| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "test/av1_convolve_2d_test_util.h" |
| |
| #include "av1/common/convolve.h" |
| #include "av1/common/common_data.h" |
| |
| using std::tr1::tuple; |
| using std::tr1::make_tuple; |
| |
| namespace libaom_test { |
| |
| namespace AV1Convolve2D { |
| |
| #if CONFIG_JNT_COMP |
| ::testing::internal::ParamGenerator<Convolve2DParam> BuildParams( |
| convolve_2d_func filter, convolve_2d_func filter2) { |
| const Convolve2DParam params[] = { |
| make_tuple(4, 4, filter, filter2), make_tuple(8, 8, filter, filter2), |
| make_tuple(64, 64, filter, filter2), make_tuple(4, 16, filter, filter2), |
| make_tuple(32, 8, filter, filter2), |
| }; |
| return ::testing::ValuesIn(params); |
| } |
| #else |
| ::testing::internal::ParamGenerator<Convolve2DParam> BuildParams( |
| convolve_2d_func filter) { |
| const Convolve2DParam params[] = { |
| make_tuple(4, 4, filter), make_tuple(8, 8, filter), |
| make_tuple(64, 64, filter), make_tuple(4, 16, filter), |
| make_tuple(32, 8, filter), |
| }; |
| return ::testing::ValuesIn(params); |
| } |
| #endif // CONFIG_JNT_COMP |
| |
| AV1Convolve2DTest::~AV1Convolve2DTest() {} |
| void AV1Convolve2DTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); } |
| |
| void AV1Convolve2DTest::TearDown() { libaom_test::ClearSystemState(); } |
| |
| void AV1Convolve2DTest::RunCheckOutput(convolve_2d_func test_impl) { |
| const int w = 128, h = 128; |
| const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); |
| int i, j, k; |
| |
| uint8_t *input = new uint8_t[h * w]; |
| |
| int output_n = out_h * MAX_SB_SIZE; |
| CONV_BUF_TYPE *output = new CONV_BUF_TYPE[output_n]; |
| CONV_BUF_TYPE *output2 = new CONV_BUF_TYPE[output_n]; |
| |
| for (i = 0; i < h; ++i) |
| for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); |
| |
| int hfilter, vfilter, subx, suby; |
| for (hfilter = EIGHTTAP_REGULAR; hfilter < INTERP_FILTERS_ALL; ++hfilter) { |
| for (vfilter = EIGHTTAP_REGULAR; vfilter < INTERP_FILTERS_ALL; ++vfilter) { |
| InterpFilterParams filter_params_x = |
| av1_get_interp_filter_params((InterpFilter)hfilter); |
| InterpFilterParams filter_params_y = |
| av1_get_interp_filter_params((InterpFilter)vfilter); |
| const int do_average = rnd_.Rand8() & 1; |
| ConvolveParams conv_params1 = |
| get_conv_params_no_round(0, do_average, 0, output, MAX_SB_SIZE); |
| ConvolveParams conv_params2 = |
| get_conv_params_no_round(0, do_average, 0, output2, MAX_SB_SIZE); |
| |
| for (subx = 0; subx < 16; ++subx) |
| for (suby = 0; suby < 16; ++suby) { |
| // av1_convolve_2d is designed for accumulate two predicted blocks for |
| // compound mode, so we set num_iter to two here. |
| // A larger number may introduce overflow |
| const int num_iters = 2; |
| memset(output, 0, output_n * sizeof(*output)); |
| memset(output2, 0, output_n * sizeof(*output2)); |
| for (i = 0; i < num_iters; ++i) { |
| // Choose random locations within the source block |
| int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); |
| int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); |
| av1_convolve_2d_c(input + offset_r * w + offset_c, w, output, |
| MAX_SB_SIZE, out_w, out_h, &filter_params_x, |
| &filter_params_y, subx, suby, &conv_params1); |
| test_impl(input + offset_r * w + offset_c, w, output2, MAX_SB_SIZE, |
| out_w, out_h, &filter_params_x, &filter_params_y, subx, |
| suby, &conv_params2); |
| |
| for (j = 0; j < out_h; ++j) |
| for (k = 0; k < out_w; ++k) { |
| int idx = j * MAX_SB_SIZE + k; |
| ASSERT_EQ(output[idx], output2[idx]) |
| << "Pixel mismatch at index " << idx << " = (" << j << ", " |
| << k << "), sub pixel offset = (" << suby << ", " << subx |
| << ")"; |
| } |
| } |
| } |
| } |
| } |
| delete[] input; |
| delete[] output; |
| delete[] output2; |
| } |
| |
| #if CONFIG_JNT_COMP |
| void AV1Convolve2DTest::RunCheckOutput2(convolve_2d_func test_impl) { |
| const int w = 128, h = 128; |
| const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); |
| int i, j, k, l, m; |
| |
| uint8_t *input = new uint8_t[h * w]; |
| |
| int output_n = out_h * MAX_SB_SIZE; |
| CONV_BUF_TYPE *output = new CONV_BUF_TYPE[output_n]; |
| CONV_BUF_TYPE *output2 = new CONV_BUF_TYPE[output_n]; |
| |
| for (i = 0; i < h; ++i) |
| for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); |
| |
| int hfilter, vfilter, subx, suby; |
| for (hfilter = EIGHTTAP_REGULAR; hfilter < INTERP_FILTERS_ALL; ++hfilter) { |
| for (vfilter = EIGHTTAP_REGULAR; vfilter < INTERP_FILTERS_ALL; ++vfilter) { |
| InterpFilterParams filter_params_x = |
| av1_get_interp_filter_params((InterpFilter)hfilter); |
| InterpFilterParams filter_params_y = |
| av1_get_interp_filter_params((InterpFilter)vfilter); |
| const int do_average = rnd_.Rand8() & 1; |
| ConvolveParams conv_params1 = |
| get_conv_params_no_round(0, do_average, 0, output, MAX_SB_SIZE); |
| ConvolveParams conv_params2 = |
| get_conv_params_no_round(0, do_average, 0, output2, MAX_SB_SIZE); |
| |
| // Test special case where fwd and bck offsets are -1 |
| conv_params1.fwd_offset = -1; |
| conv_params1.bck_offset = -1; |
| conv_params2.fwd_offset = -1; |
| conv_params2.bck_offset = -1; |
| |
| for (subx = 0; subx < 16; ++subx) |
| for (suby = 0; suby < 16; ++suby) { |
| // av1_convolve_2d is designed for accumulate two predicted blocks |
| // for compound mode, so we set num_iter to two here. |
| // A larger number may introduce overflow |
| const int num_iters = 2; |
| memset(output, 0, output_n * sizeof(*output)); |
| memset(output2, 0, output_n * sizeof(*output2)); |
| for (i = 0; i < num_iters; ++i) { |
| // Choose random locations within the source block |
| int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); |
| int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); |
| av1_jnt_convolve_2d_c(input + offset_r * w + offset_c, w, output, |
| MAX_SB_SIZE, out_w, out_h, &filter_params_x, |
| &filter_params_y, subx, suby, &conv_params1); |
| test_impl(input + offset_r * w + offset_c, w, output2, MAX_SB_SIZE, |
| out_w, out_h, &filter_params_x, &filter_params_y, subx, |
| suby, &conv_params2); |
| |
| for (j = 0; j < out_h; ++j) |
| for (k = 0; k < out_w; ++k) { |
| int idx = j * MAX_SB_SIZE + k; |
| ASSERT_EQ(output[idx], output2[idx]) |
| << "Mismatch at unit tests for av1_jnt_convolve_2d\n" |
| << "Pixel mismatch at index " << idx << " = (" << j << ", " |
| << k << "), sub pixel offset = (" << suby << ", " << subx |
| << ")"; |
| } |
| } |
| } |
| |
| // Test different combination of fwd and bck offset weights |
| for (l = 0; l < 2; ++l) { |
| for (m = 0; m < 4; ++m) { |
| conv_params1.fwd_offset = quant_dist_lookup_table[l][m][0]; |
| conv_params1.bck_offset = quant_dist_lookup_table[l][m][1]; |
| conv_params2.fwd_offset = quant_dist_lookup_table[l][m][0]; |
| conv_params2.bck_offset = quant_dist_lookup_table[l][m][1]; |
| |
| for (subx = 0; subx < 16; ++subx) |
| for (suby = 0; suby < 16; ++suby) { |
| // av1_convolve_2d is designed for accumulate two predicted blocks |
| // for compound mode, so we set num_iter to two here. |
| // A larger number may introduce overflow |
| const int num_iters = 2; |
| memset(output, 0, output_n * sizeof(*output)); |
| memset(output2, 0, output_n * sizeof(*output2)); |
| for (i = 0; i < num_iters; ++i) { |
| // Choose random locations within the source block |
| int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); |
| int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); |
| av1_jnt_convolve_2d_c(input + offset_r * w + offset_c, w, |
| output, MAX_SB_SIZE, out_w, out_h, |
| &filter_params_x, &filter_params_y, subx, |
| suby, &conv_params1); |
| test_impl(input + offset_r * w + offset_c, w, output2, |
| MAX_SB_SIZE, out_w, out_h, &filter_params_x, |
| &filter_params_y, subx, suby, &conv_params2); |
| |
| for (j = 0; j < out_h; ++j) |
| for (k = 0; k < out_w; ++k) { |
| int idx = j * MAX_SB_SIZE + k; |
| ASSERT_EQ(output[idx], output2[idx]) |
| << "Mismatch at unit tests for av1_jnt_convolve_2d\n" |
| << "Pixel mismatch at index " << idx << " = (" << j |
| << ", " << k << "), sub pixel offset = (" << suby |
| << ", " << subx << ")"; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| delete[] input; |
| delete[] output; |
| delete[] output2; |
| } |
| #endif // CONFIG_JNT_COMP |
| } // namespace AV1Convolve2D |
| |
| #if CONFIG_HIGHBITDEPTH |
| namespace AV1HighbdConvolve2D { |
| |
| ::testing::internal::ParamGenerator<HighbdConvolve2DParam> BuildParams( |
| highbd_convolve_2d_func filter) { |
| const HighbdConvolve2DParam params[] = { |
| make_tuple(4, 4, 8, filter), make_tuple(8, 8, 8, filter), |
| make_tuple(64, 64, 8, filter), make_tuple(4, 16, 8, filter), |
| make_tuple(32, 8, 8, filter), make_tuple(4, 4, 10, filter), |
| make_tuple(8, 8, 10, filter), make_tuple(64, 64, 10, filter), |
| make_tuple(4, 16, 10, filter), make_tuple(32, 8, 10, filter), |
| make_tuple(4, 4, 12, filter), make_tuple(8, 8, 12, filter), |
| make_tuple(64, 64, 12, filter), make_tuple(4, 16, 12, filter), |
| make_tuple(32, 8, 12, filter), |
| }; |
| return ::testing::ValuesIn(params); |
| } |
| |
| AV1HighbdConvolve2DTest::~AV1HighbdConvolve2DTest() {} |
| void AV1HighbdConvolve2DTest::SetUp() { |
| rnd_.Reset(ACMRandom::DeterministicSeed()); |
| } |
| |
| void AV1HighbdConvolve2DTest::TearDown() { libaom_test::ClearSystemState(); } |
| |
| void AV1HighbdConvolve2DTest::RunCheckOutput( |
| highbd_convolve_2d_func test_impl) { |
| const int w = 128, h = 128; |
| const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); |
| const int bd = GET_PARAM(2); |
| int i, j, k; |
| |
| uint16_t *input = new uint16_t[h * w]; |
| |
| int output_n = out_h * MAX_SB_SIZE; |
| CONV_BUF_TYPE *output = new CONV_BUF_TYPE[output_n]; |
| CONV_BUF_TYPE *output2 = new CONV_BUF_TYPE[output_n]; |
| |
| for (i = 0; i < h; ++i) |
| for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); |
| |
| int hfilter, vfilter, subx, suby; |
| for (hfilter = EIGHTTAP_REGULAR; hfilter < INTERP_FILTERS_ALL; ++hfilter) { |
| for (vfilter = EIGHTTAP_REGULAR; vfilter < INTERP_FILTERS_ALL; ++vfilter) { |
| InterpFilterParams filter_params_x = |
| av1_get_interp_filter_params((InterpFilter)hfilter); |
| InterpFilterParams filter_params_y = |
| av1_get_interp_filter_params((InterpFilter)vfilter); |
| ConvolveParams conv_params1 = |
| get_conv_params_no_round(0, 0, 0, output, MAX_SB_SIZE); |
| ConvolveParams conv_params2 = |
| get_conv_params_no_round(0, 0, 0, output2, MAX_SB_SIZE); |
| |
| for (subx = 0; subx < 16; ++subx) |
| for (suby = 0; suby < 16; ++suby) { |
| // av1_convolve_2d is designed for accumulate two predicted blocks for |
| // compound mode, so we set num_iter to two here. |
| // A larger number may introduce overflow |
| const int num_iters = 2; |
| memset(output, 0, output_n * sizeof(*output)); |
| memset(output2, 0, output_n * sizeof(*output2)); |
| for (i = 0; i < num_iters; ++i) { |
| // Choose random locations within the source block |
| int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); |
| int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); |
| av1_highbd_convolve_2d_c(input + offset_r * w + offset_c, w, output, |
| MAX_SB_SIZE, out_w, out_h, |
| &filter_params_x, &filter_params_y, subx, |
| suby, &conv_params1, bd); |
| test_impl(input + offset_r * w + offset_c, w, output2, MAX_SB_SIZE, |
| out_w, out_h, &filter_params_x, &filter_params_y, subx, |
| suby, &conv_params2, bd); |
| |
| for (j = 0; j < out_h; ++j) |
| for (k = 0; k < out_w; ++k) { |
| int idx = j * MAX_SB_SIZE + k; |
| ASSERT_EQ(output[idx], output2[idx]) |
| << "Pixel mismatch at index " << idx << " = (" << j << ", " |
| << k << "), sub pixel offset = (" << suby << ", " << subx |
| << ")"; |
| } |
| } |
| } |
| } |
| } |
| delete[] input; |
| delete[] output; |
| delete[] output2; |
| } |
| } // namespace AV1HighbdConvolve2D |
| #endif // CONFIG_HIGHBITDEPTH |
| } // namespace libaom_test |