blob: e372a4b3ba53aa6b1f8ffb89c0016c7537d877e6 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <emmintrin.h> // SSE2
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/blend.h"
#include "aom_dsp/x86/mem_sse2.h"
#include "aom_dsp/x86/synonyms.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/filter.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/reconinter_enc.h"
unsigned int aom_get_mb_ss_sse2(const int16_t *src) {
__m128i vsum = _mm_setzero_si128();
int i;
for (i = 0; i < 32; ++i) {
const __m128i v = xx_loadu_128(src);
vsum = _mm_add_epi32(vsum, _mm_madd_epi16(v, v));
src += 8;
}
vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 8));
vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 4));
return _mm_cvtsi128_si32(vsum);
}
static INLINE __m128i load4x2_sse2(const uint8_t *const p, const int stride) {
const __m128i p0 = _mm_cvtsi32_si128(loadu_uint32(p + 0 * stride));
const __m128i p1 = _mm_cvtsi32_si128(loadu_uint32(p + 1 * stride));
return _mm_unpacklo_epi8(_mm_unpacklo_epi32(p0, p1), _mm_setzero_si128());
}
static INLINE __m128i load8_8to16_sse2(const uint8_t *const p) {
const __m128i p0 = _mm_loadl_epi64((const __m128i *)p);
return _mm_unpacklo_epi8(p0, _mm_setzero_si128());
}
// Accumulate 4 32bit numbers in val to 1 32bit number
static INLINE unsigned int add32x4_sse2(__m128i val) {
val = _mm_add_epi32(val, _mm_srli_si128(val, 8));
val = _mm_add_epi32(val, _mm_srli_si128(val, 4));
return _mm_cvtsi128_si32(val);
}
// Accumulate 8 16bit in sum to 4 32bit number
static INLINE __m128i sum_to_32bit_sse2(const __m128i sum) {
const __m128i sum_lo = _mm_srai_epi32(_mm_unpacklo_epi16(sum, sum), 16);
const __m128i sum_hi = _mm_srai_epi32(_mm_unpackhi_epi16(sum, sum), 16);
return _mm_add_epi32(sum_lo, sum_hi);
}
static INLINE void variance_kernel_sse2(const __m128i src, const __m128i ref,
__m128i *const sse,
__m128i *const sum) {
const __m128i diff = _mm_sub_epi16(src, ref);
*sse = _mm_add_epi32(*sse, _mm_madd_epi16(diff, diff));
*sum = _mm_add_epi16(*sum, diff);
}
// Can handle 128 pixels' diff sum (such as 8x16 or 16x8)
// Slightly faster than variance_final_256_pel_sse2()
// diff sum of 128 pixels can still fit in 16bit integer
static INLINE void variance_final_128_pel_sse2(__m128i vsse, __m128i vsum,
unsigned int *const sse,
int *const sum) {
*sse = add32x4_sse2(vsse);
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8));
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4));
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 2));
*sum = (int16_t)_mm_extract_epi16(vsum, 0);
}
// Can handle 256 pixels' diff sum (such as 16x16)
static INLINE void variance_final_256_pel_sse2(__m128i vsse, __m128i vsum,
unsigned int *const sse,
int *const sum) {
*sse = add32x4_sse2(vsse);
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8));
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4));
*sum = (int16_t)_mm_extract_epi16(vsum, 0);
*sum += (int16_t)_mm_extract_epi16(vsum, 1);
}
// Can handle 512 pixels' diff sum (such as 16x32 or 32x16)
static INLINE void variance_final_512_pel_sse2(__m128i vsse, __m128i vsum,
unsigned int *const sse,
int *const sum) {
*sse = add32x4_sse2(vsse);
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8));
vsum = _mm_unpacklo_epi16(vsum, vsum);
vsum = _mm_srai_epi32(vsum, 16);
*sum = add32x4_sse2(vsum);
}
// Can handle 1024 pixels' diff sum (such as 32x32)
static INLINE void variance_final_1024_pel_sse2(__m128i vsse, __m128i vsum,
unsigned int *const sse,
int *const sum) {
*sse = add32x4_sse2(vsse);
vsum = sum_to_32bit_sse2(vsum);
*sum = add32x4_sse2(vsum);
}
static INLINE void variance4_sse2(const uint8_t *src, const int src_stride,
const uint8_t *ref, const int ref_stride,
const int h, __m128i *const sse,
__m128i *const sum) {
assert(h <= 256); // May overflow for larger height.
*sum = _mm_setzero_si128();
for (int i = 0; i < h; i += 2) {
const __m128i s = load4x2_sse2(src, src_stride);
const __m128i r = load4x2_sse2(ref, ref_stride);
variance_kernel_sse2(s, r, sse, sum);
src += 2 * src_stride;
ref += 2 * ref_stride;
}
}
static INLINE void variance8_sse2(const uint8_t *src, const int src_stride,
const uint8_t *ref, const int ref_stride,
const int h, __m128i *const sse,
__m128i *const sum) {
assert(h <= 128); // May overflow for larger height.
*sum = _mm_setzero_si128();
*sse = _mm_setzero_si128();
for (int i = 0; i < h; i++) {
const __m128i s = load8_8to16_sse2(src);
const __m128i r = load8_8to16_sse2(ref);
variance_kernel_sse2(s, r, sse, sum);
src += src_stride;
ref += ref_stride;
}
}
static INLINE void variance16_kernel_sse2(const uint8_t *const src,
const uint8_t *const ref,
__m128i *const sse,
__m128i *const sum) {
const __m128i zero = _mm_setzero_si128();
const __m128i s = _mm_loadu_si128((const __m128i *)src);
const __m128i r = _mm_loadu_si128((const __m128i *)ref);
const __m128i src0 = _mm_unpacklo_epi8(s, zero);
const __m128i ref0 = _mm_unpacklo_epi8(r, zero);
const __m128i src1 = _mm_unpackhi_epi8(s, zero);
const __m128i ref1 = _mm_unpackhi_epi8(r, zero);
variance_kernel_sse2(src0, ref0, sse, sum);
variance_kernel_sse2(src1, ref1, sse, sum);
}
static INLINE void variance16_sse2(const uint8_t *src, const int src_stride,
const uint8_t *ref, const int ref_stride,
const int h, __m128i *const sse,
__m128i *const sum) {
assert(h <= 64); // May overflow for larger height.
*sum = _mm_setzero_si128();
for (int i = 0; i < h; ++i) {
variance16_kernel_sse2(src, ref, sse, sum);
src += src_stride;
ref += ref_stride;
}
}
static INLINE void variance32_sse2(const uint8_t *src, const int src_stride,
const uint8_t *ref, const int ref_stride,
const int h, __m128i *const sse,
__m128i *const sum) {
assert(h <= 32); // May overflow for larger height.
// Don't initialize sse here since it's an accumulation.
*sum = _mm_setzero_si128();
for (int i = 0; i < h; ++i) {
variance16_kernel_sse2(src + 0, ref + 0, sse, sum);
variance16_kernel_sse2(src + 16, ref + 16, sse, sum);
src += src_stride;
ref += ref_stride;
}
}
static INLINE void variance64_sse2(const uint8_t *src, const int src_stride,
const uint8_t *ref, const int ref_stride,
const int h, __m128i *const sse,
__m128i *const sum) {
assert(h <= 16); // May overflow for larger height.
*sum = _mm_setzero_si128();
for (int i = 0; i < h; ++i) {
variance16_kernel_sse2(src + 0, ref + 0, sse, sum);
variance16_kernel_sse2(src + 16, ref + 16, sse, sum);
variance16_kernel_sse2(src + 32, ref + 32, sse, sum);
variance16_kernel_sse2(src + 48, ref + 48, sse, sum);
src += src_stride;
ref += ref_stride;
}
}
static INLINE void variance128_sse2(const uint8_t *src, const int src_stride,
const uint8_t *ref, const int ref_stride,
const int h, __m128i *const sse,
__m128i *const sum) {
assert(h <= 8); // May overflow for larger height.
*sum = _mm_setzero_si128();
for (int i = 0; i < h; ++i) {
for (int j = 0; j < 4; ++j) {
const int offset0 = j << 5;
const int offset1 = offset0 + 16;
variance16_kernel_sse2(src + offset0, ref + offset0, sse, sum);
variance16_kernel_sse2(src + offset1, ref + offset1, sse, sum);
}
src += src_stride;
ref += ref_stride;
}
}
void aom_get8x8var_sse2(const uint8_t *src_ptr, int src_stride,
const uint8_t *ref_ptr, int ref_stride,
unsigned int *sse, int *sum) {
__m128i vsse, vsum;
variance8_sse2(src_ptr, src_stride, ref_ptr, ref_stride, 8, &vsse, &vsum);
variance_final_128_pel_sse2(vsse, vsum, sse, sum);
}
#define AOM_VAR_NO_LOOP_SSE2(bw, bh, bits, max_pixels) \
unsigned int aom_variance##bw##x##bh##_sse2( \
const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
unsigned int *sse) { \
__m128i vsse = _mm_setzero_si128(); \
__m128i vsum; \
int sum = 0; \
variance##bw##_sse2(src, src_stride, ref, ref_stride, bh, &vsse, &vsum); \
variance_final_##max_pixels##_pel_sse2(vsse, vsum, sse, &sum); \
assert(sum <= 255 * bw * bh); \
assert(sum >= -255 * bw * bh); \
return *sse - (uint32_t)(((int64_t)sum * sum) >> bits); \
}
AOM_VAR_NO_LOOP_SSE2(4, 4, 4, 128);
AOM_VAR_NO_LOOP_SSE2(4, 8, 5, 128);
AOM_VAR_NO_LOOP_SSE2(4, 16, 6, 128);
AOM_VAR_NO_LOOP_SSE2(8, 4, 5, 128);
AOM_VAR_NO_LOOP_SSE2(8, 8, 6, 128);
AOM_VAR_NO_LOOP_SSE2(8, 16, 7, 128);
AOM_VAR_NO_LOOP_SSE2(16, 8, 7, 128);
AOM_VAR_NO_LOOP_SSE2(16, 16, 8, 256);
AOM_VAR_NO_LOOP_SSE2(16, 32, 9, 512);
AOM_VAR_NO_LOOP_SSE2(32, 8, 8, 256);
AOM_VAR_NO_LOOP_SSE2(32, 16, 9, 512);
AOM_VAR_NO_LOOP_SSE2(32, 32, 10, 1024);
#if !CONFIG_REALTIME_ONLY
AOM_VAR_NO_LOOP_SSE2(16, 4, 6, 128);
AOM_VAR_NO_LOOP_SSE2(8, 32, 8, 256);
AOM_VAR_NO_LOOP_SSE2(16, 64, 10, 1024);
#endif
#define AOM_VAR_LOOP_SSE2(bw, bh, bits, uh) \
unsigned int aom_variance##bw##x##bh##_sse2( \
const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
unsigned int *sse) { \
__m128i vsse = _mm_setzero_si128(); \
__m128i vsum = _mm_setzero_si128(); \
for (int i = 0; i < (bh / uh); ++i) { \
__m128i vsum16; \
variance##bw##_sse2(src, src_stride, ref, ref_stride, uh, &vsse, \
&vsum16); \
vsum = _mm_add_epi32(vsum, sum_to_32bit_sse2(vsum16)); \
src += (src_stride * uh); \
ref += (ref_stride * uh); \
} \
*sse = add32x4_sse2(vsse); \
int sum = add32x4_sse2(vsum); \
assert(sum <= 255 * bw * bh); \
assert(sum >= -255 * bw * bh); \
return *sse - (uint32_t)(((int64_t)sum * sum) >> bits); \
}
AOM_VAR_LOOP_SSE2(32, 64, 11, 32); // 32x32 * ( 64/32 )
AOM_VAR_LOOP_SSE2(64, 32, 11, 16); // 64x16 * ( 32/16 )
AOM_VAR_LOOP_SSE2(64, 64, 12, 16); // 64x16 * ( 64/16 )
AOM_VAR_LOOP_SSE2(64, 128, 13, 16); // 64x16 * ( 128/16 )
AOM_VAR_LOOP_SSE2(128, 64, 13, 8); // 128x8 * ( 64/8 )
AOM_VAR_LOOP_SSE2(128, 128, 14, 8); // 128x8 * ( 128/8 )
#if !CONFIG_REALTIME_ONLY
AOM_VAR_NO_LOOP_SSE2(64, 16, 10, 1024);
#endif
unsigned int aom_mse8x8_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
aom_variance8x8_sse2(src, src_stride, ref, ref_stride, sse);
return *sse;
}
unsigned int aom_mse8x16_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
aom_variance8x16_sse2(src, src_stride, ref, ref_stride, sse);
return *sse;
}
unsigned int aom_mse16x8_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
aom_variance16x8_sse2(src, src_stride, ref, ref_stride, sse);
return *sse;
}
unsigned int aom_mse16x16_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
aom_variance16x16_sse2(src, src_stride, ref, ref_stride, sse);
return *sse;
}
// The 2 unused parameters are place holders for PIC enabled build.
// These definitions are for functions defined in subpel_variance.asm
#define DECL(w, opt) \
int aom_sub_pixel_variance##w##xh_##opt( \
const uint8_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \
const uint8_t *dst, ptrdiff_t dst_stride, int height, unsigned int *sse, \
void *unused0, void *unused)
#define DECLS(opt) \
DECL(4, opt); \
DECL(8, opt); \
DECL(16, opt)
DECLS(sse2);
DECLS(ssse3);
#undef DECLS
#undef DECL
#define FN(w, h, wf, wlog2, hlog2, opt, cast_prod, cast) \
unsigned int aom_sub_pixel_variance##w##x##h##_##opt( \
const uint8_t *src, int src_stride, int x_offset, int y_offset, \
const uint8_t *dst, int dst_stride, unsigned int *sse_ptr) { \
/*Avoid overflow in helper by capping height.*/ \
const int hf = AOMMIN(h, 64); \
unsigned int sse = 0; \
int se = 0; \
for (int i = 0; i < (w / wf); ++i) { \
const uint8_t *src_ptr = src; \
const uint8_t *dst_ptr = dst; \
for (int j = 0; j < (h / hf); ++j) { \
unsigned int sse2; \
const int se2 = aom_sub_pixel_variance##wf##xh_##opt( \
src_ptr, src_stride, x_offset, y_offset, dst_ptr, dst_stride, hf, \
&sse2, NULL, NULL); \
dst_ptr += hf * dst_stride; \
src_ptr += hf * src_stride; \
se += se2; \
sse += sse2; \
} \
src += wf; \
dst += wf; \
} \
*sse_ptr = sse; \
return sse - (unsigned int)(cast_prod(cast se * se) >> (wlog2 + hlog2)); \
}
#if !CONFIG_REALTIME_ONLY
#define FNS(opt) \
FN(128, 128, 16, 7, 7, opt, (int64_t), (int64_t)); \
FN(128, 64, 16, 7, 6, opt, (int64_t), (int64_t)); \
FN(64, 128, 16, 6, 7, opt, (int64_t), (int64_t)); \
FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)); \
FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)); \
FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)); \
FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)); \
FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)); \
FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)); \
FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)); \
FN(16, 8, 16, 4, 3, opt, (int32_t), (int32_t)); \
FN(8, 16, 8, 3, 4, opt, (int32_t), (int32_t)); \
FN(8, 8, 8, 3, 3, opt, (int32_t), (int32_t)); \
FN(8, 4, 8, 3, 2, opt, (int32_t), (int32_t)); \
FN(4, 8, 4, 2, 3, opt, (int32_t), (int32_t)); \
FN(4, 4, 4, 2, 2, opt, (int32_t), (int32_t)); \
FN(4, 16, 4, 2, 4, opt, (int32_t), (int32_t)); \
FN(16, 4, 16, 4, 2, opt, (int32_t), (int32_t)); \
FN(8, 32, 8, 3, 5, opt, (uint32_t), (int64_t)); \
FN(32, 8, 16, 5, 3, opt, (uint32_t), (int64_t)); \
FN(16, 64, 16, 4, 6, opt, (int64_t), (int64_t)); \
FN(64, 16, 16, 6, 4, opt, (int64_t), (int64_t))
#else
#define FNS(opt) \
FN(128, 128, 16, 7, 7, opt, (int64_t), (int64_t)); \
FN(128, 64, 16, 7, 6, opt, (int64_t), (int64_t)); \
FN(64, 128, 16, 6, 7, opt, (int64_t), (int64_t)); \
FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)); \
FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)); \
FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)); \
FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)); \
FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)); \
FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)); \
FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)); \
FN(16, 8, 16, 4, 3, opt, (int32_t), (int32_t)); \
FN(8, 16, 8, 3, 4, opt, (int32_t), (int32_t)); \
FN(8, 8, 8, 3, 3, opt, (int32_t), (int32_t)); \
FN(8, 4, 8, 3, 2, opt, (int32_t), (int32_t)); \
FN(4, 8, 4, 2, 3, opt, (int32_t), (int32_t)); \
FN(4, 4, 4, 2, 2, opt, (int32_t), (int32_t));
#endif
FNS(sse2);
FNS(ssse3);
#undef FNS
#undef FN
// The 2 unused parameters are place holders for PIC enabled build.
#define DECL(w, opt) \
int aom_sub_pixel_avg_variance##w##xh_##opt( \
const uint8_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \
const uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *sec, \
ptrdiff_t sec_stride, int height, unsigned int *sse, void *unused0, \
void *unused)
#define DECLS(opt) \
DECL(4, opt); \
DECL(8, opt); \
DECL(16, opt)
DECLS(sse2);
DECLS(ssse3);
#undef DECL
#undef DECLS
#define FN(w, h, wf, wlog2, hlog2, opt, cast_prod, cast) \
unsigned int aom_sub_pixel_avg_variance##w##x##h##_##opt( \
const uint8_t *src, int src_stride, int x_offset, int y_offset, \
const uint8_t *dst, int dst_stride, unsigned int *sse_ptr, \
const uint8_t *sec) { \
/*Avoid overflow in helper by capping height.*/ \
const int hf = AOMMIN(h, 64); \
unsigned int sse = 0; \
int se = 0; \
for (int i = 0; i < (w / wf); ++i) { \
const uint8_t *src_ptr = src; \
const uint8_t *dst_ptr = dst; \
const uint8_t *sec_ptr = sec; \
for (int j = 0; j < (h / hf); ++j) { \
unsigned int sse2; \
const int se2 = aom_sub_pixel_avg_variance##wf##xh_##opt( \
src_ptr, src_stride, x_offset, y_offset, dst_ptr, dst_stride, \
sec_ptr, w, hf, &sse2, NULL, NULL); \
dst_ptr += hf * dst_stride; \
src_ptr += hf * src_stride; \
sec_ptr += hf * w; \
se += se2; \
sse += sse2; \
} \
src += wf; \
dst += wf; \
sec += wf; \
} \
*sse_ptr = sse; \
return sse - (unsigned int)(cast_prod(cast se * se) >> (wlog2 + hlog2)); \
}
#if !CONFIG_REALTIME_ONLY
#define FNS(opt) \
FN(128, 128, 16, 7, 7, opt, (int64_t), (int64_t)); \
FN(128, 64, 16, 7, 6, opt, (int64_t), (int64_t)); \
FN(64, 128, 16, 6, 7, opt, (int64_t), (int64_t)); \
FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)); \
FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)); \
FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)); \
FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)); \
FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)); \
FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)); \
FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)); \
FN(16, 8, 16, 4, 3, opt, (uint32_t), (int32_t)); \
FN(8, 16, 8, 3, 4, opt, (uint32_t), (int32_t)); \
FN(8, 8, 8, 3, 3, opt, (uint32_t), (int32_t)); \
FN(8, 4, 8, 3, 2, opt, (uint32_t), (int32_t)); \
FN(4, 8, 4, 2, 3, opt, (uint32_t), (int32_t)); \
FN(4, 4, 4, 2, 2, opt, (uint32_t), (int32_t)); \
FN(4, 16, 4, 2, 4, opt, (int32_t), (int32_t)); \
FN(16, 4, 16, 4, 2, opt, (int32_t), (int32_t)); \
FN(8, 32, 8, 3, 5, opt, (uint32_t), (int64_t)); \
FN(32, 8, 16, 5, 3, opt, (uint32_t), (int64_t)); \
FN(16, 64, 16, 4, 6, opt, (int64_t), (int64_t)); \
FN(64, 16, 16, 6, 4, opt, (int64_t), (int64_t))
#else
#define FNS(opt) \
FN(128, 128, 16, 7, 7, opt, (int64_t), (int64_t)); \
FN(128, 64, 16, 7, 6, opt, (int64_t), (int64_t)); \
FN(64, 128, 16, 6, 7, opt, (int64_t), (int64_t)); \
FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)); \
FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)); \
FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)); \
FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)); \
FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)); \
FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)); \
FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)); \
FN(16, 8, 16, 4, 3, opt, (uint32_t), (int32_t)); \
FN(8, 16, 8, 3, 4, opt, (uint32_t), (int32_t)); \
FN(8, 8, 8, 3, 3, opt, (uint32_t), (int32_t)); \
FN(8, 4, 8, 3, 2, opt, (uint32_t), (int32_t)); \
FN(4, 8, 4, 2, 3, opt, (uint32_t), (int32_t)); \
FN(4, 4, 4, 2, 2, opt, (uint32_t), (int32_t));
#endif
FNS(sse2);
FNS(ssse3);
#undef FNS
#undef FN
void aom_upsampled_pred_sse2(MACROBLOCKD *xd, const struct AV1Common *const cm,
int mi_row, int mi_col, const MV *const mv,
uint8_t *comp_pred, int width, int height,
int subpel_x_q3, int subpel_y_q3,
const uint8_t *ref, int ref_stride,
int subpel_search) {
// expect xd == NULL only in tests
if (xd != NULL) {
const MB_MODE_INFO *mi = xd->mi[0];
const int ref_num = 0;
const int is_intrabc = is_intrabc_block(mi);
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref_num];
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
int plane = 0;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const struct buf_2d *const dst_buf = &pd->dst;
const struct buf_2d *const pre_buf =
is_intrabc ? dst_buf : &pd->pre[ref_num];
InterPredParams inter_pred_params;
inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd);
const int_interpfilters filters =
av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
av1_init_inter_params(
&inter_pred_params, width, height, mi_y >> pd->subsampling_y,
mi_x >> pd->subsampling_x, pd->subsampling_x, pd->subsampling_y,
xd->bd, is_cur_buf_hbd(xd), is_intrabc, sf, pre_buf, filters);
av1_enc_build_one_inter_predictor(comp_pred, width, mv,
&inter_pred_params);
return;
}
}
const InterpFilterParams *filter = av1_get_filter(subpel_search);
// (TODO:yunqing) 2-tap case uses 4-tap functions since there is no SIMD for
// 2-tap yet.
int filter_taps = (subpel_search <= USE_4_TAPS) ? 4 : SUBPEL_TAPS;
if (!subpel_x_q3 && !subpel_y_q3) {
if (width >= 16) {
int i;
assert(!(width & 15));
/*Read 16 pixels one row at a time.*/
for (i = 0; i < height; i++) {
int j;
for (j = 0; j < width; j += 16) {
xx_storeu_128(comp_pred, xx_loadu_128(ref));
comp_pred += 16;
ref += 16;
}
ref += ref_stride - width;
}
} else if (width >= 8) {
int i;
assert(!(width & 7));
assert(!(height & 1));
/*Read 8 pixels two rows at a time.*/
for (i = 0; i < height; i += 2) {
__m128i s0 = xx_loadl_64(ref + 0 * ref_stride);
__m128i s1 = xx_loadl_64(ref + 1 * ref_stride);
xx_storeu_128(comp_pred, _mm_unpacklo_epi64(s0, s1));
comp_pred += 16;
ref += 2 * ref_stride;
}
} else {
int i;
assert(!(width & 3));
assert(!(height & 3));
/*Read 4 pixels four rows at a time.*/
for (i = 0; i < height; i++) {
const __m128i row0 = xx_loadl_64(ref + 0 * ref_stride);
const __m128i row1 = xx_loadl_64(ref + 1 * ref_stride);
const __m128i row2 = xx_loadl_64(ref + 2 * ref_stride);
const __m128i row3 = xx_loadl_64(ref + 3 * ref_stride);
const __m128i reg = _mm_unpacklo_epi64(_mm_unpacklo_epi32(row0, row1),
_mm_unpacklo_epi32(row2, row3));
xx_storeu_128(comp_pred, reg);
comp_pred += 16;
ref += 4 * ref_stride;
}
}
} else if (!subpel_y_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
aom_convolve8_horiz(ref, ref_stride, comp_pred, width, kernel, 16, NULL, -1,
width, height);
} else if (!subpel_x_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
aom_convolve8_vert(ref, ref_stride, comp_pred, width, NULL, -1, kernel, 16,
width, height);
} else {
DECLARE_ALIGNED(16, uint8_t,
temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]);
const int16_t *const kernel_x =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
const int16_t *const kernel_y =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
const uint8_t *ref_start = ref - ref_stride * ((filter_taps >> 1) - 1);
uint8_t *temp_start_horiz = (subpel_search <= USE_4_TAPS)
? temp + (filter_taps >> 1) * MAX_SB_SIZE
: temp;
uint8_t *temp_start_vert = temp + MAX_SB_SIZE * ((filter->taps >> 1) - 1);
int intermediate_height =
(((height - 1) * 8 + subpel_y_q3) >> 3) + filter_taps;
assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16);
aom_convolve8_horiz(ref_start, ref_stride, temp_start_horiz, MAX_SB_SIZE,
kernel_x, 16, NULL, -1, width, intermediate_height);
aom_convolve8_vert(temp_start_vert, MAX_SB_SIZE, comp_pred, width, NULL, -1,
kernel_y, 16, width, height);
}
}
void aom_comp_avg_upsampled_pred_sse2(
MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col,
const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width,
int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref,
int ref_stride, int subpel_search) {
int n;
int i;
aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width, height,
subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search);
/*The total number of pixels must be a multiple of 16 (e.g., 4x4).*/
assert(!(width * height & 15));
n = width * height >> 4;
for (i = 0; i < n; i++) {
__m128i s0 = xx_loadu_128(comp_pred);
__m128i p0 = xx_loadu_128(pred);
xx_storeu_128(comp_pred, _mm_avg_epu8(s0, p0));
comp_pred += 16;
pred += 16;
}
}
void aom_comp_mask_upsampled_pred_sse2(
MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col,
const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width,
int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref,
int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask,
int subpel_search) {
if (subpel_x_q3 | subpel_y_q3) {
aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width, height,
subpel_x_q3, subpel_y_q3, ref, ref_stride,
subpel_search);
ref = comp_pred;
ref_stride = width;
}
aom_comp_mask_pred(comp_pred, pred, width, height, ref, ref_stride, mask,
mask_stride, invert_mask);
}
static INLINE __m128i highbd_comp_mask_pred_line_sse2(const __m128i s0,
const __m128i s1,
const __m128i a) {
const __m128i alpha_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
const __m128i round_const =
_mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
const __m128i a_inv = _mm_sub_epi16(alpha_max, a);
const __m128i s_lo = _mm_unpacklo_epi16(s0, s1);
const __m128i a_lo = _mm_unpacklo_epi16(a, a_inv);
const __m128i pred_lo = _mm_madd_epi16(s_lo, a_lo);
const __m128i pred_l = _mm_srai_epi32(_mm_add_epi32(pred_lo, round_const),
AOM_BLEND_A64_ROUND_BITS);
const __m128i s_hi = _mm_unpackhi_epi16(s0, s1);
const __m128i a_hi = _mm_unpackhi_epi16(a, a_inv);
const __m128i pred_hi = _mm_madd_epi16(s_hi, a_hi);
const __m128i pred_h = _mm_srai_epi32(_mm_add_epi32(pred_hi, round_const),
AOM_BLEND_A64_ROUND_BITS);
const __m128i comp = _mm_packs_epi32(pred_l, pred_h);
return comp;
}
void aom_highbd_comp_mask_pred_sse2(uint8_t *comp_pred8, const uint8_t *pred8,
int width, int height, const uint8_t *ref8,
int ref_stride, const uint8_t *mask,
int mask_stride, int invert_mask) {
int i = 0;
uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8);
uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
const uint16_t *src0 = invert_mask ? pred : ref;
const uint16_t *src1 = invert_mask ? ref : pred;
const int stride0 = invert_mask ? width : ref_stride;
const int stride1 = invert_mask ? ref_stride : width;
const __m128i zero = _mm_setzero_si128();
if (width == 8) {
do {
const __m128i s0 = _mm_loadu_si128((const __m128i *)(src0));
const __m128i s1 = _mm_loadu_si128((const __m128i *)(src1));
const __m128i m_8 = _mm_loadl_epi64((const __m128i *)mask);
const __m128i m_16 = _mm_unpacklo_epi8(m_8, zero);
const __m128i comp = highbd_comp_mask_pred_line_sse2(s0, s1, m_16);
_mm_storeu_si128((__m128i *)comp_pred, comp);
src0 += stride0;
src1 += stride1;
mask += mask_stride;
comp_pred += width;
i += 1;
} while (i < height);
} else if (width == 16) {
do {
const __m128i s0 = _mm_loadu_si128((const __m128i *)(src0));
const __m128i s2 = _mm_loadu_si128((const __m128i *)(src0 + 8));
const __m128i s1 = _mm_loadu_si128((const __m128i *)(src1));
const __m128i s3 = _mm_loadu_si128((const __m128i *)(src1 + 8));
const __m128i m_8 = _mm_loadu_si128((const __m128i *)mask);
const __m128i m01_16 = _mm_unpacklo_epi8(m_8, zero);
const __m128i m23_16 = _mm_unpackhi_epi8(m_8, zero);
const __m128i comp = highbd_comp_mask_pred_line_sse2(s0, s1, m01_16);
const __m128i comp1 = highbd_comp_mask_pred_line_sse2(s2, s3, m23_16);
_mm_storeu_si128((__m128i *)comp_pred, comp);
_mm_storeu_si128((__m128i *)(comp_pred + 8), comp1);
src0 += stride0;
src1 += stride1;
mask += mask_stride;
comp_pred += width;
i += 1;
} while (i < height);
} else {
do {
for (int x = 0; x < width; x += 32) {
for (int j = 0; j < 2; j++) {
const __m128i s0 =
_mm_loadu_si128((const __m128i *)(src0 + x + j * 16));
const __m128i s2 =
_mm_loadu_si128((const __m128i *)(src0 + x + 8 + j * 16));
const __m128i s1 =
_mm_loadu_si128((const __m128i *)(src1 + x + j * 16));
const __m128i s3 =
_mm_loadu_si128((const __m128i *)(src1 + x + 8 + j * 16));
const __m128i m_8 =
_mm_loadu_si128((const __m128i *)(mask + x + j * 16));
const __m128i m01_16 = _mm_unpacklo_epi8(m_8, zero);
const __m128i m23_16 = _mm_unpackhi_epi8(m_8, zero);
const __m128i comp = highbd_comp_mask_pred_line_sse2(s0, s1, m01_16);
const __m128i comp1 = highbd_comp_mask_pred_line_sse2(s2, s3, m23_16);
_mm_storeu_si128((__m128i *)(comp_pred + j * 16), comp);
_mm_storeu_si128((__m128i *)(comp_pred + 8 + j * 16), comp1);
}
comp_pred += 32;
}
src0 += stride0;
src1 += stride1;
mask += mask_stride;
i += 1;
} while (i < height);
}
}
uint64_t aom_mse_4xh_16bit_sse2(uint8_t *dst, int dstride, uint16_t *src,
int sstride, int h) {
uint64_t sum = 0;
__m128i dst0_8x8, dst1_8x8, dst_16x8;
__m128i src0_16x4, src1_16x4, src_16x8;
__m128i res0_32x4, res1_32x4, res0_64x4, res1_64x4, res2_64x4, res3_64x4;
__m128i sub_result_16x8;
const __m128i zeros = _mm_setzero_si128();
__m128i square_result = _mm_setzero_si128();
for (int i = 0; i < h; i += 2) {
dst0_8x8 = _mm_cvtsi32_si128(*(uint32_t const *)(&dst[(i + 0) * dstride]));
dst1_8x8 = _mm_cvtsi32_si128(*(uint32_t const *)(&dst[(i + 1) * dstride]));
dst_16x8 = _mm_unpacklo_epi8(_mm_unpacklo_epi32(dst0_8x8, dst1_8x8), zeros);
src0_16x4 = _mm_loadl_epi64((__m128i const *)(&src[(i + 0) * sstride]));
src1_16x4 = _mm_loadl_epi64((__m128i const *)(&src[(i + 1) * sstride]));
src_16x8 = _mm_unpacklo_epi64(src0_16x4, src1_16x4);
sub_result_16x8 = _mm_sub_epi16(src_16x8, dst_16x8);
res0_32x4 = _mm_unpacklo_epi16(sub_result_16x8, zeros);
res1_32x4 = _mm_unpackhi_epi16(sub_result_16x8, zeros);
res0_32x4 = _mm_madd_epi16(res0_32x4, res0_32x4);
res1_32x4 = _mm_madd_epi16(res1_32x4, res1_32x4);
res0_64x4 = _mm_unpacklo_epi32(res0_32x4, zeros);
res1_64x4 = _mm_unpackhi_epi32(res0_32x4, zeros);
res2_64x4 = _mm_unpacklo_epi32(res1_32x4, zeros);
res3_64x4 = _mm_unpackhi_epi32(res1_32x4, zeros);
square_result = _mm_add_epi64(
square_result,
_mm_add_epi64(
_mm_add_epi64(_mm_add_epi64(res0_64x4, res1_64x4), res2_64x4),
res3_64x4));
}
const __m128i sum_1x64 =
_mm_add_epi64(square_result, _mm_srli_si128(square_result, 8));
xx_storel_64(&sum, sum_1x64);
return sum;
}
uint64_t aom_mse_8xh_16bit_sse2(uint8_t *dst, int dstride, uint16_t *src,
int sstride, int h) {
uint64_t sum = 0;
__m128i dst_8x8, dst_16x8;
__m128i src_16x8;
__m128i res0_32x4, res1_32x4, res0_64x4, res1_64x4, res2_64x4, res3_64x4;
__m128i sub_result_16x8;
const __m128i zeros = _mm_setzero_si128();
__m128i square_result = _mm_setzero_si128();
for (int i = 0; i < h; i++) {
dst_8x8 = _mm_loadl_epi64((__m128i const *)(&dst[(i + 0) * dstride]));
dst_16x8 = _mm_unpacklo_epi8(dst_8x8, zeros);
src_16x8 = _mm_loadu_si128((__m128i *)&src[i * sstride]);
sub_result_16x8 = _mm_sub_epi16(src_16x8, dst_16x8);
res0_32x4 = _mm_unpacklo_epi16(sub_result_16x8, zeros);
res1_32x4 = _mm_unpackhi_epi16(sub_result_16x8, zeros);
res0_32x4 = _mm_madd_epi16(res0_32x4, res0_32x4);
res1_32x4 = _mm_madd_epi16(res1_32x4, res1_32x4);
res0_64x4 = _mm_unpacklo_epi32(res0_32x4, zeros);
res1_64x4 = _mm_unpackhi_epi32(res0_32x4, zeros);
res2_64x4 = _mm_unpacklo_epi32(res1_32x4, zeros);
res3_64x4 = _mm_unpackhi_epi32(res1_32x4, zeros);
square_result = _mm_add_epi64(
square_result,
_mm_add_epi64(
_mm_add_epi64(_mm_add_epi64(res0_64x4, res1_64x4), res2_64x4),
res3_64x4));
}
const __m128i sum_1x64 =
_mm_add_epi64(square_result, _mm_srli_si128(square_result, 8));
xx_storel_64(&sum, sum_1x64);
return sum;
}
uint64_t aom_mse_wxh_16bit_sse2(uint8_t *dst, int dstride, uint16_t *src,
int sstride, int w, int h) {
assert((w == 8 || w == 4) && (h == 8 || h == 4) &&
"w=8/4 and h=8/4 must satisfy");
switch (w) {
case 4: return aom_mse_4xh_16bit_sse2(dst, dstride, src, sstride, h);
case 8: return aom_mse_8xh_16bit_sse2(dst, dstride, src, sstride, h);
default: assert(0 && "unsupported width"); return -1;
}
}