whose height is extended to |
| // have enough horizontally filtered values as input for the vertical pass. |
| // This buffer is allocated to be big enough for the largest block type we |
| // support. |
| const int kInterp_Extend = 4; |
| const unsigned int intermediate_height = |
| (kInterp_Extend - 1) + output_height + kInterp_Extend; |
| |
| /* Size of intermediate_buffer is max_intermediate_height * filter_max_width, |
| * where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height |
| * + kInterp_Extend |
| * = 3 + 16 + 4 |
| * = 23 |
| * and filter_max_width = 16 |
| */ |
| uint16_t intermediate_buffer[(kMaxDimension + 8) * kMaxDimension] = { 0 }; |
| const int intermediate_next_stride = |
| 1 - static_cast<int>(intermediate_height * output_width); |
| |
| // Horizontal pass (src -> transposed intermediate). |
| { |
| uint16_t *output_ptr = intermediate_buffer; |
| const int src_next_row_stride = src_stride - output_width; |
| unsigned int i, j; |
| src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1); |
| for (i = 0; i < intermediate_height; ++i) { |
| for (j = 0; j < output_width; ++j) { |
| // Apply filter... |
| const int temp = (src_ptr[0] * HFilter[0]) + (src_ptr[1] * HFilter[1]) + |
| (src_ptr[2] * HFilter[2]) + (src_ptr[3] * HFilter[3]) + |
| (src_ptr[4] * HFilter[4]) + (src_ptr[5] * HFilter[5]) + |
| (src_ptr[6] * HFilter[6]) + (src_ptr[7] * HFilter[7]) + |
| (AV1_FILTER_WEIGHT >> 1); // Rounding |
| |
| // Normalize back to 0-255... |
| *output_ptr = clip_pixel_highbd(temp >> AV1_FILTER_SHIFT, bd); |
| ++src_ptr; |
| output_ptr += intermediate_height; |
| } |
| src_ptr += src_next_row_stride; |
| output_ptr += intermediate_next_stride; |
| } |
| } |
| |
| // Vertical pass (transposed intermediate -> dst). |
| { |
| const uint16_t *interm_ptr = intermediate_buffer; |
| const int dst_next_row_stride = dst_stride - output_width; |
| unsigned int i, j; |
| for (i = 0; i < output_height; ++i) { |
| for (j = 0; j < output_width; ++j) { |
| // Apply filter... |
| const int temp = |
| (interm_ptr[0] * VFilter[0]) + (interm_ptr[1] * VFilter[1]) + |
| (interm_ptr[2] * VFilter[2]) + (interm_ptr[3] * VFilter[3]) + |
| (interm_ptr[4] * VFilter[4]) + (interm_ptr[5] * VFilter[5]) + |
| (interm_ptr[6] * VFilter[6]) + (interm_ptr[7] * VFilter[7]) + |
| (AV1_FILTER_WEIGHT >> 1); // Rounding |
| |
| // Normalize back to 0-255... |
| *dst_ptr++ = clip_pixel_highbd(temp >> AV1_FILTER_SHIFT, bd); |
| interm_ptr += intermediate_height; |
| } |
| interm_ptr += intermediate_next_stride; |
| dst_ptr += dst_next_row_stride; |
| } |
| } |
| } |
| |
| void highbd_block2d_average_c(uint16_t *src, unsigned int src_stride, |
| uint16_t *output_ptr, unsigned int output_stride, |
| unsigned int output_width, |
| unsigned int output_height) { |
| unsigned int i, j; |
| for (i = 0; i < output_height; ++i) { |
| for (j = 0; j < output_width; ++j) { |
| output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1; |
| } |
| output_ptr += output_stride; |
| } |
| } |
| |
| void highbd_filter_average_block2d_8_c( |
| const uint16_t *src_ptr, unsigned int src_stride, const int16_t *HFilter, |
| const int16_t *VFilter, uint16_t *dst_ptr, unsigned int dst_stride, |
| unsigned int output_width, unsigned int output_height, int bd) { |
| uint16_t tmp[kMaxDimension * kMaxDimension]; |
| |
| assert(output_width <= kMaxDimension); |
| assert(output_height <= kMaxDimension); |
| highbd_filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, tmp, |
| kMaxDimension, output_width, output_height, bd); |
| highbd_block2d_average_c(tmp, kMaxDimension, dst_ptr, dst_stride, |
| output_width, output_height); |
| } |
| |
| class ConvolveTest : public ::testing::TestWithParam<ConvolveParam> { |
| public: |
| static void SetUpTestSuite() { |
| // Force input_ to be unaligned, output to be 16 byte aligned. |
| input_ = reinterpret_cast<uint8_t *>( |
| aom_memalign(kDataAlignment, kInputBufferSize + 1)) + |
| 1; |
| ASSERT_NE(input_, nullptr); |
| ref8_ = reinterpret_cast<uint8_t *>( |
| aom_memalign(kDataAlignment, kOutputStride * kMaxDimension)); |
| ASSERT_NE(ref8_, nullptr); |
| output_ = reinterpret_cast<uint8_t *>( |
| aom_memalign(kDataAlignment, kOutputBufferSize)); |
| ASSERT_NE(output_, nullptr); |
| output_ref_ = reinterpret_cast<uint8_t *>( |
| aom_memalign(kDataAlignment, kOutputBufferSize)); |
| ASSERT_NE(output_ref_, nullptr); |
| input16_ = reinterpret_cast<uint16_t *>(aom_memalign( |
| kDataAlignment, (kInputBufferSize + 1) * sizeof(uint16_t))) + |
| 1; |
| ASSERT_NE(input16_, nullptr); |
| ref16_ = reinterpret_cast<uint16_t *>(aom_memalign( |
| kDataAlignment, kOutputStride * kMaxDimension * sizeof(uint16_t))); |
| ASSERT_NE(ref16_, nullptr); |
| output16_ = reinterpret_cast<uint16_t *>( |
| aom_memalign(kDataAlignment, (kOutputBufferSize) * sizeof(uint16_t))); |
| ASSERT_NE(output16_, nullptr); |
| output16_ref_ = reinterpret_cast<uint16_t *>( |
| aom_memalign(kDataAlignment, (kOutputBufferSize) * sizeof(uint16_t))); |
| ASSERT_NE(output16_ref_, nullptr); |
| } |
| |
| virtual void TearDown() {} |
| |
| static void TearDownTestSuite() { |
| aom_free(input_ - 1); |
| input_ = nullptr; |
| aom_free(ref8_); |
| ref8_ = nullptr; |
| aom_free(output_); |
| output_ = nullptr; |
| aom_free(output_ref_); |
| output_ref_ = nullptr; |
| aom_free(input16_ - 1); |
| input16_ = nullptr; |
| aom_free(ref16_); |
| ref16_ = nullptr; |
| aom_free(output16_); |
| output16_ = nullptr; |
| aom_free(output16_ref_); |
| output16_ref_ = nullptr; |
| } |
| |
| protected: |
| static const int kDataAlignment = 16; |
| static const int kOuterBlockSize = 4 * kMaxDimension; |
| static const int kInputStride = kOuterBlockSize; |
| static const int kOutputStride = kOuterBlockSize; |
| static const int kInputBufferSize = kOuterBlockSize * kOuterBlockSize; |
| static const int kOutputBufferSize = kOuterBlockSize * kOuterBlockSize; |
| |
| int Width() const { return GET_PARAM(0); } |
| int Height() const { return GET_PARAM(1); } |
| int BorderLeft() const { |
| const int center = (kOuterBlockSize - Width()) / 2; |
| return (center + (kDataAlignment - 1)) & ~(kDataAlignment - 1); |
| } |
| int BorderTop() const { return (kOuterBlockSize - Height()) / 2; } |
| |
| bool IsIndexInBorder(int i) { |
| return (i < BorderTop() * kOuterBlockSize || |
| i >= (BorderTop() + Height()) * kOuterBlockSize || |
| i % kOuterBlockSize < BorderLeft() || |
| i % kOuterBlockSize >= (BorderLeft() + Width())); |
| } |
| |
| virtual void SetUp() { |
| UUT_ = GET_PARAM(2); |
| if (UUT_->use_highbd_ != 0) |
| mask_ = (1 << UUT_->use_highbd_) - 1; |
| else |
| mask_ = 255; |
| /* Set up guard blocks for an inner block centered in the outer block */ |
| for (int i = 0; i < kOutputBufferSize; ++i) { |
| if (IsIndexInBorder(i)) { |
| output_[i] = 255; |
| output16_[i] = mask_; |
| } else { |
| output_[i] = 0; |
| output16_[i] = 0; |
| } |
| } |
| |
| ::libaom_test::ACMRandom prng; |
| for (int i = 0; i < kInputBufferSize; ++i) { |
| if (i & 1) { |
| input_[i] = 255; |
| input16_[i] = mask_; |
| } else { |
| input_[i] = prng.Rand8Extremes(); |
| input16_[i] = prng.Rand16() & mask_; |
| } |
| } |
| } |
| |
| void SetConstantInput(int value) { |
| memset(input_, value, kInputBufferSize); |
| aom_memset16(input16_, value, kInputBufferSize); |
| } |
| |
| void CopyOutputToRef() { |
| memcpy(output_ref_, output_, kOutputBufferSize); |
| // Copy 16-bit pixels values. The effective number of bytes is double. |
| memcpy(output16_ref_, output16_, sizeof(output16_[0]) * kOutputBufferSize); |
| } |
| |
| void CheckGuardBlocks() { |
| for (int i = 0; i < kOutputBufferSize; ++i) { |
| if (IsIndexInBorder(i)) { |
| EXPECT_EQ(255, output_[i]); |
| } |
| } |
| } |
| |
| uint8_t *input() const { |
| const int offset = BorderTop() * kOuterBlockSize + BorderLeft(); |
| if (UUT_->use_highbd_ == 0) { |
| return input_ + offset; |
| } else { |
| return CONVERT_TO_BYTEPTR(input16_) + offset; |
| } |
| } |
| |
| uint8_t *output() const { |
| const int offset = BorderTop() * kOuterBlockSize + BorderLeft(); |
| if (UUT_->use_highbd_ == 0) { |
| return output_ + offset; |
| } else { |
| return CONVERT_TO_BYTEPTR(output16_) + offset; |
| } |
| } |
| |
| uint8_t *output_ref() const { |
| const int offset = BorderTop() * kOuterBlockSize + BorderLeft(); |
| if (UUT_->use_highbd_ == 0) { |
| return output_ref_ + offset; |
| } else { |
| return CONVERT_TO_BYTEPTR(output16_ref_) + offset; |
| } |
| } |
| |
| uint16_t lookup(uint8_t *list, int index) const { |
| if (UUT_->use_highbd_ == 0) { |
| return list[index]; |
| } else { |
| return CONVERT_TO_SHORTPTR(list)[index]; |
| } |
| } |
| |
| void assign_val(uint8_t *list, int index, uint16_t val) const { |
| if (UUT_->use_highbd_ == 0) { |
| list[index] = (uint8_t)val; |
| } else { |
| CONVERT_TO_SHORTPTR(list)[index] = val; |
| } |
| } |
| |
| void wrapper_filter_average_block2d_8_c( |
| const uint8_t *src_ptr, unsigned int src_stride, const int16_t *HFilter, |
| const int16_t *VFilter, uint8_t *dst_ptr, unsigned int dst_stride, |
| unsigned int output_width, unsigned int output_height) { |
| if (UUT_->use_highbd_ == 0) { |
| filter_average_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, dst_ptr, |
| dst_stride, output_width, output_height); |
| } else { |
| highbd_filter_average_block2d_8_c( |
| CONVERT_TO_SHORTPTR(src_ptr), src_stride, HFilter, VFilter, |
| CONVERT_TO_SHORTPTR(dst_ptr), dst_stride, output_width, output_height, |
| UUT_->use_highbd_); |
| } |
| } |
| |
| void wrapper_filter_block2d_8_c( |
| const uint8_t *src_ptr, unsigned int src_stride, const int16_t *HFilter, |
| const int16_t *VFilter, uint8_t *dst_ptr, unsigned int dst_stride, |
| unsigned int output_width, unsigned int output_height) { |
| if (UUT_->use_highbd_ == 0) { |
| filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, dst_ptr, |
| dst_stride, output_width, output_height); |
| } else { |
| highbd_filter_block2d_8_c(CONVERT_TO_SHORTPTR(src_ptr), src_stride, |
| HFilter, VFilter, CONVERT_TO_SHORTPTR(dst_ptr), |
| dst_stride, output_width, output_height, |
| UUT_->use_highbd_); |
| } |
| } |
| |
| const ConvolveFunctions *UUT_; |
| static uint8_t *input_; |
| static uint8_t *ref8_; |
| static uint8_t *output_; |
| static uint8_t *output_ref_; |
| static uint16_t *input16_; |
| static uint16_t *ref16_; |
| static uint16_t *output16_; |
| static uint16_t *output16_ref_; |
| int mask_; |
| }; |
| |
| uint8_t *ConvolveTest::input_ = nullptr; |
| uint8_t *ConvolveTest::ref8_ = nullptr; |
| uint8_t *ConvolveTest::output_ = nullptr; |
| uint8_t *ConvolveTest::output_ref_ = nullptr; |
| uint16_t *ConvolveTest::input16_ = nullptr; |
| uint16_t *ConvolveTest::ref16_ = nullptr; |
| uint16_t *ConvolveTest::output16_ = nullptr; |
| uint16_t *ConvolveTest::output16_ref_ = nullptr; |
| |
| TEST_P(ConvolveTest, GuardBlocks) { CheckGuardBlocks(); } |
| |
| const int kNumFilterBanks = SWITCHABLE_FILTERS; |
| const int kNumFilters = 16; |
| |
| TEST(ConvolveTest, FiltersWontSaturateWhenAddedPairwise) { |
| int subpel_search; |
| for (subpel_search = USE_4_TAPS; subpel_search <= USE_8_TAPS; |
| ++subpel_search) { |
| for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { |
| const InterpFilter filter = (InterpFilter)filter_bank; |
| const InterpKernel *filters = |
| (const InterpKernel *)av1_get_interp_filter_kernel(filter, |
| subpel_search); |
| for (int i = 0; i < kNumFilters; i++) { |
| const int p0 = filters[i][0] + filters[i][1]; |
| const int p1 = filters[i][2] + filters[i][3]; |
| const int p2 = filters[i][4] + filters[i][5]; |
| const int p3 = filters[i][6] + filters[i][7]; |
| EXPECT_LE(p0, 128); |
| EXPECT_LE(p1, 128); |
| EXPECT_LE(p2, 128); |
| EXPECT_LE(p3, 128); |
| EXPECT_LE(p0 + p3, 128); |
| EXPECT_LE(p0 + p3 + p1, 128); |
| EXPECT_LE(p0 + p3 + p1 + p2, 128); |
| EXPECT_EQ(p0 + p1 + p2 + p3, 128); |
| } |
| } |
| } |
| } |
| |
| const int16_t kInvalidFilter[8] = { 0 }; |
| |
| TEST_P(ConvolveTest, MatchesReferenceSubpixelFilter) { |
| uint8_t *const in = input(); |
| uint8_t *const out = output(); |
| uint8_t *ref; |
| if (UUT_->use_highbd_ == 0) { |
| ref = ref8_; |
| } else { |
| ref = CONVERT_TO_BYTEPTR(ref16_); |
| } |
| int subpel_search; |
| for (subpel_search = USE_4_TAPS; subpel_search <= USE_8_TAPS; |
| ++subpel_search) { |
| for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { |
| const InterpFilter filter = (InterpFilter)filter_bank; |
| const InterpKernel *filters = |
| (const InterpKernel *)av1_get_interp_filter_kernel(filter, |
| subpel_search); |
| for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { |
| for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { |
| wrapper_filter_block2d_8_c(in, kInputStride, filters[filter_x], |
| filters[filter_y], ref, kOutputStride, |
| Width(), Height()); |
| |
| if (filter_x && filter_y) |
| continue; |
| else if (filter_y) |
| API_REGISTER_STATE_CHECK( |
| UUT_->v8_(in, kInputStride, out, kOutputStride, kInvalidFilter, |
| 16, filters[filter_y], 16, Width(), Height())); |
| else if (filter_x) |
| API_REGISTER_STATE_CHECK(UUT_->h8_( |
| in, kInputStride, out, kOutputStride, filters[filter_x], 16, |
| kInvalidFilter, 16, Width(), Height())); |
| else |
| continue; |
| |
| CheckGuardBlocks(); |
| |
| for (int y = 0; y < Height(); ++y) |
| for (int x = 0; x < Width(); ++x) |
| ASSERT_EQ(lookup(ref, y * kOutputStride + x), |
| lookup(out, y * kOutputStride + x)) |
| << "mismatch at (" << x << "," << y << "), " |
| << "filters (" << filter_bank << "," << filter_x << "," |
| << filter_y << ")"; |
| } |
| } |
| } |
| } |
| } |
| |
| TEST_P(ConvolveTest, FilterExtremes) { |
| uint8_t *const in = input(); |
| uint8_t *const out = output(); |
| uint8_t *ref; |
| if (UUT_->use_highbd_ == 0) { |
| ref = ref8_; |
| } else { |
| ref = CONVERT_TO_BYTEPTR(ref16_); |
| } |
| |
| // Populate ref and out with some random data |
| ::libaom_test::ACMRandom prng; |
| for (int y = 0; y < Height(); ++y) { |
| for (int x = 0; x < Width(); ++x) { |
| uint16_t r; |
| if (UUT_->use_highbd_ == 0 || UUT_->use_highbd_ == 8) { |
| r = prng.Rand8Extremes(); |
| } else { |
| r = prng.Rand16() & mask_; |
| } |
| assign_val(out, y * kOutputStride + x, r); |
| assign_val(ref, y * kOutputStride + x, r); |
| } |
| } |
| |
| for (int axis = 0; axis < 2; axis++) { |
| int seed_val = 0; |
| while (seed_val < 256) { |
| for (int y = 0; y < 8; ++y) { |
| for (int x = 0; x < 8; ++x) { |
| assign_val(in, y * kOutputStride + x - SUBPEL_TAPS / 2 + 1, |
| ((seed_val >> (axis ? y : x)) & 1) * mask_); |
| if (axis) seed_val++; |
| } |
| if (axis) |
| seed_val -= 8; |
| else |
| seed_val++; |
| } |
| if (axis) seed_val += 8; |
| int subpel_search; |
| for (subpel_search = USE_4_TAPS; subpel_search <= USE_8_TAPS; |
| ++subpel_search) { |
| for (int filter_bank = 0; filter_bank < kNumFilterBanks; |
| ++filter_bank) { |
| const InterpFilter filter = (InterpFilter)filter_bank; |
| const InterpKernel *filters = |
| (const InterpKernel *)av1_get_interp_filter_kernel(filter, |
| subpel_search); |
| for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { |
| for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { |
| wrapper_filter_block2d_8_c(in, kInputStride, filters[filter_x], |
| filters[filter_y], ref, kOutputStride, |
| Width(), Height()); |
| if (filter_x && filter_y) |
| continue; |
| else if (filter_y) |
| API_REGISTER_STATE_CHECK(UUT_->v8_( |
| in, kInputStride, out, kOutputStride, kInvalidFilter, 16, |
| filters[filter_y], 16, Width(), Height())); |
| else if (filter_x) |
| API_REGISTER_STATE_CHECK(UUT_->h8_( |
| in, kInputStride, out, kOutputStride, filters[filter_x], 16, |
| kInvalidFilter, 16, Width(), Height())); |
| else |
| continue; |
| |
| for (int y = 0; y < Height(); ++y) |
| for (int x = 0; x < Width(); ++x) |
| ASSERT_EQ(lookup(ref, y * kOutputStride + x), |
| lookup(out, y * kOutputStride + x)) |
| << "mismatch at (" << x << "," << y << "), " |
| << "filters (" << filter_bank << "," << filter_x << "," |
| << filter_y << ")"; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| TEST_P(ConvolveTest, DISABLED_Speed) { |
| uint8_t *const in = input(); |
| uint8_t *const out = output(); |
| uint8_t *ref; |
| if (UUT_->use_highbd_ == 0) { |
| ref = ref8_; |
| } else { |
| ref = CONVERT_TO_BYTEPTR(ref16_); |
| } |
| |
| // Populate ref and out with some random data |
| ::libaom_test::ACMRandom prng; |
| for (int y = 0; y < Height(); ++y) { |
| for (int x = 0; x < Width(); ++x) { |
| uint16_t r; |
| if (UUT_->use_highbd_ == 0 || UUT_->use_highbd_ == 8) { |
| r = prng.Rand8Extremes(); |
| } else { |
| r = prng.Rand16() & mask_; |
| } |
| assign_val(out, y * kOutputStride + x, r); |
| assign_val(ref, y * kOutputStride + x, r); |
| } |
| } |
| |
| const InterpFilter filter = (InterpFilter)1; |
| const InterpKernel *filters = |
| (const InterpKernel *)av1_get_interp_filter_kernel(filter, USE_8_TAPS); |
| wrapper_filter_average_block2d_8_c(in, kInputStride, filters[1], filters[1], |
| out, kOutputStride, Width(), Height()); |
| |
| aom_usec_timer timer; |
| int tests_num = 1000; |
| |
| aom_usec_timer_start(&timer); |
| while (tests_num > 0) { |
| for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { |
| const InterpFilter filter = (InterpFilter)filter_bank; |
| const InterpKernel *filters = |
| (const InterpKernel *)av1_get_interp_filter_kernel(filter, |
| USE_8_TAPS); |
| for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { |
| for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { |
| if (filter_x && filter_y) continue; |
| if (filter_y) |
| API_REGISTER_STATE_CHECK( |
| UUT_->v8_(in, kInputStride, out, kOutputStride, kInvalidFilter, |
| 16, filters[filter_y], 16, Width(), Height())); |
| else if (filter_x) |
| API_REGISTER_STATE_CHECK(UUT_->h8_( |
| in, kInputStride, out, kOutputStride, filters[filter_x], 16, |
| kInvalidFilter, 16, Width(), Height())); |
| } |
| } |
| } |
| tests_num--; |
| } |
| aom_usec_timer_mark(&timer); |
| |
| const int elapsed_time = |
| static_cast<int>(aom_usec_timer_elapsed(&timer) / 1000); |
| printf("%dx%d (bitdepth %d) time: %5d ms\n", Width(), Height(), |
| UUT_->use_highbd_, elapsed_time); |
| } |
| |
| using std::make_tuple; |
| |
| // WRAP macro is only used for high bitdepth build. |
| #if CONFIG_AV1_HIGHBITDEPTH |
| #define WRAP(func, bd) \ |
| static void wrap_##func##_##bd( \ |
| const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, \ |
| ptrdiff_t dst_stride, const int16_t *filter_x, int filter_x_stride, \ |
| const int16_t *filter_y, int filter_y_stride, int w, int h) { \ |
| aom_highbd_##func(src, src_stride, dst, dst_stride, filter_x, \ |
| filter_x_stride, filter_y, filter_y_stride, w, h, bd); \ |
| } |
| #if HAVE_SSE2 && AOM_ARCH_X86_64 |
| WRAP(convolve8_horiz_sse2, 8) |
| WRAP(convolve8_vert_sse2, 8) |
| WRAP(convolve8_horiz_sse2, 10) |
| WRAP(convolve8_vert_sse2, 10) |
| WRAP(convolve8_horiz_sse2, 12) |
| WRAP(convolve8_vert_sse2, 12) |
| #endif // HAVE_SSE2 && AOM_ARCH_X86_64 |
| |
| WRAP(convolve8_horiz_c, 8) |
| WRAP(convolve8_vert_c, 8) |
| WRAP(convolve8_horiz_c, 10) |
| WRAP(convolve8_vert_c, 10) |
| WRAP(convolve8_horiz_c, 12) |
| WRAP(convolve8_vert_c, 12) |
| |
| #if HAVE_AVX2 |
| WRAP(convolve8_horiz_avx2, 8) |
| WRAP(convolve8_vert_avx2, 8) |
| |
| WRAP(convolve8_horiz_avx2, 10) |
| WRAP(convolve8_vert_avx2, 10) |
| |
| WRAP(convolve8_horiz_avx2, 12) |
| WRAP(convolve8_vert_avx2, 12) |
| #endif // HAVE_AVX2 |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| #undef WRAP |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| const ConvolveFunctions wrap_convolve8_c(wrap_convolve8_horiz_c_8, |
| wrap_convolve8_vert_c_8, 8); |
| const ConvolveFunctions wrap_convolve10_c(wrap_convolve8_horiz_c_10, |
| wrap_convolve8_vert_c_10, 10); |
| const ConvolveFunctions wrap_convolve12_c(wrap_convolve8_horiz_c_12, |
| wrap_convolve8_vert_c_12, 12); |
| const ConvolveParam kArrayConvolve_c[] = { ALL_SIZES(wrap_convolve8_c), |
| ALL_SIZES(wrap_convolve10_c), |
| ALL_SIZES(wrap_convolve12_c) }; |
| #else |
| const ConvolveFunctions convolve8_c(aom_convolve8_horiz_c, aom_convolve8_vert_c, |
| 0); |
| const ConvolveParam kArrayConvolve_c[] = { ALL_SIZES(convolve8_c) }; |
| #endif |
| |
| INSTANTIATE_TEST_SUITE_P(C, ConvolveTest, |
| ::testing::ValuesIn(kArrayConvolve_c)); |
| |
| #if HAVE_SSE2 && AOM_ARCH_X86_64 |
| #if CONFIG_AV1_HIGHBITDEPTH |
| const ConvolveFunctions wrap_convolve8_sse2(wrap_convolve8_horiz_sse2_8, |
| wrap_convolve8_vert_sse2_8, 8); |
| const ConvolveFunctions wrap_convolve10_sse2(wrap_convolve8_horiz_sse2_10, |
| wrap_convolve8_vert_sse2_10, 10); |
| const ConvolveFunctions wrap_convolve12_sse2(wrap_convolve8_horiz_sse2_12, |
| wrap_convolve8_vert_sse2_12, 12); |
| const ConvolveParam kArrayConvolve_sse2[] = { ALL_SIZES(wrap_convolve8_sse2), |
| ALL_SIZES(wrap_convolve10_sse2), |
| ALL_SIZES(wrap_convolve12_sse2) }; |
| #else |
| const ConvolveFunctions convolve8_sse2(aom_convolve8_horiz_sse2, |
| aom_convolve8_vert_sse2, 0); |
| const ConvolveParam kArrayConvolve_sse2[] = { ALL_SIZES(convolve8_sse2) }; |
| #endif |
| INSTANTIATE_TEST_SUITE_P(SSE2, ConvolveTest, |
| ::testing::ValuesIn(kArrayConvolve_sse2)); |
| #endif |
| |
| #if HAVE_SSSE3 |
| const ConvolveFunctions convolve8_ssse3(aom_convolve8_horiz_ssse3, |
| aom_convolve8_vert_ssse3, 0); |
| |
| const ConvolveParam kArrayConvolve8_ssse3[] = { ALL_SIZES(convolve8_ssse3) }; |
| INSTANTIATE_TEST_SUITE_P(SSSE3, ConvolveTest, |
| ::testing::ValuesIn(kArrayConvolve8_ssse3)); |
| #endif |
| |
| #if HAVE_AVX2 |
| #if CONFIG_AV1_HIGHBITDEPTH |
| const ConvolveFunctions wrap_convolve8_avx2(wrap_convolve8_horiz_avx2_8, |
| wrap_convolve8_vert_avx2_8, 8); |
| const ConvolveFunctions wrap_convolve10_avx2(wrap_convolve8_horiz_avx2_10, |
| wrap_convolve8_vert_avx2_10, 10); |
| const ConvolveFunctions wrap_convolve12_avx2(wrap_convolve8_horiz_avx2_12, |
| wrap_convolve8_vert_avx2_12, 12); |
| const ConvolveParam kArray_Convolve8_avx2[] = { |
| ALL_SIZES_64(wrap_convolve8_avx2), ALL_SIZES_64(wrap_convolve10_avx2), |
| ALL_SIZES_64(wrap_convolve12_avx2) |
| }; |
| #else |
| const ConvolveFunctions convolve8_avx2(aom_convolve8_horiz_avx2, |
| aom_convolve8_vert_avx2, 0); |
| const ConvolveParam kArray_Convolve8_avx2[] = { ALL_SIZES(convolve8_avx2) }; |
| #endif |
| |
| INSTANTIATE_TEST_SUITE_P(AVX2, ConvolveTest, |
| ::testing::ValuesIn(kArray_Convolve8_avx2)); |
| #endif // HAVE_AVX2 |
| |
| } // namespace |