blob: f9425a5ac3d1a82c0683cde03464bb9f4c4e67c4 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "./aom_scale_rtcd.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/system_state.h"
#include "aom_ports/aom_once.h"
#include "aom_ports/aom_timer.h"
#include "aom_scale/aom_scale.h"
#include "aom_util/aom_thread.h"
#include "av1/common/alloccommon.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/detokenize.h"
static void initialize_dec(void) {
static volatile int init_done = 0;
if (!init_done) {
av1_rtcd();
aom_dsp_rtcd();
aom_scale_rtcd();
av1_init_intra_predictors();
av1_init_wedge_masks();
init_done = 1;
}
}
static void av1_dec_setup_mi(AV1_COMMON *cm) {
cm->mi = cm->mip + cm->mi_stride + 1;
cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
memset(cm->mi_grid_base, 0,
cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mi_grid_base));
}
static int av1_dec_alloc_mi(AV1_COMMON *cm, int mi_size) {
cm->mip = aom_calloc(mi_size, sizeof(*cm->mip));
if (!cm->mip) return 1;
cm->mi_alloc_size = mi_size;
cm->mi_grid_base = (MODE_INFO **)aom_calloc(mi_size, sizeof(MODE_INFO *));
if (!cm->mi_grid_base) return 1;
return 0;
}
static void av1_dec_free_mi(AV1_COMMON *cm) {
aom_free(cm->mip);
cm->mip = NULL;
aom_free(cm->mi_grid_base);
cm->mi_grid_base = NULL;
}
AV1Decoder *av1_decoder_create(BufferPool *const pool) {
AV1Decoder *volatile const pbi = aom_memalign(32, sizeof(*pbi));
AV1_COMMON *volatile const cm = pbi ? &pbi->common : NULL;
if (!cm) return NULL;
av1_zero(*pbi);
if (setjmp(cm->error.jmp)) {
cm->error.setjmp = 0;
av1_decoder_remove(pbi);
return NULL;
}
cm->error.setjmp = 1;
CHECK_MEM_ERROR(cm, cm->fc,
(FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->fc)));
CHECK_MEM_ERROR(cm, cm->frame_contexts,
(FRAME_CONTEXT *)aom_memalign(
32, FRAME_CONTEXTS * sizeof(*cm->frame_contexts)));
memset(cm->fc, 0, sizeof(*cm->fc));
memset(cm->frame_contexts, 0, FRAME_CONTEXTS * sizeof(*cm->frame_contexts));
pbi->need_resync = 1;
once(initialize_dec);
// Initialize the references to not point to any frame buffers.
memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
memset(&cm->next_ref_frame_map, -1, sizeof(cm->next_ref_frame_map));
cm->current_video_frame = 0;
pbi->ready_for_new_data = 1;
pbi->common.buffer_pool = pool;
cm->bit_depth = AOM_BITS_8;
cm->dequant_bit_depth = AOM_BITS_8;
cm->alloc_mi = av1_dec_alloc_mi;
cm->free_mi = av1_dec_free_mi;
cm->setup_mi = av1_dec_setup_mi;
av1_loop_filter_init(cm);
#if CONFIG_AOM_QM
aom_qm_init(cm);
#endif
#if CONFIG_LOOP_RESTORATION
av1_loop_restoration_precal();
#endif // CONFIG_LOOP_RESTORATION
#if CONFIG_ACCOUNTING
pbi->acct_enabled = 1;
aom_accounting_init(&pbi->accounting);
#endif
cm->error.setjmp = 0;
aom_get_worker_interface()->init(&pbi->lf_worker);
return pbi;
}
void av1_decoder_remove(AV1Decoder *pbi) {
int i;
if (!pbi) return;
aom_get_worker_interface()->end(&pbi->lf_worker);
aom_free(pbi->lf_worker.data1);
aom_free(pbi->tile_data);
for (i = 0; i < pbi->num_tile_workers; ++i) {
AVxWorker *const worker = &pbi->tile_workers[i];
aom_get_worker_interface()->end(worker);
}
aom_free(pbi->tile_worker_data);
aom_free(pbi->tile_worker_info);
aom_free(pbi->tile_workers);
if (pbi->num_tile_workers > 0) {
av1_loop_filter_dealloc(&pbi->lf_row_sync);
}
#if CONFIG_ACCOUNTING
aom_accounting_clear(&pbi->accounting);
#endif
aom_free(pbi);
}
static int equal_dimensions(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b) {
return a->y_height == b->y_height && a->y_width == b->y_width &&
a->uv_height == b->uv_height && a->uv_width == b->uv_width;
}
aom_codec_err_t av1_copy_reference_dec(AV1Decoder *pbi, int idx,
YV12_BUFFER_CONFIG *sd) {
AV1_COMMON *cm = &pbi->common;
const YV12_BUFFER_CONFIG *const cfg = get_ref_frame(cm, idx);
if (cfg == NULL) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR, "No reference frame");
return AOM_CODEC_ERROR;
}
if (!equal_dimensions(cfg, sd))
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Incorrect buffer dimensions");
else
aom_yv12_copy_frame(cfg, sd);
return cm->error.error_code;
}
aom_codec_err_t av1_set_reference_dec(AV1_COMMON *cm, int idx,
YV12_BUFFER_CONFIG *sd) {
YV12_BUFFER_CONFIG *ref_buf = NULL;
// Get the destination reference buffer.
ref_buf = get_ref_frame(cm, idx);
if (ref_buf == NULL) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR, "No reference frame");
return AOM_CODEC_ERROR;
}
if (!equal_dimensions(ref_buf, sd)) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Incorrect buffer dimensions");
} else {
// Overwrite the reference frame buffer.
aom_yv12_copy_frame(sd, ref_buf);
}
return cm->error.error_code;
}
/* If any buffer updating is signaled it should be done here. */
static void swap_frame_buffers(AV1Decoder *pbi) {
int ref_index = 0, mask;
AV1_COMMON *const cm = &pbi->common;
BufferPool *const pool = cm->buffer_pool;
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
lock_buffer_pool(pool);
for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
const int old_idx = cm->ref_frame_map[ref_index];
// Current thread releases the holding of reference frame.
decrease_ref_count(old_idx, frame_bufs, pool);
// Release the reference frame holding in the reference map for the decoding
// of the next frame.
if (mask & 1) decrease_ref_count(old_idx, frame_bufs, pool);
cm->ref_frame_map[ref_index] = cm->next_ref_frame_map[ref_index];
++ref_index;
}
// Current thread releases the holding of reference frame.
for (; ref_index < REF_FRAMES && !cm->show_existing_frame; ++ref_index) {
const int old_idx = cm->ref_frame_map[ref_index];
decrease_ref_count(old_idx, frame_bufs, pool);
cm->ref_frame_map[ref_index] = cm->next_ref_frame_map[ref_index];
}
unlock_buffer_pool(pool);
pbi->hold_ref_buf = 0;
cm->frame_to_show = get_frame_new_buffer(cm);
// TODO(zoeliu): To fix the ref frame buffer update for the scenario of
// cm->frame_parellel_decode == 1
if (!cm->frame_parallel_decode || !cm->show_frame) {
lock_buffer_pool(pool);
--frame_bufs[cm->new_fb_idx].ref_count;
unlock_buffer_pool(pool);
}
// Invalidate these references until the next frame starts.
for (ref_index = 0; ref_index < INTER_REFS_PER_FRAME; ref_index++) {
cm->frame_refs[ref_index].idx = INVALID_IDX;
cm->frame_refs[ref_index].buf = NULL;
}
}
int av1_receive_compressed_data(AV1Decoder *pbi, size_t size,
const uint8_t **psource) {
AV1_COMMON *volatile const cm = &pbi->common;
BufferPool *volatile const pool = cm->buffer_pool;
RefCntBuffer *volatile const frame_bufs = cm->buffer_pool->frame_bufs;
const uint8_t *source = *psource;
int retcode = 0;
cm->error.error_code = AOM_CODEC_OK;
if (size == 0) {
// This is used to signal that we are missing frames.
// We do not know if the missing frame(s) was supposed to update
// any of the reference buffers, but we act conservative and
// mark only the last buffer as corrupted.
//
// TODO(jkoleszar): Error concealment is undefined and non-normative
// at this point, but if it becomes so, [0] may not always be the correct
// thing to do here.
if (cm->frame_refs[0].idx > 0) {
assert(cm->frame_refs[0].buf != NULL);
cm->frame_refs[0].buf->corrupted = 1;
}
}
pbi->ready_for_new_data = 0;
// Find a free buffer for the new frame, releasing the reference previously
// held.
// Check if the previous frame was a frame without any references to it.
// Release frame buffer if not decoding in frame parallel mode.
if (!cm->frame_parallel_decode && cm->new_fb_idx >= 0 &&
frame_bufs[cm->new_fb_idx].ref_count == 0)
pool->release_fb_cb(pool->cb_priv,
&frame_bufs[cm->new_fb_idx].raw_frame_buffer);
// Find a free frame buffer. Return error if can not find any.
cm->new_fb_idx = get_free_fb(cm);
if (cm->new_fb_idx == INVALID_IDX) return AOM_CODEC_MEM_ERROR;
// Assign a MV array to the frame buffer.
cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx];
pbi->hold_ref_buf = 0;
if (cm->frame_parallel_decode) {
AVxWorker *const worker = pbi->frame_worker_owner;
av1_frameworker_lock_stats(worker);
frame_bufs[cm->new_fb_idx].frame_worker_owner = worker;
// Reset decoding progress.
pbi->cur_buf = &frame_bufs[cm->new_fb_idx];
pbi->cur_buf->row = -1;
pbi->cur_buf->col = -1;
av1_frameworker_unlock_stats(worker);
} else {
pbi->cur_buf = &frame_bufs[cm->new_fb_idx];
}
if (setjmp(cm->error.jmp)) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
int i;
cm->error.setjmp = 0;
pbi->ready_for_new_data = 1;
// Synchronize all threads immediately as a subsequent decode call may
// cause a resize invalidating some allocations.
winterface->sync(&pbi->lf_worker);
for (i = 0; i < pbi->num_tile_workers; ++i) {
winterface->sync(&pbi->tile_workers[i]);
}
lock_buffer_pool(pool);
// Release all the reference buffers if worker thread is holding them.
if (pbi->hold_ref_buf == 1) {
int ref_index = 0, mask;
for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
const int old_idx = cm->ref_frame_map[ref_index];
// Current thread releases the holding of reference frame.
decrease_ref_count(old_idx, frame_bufs, pool);
// Release the reference frame holding in the reference map for the
// decoding of the next frame.
if (mask & 1) decrease_ref_count(old_idx, frame_bufs, pool);
++ref_index;
}
// Current thread releases the holding of reference frame.
for (; ref_index < REF_FRAMES && !cm->show_existing_frame; ++ref_index) {
const int old_idx = cm->ref_frame_map[ref_index];
decrease_ref_count(old_idx, frame_bufs, pool);
}
pbi->hold_ref_buf = 0;
}
// Release current frame.
decrease_ref_count(cm->new_fb_idx, frame_bufs, pool);
unlock_buffer_pool(pool);
aom_clear_system_state();
return -1;
}
cm->error.setjmp = 1;
#if !CONFIG_OBU
av1_decode_frame_headers_and_setup(pbi, source, source + size, psource);
if (!cm->show_existing_frame) {
av1_decode_tg_tiles_and_wrapup(pbi, source, source + size, psource, 0,
cm->tile_rows * cm->tile_cols - 1, 1);
}
#else
av1_decode_frame_from_obus(pbi, source, source + size, psource);
#endif
swap_frame_buffers(pbi);
#if CONFIG_EXT_TILE
// For now, we only extend the frame borders when the whole frame is decoded.
// Later, if needed, extend the border for the decoded tile on the frame
// border.
if (pbi->dec_tile_row == -1 && pbi->dec_tile_col == -1)
#endif // CONFIG_EXT_TILE
// TODO(debargha): Fix encoder side mv range, so that we can use the
// inner border extension. As of now use the larger extension.
// aom_extend_frame_inner_borders(cm->frame_to_show);
aom_extend_frame_borders(cm->frame_to_show);
aom_clear_system_state();
if (!cm->show_existing_frame) {
cm->last_show_frame = cm->show_frame;
// NOTE: It is not supposed to ref to any frame not used as reference
if (cm->is_reference_frame) cm->prev_frame = cm->cur_frame;
if (cm->seg.enabled && !cm->frame_parallel_decode)
av1_swap_current_and_last_seg_map(cm);
}
// Update progress in frame parallel decode.
if (cm->frame_parallel_decode) {
// Need to lock the mutex here as another thread may
// be accessing this buffer.
AVxWorker *const worker = pbi->frame_worker_owner;
FrameWorkerData *const frame_worker_data = worker->data1;
av1_frameworker_lock_stats(worker);
if (cm->show_frame) {
cm->current_video_frame++;
}
frame_worker_data->frame_decoded = 1;
frame_worker_data->frame_context_ready = 1;
av1_frameworker_signal_stats(worker);
av1_frameworker_unlock_stats(worker);
} else {
cm->last_width = cm->width;
cm->last_height = cm->height;
cm->last_tile_cols = cm->tile_cols;
cm->last_tile_rows = cm->tile_rows;
if (cm->show_frame) {
cm->current_video_frame++;
}
}
cm->error.setjmp = 0;
return retcode;
}
int av1_get_raw_frame(AV1Decoder *pbi, YV12_BUFFER_CONFIG *sd) {
AV1_COMMON *const cm = &pbi->common;
int ret = -1;
if (pbi->ready_for_new_data == 1) return ret;
pbi->ready_for_new_data = 1;
/* no raw frame to show!!! */
if (!cm->show_frame) return ret;
*sd = *cm->frame_to_show;
ret = 0;
aom_clear_system_state();
return ret;
}
int av1_get_frame_to_show(AV1Decoder *pbi, YV12_BUFFER_CONFIG *frame) {
AV1_COMMON *const cm = &pbi->common;
if (!cm->show_frame || !cm->frame_to_show) return -1;
*frame = *cm->frame_to_show;
return 0;
}
aom_codec_err_t av1_parse_superframe_index(const uint8_t *data, size_t data_sz,
uint32_t sizes[8], int *count,
int *index_size,
aom_decrypt_cb decrypt_cb,
void *decrypt_state) {
// A chunk ending with a byte matching 0xc0 is an invalid chunk unless
// it is a super frame index. If the last byte of real video compression
// data is 0xc0 the encoder must add a 0 byte. If we have the marker but
// not the associated matching marker byte at the front of the index we have
// an invalid bitstream and need to return an error.
uint8_t marker;
size_t frame_sz_sum = 0;
assert(data_sz);
marker = read_marker(decrypt_cb, decrypt_state, data);
*count = 0;
if ((marker & 0xe0) == 0xc0) {
const uint32_t frames = (marker & 0x7) + 1;
const uint32_t mag = ((marker >> 3) & 0x3) + 1;
const size_t index_sz = 2 + mag * (frames - 1);
*index_size = (int)index_sz;
// This chunk is marked as having a superframe index but doesn't have
// enough data for it, thus it's an invalid superframe index.
if (data_sz < index_sz) return AOM_CODEC_CORRUPT_FRAME;
{
const uint8_t marker2 =
read_marker(decrypt_cb, decrypt_state, data + index_sz - 1);
// This chunk is marked as having a superframe index but doesn't have
// the matching marker byte at the front of the index therefore it's an
// invalid chunk.
if (marker != marker2) return AOM_CODEC_CORRUPT_FRAME;
}
{
// Found a valid superframe index.
uint32_t i, j;
const uint8_t *x = &data[1];
// Frames has a maximum of 8 and mag has a maximum of 4.
uint8_t clear_buffer[28];
assert(sizeof(clear_buffer) >= (frames - 1) * mag);
if (decrypt_cb) {
decrypt_cb(decrypt_state, x, clear_buffer, (frames - 1) * mag);
x = clear_buffer;
}
for (i = 0; i < frames - 1; ++i) {
uint32_t this_sz = 0;
for (j = 0; j < mag; ++j) this_sz |= ((uint32_t)(*x++)) << (j * 8);
this_sz += 1;
sizes[i] = this_sz;
frame_sz_sum += this_sz;
}
sizes[i] = (uint32_t)(data_sz - index_sz - frame_sz_sum);
*count = frames;
}
}
return AOM_CODEC_OK;
}