| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <ctime> |
| #include <utility> |
| #include <vector> |
| |
| #include "third_party/googletest/src/googletest/include/gtest/gtest.h" |
| |
| #include "test/acm_random.h" |
| #include "aom_dsp/ansreader.h" |
| #include "aom_dsp/buf_ans.h" |
| |
| namespace { |
| typedef std::vector<std::pair<uint8_t, bool> > PvVec; |
| |
| const int kPrintStats = 0; |
| // Use a small buffer size to exercise ANS window spills or buffer growth |
| const int kBufAnsSize = 1 << 8; |
| |
| PvVec abs_encode_build_vals(int iters) { |
| PvVec ret; |
| libaom_test::ACMRandom gen(0x30317076); |
| double entropy = 0; |
| for (int i = 0; i < iters; ++i) { |
| uint8_t p; |
| do { |
| p = gen.Rand8(); |
| } while (p == 0); // zero is not a valid coding probability |
| bool b = gen.Rand8() < p; |
| ret.push_back(std::make_pair(static_cast<uint8_t>(p), b)); |
| if (kPrintStats) { |
| double d = p / 256.; |
| entropy += -d * log2(d) - (1 - d) * log2(1 - d); |
| } |
| } |
| if (kPrintStats) printf("entropy %f\n", entropy); |
| return ret; |
| } |
| |
| bool check_rabs(const PvVec &pv_vec, uint8_t *buf) { |
| BufAnsCoder a; |
| a.size = kBufAnsSize; |
| aom_buf_ans_alloc(&a, NULL); |
| buf_ans_write_init(&a, buf); |
| |
| std::clock_t start = std::clock(); |
| for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { |
| buf_rabs_write(&a, it->second, 256 - it->first); |
| } |
| aom_buf_ans_flush(&a); |
| std::clock_t enc_time = std::clock() - start; |
| int offset = buf_ans_write_end(&a); |
| aom_buf_ans_free(&a); |
| bool okay = true; |
| AnsDecoder d; |
| #if ANS_MAX_SYMBOLS |
| d.window_size = kBufAnsSize; |
| #endif |
| if (ans_read_init(&d, buf, offset)) return false; |
| start = std::clock(); |
| for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { |
| okay = okay && (rabs_read(&d, 256 - it->first) != 0) == it->second; |
| } |
| std::clock_t dec_time = std::clock() - start; |
| if (!okay) return false; |
| if (kPrintStats) |
| printf("uABS size %d enc_time %f dec_time %f\n", offset, |
| static_cast<float>(enc_time) / CLOCKS_PER_SEC, |
| static_cast<float>(dec_time) / CLOCKS_PER_SEC); |
| return ans_read_end(&d) != 0; |
| } |
| |
| const aom_cdf_prob spareto65[] = { 8320, 6018, 4402, 3254, 4259, |
| 3919, 2057, 492, 45, 2 }; |
| |
| const int kRansSymbols = |
| static_cast<int>(sizeof(spareto65) / sizeof(spareto65[0])); |
| |
| struct rans_sym { |
| aom_cdf_prob prob; |
| aom_cdf_prob cum_prob; // not-inclusive |
| }; |
| |
| std::vector<int> ans_encode_build_vals(rans_sym *const tab, int iters) { |
| aom_cdf_prob sum = 0; |
| for (int i = 0; i < kRansSymbols; ++i) { |
| tab[i].cum_prob = sum; |
| tab[i].prob = spareto65[i]; |
| sum += spareto65[i]; |
| } |
| std::vector<int> p_to_sym; |
| for (int i = 0; i < kRansSymbols; ++i) { |
| p_to_sym.insert(p_to_sym.end(), tab[i].prob, i); |
| } |
| assert(p_to_sym.size() == RANS_PRECISION); |
| std::vector<int> ret; |
| libaom_test::ACMRandom gen(18543637); |
| for (int i = 0; i < iters; ++i) { |
| int sym = |
| p_to_sym[((gen.Rand8() << 8) + gen.Rand8()) & (RANS_PRECISION - 1)]; |
| ret.push_back(sym); |
| } |
| return ret; |
| } |
| |
| void rans_build_dec_tab(const struct rans_sym sym_tab[], |
| aom_cdf_prob *dec_tab) { |
| unsigned int sum = 0; |
| for (int i = 0; sum < RANS_PRECISION; ++i) { |
| dec_tab[i] = sum += sym_tab[i].prob; |
| } |
| } |
| |
| bool check_rans(const std::vector<int> &sym_vec, const rans_sym *const tab, |
| uint8_t *buf) { |
| BufAnsCoder a; |
| a.size = kBufAnsSize; |
| aom_buf_ans_alloc(&a, NULL); |
| buf_ans_write_init(&a, buf); |
| aom_cdf_prob dec_tab[kRansSymbols]; |
| rans_build_dec_tab(tab, dec_tab); |
| |
| std::clock_t start = std::clock(); |
| for (std::vector<int>::const_iterator it = sym_vec.begin(); |
| it != sym_vec.end(); ++it) { |
| buf_rans_write(&a, tab[*it].cum_prob, tab[*it].prob); |
| } |
| aom_buf_ans_flush(&a); |
| std::clock_t enc_time = std::clock() - start; |
| int offset = buf_ans_write_end(&a); |
| aom_buf_ans_free(&a); |
| bool okay = true; |
| AnsDecoder d; |
| #if ANS_MAX_SYMBOLS |
| d.window_size = kBufAnsSize; |
| #endif |
| if (ans_read_init(&d, buf, offset)) return false; |
| start = std::clock(); |
| for (std::vector<int>::const_iterator it = sym_vec.begin(); |
| it != sym_vec.end(); ++it) { |
| okay &= rans_read(&d, dec_tab) == *it; |
| } |
| std::clock_t dec_time = std::clock() - start; |
| if (!okay) return false; |
| if (kPrintStats) |
| printf("rANS size %d enc_time %f dec_time %f\n", offset, |
| static_cast<float>(enc_time) / CLOCKS_PER_SEC, |
| static_cast<float>(dec_time) / CLOCKS_PER_SEC); |
| return ans_read_end(&d) != 0; |
| } |
| |
| class AbsTestFix : public ::testing::Test { |
| protected: |
| static void SetUpTestCase() { pv_vec_ = abs_encode_build_vals(kNumBools); } |
| virtual void SetUp() { buf_ = new uint8_t[kNumBools / 8]; } |
| virtual void TearDown() { delete[] buf_; } |
| static const int kNumBools = 100000000; |
| static PvVec pv_vec_; |
| uint8_t *buf_; |
| }; |
| PvVec AbsTestFix::pv_vec_; |
| |
| class AnsTestFix : public ::testing::Test { |
| protected: |
| static void SetUpTestCase() { |
| sym_vec_ = ans_encode_build_vals(rans_sym_tab_, kNumSyms); |
| } |
| virtual void SetUp() { buf_ = new uint8_t[kNumSyms / 2]; } |
| virtual void TearDown() { delete[] buf_; } |
| static const int kNumSyms = 25000000; |
| static std::vector<int> sym_vec_; |
| static rans_sym rans_sym_tab_[kRansSymbols]; |
| uint8_t *buf_; |
| }; |
| std::vector<int> AnsTestFix::sym_vec_; |
| rans_sym AnsTestFix::rans_sym_tab_[kRansSymbols]; |
| |
| TEST_F(AbsTestFix, Rabs) { EXPECT_TRUE(check_rabs(pv_vec_, buf_)); } |
| TEST_F(AnsTestFix, Rans) { |
| EXPECT_TRUE(check_rans(sym_vec_, rans_sym_tab_, buf_)); |
| } |
| TEST(AnsTest, FinalStateSerialization) { |
| for (unsigned i = L_BASE; i < L_BASE * IO_BASE; ++i) { |
| uint8_t buf[8]; |
| AnsCoder c; |
| ans_write_init(&c, buf); |
| c.state = i; |
| const int written_size = ans_write_end(&c); |
| ASSERT_LT(static_cast<size_t>(written_size), sizeof(buf)); |
| AnsDecoder d; |
| #if ANS_MAX_SYMBOLS |
| // There is no real data window here because no symbols are sent through |
| // ans (only synthetic states), so use a dummy value |
| d.window_size = 1024; |
| #endif |
| const int read_init_status = ans_read_init(&d, buf, written_size); |
| EXPECT_EQ(read_init_status, 0); |
| EXPECT_EQ(d.state, i); |
| } |
| } |
| } // namespace |