| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/common/warped_motion.h" |
| #include "av1/common/thread_common.h" |
| |
| #include "av1/encoder/allintra_vis.h" |
| #include "av1/encoder/bitstream.h" |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/encoder_alloc.h" |
| #include "av1/encoder/encodeframe_utils.h" |
| #include "av1/encoder/ethread.h" |
| #if !CONFIG_REALTIME_ONLY |
| #include "av1/encoder/firstpass.h" |
| #endif |
| #include "av1/encoder/global_motion.h" |
| #include "av1/encoder/global_motion_facade.h" |
| #include "av1/encoder/intra_mode_search_utils.h" |
| #include "av1/encoder/picklpf.h" |
| #include "av1/encoder/rdopt.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "av1/encoder/temporal_filter.h" |
| #include "av1/encoder/tpl_model.h" |
| |
| static AOM_INLINE void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) { |
| td->rd_counts.compound_ref_used_flag |= |
| td_t->rd_counts.compound_ref_used_flag; |
| td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag; |
| |
| for (int i = 0; i < TX_SIZES_ALL; i++) { |
| for (int j = 0; j < TX_TYPES; j++) |
| td->rd_counts.tx_type_used[i][j] += td_t->rd_counts.tx_type_used[i][j]; |
| } |
| |
| for (int i = 0; i < BLOCK_SIZES_ALL; i++) { |
| for (int j = 0; j < 2; j++) { |
| td->rd_counts.obmc_used[i][j] += td_t->rd_counts.obmc_used[i][j]; |
| } |
| } |
| |
| for (int i = 0; i < 2; i++) { |
| td->rd_counts.warped_used[i] += td_t->rd_counts.warped_used[i]; |
| } |
| |
| td->rd_counts.seg_tmp_pred_cost[0] += td_t->rd_counts.seg_tmp_pred_cost[0]; |
| td->rd_counts.seg_tmp_pred_cost[1] += td_t->rd_counts.seg_tmp_pred_cost[1]; |
| |
| td->rd_counts.newmv_or_intra_blocks += td_t->rd_counts.newmv_or_intra_blocks; |
| } |
| |
| static AOM_INLINE void update_delta_lf_for_row_mt(AV1_COMP *cpi) { |
| AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &cpi->td.mb.e_mbd; |
| const int mib_size = cm->seq_params->mib_size; |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int row = 0; row < cm->tiles.rows; row++) { |
| for (int col = 0; col < cm->tiles.cols; col++) { |
| TileDataEnc *tile_data = &cpi->tile_data[row * cm->tiles.cols + col]; |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; |
| mi_row += mib_size) { |
| if (mi_row == tile_info->mi_row_start) |
| av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); |
| for (int mi_col = tile_info->mi_col_start; |
| mi_col < tile_info->mi_col_end; mi_col += mib_size) { |
| const int idx_str = cm->mi_params.mi_stride * mi_row + mi_col; |
| MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + idx_str; |
| MB_MODE_INFO *mbmi = mi[0]; |
| if (mbmi->skip_txfm == 1 && |
| (mbmi->bsize == cm->seq_params->sb_size)) { |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) |
| mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; |
| mbmi->delta_lf_from_base = xd->delta_lf_from_base; |
| } else { |
| if (cm->delta_q_info.delta_lf_multi) { |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) |
| xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; |
| } else { |
| xd->delta_lf_from_base = mbmi->delta_lf_from_base; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r, |
| int c) { |
| (void)row_mt_sync; |
| (void)r; |
| (void)c; |
| return; |
| } |
| |
| void av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r, |
| int c, int cols) { |
| (void)row_mt_sync; |
| (void)r; |
| (void)c; |
| (void)cols; |
| return; |
| } |
| |
| void av1_row_mt_sync_read(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = row_mt_sync->sync_range; |
| |
| if (r) { |
| pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1]; |
| pthread_mutex_lock(mutex); |
| |
| while (c > row_mt_sync->num_finished_cols[r - 1] - nsync - |
| row_mt_sync->intrabc_extra_top_right_sb_delay) { |
| pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex); |
| } |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)row_mt_sync; |
| (void)r; |
| (void)c; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| void av1_row_mt_sync_write(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c, |
| int cols) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = row_mt_sync->sync_range; |
| int cur; |
| // Only signal when there are enough encoded blocks for next row to run. |
| int sig = 1; |
| |
| if (c < cols - 1) { |
| cur = c; |
| if (c % nsync) sig = 0; |
| } else { |
| cur = cols + nsync + row_mt_sync->intrabc_extra_top_right_sb_delay; |
| } |
| |
| if (sig) { |
| pthread_mutex_lock(&row_mt_sync->mutex_[r]); |
| |
| row_mt_sync->num_finished_cols[r] = cur; |
| |
| pthread_cond_signal(&row_mt_sync->cond_[r]); |
| pthread_mutex_unlock(&row_mt_sync->mutex_[r]); |
| } |
| #else |
| (void)row_mt_sync; |
| (void)r; |
| (void)c; |
| (void)cols; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| // Allocate memory for row synchronization |
| static void row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync *row_mt_sync, |
| AV1_COMMON *cm, int rows) { |
| #if CONFIG_MULTITHREAD |
| int i; |
| |
| CHECK_MEM_ERROR(cm, row_mt_sync->mutex_, |
| aom_malloc(sizeof(*row_mt_sync->mutex_) * rows)); |
| if (row_mt_sync->mutex_) { |
| for (i = 0; i < rows; ++i) { |
| pthread_mutex_init(&row_mt_sync->mutex_[i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, row_mt_sync->cond_, |
| aom_malloc(sizeof(*row_mt_sync->cond_) * rows)); |
| if (row_mt_sync->cond_) { |
| for (i = 0; i < rows; ++i) { |
| pthread_cond_init(&row_mt_sync->cond_[i], NULL); |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols, |
| aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows)); |
| |
| row_mt_sync->rows = rows; |
| // Set up nsync. |
| row_mt_sync->sync_range = 1; |
| } |
| |
| // Deallocate row based multi-threading synchronization related mutex and data |
| static void row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) { |
| if (row_mt_sync != NULL) { |
| #if CONFIG_MULTITHREAD |
| int i; |
| |
| if (row_mt_sync->mutex_ != NULL) { |
| for (i = 0; i < row_mt_sync->rows; ++i) { |
| pthread_mutex_destroy(&row_mt_sync->mutex_[i]); |
| } |
| aom_free(row_mt_sync->mutex_); |
| } |
| if (row_mt_sync->cond_ != NULL) { |
| for (i = 0; i < row_mt_sync->rows; ++i) { |
| pthread_cond_destroy(&row_mt_sync->cond_[i]); |
| } |
| aom_free(row_mt_sync->cond_); |
| } |
| #endif // CONFIG_MULTITHREAD |
| aom_free(row_mt_sync->num_finished_cols); |
| |
| // clear the structure as the source of this call may be dynamic change |
| // in tiles in which case this call will be followed by an _alloc() |
| // which may fail. |
| av1_zero(*row_mt_sync); |
| } |
| } |
| |
| static AOM_INLINE int get_sb_rows_in_frame(AV1_COMMON *cm) { |
| return CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, |
| cm->seq_params->mib_size_log2); |
| } |
| |
| static void row_mt_mem_alloc(AV1_COMP *cpi, int max_rows, int max_cols, |
| int alloc_row_ctx) { |
| struct AV1Common *cm = &cpi->common; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int tile_col, tile_row; |
| |
| av1_row_mt_mem_dealloc(cpi); |
| |
| // Allocate memory for row based multi-threading |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
| int tile_index = tile_row * tile_cols + tile_col; |
| TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; |
| |
| row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, max_rows); |
| |
| this_tile->row_ctx = NULL; |
| if (alloc_row_ctx) { |
| assert(max_cols > 0); |
| const int num_row_ctx = AOMMAX(1, (max_cols - 1)); |
| CHECK_MEM_ERROR(cm, this_tile->row_ctx, |
| (FRAME_CONTEXT *)aom_memalign( |
| 16, num_row_ctx * sizeof(*this_tile->row_ctx))); |
| } |
| } |
| } |
| const int sb_rows = get_sb_rows_in_frame(cm); |
| CHECK_MEM_ERROR( |
| cm, enc_row_mt->num_tile_cols_done, |
| aom_malloc(sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows)); |
| |
| enc_row_mt->allocated_tile_cols = tile_cols; |
| enc_row_mt->allocated_tile_rows = tile_rows; |
| enc_row_mt->allocated_rows = max_rows; |
| enc_row_mt->allocated_cols = max_cols - 1; |
| enc_row_mt->allocated_sb_rows = sb_rows; |
| } |
| |
| void av1_row_mt_mem_dealloc(AV1_COMP *cpi) { |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; |
| const int tile_cols = enc_row_mt->allocated_tile_cols; |
| const int tile_rows = enc_row_mt->allocated_tile_rows; |
| int tile_col, tile_row; |
| |
| // Free row based multi-threading sync memory |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
| int tile_index = tile_row * tile_cols + tile_col; |
| TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; |
| |
| row_mt_sync_mem_dealloc(&this_tile->row_mt_sync); |
| |
| if (cpi->oxcf.algo_cfg.cdf_update_mode) aom_free(this_tile->row_ctx); |
| } |
| } |
| aom_free(enc_row_mt->num_tile_cols_done); |
| enc_row_mt->num_tile_cols_done = NULL; |
| enc_row_mt->allocated_rows = 0; |
| enc_row_mt->allocated_cols = 0; |
| enc_row_mt->allocated_tile_cols = 0; |
| enc_row_mt->allocated_tile_rows = 0; |
| enc_row_mt->allocated_sb_rows = 0; |
| } |
| |
| static AOM_INLINE void assign_tile_to_thread(int *thread_id_to_tile_id, |
| int num_tiles, int num_workers) { |
| int tile_id = 0; |
| int i; |
| |
| for (i = 0; i < num_workers; i++) { |
| thread_id_to_tile_id[i] = tile_id++; |
| if (tile_id == num_tiles) tile_id = 0; |
| } |
| } |
| |
| static AOM_INLINE int get_next_job(TileDataEnc *const tile_data, |
| int *current_mi_row, int mib_size) { |
| AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync; |
| const int mi_row_end = tile_data->tile_info.mi_row_end; |
| |
| if (row_mt_sync->next_mi_row < mi_row_end) { |
| *current_mi_row = row_mt_sync->next_mi_row; |
| row_mt_sync->num_threads_working++; |
| row_mt_sync->next_mi_row += mib_size; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static AOM_INLINE void switch_tile_and_get_next_job( |
| AV1_COMMON *const cm, TileDataEnc *const tile_data, int *cur_tile_id, |
| int *current_mi_row, int *end_of_frame, int is_firstpass, |
| const BLOCK_SIZE fp_block_size) { |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| |
| int tile_id = -1; // Stores the tile ID with minimum proc done |
| int max_mis_to_encode = 0; |
| int min_num_threads_working = INT_MAX; |
| |
| for (int tile_row = 0; tile_row < tile_rows; tile_row++) { |
| for (int tile_col = 0; tile_col < tile_cols; tile_col++) { |
| int tile_index = tile_row * tile_cols + tile_col; |
| TileDataEnc *const this_tile = &tile_data[tile_index]; |
| AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; |
| |
| #if CONFIG_REALTIME_ONLY |
| int num_b_rows_in_tile = |
| av1_get_sb_rows_in_tile(cm, &this_tile->tile_info); |
| int num_b_cols_in_tile = |
| av1_get_sb_cols_in_tile(cm, &this_tile->tile_info); |
| #else |
| int num_b_rows_in_tile = |
| is_firstpass |
| ? av1_get_unit_rows_in_tile(&this_tile->tile_info, fp_block_size) |
| : av1_get_sb_rows_in_tile(cm, &this_tile->tile_info); |
| int num_b_cols_in_tile = |
| is_firstpass |
| ? av1_get_unit_cols_in_tile(&this_tile->tile_info, fp_block_size) |
| : av1_get_sb_cols_in_tile(cm, &this_tile->tile_info); |
| #endif |
| int theoretical_limit_on_threads = |
| AOMMIN((num_b_cols_in_tile + 1) >> 1, num_b_rows_in_tile); |
| int num_threads_working = row_mt_sync->num_threads_working; |
| |
| if (num_threads_working < theoretical_limit_on_threads) { |
| int num_mis_to_encode = |
| this_tile->tile_info.mi_row_end - row_mt_sync->next_mi_row; |
| |
| // Tile to be processed by this thread is selected on the basis of |
| // availability of jobs: |
| // 1) If jobs are available, tile to be processed is chosen on the |
| // basis of minimum number of threads working for that tile. If two or |
| // more tiles have same number of threads working for them, then the |
| // tile with maximum number of jobs available will be chosen. |
| // 2) If no jobs are available, then end_of_frame is reached. |
| if (num_mis_to_encode > 0) { |
| if (num_threads_working < min_num_threads_working) { |
| min_num_threads_working = num_threads_working; |
| max_mis_to_encode = 0; |
| } |
| if (num_threads_working == min_num_threads_working && |
| num_mis_to_encode > max_mis_to_encode) { |
| tile_id = tile_index; |
| max_mis_to_encode = num_mis_to_encode; |
| } |
| } |
| } |
| } |
| } |
| if (tile_id == -1) { |
| *end_of_frame = 1; |
| } else { |
| // Update the current tile id to the tile id that will be processed next, |
| // which will be the least processed tile. |
| *cur_tile_id = tile_id; |
| const int unit_height = mi_size_high[fp_block_size]; |
| get_next_job(&tile_data[tile_id], current_mi_row, |
| is_firstpass ? unit_height : cm->seq_params->mib_size); |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static int fp_enc_row_mt_worker_hook(void *arg1, void *unused) { |
| EncWorkerData *const thread_data = (EncWorkerData *)arg1; |
| AV1_COMP *const cpi = thread_data->cpi; |
| AV1_COMMON *const cm = &cpi->common; |
| int thread_id = thread_data->thread_id; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; |
| int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id]; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_; |
| #endif |
| (void)unused; |
| |
| assert(cur_tile_id != -1); |
| |
| const BLOCK_SIZE fp_block_size = cpi->fp_block_size; |
| const int unit_height = mi_size_high[fp_block_size]; |
| int end_of_frame = 0; |
| while (1) { |
| int current_mi_row = -1; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(enc_row_mt_mutex_); |
| #endif |
| if (!get_next_job(&cpi->tile_data[cur_tile_id], ¤t_mi_row, |
| unit_height)) { |
| // No jobs are available for the current tile. Query for the status of |
| // other tiles and get the next job if available |
| switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id, |
| ¤t_mi_row, &end_of_frame, 1, |
| fp_block_size); |
| } |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(enc_row_mt_mutex_); |
| #endif |
| if (end_of_frame == 1) break; |
| |
| TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id]; |
| AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; |
| ThreadData *td = thread_data->td; |
| |
| assert(current_mi_row != -1 && |
| current_mi_row < this_tile->tile_info.mi_row_end); |
| |
| const int unit_height_log2 = mi_size_high_log2[fp_block_size]; |
| av1_first_pass_row(cpi, td, this_tile, current_mi_row >> unit_height_log2, |
| fp_block_size); |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(enc_row_mt_mutex_); |
| #endif |
| row_mt_sync->num_threads_working--; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(enc_row_mt_mutex_); |
| #endif |
| } |
| |
| return 1; |
| } |
| #endif |
| |
| static void launch_loop_filter_rows(AV1_COMMON *cm, EncWorkerData *thread_data, |
| AV1EncRowMultiThreadInfo *enc_row_mt, |
| int mib_size_log2) { |
| AV1LfSync *const lf_sync = (AV1LfSync *)thread_data->lf_sync; |
| const int sb_rows = get_sb_rows_in_frame(cm); |
| AV1LfMTInfo *cur_job_info; |
| (void)enc_row_mt; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_; |
| #endif |
| |
| while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) { |
| LFWorkerData *const lf_data = (LFWorkerData *)thread_data->lf_data; |
| const int lpf_opt_level = cur_job_info->lpf_opt_level; |
| (void)sb_rows; |
| #if CONFIG_MULTITHREAD |
| const int cur_sb_row = cur_job_info->mi_row >> mib_size_log2; |
| const int next_sb_row = AOMMIN(sb_rows - 1, cur_sb_row + 1); |
| // Wait for current and next superblock row to finish encoding. |
| pthread_mutex_lock(enc_row_mt_mutex_); |
| while (enc_row_mt->num_tile_cols_done[cur_sb_row] < cm->tiles.cols || |
| enc_row_mt->num_tile_cols_done[next_sb_row] < cm->tiles.cols) { |
| pthread_cond_wait(enc_row_mt->cond_, enc_row_mt_mutex_); |
| } |
| pthread_mutex_unlock(enc_row_mt_mutex_); |
| #endif |
| av1_thread_loop_filter_rows( |
| lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd, |
| cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir, |
| lpf_opt_level, lf_sync, lf_data->params_buf, lf_data->tx_buf, |
| mib_size_log2); |
| } |
| } |
| |
| static int enc_row_mt_worker_hook(void *arg1, void *unused) { |
| EncWorkerData *const thread_data = (EncWorkerData *)arg1; |
| AV1_COMP *const cpi = thread_data->cpi; |
| AV1_COMMON *const cm = &cpi->common; |
| int thread_id = thread_data->thread_id; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; |
| int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id]; |
| const int mib_size_log2 = cm->seq_params->mib_size_log2; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_; |
| #endif |
| (void)unused; |
| // Preallocate the pc_tree for realtime coding to reduce the cost of memory |
| // allocation. |
| thread_data->td->rt_pc_root = |
| cpi->sf.rt_sf.use_nonrd_pick_mode |
| ? av1_alloc_pc_tree_node(cm->seq_params->sb_size) |
| : NULL; |
| |
| assert(cur_tile_id != -1); |
| |
| const BLOCK_SIZE fp_block_size = cpi->fp_block_size; |
| int end_of_frame = 0; |
| |
| // When master thread does not have a valid job to process, xd->tile_ctx |
| // is not set and it contains NULL pointer. This can result in NULL pointer |
| // access violation if accessed beyond the encode stage. Hence, updating |
| // thread_data->td->mb.e_mbd.tile_ctx is initialized with common frame |
| // context to avoid NULL pointer access in subsequent stages. |
| thread_data->td->mb.e_mbd.tile_ctx = cm->fc; |
| while (1) { |
| int current_mi_row = -1; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(enc_row_mt_mutex_); |
| #endif |
| if (!get_next_job(&cpi->tile_data[cur_tile_id], ¤t_mi_row, |
| cm->seq_params->mib_size)) { |
| // No jobs are available for the current tile. Query for the status of |
| // other tiles and get the next job if available |
| switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id, |
| ¤t_mi_row, &end_of_frame, 0, |
| fp_block_size); |
| } |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(enc_row_mt_mutex_); |
| #endif |
| if (end_of_frame == 1) break; |
| |
| TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id]; |
| AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; |
| const TileInfo *const tile_info = &this_tile->tile_info; |
| const int tile_row = tile_info->tile_row; |
| const int tile_col = tile_info->tile_col; |
| ThreadData *td = thread_data->td; |
| const int sb_row = current_mi_row >> mib_size_log2; |
| |
| assert(current_mi_row != -1 && current_mi_row <= tile_info->mi_row_end); |
| |
| td->mb.e_mbd.tile_ctx = td->tctx; |
| td->mb.tile_pb_ctx = &this_tile->tctx; |
| td->abs_sum_level = 0; |
| |
| if (this_tile->allow_update_cdf) { |
| td->mb.row_ctx = this_tile->row_ctx; |
| if (current_mi_row == tile_info->mi_row_start) |
| memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT)); |
| } else { |
| memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT)); |
| } |
| |
| av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, |
| &td->mb.e_mbd); |
| |
| cfl_init(&td->mb.e_mbd.cfl, cm->seq_params); |
| if (td->mb.txfm_search_info.mb_rd_record != NULL) { |
| av1_crc32c_calculator_init( |
| &td->mb.txfm_search_info.mb_rd_record->crc_calculator); |
| } |
| |
| av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row); |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(enc_row_mt_mutex_); |
| #endif |
| this_tile->abs_sum_level += td->abs_sum_level; |
| row_mt_sync->num_threads_working--; |
| enc_row_mt->num_tile_cols_done[sb_row]++; |
| #if CONFIG_MULTITHREAD |
| pthread_cond_broadcast(enc_row_mt->cond_); |
| pthread_mutex_unlock(enc_row_mt_mutex_); |
| #endif |
| } |
| if (cpi->mt_info.pipeline_lpf_mt_with_enc && |
| (cm->lf.filter_level[PLANE_TYPE_Y] || |
| cm->lf.filter_level[PLANE_TYPE_UV])) { |
| // Loop-filter a superblock row if encoding of the current and next |
| // superblock row is complete. |
| // TODO(deepa.kg @ittiam.com) Evaluate encoder speed by interleaving |
| // encoding and loop filter stage. |
| launch_loop_filter_rows(cm, thread_data, enc_row_mt, mib_size_log2); |
| } |
| av1_free_pc_tree_recursive(thread_data->td->rt_pc_root, av1_num_planes(cm), 0, |
| 0); |
| return 1; |
| } |
| |
| static int enc_worker_hook(void *arg1, void *unused) { |
| EncWorkerData *const thread_data = (EncWorkerData *)arg1; |
| AV1_COMP *const cpi = thread_data->cpi; |
| const AV1_COMMON *const cm = &cpi->common; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int t; |
| |
| (void)unused; |
| // Preallocate the pc_tree for realtime coding to reduce the cost of memory |
| // allocation. |
| thread_data->td->rt_pc_root = |
| cpi->sf.rt_sf.use_nonrd_pick_mode |
| ? av1_alloc_pc_tree_node(cm->seq_params->sb_size) |
| : NULL; |
| |
| for (t = thread_data->start; t < tile_rows * tile_cols; |
| t += cpi->mt_info.num_workers) { |
| int tile_row = t / tile_cols; |
| int tile_col = t % tile_cols; |
| |
| TileDataEnc *const this_tile = |
| &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; |
| thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx; |
| thread_data->td->mb.tile_pb_ctx = &this_tile->tctx; |
| av1_encode_tile(cpi, thread_data->td, tile_row, tile_col); |
| } |
| |
| av1_free_pc_tree_recursive(thread_data->td->rt_pc_root, av1_num_planes(cm), 0, |
| 0); |
| |
| return 1; |
| } |
| |
| void av1_init_frame_mt(AV1_PRIMARY *ppi, AV1_COMP *cpi) { |
| cpi->mt_info.workers = ppi->p_mt_info.workers; |
| cpi->mt_info.num_workers = ppi->p_mt_info.num_workers; |
| cpi->mt_info.tile_thr_data = ppi->p_mt_info.tile_thr_data; |
| int i; |
| for (i = MOD_FP; i < NUM_MT_MODULES; i++) { |
| cpi->mt_info.num_mod_workers[i] = |
| AOMMIN(cpi->mt_info.num_workers, ppi->p_mt_info.num_mod_workers[i]); |
| } |
| } |
| |
| void av1_init_cdef_worker(AV1_COMP *cpi) { |
| // The allocation is done only for level 0 parallel frames. No change |
| // in config is supported in the middle of a parallel encode set, since the |
| // rest of the MT modules also do not support dynamic change of config. |
| if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) return; |
| PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info; |
| int num_cdef_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_CDEF); |
| |
| av1_alloc_cdef_buffers(&cpi->common, &p_mt_info->cdef_worker, |
| &cpi->mt_info.cdef_sync, num_cdef_workers, 1); |
| cpi->mt_info.cdef_worker = p_mt_info->cdef_worker; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| void av1_init_lr_mt_buffers(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| AV1LrSync *lr_sync = &cpi->mt_info.lr_row_sync; |
| if (lr_sync->sync_range) { |
| int num_lr_workers = |
| av1_get_num_mod_workers_for_alloc(&cpi->ppi->p_mt_info, MOD_LR); |
| if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) |
| return; |
| lr_sync->lrworkerdata[num_lr_workers - 1].rst_tmpbuf = cm->rst_tmpbuf; |
| lr_sync->lrworkerdata[num_lr_workers - 1].rlbs = cm->rlbs; |
| } |
| } |
| #endif |
| |
| #if CONFIG_MULTITHREAD |
| void av1_init_mt_sync(AV1_COMP *cpi, int is_first_pass) { |
| AV1_COMMON *const cm = &cpi->common; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| |
| // Initialize enc row MT object. |
| if (is_first_pass || cpi->oxcf.row_mt == 1) { |
| AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt; |
| if (enc_row_mt->mutex_ == NULL) { |
| CHECK_MEM_ERROR(cm, enc_row_mt->mutex_, |
| aom_malloc(sizeof(*(enc_row_mt->mutex_)))); |
| if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL); |
| } |
| if (enc_row_mt->cond_ == NULL) { |
| CHECK_MEM_ERROR(cm, enc_row_mt->cond_, |
| aom_malloc(sizeof(*(enc_row_mt->cond_)))); |
| if (enc_row_mt->cond_) pthread_cond_init(enc_row_mt->cond_, NULL); |
| } |
| } |
| |
| if (!is_first_pass) { |
| // Initialize global motion MT object. |
| AV1GlobalMotionSync *gm_sync = &mt_info->gm_sync; |
| if (gm_sync->mutex_ == NULL) { |
| CHECK_MEM_ERROR(cm, gm_sync->mutex_, |
| aom_malloc(sizeof(*(gm_sync->mutex_)))); |
| if (gm_sync->mutex_) pthread_mutex_init(gm_sync->mutex_, NULL); |
| } |
| #if !CONFIG_REALTIME_ONLY |
| // Initialize temporal filtering MT object. |
| AV1TemporalFilterSync *tf_sync = &mt_info->tf_sync; |
| if (tf_sync->mutex_ == NULL) { |
| CHECK_MEM_ERROR(cm, tf_sync->mutex_, |
| aom_malloc(sizeof(*tf_sync->mutex_))); |
| if (tf_sync->mutex_) pthread_mutex_init(tf_sync->mutex_, NULL); |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| // Initialize CDEF MT object. |
| AV1CdefSync *cdef_sync = &mt_info->cdef_sync; |
| if (cdef_sync->mutex_ == NULL) { |
| CHECK_MEM_ERROR(cm, cdef_sync->mutex_, |
| aom_malloc(sizeof(*(cdef_sync->mutex_)))); |
| if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL); |
| } |
| |
| // Initialize loop filter MT object. |
| AV1LfSync *lf_sync = &mt_info->lf_row_sync; |
| // Number of superblock rows |
| const int sb_rows = |
| CEIL_POWER_OF_TWO(cm->height >> MI_SIZE_LOG2, MAX_MIB_SIZE_LOG2); |
| PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info; |
| int num_lf_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LPF); |
| |
| if (!lf_sync->sync_range || sb_rows != lf_sync->rows || |
| num_lf_workers > lf_sync->num_workers) { |
| av1_loop_filter_dealloc(lf_sync); |
| av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_lf_workers); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (is_restoration_used(cm)) { |
| // Initialize loop restoration MT object. |
| AV1LrSync *lr_sync = &mt_info->lr_row_sync; |
| int rst_unit_size; |
| if (cm->width * cm->height > 352 * 288) |
| rst_unit_size = RESTORATION_UNITSIZE_MAX; |
| else |
| rst_unit_size = (RESTORATION_UNITSIZE_MAX >> 1); |
| int num_rows_lr = av1_lr_count_units_in_tile(rst_unit_size, cm->height); |
| int num_lr_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LR); |
| if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows || |
| num_lr_workers > lr_sync->num_workers || |
| MAX_MB_PLANE > lr_sync->num_planes) { |
| av1_loop_restoration_dealloc(lr_sync, num_lr_workers); |
| av1_loop_restoration_alloc(lr_sync, cm, num_lr_workers, num_rows_lr, |
| MAX_MB_PLANE, cm->width); |
| } |
| } |
| #endif |
| |
| // Initialization of pack bitstream MT object. |
| AV1EncPackBSSync *pack_bs_sync = &mt_info->pack_bs_sync; |
| if (pack_bs_sync->mutex_ == NULL) { |
| CHECK_MEM_ERROR(cm, pack_bs_sync->mutex_, |
| aom_malloc(sizeof(*pack_bs_sync->mutex_))); |
| if (pack_bs_sync->mutex_) pthread_mutex_init(pack_bs_sync->mutex_, NULL); |
| } |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| // Computes the number of workers to be considered while allocating memory for a |
| // multi-threaded module under FPMT. |
| int av1_get_num_mod_workers_for_alloc(PrimaryMultiThreadInfo *const p_mt_info, |
| MULTI_THREADED_MODULES mod_name) { |
| int num_mod_workers = p_mt_info->num_mod_workers[mod_name]; |
| if (p_mt_info->num_mod_workers[MOD_FRAME_ENC] > 1) { |
| // TODO(anyone): Change num_mod_workers to num_mod_workers[MOD_FRAME_ENC]. |
| // As frame parallel jobs will only perform multi-threading for the encode |
| // stage, we can limit the allocations according to num_enc_workers per |
| // frame parallel encode(a.k.a num_mod_workers[MOD_FRAME_ENC]). |
| num_mod_workers = p_mt_info->num_workers; |
| } |
| return num_mod_workers; |
| } |
| |
| void av1_init_tile_thread_data(AV1_PRIMARY *ppi, int is_first_pass) { |
| PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info; |
| |
| assert(p_mt_info->workers != NULL); |
| assert(p_mt_info->tile_thr_data != NULL); |
| |
| int num_workers = p_mt_info->num_workers; |
| int num_enc_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_ENC); |
| for (int i = num_workers - 1; i >= 0; i--) { |
| EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i]; |
| |
| if (i > 0) { |
| // Allocate thread data. |
| AOM_CHECK_MEM_ERROR(&ppi->error, thread_data->td, |
| aom_memalign(32, sizeof(*thread_data->td))); |
| av1_zero(*thread_data->td); |
| thread_data->original_td = thread_data->td; |
| |
| // Set up shared coeff buffers. |
| av1_setup_shared_coeff_buffer( |
| &ppi->seq_params, &thread_data->td->shared_coeff_buf, &ppi->error); |
| AOM_CHECK_MEM_ERROR( |
| &ppi->error, thread_data->td->tmp_conv_dst, |
| aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * |
| sizeof(*thread_data->td->tmp_conv_dst))); |
| |
| if (i < p_mt_info->num_mod_workers[MOD_FP]) { |
| // Set up firstpass PICK_MODE_CONTEXT. |
| thread_data->td->firstpass_ctx = av1_alloc_pmc( |
| ppi->cpi, BLOCK_16X16, &thread_data->td->shared_coeff_buf); |
| } |
| |
| if (!is_first_pass && i < num_enc_workers) { |
| // Set up sms_tree. |
| av1_setup_sms_tree(ppi->cpi, thread_data->td); |
| |
| for (int x = 0; x < 2; x++) |
| for (int y = 0; y < 2; y++) |
| AOM_CHECK_MEM_ERROR( |
| &ppi->error, thread_data->td->hash_value_buffer[x][y], |
| (uint32_t *)aom_malloc( |
| AOM_BUFFER_SIZE_FOR_BLOCK_HASH * |
| sizeof(*thread_data->td->hash_value_buffer[0][0]))); |
| |
| // Allocate frame counters in thread data. |
| AOM_CHECK_MEM_ERROR(&ppi->error, thread_data->td->counts, |
| aom_calloc(1, sizeof(*thread_data->td->counts))); |
| |
| // Allocate buffers used by palette coding mode. |
| AOM_CHECK_MEM_ERROR( |
| &ppi->error, thread_data->td->palette_buffer, |
| aom_memalign(16, sizeof(*thread_data->td->palette_buffer))); |
| |
| // The buffers 'tmp_pred_bufs[]', 'comp_rd_buffer' and 'obmc_buffer' are |
| // used in inter frames to store intermediate inter mode prediction |
| // results and are not required for allintra encoding mode. Hence, the |
| // memory allocations for these buffers are avoided for allintra |
| // encoding mode. |
| if (ppi->cpi->oxcf.kf_cfg.key_freq_max != 0) { |
| alloc_obmc_buffers(&thread_data->td->obmc_buffer, &ppi->error); |
| |
| alloc_compound_type_rd_buffers(&ppi->error, |
| &thread_data->td->comp_rd_buffer); |
| |
| for (int j = 0; j < 2; ++j) { |
| AOM_CHECK_MEM_ERROR( |
| &ppi->error, thread_data->td->tmp_pred_bufs[j], |
| aom_memalign(32, |
| 2 * MAX_MB_PLANE * MAX_SB_SQUARE * |
| sizeof(*thread_data->td->tmp_pred_bufs[j]))); |
| } |
| } |
| |
| if (is_gradient_caching_for_hog_enabled(ppi->cpi)) { |
| const int plane_types = PLANE_TYPES >> ppi->seq_params.monochrome; |
| AOM_CHECK_MEM_ERROR( |
| &ppi->error, thread_data->td->pixel_gradient_info, |
| aom_malloc(sizeof(*thread_data->td->pixel_gradient_info) * |
| plane_types * MAX_SB_SQUARE)); |
| } |
| |
| if (is_src_var_for_4x4_sub_blocks_caching_enabled(ppi->cpi)) { |
| const BLOCK_SIZE sb_size = ppi->cpi->common.seq_params->sb_size; |
| const int mi_count_in_sb = |
| mi_size_wide[sb_size] * mi_size_high[sb_size]; |
| |
| AOM_CHECK_MEM_ERROR( |
| &ppi->error, thread_data->td->src_var_info_of_4x4_sub_blocks, |
| aom_malloc( |
| sizeof(*thread_data->td->src_var_info_of_4x4_sub_blocks) * |
| mi_count_in_sb)); |
| } |
| |
| if (ppi->cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION) { |
| const int num_64x64_blocks = |
| (ppi->seq_params.sb_size == BLOCK_64X64) ? 1 : 4; |
| AOM_CHECK_MEM_ERROR( |
| &ppi->error, thread_data->td->vt64x64, |
| aom_malloc(sizeof(*thread_data->td->vt64x64) * num_64x64_blocks)); |
| } |
| } |
| } |
| |
| if (!is_first_pass && ppi->cpi->oxcf.row_mt == 1 && i < num_enc_workers) { |
| if (i == 0) { |
| for (int j = 0; j < ppi->num_fp_contexts; j++) { |
| AOM_CHECK_MEM_ERROR(&ppi->error, ppi->parallel_cpi[j]->td.tctx, |
| (FRAME_CONTEXT *)aom_memalign( |
| 16, sizeof(*ppi->parallel_cpi[j]->td.tctx))); |
| } |
| } else { |
| AOM_CHECK_MEM_ERROR( |
| &ppi->error, thread_data->td->tctx, |
| (FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx))); |
| } |
| } |
| } |
| } |
| |
| void av1_create_workers(AV1_PRIMARY *ppi, int num_workers) { |
| PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info; |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| |
| AOM_CHECK_MEM_ERROR(&ppi->error, p_mt_info->workers, |
| aom_malloc(num_workers * sizeof(*p_mt_info->workers))); |
| |
| AOM_CHECK_MEM_ERROR( |
| &ppi->error, p_mt_info->tile_thr_data, |
| aom_calloc(num_workers, sizeof(*p_mt_info->tile_thr_data))); |
| |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &p_mt_info->workers[i]; |
| EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i]; |
| |
| winterface->init(worker); |
| worker->thread_name = "aom enc worker"; |
| |
| thread_data->thread_id = i; |
| // Set the starting tile for each thread. |
| thread_data->start = i; |
| |
| if (i > 0) { |
| // Create threads |
| if (!winterface->reset(worker)) |
| aom_internal_error(&ppi->error, AOM_CODEC_ERROR, |
| "Tile encoder thread creation failed"); |
| } |
| winterface->sync(worker); |
| |
| ++p_mt_info->num_workers; |
| } |
| } |
| |
| // This function returns 1 if frame parallel encode is supported for |
| // the current configuration. Returns 0 otherwise. |
| static AOM_INLINE int is_fpmt_config(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) { |
| // FPMT is enabled for AOM_Q and AOM_VBR. |
| // TODO(Tarun): Test and enable resize config. |
| if (oxcf->rc_cfg.mode == AOM_CBR || oxcf->rc_cfg.mode == AOM_CQ) { |
| return 0; |
| } |
| if (ppi->use_svc) { |
| return 0; |
| } |
| if (oxcf->tile_cfg.enable_large_scale_tile) { |
| return 0; |
| } |
| if (oxcf->dec_model_cfg.timing_info_present) { |
| return 0; |
| } |
| if (oxcf->mode != GOOD) { |
| return 0; |
| } |
| if (oxcf->tool_cfg.error_resilient_mode) { |
| return 0; |
| } |
| if (oxcf->resize_cfg.resize_mode) { |
| return 0; |
| } |
| if (oxcf->pass != AOM_RC_SECOND_PASS) { |
| return 0; |
| } |
| if (oxcf->max_threads < 2) { |
| return 0; |
| } |
| if (!oxcf->fp_mt) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int av1_check_fpmt_config(AV1_PRIMARY *const ppi, |
| AV1EncoderConfig *const oxcf) { |
| if (is_fpmt_config(ppi, oxcf)) return 1; |
| // Reset frame parallel configuration for unsupported config |
| if (ppi->num_fp_contexts > 1) { |
| for (int i = 1; i < ppi->num_fp_contexts; i++) { |
| // Release the previously-used frame-buffer |
| if (ppi->parallel_cpi[i]->common.cur_frame != NULL) { |
| --ppi->parallel_cpi[i]->common.cur_frame->ref_count; |
| ppi->parallel_cpi[i]->common.cur_frame = NULL; |
| } |
| } |
| |
| int cur_gf_index = ppi->cpi->gf_frame_index; |
| int reset_size = AOMMAX(0, ppi->gf_group.size - cur_gf_index); |
| av1_zero_array(&ppi->gf_group.frame_parallel_level[cur_gf_index], |
| reset_size); |
| av1_zero_array(&ppi->gf_group.is_frame_non_ref[cur_gf_index], reset_size); |
| av1_zero_array(&ppi->gf_group.src_offset[cur_gf_index], reset_size); |
| memset(&ppi->gf_group.skip_frame_refresh[cur_gf_index][0], INVALID_IDX, |
| sizeof(ppi->gf_group.skip_frame_refresh[cur_gf_index][0]) * |
| reset_size * REF_FRAMES); |
| memset(&ppi->gf_group.skip_frame_as_ref[cur_gf_index], INVALID_IDX, |
| sizeof(ppi->gf_group.skip_frame_as_ref[cur_gf_index]) * reset_size); |
| ppi->num_fp_contexts = 1; |
| } |
| return 0; |
| } |
| |
| // A large value for threads used to compute the max num_enc_workers |
| // possible for each resolution. |
| #define MAX_THREADS 100 |
| |
| // Computes the max number of enc workers possible for each resolution. |
| static AOM_INLINE int compute_max_num_enc_workers( |
| CommonModeInfoParams *const mi_params, int mib_size_log2) { |
| int num_sb_rows = CEIL_POWER_OF_TWO(mi_params->mi_rows, mib_size_log2); |
| int num_sb_cols = CEIL_POWER_OF_TWO(mi_params->mi_cols, mib_size_log2); |
| |
| return AOMMIN((num_sb_cols + 1) >> 1, num_sb_rows); |
| } |
| |
| // Computes the number of frame parallel(fp) contexts to be created |
| // based on the number of max_enc_workers. |
| int av1_compute_num_fp_contexts(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) { |
| ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] = 0; |
| if (!av1_check_fpmt_config(ppi, oxcf)) { |
| return 1; |
| } |
| int max_num_enc_workers = compute_max_num_enc_workers( |
| &ppi->cpi->common.mi_params, ppi->cpi->common.seq_params->mib_size_log2); |
| // Scaling factors and rounding factors used to tune worker_per_frame |
| // computation. |
| int rounding_factor[2] = { 2, 4 }; |
| int scaling_factor[2] = { 4, 8 }; |
| int is_480p_or_lesser = |
| AOMMIN(oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height) <= 480; |
| int is_sb_64 = 0; |
| if (ppi->cpi != NULL) |
| is_sb_64 = ppi->cpi->common.seq_params->sb_size == BLOCK_64X64; |
| // A parallel frame encode has at least 1/4th the |
| // theoretical limit of max enc workers in default case. For resolutions |
| // larger than 480p, if SB size is 64x64, optimal performance is obtained with |
| // limit of 1/8. |
| int index = (!is_480p_or_lesser && is_sb_64) ? 1 : 0; |
| int workers_per_frame = |
| AOMMAX(1, (max_num_enc_workers + rounding_factor[index]) / |
| scaling_factor[index]); |
| int max_threads = oxcf->max_threads; |
| int num_fp_contexts = max_threads / workers_per_frame; |
| // Based on empirical results, FPMT gains with multi-tile are significant when |
| // more parallel frames are available. Use FPMT with multi-tile encode only |
| // when sufficient threads are available for parallel encode of |
| // MAX_PARALLEL_FRAMES frames. |
| if (oxcf->tile_cfg.tile_columns > 0 || oxcf->tile_cfg.tile_rows > 0) { |
| if (num_fp_contexts < MAX_PARALLEL_FRAMES) num_fp_contexts = 1; |
| } |
| |
| num_fp_contexts = AOMMAX(1, AOMMIN(num_fp_contexts, MAX_PARALLEL_FRAMES)); |
| // Limit recalculated num_fp_contexts to ppi->num_fp_contexts. |
| num_fp_contexts = (ppi->num_fp_contexts == 1) |
| ? num_fp_contexts |
| : AOMMIN(num_fp_contexts, ppi->num_fp_contexts); |
| if (num_fp_contexts > 1) { |
| ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] = |
| AOMMIN(max_num_enc_workers * num_fp_contexts, oxcf->max_threads); |
| } |
| return num_fp_contexts; |
| } |
| |
| // Computes the number of workers to process each of the parallel frames. |
| static AOM_INLINE int compute_num_workers_per_frame( |
| const int num_workers, const int parallel_frame_count) { |
| // Number of level 2 workers per frame context (floor division). |
| int workers_per_frame = (num_workers / parallel_frame_count); |
| return workers_per_frame; |
| } |
| |
| // Prepare level 1 workers. This function is only called for |
| // parallel_frame_count > 1. This function populates the mt_info structure of |
| // frame level contexts appropriately by dividing the total number of available |
| // workers amongst the frames as level 2 workers. It also populates the hook and |
| // data members of level 1 workers. |
| static AOM_INLINE void prepare_fpmt_workers(AV1_PRIMARY *ppi, |
| AV1_COMP_DATA *first_cpi_data, |
| AVxWorkerHook hook, |
| int parallel_frame_count) { |
| assert(parallel_frame_count <= ppi->num_fp_contexts && |
| parallel_frame_count > 1); |
| |
| PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info; |
| int num_workers = p_mt_info->num_workers; |
| |
| int frame_idx = 0; |
| int i = 0; |
| while (i < num_workers) { |
| // Assign level 1 worker |
| AVxWorker *frame_worker = p_mt_info->p_workers[frame_idx] = |
| &p_mt_info->workers[i]; |
| AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx]; |
| MultiThreadInfo *mt_info = &cur_cpi->mt_info; |
| AV1_COMMON *const cm = &cur_cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| |
| // Assign start of level 2 worker pool |
| mt_info->workers = &p_mt_info->workers[i]; |
| mt_info->tile_thr_data = &p_mt_info->tile_thr_data[i]; |
| // Assign number of workers for each frame in the parallel encode set. |
| mt_info->num_workers = compute_num_workers_per_frame( |
| num_workers - i, parallel_frame_count - frame_idx); |
| for (int j = MOD_FP; j < NUM_MT_MODULES; j++) { |
| mt_info->num_mod_workers[j] = |
| AOMMIN(mt_info->num_workers, ppi->p_mt_info.num_mod_workers[j]); |
| } |
| if (ppi->p_mt_info.cdef_worker != NULL) { |
| mt_info->cdef_worker = &ppi->p_mt_info.cdef_worker[i]; |
| |
| // Back up the original cdef_worker pointers. |
| mt_info->restore_state_buf.cdef_srcbuf = mt_info->cdef_worker->srcbuf; |
| for (int plane = 0; plane < num_planes; plane++) |
| mt_info->restore_state_buf.cdef_colbuf[plane] = |
| mt_info->cdef_worker->colbuf[plane]; |
| } |
| #if !CONFIG_REALTIME_ONLY |
| if (is_restoration_used(cm)) { |
| // Back up the original LR buffers before update. |
| int idx = i + mt_info->num_workers - 1; |
| mt_info->restore_state_buf.rst_tmpbuf = |
| mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf; |
| mt_info->restore_state_buf.rlbs = |
| mt_info->lr_row_sync.lrworkerdata[idx].rlbs; |
| |
| // Update LR buffers. |
| mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf = cm->rst_tmpbuf; |
| mt_info->lr_row_sync.lrworkerdata[idx].rlbs = cm->rlbs; |
| } |
| #endif |
| |
| // At this stage, the thread specific CDEF buffers for the current frame's |
| // 'common' and 'cdef_sync' only need to be allocated. 'cdef_worker' has |
| // already been allocated across parallel frames. |
| av1_alloc_cdef_buffers(cm, &p_mt_info->cdef_worker, &mt_info->cdef_sync, |
| p_mt_info->num_workers, 0); |
| |
| frame_worker->hook = hook; |
| frame_worker->data1 = cur_cpi; |
| frame_worker->data2 = (frame_idx == 0) |
| ? first_cpi_data |
| : &ppi->parallel_frames_data[frame_idx - 1]; |
| frame_idx++; |
| i += mt_info->num_workers; |
| } |
| p_mt_info->p_num_workers = parallel_frame_count; |
| } |
| |
| // Launch level 1 workers to perform frame parallel encode. |
| static AOM_INLINE void launch_fpmt_workers(AV1_PRIMARY *ppi) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int num_workers = ppi->p_mt_info.p_num_workers; |
| |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = ppi->p_mt_info.p_workers[i]; |
| if (i == 0) |
| winterface->execute(worker); |
| else |
| winterface->launch(worker); |
| } |
| } |
| |
| // Synchronize level 1 workers. |
| static AOM_INLINE void sync_fpmt_workers(AV1_PRIMARY *ppi) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int num_workers = ppi->p_mt_info.p_num_workers; |
| int had_error = 0; |
| // Points to error in the earliest display order frame in the parallel set. |
| const struct aom_internal_error_info *error; |
| |
| // Encoding ends. |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = ppi->p_mt_info.p_workers[i]; |
| if (!winterface->sync(worker)) { |
| had_error = 1; |
| error = ((AV1_COMP *)worker->data1)->common.error; |
| } |
| } |
| |
| if (had_error) |
| aom_internal_error(&ppi->error, error->error_code, "%s", error->detail); |
| } |
| |
| // Restore worker states after parallel encode. |
| static AOM_INLINE void restore_workers_after_fpmt(AV1_PRIMARY *ppi, |
| int parallel_frame_count) { |
| assert(parallel_frame_count <= ppi->num_fp_contexts && |
| parallel_frame_count > 1); |
| (void)parallel_frame_count; |
| |
| PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info; |
| int num_workers = p_mt_info->num_workers; |
| |
| int frame_idx = 0; |
| int i = 0; |
| while (i < num_workers) { |
| AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx]; |
| MultiThreadInfo *mt_info = &cur_cpi->mt_info; |
| const AV1_COMMON *const cm = &cur_cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| |
| // Restore the original cdef_worker pointers. |
| if (ppi->p_mt_info.cdef_worker != NULL) { |
| mt_info->cdef_worker->srcbuf = mt_info->restore_state_buf.cdef_srcbuf; |
| for (int plane = 0; plane < num_planes; plane++) |
| mt_info->cdef_worker->colbuf[plane] = |
| mt_info->restore_state_buf.cdef_colbuf[plane]; |
| } |
| #if !CONFIG_REALTIME_ONLY |
| if (is_restoration_used(cm)) { |
| // Restore the original LR buffers. |
| int idx = i + mt_info->num_workers - 1; |
| mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf = |
| mt_info->restore_state_buf.rst_tmpbuf; |
| mt_info->lr_row_sync.lrworkerdata[idx].rlbs = |
| mt_info->restore_state_buf.rlbs; |
| } |
| #endif |
| |
| frame_idx++; |
| i += mt_info->num_workers; |
| } |
| } |
| |
| static int get_compressed_data_hook(void *arg1, void *arg2) { |
| AV1_COMP *cpi = (AV1_COMP *)arg1; |
| AV1_COMP_DATA *cpi_data = (AV1_COMP_DATA *)arg2; |
| int status = av1_get_compressed_data(cpi, cpi_data); |
| |
| // AOM_CODEC_OK(0) means no error. |
| return !status; |
| } |
| |
| // This function encodes the raw frame data for each frame in parallel encode |
| // set, and outputs the frame bit stream to the designated buffers. |
| int av1_compress_parallel_frames(AV1_PRIMARY *const ppi, |
| AV1_COMP_DATA *const first_cpi_data) { |
| // Bitmask for the frame buffers referenced by cpi->scaled_ref_buf |
| // corresponding to frames in the current parallel encode set. |
| int ref_buffers_used_map = 0; |
| int frames_in_parallel_set = av1_init_parallel_frame_context( |
| first_cpi_data, ppi, &ref_buffers_used_map); |
| prepare_fpmt_workers(ppi, first_cpi_data, get_compressed_data_hook, |
| frames_in_parallel_set); |
| launch_fpmt_workers(ppi); |
| sync_fpmt_workers(ppi); |
| restore_workers_after_fpmt(ppi, frames_in_parallel_set); |
| |
| // Release cpi->scaled_ref_buf corresponding to frames in the current parallel |
| // encode set. |
| for (int i = 0; i < frames_in_parallel_set; ++i) { |
| av1_release_scaled_references_fpmt(ppi->parallel_cpi[i]); |
| } |
| av1_decrement_ref_counts_fpmt(ppi->cpi->common.buffer_pool, |
| ref_buffers_used_map); |
| return AOM_CODEC_OK; |
| } |
| |
| static AOM_INLINE void launch_workers(MultiThreadInfo *const mt_info, |
| int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &mt_info->workers[i]; |
| if (i == 0) |
| winterface->execute(worker); |
| else |
| winterface->launch(worker); |
| } |
| } |
| |
| static AOM_INLINE void sync_enc_workers(MultiThreadInfo *const mt_info, |
| AV1_COMMON *const cm, int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int had_error = 0; |
| |
| // Encoding ends. |
| for (int i = num_workers - 1; i > 0; i--) { |
| AVxWorker *const worker = &mt_info->workers[i]; |
| had_error |= !winterface->sync(worker); |
| } |
| |
| if (had_error) |
| aom_internal_error(cm->error, AOM_CODEC_ERROR, |
| "Failed to encode tile data"); |
| } |
| |
| static AOM_INLINE void accumulate_counters_enc_workers(AV1_COMP *cpi, |
| int num_workers) { |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &cpi->mt_info.workers[i]; |
| EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; |
| cpi->intrabc_used |= thread_data->td->intrabc_used; |
| cpi->deltaq_used |= thread_data->td->deltaq_used; |
| // Accumulate rtc counters. |
| if (!frame_is_intra_only(&cpi->common)) |
| av1_accumulate_rtc_counters(cpi, &thread_data->td->mb); |
| if (thread_data->td != &cpi->td) { |
| // Keep these conditional expressions in sync with the corresponding ones |
| // in prepare_enc_workers(). |
| if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) { |
| aom_free(thread_data->td->mb.mv_costs); |
| } |
| if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) { |
| aom_free(thread_data->td->mb.dv_costs); |
| } |
| } |
| av1_dealloc_mb_data(&cpi->common, &thread_data->td->mb); |
| |
| // Accumulate counters. |
| if (i > 0) { |
| av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts); |
| accumulate_rd_opt(&cpi->td, thread_data->td); |
| cpi->td.mb.txfm_search_info.txb_split_count += |
| thread_data->td->mb.txfm_search_info.txb_split_count; |
| #if CONFIG_SPEED_STATS |
| cpi->td.mb.txfm_search_info.tx_search_count += |
| thread_data->td->mb.txfm_search_info.tx_search_count; |
| #endif // CONFIG_SPEED_STATS |
| } |
| } |
| } |
| |
| static AOM_INLINE void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook, |
| int num_workers) { |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *xd = &cpi->td.mb.e_mbd; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &mt_info->workers[i]; |
| EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; |
| |
| // Initialize loopfilter data |
| thread_data->lf_sync = &mt_info->lf_row_sync; |
| thread_data->lf_data = &thread_data->lf_sync->lfdata[i]; |
| loop_filter_data_reset(thread_data->lf_data, &cm->cur_frame->buf, cm, xd); |
| |
| worker->hook = hook; |
| worker->data1 = thread_data; |
| worker->data2 = NULL; |
| |
| thread_data->thread_id = i; |
| // Set the starting tile for each thread. |
| thread_data->start = i; |
| |
| thread_data->cpi = cpi; |
| if (i == 0) { |
| thread_data->td = &cpi->td; |
| } else { |
| thread_data->td = thread_data->original_td; |
| } |
| |
| thread_data->td->intrabc_used = 0; |
| thread_data->td->deltaq_used = 0; |
| thread_data->td->abs_sum_level = 0; |
| thread_data->td->rd_counts.seg_tmp_pred_cost[0] = 0; |
| thread_data->td->rd_counts.seg_tmp_pred_cost[1] = 0; |
| |
| // Before encoding a frame, copy the thread data from cpi. |
| if (thread_data->td != &cpi->td) { |
| thread_data->td->mb = cpi->td.mb; |
| thread_data->td->rd_counts = cpi->td.rd_counts; |
| thread_data->td->mb.obmc_buffer = thread_data->td->obmc_buffer; |
| |
| for (int x = 0; x < 2; x++) { |
| for (int y = 0; y < 2; y++) { |
| memcpy(thread_data->td->hash_value_buffer[x][y], |
| cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y], |
| AOM_BUFFER_SIZE_FOR_BLOCK_HASH * |
| sizeof(*thread_data->td->hash_value_buffer[0][0])); |
| thread_data->td->mb.intrabc_hash_info.hash_value_buffer[x][y] = |
| thread_data->td->hash_value_buffer[x][y]; |
| } |
| } |
| // Keep these conditional expressions in sync with the corresponding ones |
| // in accumulate_counters_enc_workers(). |
| if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) { |
| CHECK_MEM_ERROR(cm, thread_data->td->mb.mv_costs, |
| (MvCosts *)aom_malloc(sizeof(MvCosts))); |
| memcpy(thread_data->td->mb.mv_costs, cpi->td.mb.mv_costs, |
| sizeof(MvCosts)); |
| } |
| if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) { |
| // Reset dv_costs to NULL for worker threads when dv cost update is |
| // enabled so that only dv_cost_upd_level needs to be checked before the |
| // aom_free() call for the same. |
| thread_data->td->mb.dv_costs = NULL; |
| if (av1_need_dv_costs(cpi)) { |
| CHECK_MEM_ERROR(cm, thread_data->td->mb.dv_costs, |
| (IntraBCMVCosts *)aom_malloc(sizeof(IntraBCMVCosts))); |
| memcpy(thread_data->td->mb.dv_costs, cpi->td.mb.dv_costs, |
| sizeof(IntraBCMVCosts)); |
| } |
| } |
| } |
| av1_alloc_mb_data(cpi, &thread_data->td->mb); |
| |
| // Reset rtc counters. |
| av1_init_rtc_counters(&thread_data->td->mb); |
| |
| if (thread_data->td->counts != &cpi->counts) { |
| memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts)); |
| } |
| |
| if (i > 0) { |
| thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer; |
| thread_data->td->mb.comp_rd_buffer = thread_data->td->comp_rd_buffer; |
| thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst; |
| for (int j = 0; j < 2; ++j) { |
| thread_data->td->mb.tmp_pred_bufs[j] = |
| thread_data->td->tmp_pred_bufs[j]; |
| } |
| thread_data->td->mb.pixel_gradient_info = |
| thread_data->td->pixel_gradient_info; |
| |
| thread_data->td->mb.src_var_info_of_4x4_sub_blocks = |
| thread_data->td->src_var_info_of_4x4_sub_blocks; |
| |
| thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst; |
| for (int j = 0; j < 2; ++j) { |
| thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] = |
| thread_data->td->mb.tmp_pred_bufs[j]; |
| } |
| } |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static AOM_INLINE void fp_prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook, |
| int num_workers) { |
| AV1_COMMON *const cm = &cpi->common; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &mt_info->workers[i]; |
| EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; |
| |
| worker->hook = hook; |
| worker->data1 = thread_data; |
| worker->data2 = NULL; |
| |
| thread_data->thread_id = i; |
| // Set the starting tile for each thread. |
| thread_data->start = i; |
| |
| thread_data->cpi = cpi; |
| if (i == 0) { |
| thread_data->td = &cpi->td; |
| } else { |
| thread_data->td = thread_data->original_td; |
| } |
| |
| // Before encoding a frame, copy the thread data from cpi. |
| if (thread_data->td != &cpi->td) { |
| thread_data->td->mb = cpi->td.mb; |
| // Keep this conditional expression in sync with the corresponding one |
| // in av1_fp_encode_tiles_row_mt(). |
| if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) { |
| CHECK_MEM_ERROR(cm, thread_data->td->mb.mv_costs, |
| (MvCosts *)aom_malloc(sizeof(MvCosts))); |
| memcpy(thread_data->td->mb.mv_costs, cpi->td.mb.mv_costs, |
| sizeof(MvCosts)); |
| } |
| } |
| |
| av1_alloc_mb_data(cpi, &thread_data->td->mb); |
| } |
| } |
| #endif |
| |
| // Computes the number of workers for row multi-threading of encoding stage |
| static AOM_INLINE int compute_num_enc_row_mt_workers(AV1_COMMON *const cm, |
| int max_threads) { |
| TileInfo tile_info; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int total_num_threads_row_mt = 0; |
| for (int row = 0; row < tile_rows; row++) { |
| for (int col = 0; col < tile_cols; col++) { |
| av1_tile_init(&tile_info, cm, row, col); |
| const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, &tile_info); |
| const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, &tile_info); |
| total_num_threads_row_mt += |
| AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile); |
| } |
| } |
| return AOMMIN(max_threads, total_num_threads_row_mt); |
| } |
| |
| // Computes the number of workers for tile multi-threading of encoding stage |
| static AOM_INLINE int compute_num_enc_tile_mt_workers(AV1_COMMON *const cm, |
| int max_threads) { |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| return AOMMIN(max_threads, tile_cols * tile_rows); |
| } |
| |
| // Find max worker of all MT stages |
| int av1_get_max_num_workers(const AV1_COMP *cpi) { |
| int max_num_workers = 0; |
| for (int i = MOD_FP; i < NUM_MT_MODULES; i++) |
| max_num_workers = |
| AOMMAX(cpi->ppi->p_mt_info.num_mod_workers[i], max_num_workers); |
| assert(max_num_workers >= 1); |
| return AOMMIN(max_num_workers, cpi->oxcf.max_threads); |
| } |
| |
| // Computes the number of workers for encoding stage (row/tile multi-threading) |
| int av1_compute_num_enc_workers(AV1_COMP *cpi, int max_workers) { |
| if (max_workers <= 1) return 1; |
| if (cpi->oxcf.row_mt) |
| return compute_num_enc_row_mt_workers(&cpi->common, max_workers); |
| else |
| return compute_num_enc_tile_mt_workers(&cpi->common, max_workers); |
| } |
| |
| void av1_encode_tiles_mt(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int num_workers = mt_info->num_mod_workers[MOD_ENC]; |
| |
| assert(IMPLIES(cpi->tile_data == NULL, |
| cpi->allocated_tiles < tile_cols * tile_rows)); |
| if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi); |
| |
| av1_init_tile_data(cpi); |
| num_workers = AOMMIN(num_workers, mt_info->num_workers); |
| |
| prepare_enc_workers(cpi, enc_worker_hook, num_workers); |
| launch_workers(&cpi->mt_info, num_workers); |
| sync_enc_workers(&cpi->mt_info, cm, num_workers); |
| accumulate_counters_enc_workers(cpi, num_workers); |
| } |
| |
| // Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int' |
| // members, so we treat it as an array, and sum over the whole length. |
| void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts, |
| const FRAME_COUNTS *counts) { |
| unsigned int *const acc = (unsigned int *)acc_counts; |
| const unsigned int *const cnt = (const unsigned int *)counts; |
| |
| const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int); |
| |
| for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i]; |
| } |
| |
| // Computes the maximum number of sb rows and sb_cols across tiles which are |
| // used to allocate memory for multi-threaded encoding with row-mt=1. |
| static AOM_INLINE void compute_max_sb_rows_cols(const AV1_COMMON *cm, |
| int *max_sb_rows_in_tile, |
| int *max_sb_cols_in_tile) { |
| const int tile_rows = cm->tiles.rows; |
| const int mib_size_log2 = cm->seq_params->mib_size_log2; |
| const int num_mi_rows = cm->mi_params.mi_rows; |
| const int *const row_start_sb = cm->tiles.row_start_sb; |
| for (int row = 0; row < tile_rows; row++) { |
| const int mi_row_start = row_start_sb[row] << mib_size_log2; |
| const int mi_row_end = |
| AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows); |
| const int num_sb_rows_in_tile = |
| CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, mib_size_log2); |
| *max_sb_rows_in_tile = AOMMAX(*max_sb_rows_in_tile, num_sb_rows_in_tile); |
| } |
| |
| const int tile_cols = cm->tiles.cols; |
| const int num_mi_cols = cm->mi_params.mi_cols; |
| const int *const col_start_sb = cm->tiles.col_start_sb; |
| for (int col = 0; col < tile_cols; col++) { |
| const int mi_col_start = col_start_sb[col] << mib_size_log2; |
| const int mi_col_end = |
| AOMMIN(col_start_sb[col + 1] << mib_size_log2, num_mi_cols); |
| const int num_sb_cols_in_tile = |
| CEIL_POWER_OF_TWO(mi_col_end - mi_col_start, mib_size_log2); |
| *max_sb_cols_in_tile = AOMMAX(*max_sb_cols_in_tile, num_sb_cols_in_tile); |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| // Computes the number of workers for firstpass stage (row/tile multi-threading) |
| int av1_fp_compute_num_enc_workers(AV1_COMP *cpi) { |
| AV1_COMMON *cm = &cpi->common; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int total_num_threads_row_mt = 0; |
| TileInfo tile_info; |
| |
| if (cpi->oxcf.max_threads <= 1) return 1; |
| |
| for (int row = 0; row < tile_rows; row++) { |
| for (int col = 0; col < tile_cols; col++) { |
| av1_tile_init(&tile_info, cm, row, col); |
| const int num_mb_rows_in_tile = |
| av1_get_unit_rows_in_tile(&tile_info, cpi->fp_block_size); |
| const int num_mb_cols_in_tile = |
| av1_get_unit_cols_in_tile(&tile_info, cpi->fp_block_size); |
| total_num_threads_row_mt += |
| AOMMIN((num_mb_cols_in_tile + 1) >> 1, num_mb_rows_in_tile); |
| } |
| } |
| return AOMMIN(cpi->oxcf.max_threads, total_num_threads_row_mt); |
| } |
| |
| // Computes the maximum number of mb_rows for row multi-threading of firstpass |
| // stage |
| static AOM_INLINE int fp_compute_max_mb_rows(const AV1_COMMON *cm, |
| BLOCK_SIZE fp_block_size) { |
| const int tile_rows = cm->tiles.rows; |
| const int unit_height_log2 = mi_size_high_log2[fp_block_size]; |
| const int mib_size_log2 = cm->seq_params->mib_size_log2; |
| const int num_mi_rows = cm->mi_params.mi_rows; |
| const int *const row_start_sb = cm->tiles.row_start_sb; |
| int max_mb_rows = 0; |
| |
| for (int row = 0; row < tile_rows; row++) { |
| const int mi_row_start = row_start_sb[row] << mib_size_log2; |
| const int mi_row_end = |
| AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows); |
| const int num_mb_rows_in_tile = |
| CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, unit_height_log2); |
| max_mb_rows = AOMMAX(max_mb_rows, num_mb_rows_in_tile); |
| } |
| return max_mb_rows; |
| } |
| #endif |
| |
| static void lpf_pipeline_mt_init(AV1_COMP *cpi) { |
| // Pipelining of loop-filtering after encoding is enabled when loop-filter |
| // level is chosen based on quantizer and frame type. It is disabled in case |
| // of 'LOOPFILTER_SELECTIVELY' as the stats collected during encoding stage |
| // decides the filter level. Loop-filtering is disabled in case |
| // of non-reference frames and for frames with intra block copy tool enabled. |
| AV1_COMMON *cm = &cpi->common; |
| const int use_loopfilter = is_loopfilter_used(cm); |
| const int use_superres = av1_superres_scaled(cm); |
| const int use_cdef = is_cdef_used(cm); |
| const int use_restoration = is_restoration_used(cm); |
| |
| const unsigned int skip_apply_postproc_filters = |
| derive_skip_apply_postproc_filters(cpi, use_loopfilter, use_cdef, |
| use_superres, use_restoration); |
| cpi->mt_info.pipeline_lpf_mt_with_enc = |
| (cpi->oxcf.mode == REALTIME) && (cpi->oxcf.speed >= 5) && |
| (cpi->sf.lpf_sf.lpf_pick == LPF_PICK_FROM_Q) && |
| (cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY) && |
| !cpi->ppi->rtc_ref.non_reference_frame && !cm->features.allow_intrabc && |
| ((skip_apply_postproc_filters & SKIP_APPLY_LOOPFILTER) == 0); |
| |
| if (!cpi->mt_info.pipeline_lpf_mt_with_enc) return; |
| |
| set_postproc_filter_default_params(cm); |
| |
| if (!use_loopfilter) return; |
| |
| const LPF_PICK_METHOD method = cpi->sf.lpf_sf.lpf_pick; |
| assert(method == LPF_PICK_FROM_Q); |
| assert(cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY); |
| |
| av1_pick_filter_level(cpi->source, cpi, method); |
| |
| struct loopfilter *lf = &cm->lf; |
| const int plane_start = 0; |
| const int plane_end = av1_num_planes(cm); |
| int planes_to_lf[MAX_MB_PLANE]; |
| if ((lf->filter_level[PLANE_TYPE_Y] || lf->filter_level[PLANE_TYPE_UV]) && |
| check_planes_to_loop_filter(lf, planes_to_lf, plane_start, plane_end)) { |
| int lpf_opt_level = get_lpf_opt_level(&cpi->sf); |
| assert(lpf_opt_level == 2); |
| |
| const int start_mi_row = 0; |
| const int end_mi_row = start_mi_row + cm->mi_params.mi_rows; |
| |
| av1_loop_filter_frame_init(cm, plane_start, plane_end); |
| |
| assert(cpi->mt_info.num_mod_workers[MOD_ENC] == |
| cpi->mt_info.num_mod_workers[MOD_LPF]); |
| loop_filter_frame_mt_init(cm, start_mi_row, end_mi_row, planes_to_lf, |
| cpi->mt_info.num_mod_workers[MOD_LPF], |
| &cpi->mt_info.lf_row_sync, lpf_opt_level, |
| cm->seq_params->mib_size_log2); |
| } |
| } |
| |
| void av1_encode_tiles_row_mt(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| const int sb_rows_in_frame = get_sb_rows_in_frame(cm); |
| int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id; |
| int max_sb_rows_in_tile = 0, max_sb_cols_in_tile = 0; |
| int num_workers = mt_info->num_mod_workers[MOD_ENC]; |
| |
| compute_max_sb_rows_cols(cm, &max_sb_rows_in_tile, &max_sb_cols_in_tile); |
| const bool alloc_row_mt_mem = |
| (enc_row_mt->allocated_tile_cols != tile_cols || |
| enc_row_mt->allocated_tile_rows != tile_rows || |
| enc_row_mt->allocated_rows != max_sb_rows_in_tile || |
| enc_row_mt->allocated_cols != (max_sb_cols_in_tile - 1) || |
| enc_row_mt->allocated_sb_rows != sb_rows_in_frame); |
| const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows; |
| |
| assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data)); |
| if (alloc_tile_data) { |
| av1_alloc_tile_data(cpi); |
| } |
| |
| assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem)); |
| if (alloc_row_mt_mem) { |
| row_mt_mem_alloc(cpi, max_sb_rows_in_tile, max_sb_cols_in_tile, |
| cpi->oxcf.algo_cfg.cdf_update_mode); |
| } |
| |
| lpf_pipeline_mt_init(cpi); |
| |
| av1_init_tile_data(cpi); |
| |
| memset(thread_id_to_tile_id, -1, |
| sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS); |
| memset(enc_row_mt->num_tile_cols_done, 0, |
| sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows_in_frame); |
| |
| for (int tile_row = 0; tile_row < tile_rows; tile_row++) { |
| for (int tile_col = 0; tile_col < tile_cols; tile_col++) { |
| int tile_index = tile_row * tile_cols + tile_col; |
| TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; |
| AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; |
| |
| // Initialize num_finished_cols to -1 for all rows. |
| memset(row_mt_sync->num_finished_cols, -1, |
| sizeof(*row_mt_sync->num_finished_cols) * max_sb_rows_in_tile); |
| row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start; |
| row_mt_sync->num_threads_working = 0; |
| row_mt_sync->intrabc_extra_top_right_sb_delay = |
| av1_get_intrabc_extra_top_right_sb_delay(cm); |
| |
| av1_inter_mode_data_init(this_tile); |
| av1_zero_above_context(cm, &cpi->td.mb.e_mbd, |
| this_tile->tile_info.mi_col_start, |
| this_tile->tile_info.mi_col_end, tile_row); |
| } |
| } |
| |
| num_workers = AOMMIN(num_workers, mt_info->num_workers); |
| |
| assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows, |
| num_workers); |
| prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers); |
| launch_workers(&cpi->mt_info, num_workers); |
| sync_enc_workers(&cpi->mt_info, cm, num_workers); |
| if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi); |
| accumulate_counters_enc_workers(cpi, num_workers); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| void av1_fp_encode_tiles_row_mt(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id; |
| int num_workers = 0; |
| int max_mb_rows = 0; |
| |
| max_mb_rows = fp_compute_max_mb_rows(cm, cpi->fp_block_size); |
| const bool alloc_row_mt_mem = enc_row_mt->allocated_tile_cols != tile_cols || |
| enc_row_mt->allocated_tile_rows != tile_rows || |
| enc_row_mt->allocated_rows != max_mb_rows; |
| const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows; |
| |
| assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data)); |
| if (alloc_tile_data) { |
| av1_alloc_tile_data(cpi); |
| } |
| |
| assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem)); |
| if (alloc_row_mt_mem) { |
| row_mt_mem_alloc(cpi, max_mb_rows, -1, 0); |
| } |
| |
| av1_init_tile_data(cpi); |
| |
| // For pass = 1, compute the no. of workers needed. For single-pass encode |
| // (pass = 0), no. of workers are already computed. |
| if (mt_info->num_mod_workers[MOD_FP] == 0) |
| num_workers = av1_fp_compute_num_enc_workers(cpi); |
| else |
| num_workers = mt_info->num_mod_workers[MOD_FP]; |
| |
| memset(thread_id_to_tile_id, -1, |
| sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS); |
| |
| for (int tile_row = 0; tile_row < tile_rows; tile_row++) { |
| for (int tile_col = 0; tile_col < tile_cols; tile_col++) { |
| int tile_index = tile_row * tile_cols + tile_col; |
| TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; |
| AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; |
| |
| // Initialize num_finished_cols to -1 for all rows. |
| memset(row_mt_sync->num_finished_cols, -1, |
| sizeof(*row_mt_sync->num_finished_cols) * max_mb_rows); |
| row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start; |
| row_mt_sync->num_threads_working = 0; |
| |
| // intraBC mode is not evaluated during first-pass encoding. Hence, no |
| // additional top-right delay is required. |
| row_mt_sync->intrabc_extra_top_right_sb_delay = 0; |
| } |
| } |
| |
| num_workers = AOMMIN(num_workers, mt_info->num_workers); |
| assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows, |
| num_workers); |
| fp_prepare_enc_workers(cpi, fp_enc_row_mt_worker_hook, num_workers); |
| launch_workers(&cpi->mt_info, num_workers); |
| sync_enc_workers(&cpi->mt_info, cm, num_workers); |
| for (int i = num_workers - 1; i >= 0; i--) { |
| EncWorkerData *const thread_data = &cpi->mt_info.tile_thr_data[i]; |
| if (thread_data->td != &cpi->td) { |
| // Keep this conditional expression in sync with the corresponding one |
| // in fp_prepare_enc_workers(). |
| if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) { |
| aom_free(thread_data->td->mb.mv_costs); |
| } |
| assert(!thread_data->td->mb.dv_costs); |
| } |
| av1_dealloc_mb_data(cm, &thread_data->td->mb); |
| } |
| } |
| |
| void av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync, |
| int r, int c) { |
| (void)tpl_mt_sync; |
| (void)r; |
| (void)c; |
| return; |
| } |
| |
| void av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync, |
| int r, int c, int cols) { |
| (void)tpl_mt_sync; |
| (void)r; |
| (void)c; |
| (void)cols; |
| return; |
| } |
| |
| void av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r, |
| int c) { |
| #if CONFIG_MULTITHREAD |
| int nsync = tpl_row_mt_sync->sync_range; |
| |
| if (r) { |
| pthread_mutex_t *const mutex = &tpl_row_mt_sync->mutex_[r - 1]; |
| pthread_mutex_lock(mutex); |
| |
| while (c > tpl_row_mt_sync->num_finished_cols[r - 1] - nsync) |
| pthread_cond_wait(&tpl_row_mt_sync->cond_[r - 1], mutex); |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)tpl_row_mt_sync; |
| (void)r; |
| (void)c; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| void av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r, |
| int c, int cols) { |
| #if CONFIG_MULTITHREAD |
| int nsync = tpl_row_mt_sync->sync_range; |
| int cur; |
| // Only signal when there are enough encoded blocks for next row to run. |
| int sig = 1; |
| |
| if (c < cols - 1) { |
| cur = c; |
| if (c % nsync) sig = 0; |
| } else { |
| cur = cols + nsync; |
| } |
| |
| if (sig) { |
| pthread_mutex_lock(&tpl_row_mt_sync->mutex_[r]); |
| |
| tpl_row_mt_sync->num_finished_cols[r] = cur; |
| |
| pthread_cond_signal(&tpl_row_mt_sync->cond_[r]); |
| pthread_mutex_unlock(&tpl_row_mt_sync->mutex_[r]); |
| } |
| #else |
| (void)tpl_row_mt_sync; |
| (void)r; |
| (void)c; |
| (void)cols; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| // Each worker calls tpl_worker_hook() and computes the tpl data. |
| static int tpl_worker_hook(void *arg1, void *unused) { |
| (void)unused; |
| EncWorkerData *thread_data = (EncWorkerData *)arg1; |
| AV1_COMP *cpi = thread_data->cpi; |
| AV1_COMMON *cm = &cpi->common; |
| MACROBLOCK *x = &thread_data->td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| TplTxfmStats *tpl_txfm_stats = &thread_data->td->tpl_txfm_stats; |
| CommonModeInfoParams *mi_params = &cm->mi_params; |
| BLOCK_SIZE bsize = convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d); |
| TX_SIZE tx_size = max_txsize_lookup[bsize]; |
| int mi_height = mi_size_high[bsize]; |
| int num_active_workers = cpi->ppi->tpl_data.tpl_mt_sync.num_threads_working; |
| |
| av1_init_tpl_txfm_stats(tpl_txfm_stats); |
| |
| for (int mi_row = thread_data->start * mi_height; mi_row < mi_params->mi_rows; |
| mi_row += num_active_workers * mi_height) { |
| // Motion estimation row boundary |
| av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height, |
| cpi->oxcf.border_in_pixels); |
| xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE); |
| xd->mb_to_bottom_edge = |
| GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE); |
| av1_mc_flow_dispenser_row(cpi, tpl_txfm_stats, x, mi_row, bsize, tx_size); |
| } |
| return 1; |
| } |
| |
| // Deallocate tpl synchronization related mutex and data. |
| void av1_tpl_dealloc(AV1TplRowMultiThreadSync *tpl_sync) { |
| assert(tpl_sync != NULL); |
| |
| #if CONFIG_MULTITHREAD |
| if (tpl_sync->mutex_ != NULL) { |
| for (int i = 0; i < tpl_sync->rows; ++i) |
| pthread_mutex_destroy(&tpl_sync->mutex_[i]); |
| aom_free(tpl_sync->mutex_); |
| } |
| if (tpl_sync->cond_ != NULL) { |
| for (int i = 0; i < tpl_sync->rows; ++i) |
| pthread_cond_destroy(&tpl_sync->cond_[i]); |
| aom_free(tpl_sync->cond_); |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| aom_free(tpl_sync->num_finished_cols); |
| // clear the structure as the source of this call may be a resize in which |
| // case this call will be followed by an _alloc() which may fail. |
| av1_zero(*tpl_sync); |
| } |
| |
| // Allocate memory for tpl row synchronization. |
| void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm, |
| int mb_rows) { |
| tpl_sync->rows = mb_rows; |
| #if CONFIG_MULTITHREAD |
| { |
| CHECK_MEM_ERROR(cm, tpl_sync->mutex_, |
| aom_malloc(sizeof(*tpl_sync->mutex_) * mb_rows)); |
| if (tpl_sync->mutex_) { |
| for (int i = 0; i < mb_rows; ++i) |
| pthread_mutex_init(&tpl_sync->mutex_[i], NULL); |
| } |
| |
| CHECK_MEM_ERROR(cm, tpl_sync->cond_, |
| aom_malloc(sizeof(*tpl_sync->cond_) * mb_rows)); |
| if (tpl_sync->cond_) { |
| for (int i = 0; i < mb_rows; ++i) |
| pthread_cond_init(&tpl_sync->cond_[i], NULL); |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| CHECK_MEM_ERROR(cm, tpl_sync->num_finished_cols, |
| aom_malloc(sizeof(*tpl_sync->num_finished_cols) * mb_rows)); |
| |
| // Set up nsync. |
| tpl_sync->sync_range = 1; |
| } |
| |
| // Each worker is prepared by assigning the hook function and individual thread |
| // data. |
| static AOM_INLINE void prepare_tpl_workers(AV1_COMP *cpi, AVxWorkerHook hook, |
| int num_workers) { |
| MultiThreadInfo *mt_info = &cpi->mt_info; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *worker = &mt_info->workers[i]; |
| EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; |
| |
| worker->hook = hook; |
| worker->data1 = thread_data; |
| worker->data2 = NULL; |
| |
| thread_data->thread_id = i; |
| // Set the starting tile for each thread. |
| thread_data->start = i; |
| |
| thread_data->cpi = cpi; |
| if (i == 0) { |
| thread_data->td = &cpi->td; |
| } else { |
| thread_data->td = thread_data->original_td; |
| } |
| |
| // Before encoding a frame, copy the thread data from cpi. |
| if (thread_data->td != &cpi->td) { |
| thread_data->td->mb = cpi->td.mb; |
| // OBMC buffers are used only to init MS params and remain unused when |
| // called from tpl, hence set the buffers to defaults. |
| av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer); |
| thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst; |
| thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst; |
| } |
| } |
| } |
| |
| // Accumulate transform stats after tpl. |
| static void tpl_accumulate_txfm_stats(ThreadData *main_td, |
| const MultiThreadInfo *mt_info, |
| int num_workers) { |
| TplTxfmStats *accumulated_stats = &main_td->tpl_txfm_stats; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &mt_info->workers[i]; |
| EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; |
| ThreadData *td = thread_data->td; |
| if (td != main_td) { |
| const TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats; |
| av1_accumulate_tpl_txfm_stats(tpl_txfm_stats, accumulated_stats); |
| } |
| } |
| } |
| |
| // Implements multi-threading for tpl. |
| void av1_mc_flow_dispenser_mt(AV1_COMP *cpi) { |
| AV1_COMMON *cm = &cpi->common; |
| CommonModeInfoParams *mi_params = &cm->mi_params; |
| MultiThreadInfo *mt_info = &cpi->mt_info; |
| TplParams *tpl_data = &cpi->ppi->tpl_data; |
| AV1TplRowMultiThreadSync *tpl_sync = &tpl_data->tpl_mt_sync; |
| int mb_rows = mi_params->mb_rows; |
| int num_workers = |
| AOMMIN(mt_info->num_mod_workers[MOD_TPL], mt_info->num_workers); |
| |
| if (mb_rows != tpl_sync->rows) { |
| av1_tpl_dealloc(tpl_sync); |
| av1_tpl_alloc(tpl_sync, cm, mb_rows); |
| } |
| tpl_sync->num_threads_working = num_workers; |
| |
| // Initialize cur_mb_col to -1 for all MB rows. |
| memset(tpl_sync->num_finished_cols, -1, |
| sizeof(*tpl_sync->num_finished_cols) * mb_rows); |
| |
| prepare_tpl_workers(cpi, tpl_worker_hook, num_workers); |
| launch_workers(&cpi->mt_info, num_workers); |
| sync_enc_workers(&cpi->mt_info, cm, num_workers); |
| tpl_accumulate_txfm_stats(&cpi->td, &cpi->mt_info, num_workers); |
| } |
| |
| // Deallocate memory for temporal filter multi-thread synchronization. |
| void av1_tf_mt_dealloc(AV1TemporalFilterSync *tf_sync) { |
| assert(tf_sync != NULL); |
| #if CONFIG_MULTITHREAD |
| if (tf_sync->mutex_ != NULL) { |
| pthread_mutex_destroy(tf_sync->mutex_); |
| aom_free(tf_sync->mutex_); |
| } |
| #endif // CONFIG_MULTITHREAD |
| tf_sync->next_tf_row = 0; |
| } |
| |
| // Checks if a job is available. If job is available, |
| // populates next_tf_row and returns 1, else returns 0. |
| static AOM_INLINE int tf_get_next_job(AV1TemporalFilterSync *tf_mt_sync, |
| int *current_mb_row, int mb_rows) { |
| int do_next_row = 0; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t *tf_mutex_ = tf_mt_sync->mutex_; |
| pthread_mutex_lock(tf_mutex_); |
| #endif |
| if (tf_mt_sync->next_tf_row < mb_rows) { |
| *current_mb_row = tf_mt_sync->next_tf_row; |
| tf_mt_sync->next_tf_row++; |
| do_next_row = 1; |
| } |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(tf_mutex_); |
| #endif |
| return do_next_row; |
| } |
| |
| // Hook function for each thread in temporal filter multi-threading. |
| static int tf_worker_hook(void *arg1, void *unused) { |
| (void)unused; |
| EncWorkerData *thread_data = (EncWorkerData *)arg1; |
| AV1_COMP *cpi = thread_data->cpi; |
| ThreadData *td = thread_data->td; |
| TemporalFilterCtx *tf_ctx = &cpi->tf_ctx; |
| AV1TemporalFilterSync *tf_sync = &cpi->mt_info.tf_sync; |
| const struct scale_factors *scale = &cpi->tf_ctx.sf; |
| const int num_planes = av1_num_planes(&cpi->common); |
| assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE); |
| |
| MACROBLOCKD *mbd = &td->mb.e_mbd; |
| uint8_t *input_buffer[MAX_MB_PLANE]; |
| MB_MODE_INFO **input_mb_mode_info; |
| tf_save_state(mbd, &input_mb_mode_info, input_buffer, num_planes); |
| tf_setup_macroblockd(mbd, &td->tf_data, scale); |
| |
| int current_mb_row = -1; |
| |
| while (tf_get_next_job(tf_sync, ¤t_mb_row, tf_ctx->mb_rows)) |
| av1_tf_do_filtering_row(cpi, td, current_mb_row); |
| |
| tf_restore_state(mbd, input_mb_mode_info, input_buffer, num_planes); |
| |
| return 1; |
| } |
| |
| // Assigns temporal filter hook function and thread data to each worker. |
| static void prepare_tf_workers(AV1_COMP *cpi, AVxWorkerHook hook, |
| int num_workers, int is_highbitdepth) { |
| MultiThreadInfo *mt_info = &cpi->mt_info; |
| mt_info->tf_sync.next_tf_row = 0; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *worker = &mt_info->workers[i]; |
| EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; |
| |
| worker->hook = hook; |
| worker->data1 = thread_data; |
| worker->data2 = NULL; |
| |
| thread_data->thread_id = i; |
| // Set the starting tile for each thread. |
| thread_data->start = i; |
| |
| thread_data->cpi = cpi; |
| if (i == 0) { |
| thread_data->td = &cpi->td; |
| } else { |
| thread_data->td = thread_data->original_td; |
| } |
| |
| // Before encoding a frame, copy the thread data from cpi. |
| if (thread_data->td != &cpi->td) { |
| thread_data->td->mb = cpi->td.mb; |
| // OBMC buffers are used only to init MS params and remain unused when |
| // called from tf, hence set the buffers to defaults. |
| av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer); |
| if (!tf_alloc_and_reset_data(&thread_data->td->tf_data, |
| cpi->tf_ctx.num_pels, is_highbitdepth)) { |
| aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR, |
| "Error allocating temporal filter data"); |
| } |
| } |
| } |
| } |
| |
| // Deallocate thread specific data for temporal filter. |
| static void tf_dealloc_thread_data(AV1_COMP *cpi, int num_workers, |
| int is_highbitdepth) { |
| MultiThreadInfo *mt_info = &cpi->mt_info; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; |
| ThreadData *td = thread_data->td; |
| if (td != &cpi->td) tf_dealloc_data(&td->tf_data, is_highbitdepth); |
| } |
| } |
| |
| // Accumulate sse and sum after temporal filtering. |
| static void tf_accumulate_frame_diff(AV1_COMP *cpi, int num_workers) { |
| FRAME_DIFF *total_diff = &cpi->td.tf_data.diff; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &cpi->mt_info.workers[i]; |
| EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; |
| ThreadData *td = thread_data->td; |
| FRAME_DIFF *diff = &td->tf_data.diff; |
| if (td != &cpi->td) { |
| total_diff->sse += diff->sse; |
| total_diff->sum += diff->sum; |
| } |
| } |
| } |
| |
| // Implements multi-threading for temporal filter. |
| void av1_tf_do_filtering_mt(AV1_COMP *cpi) { |
| AV1_COMMON *cm = &cpi->common; |
| MultiThreadInfo *mt_info = &cpi->mt_info; |
| const int is_highbitdepth = cpi->tf_ctx.is_highbitdepth; |
| |
| int num_workers = |
| AOMMIN(mt_info->num_mod_workers[MOD_TF], mt_info->num_workers); |
| |
| prepare_tf_workers(cpi, tf_worker_hook, num_workers, is_highbitdepth); |
| launch_workers(mt_info, num_workers); |
| sync_enc_workers(mt_info, cm, num_workers); |
| tf_accumulate_frame_diff(cpi, num_workers); |
| tf_dealloc_thread_data(cpi, num_workers, is_highbitdepth); |
| } |
| |
| // Checks if a job is available in the current direction. If a job is available, |
| // frame_idx will be populated and returns 1, else returns 0. |
| static AOM_INLINE int get_next_gm_job(AV1_COMP *cpi, int *frame_idx, |
| int cur_dir) { |
| GlobalMotionInfo *gm_info = &cpi->gm_info; |
| JobInfo *job_info = &cpi->mt_info.gm_sync.job_info; |
| |
| int total_refs = gm_info->num_ref_frames[cur_dir]; |
| int8_t cur_frame_to_process = job_info->next_frame_to_process[cur_dir]; |
| |
| if (cur_frame_to_process < total_refs && !job_info->early_exit[cur_dir]) { |
| *frame_idx = gm_info->reference_frames[cur_dir][cur_frame_to_process].frame; |
| job_info->next_frame_to_process[cur_dir] += 1; |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Switches the current direction and calls the function get_next_gm_job() if |
| // the speed feature 'prune_ref_frame_for_gm_search' is not set. |
| static AOM_INLINE void switch_direction(AV1_COMP *cpi, int *frame_idx, |
| int *cur_dir) { |
| if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search) return; |
| // Switch the direction and get next job |
| *cur_dir = !(*cur_dir); |
| get_next_gm_job(cpi, frame_idx, *(cur_dir)); |
| } |
| |
| // Initializes inliers, num_inliers and segment_map. |
| static AOM_INLINE void init_gm_thread_data( |
| const GlobalMotionInfo *gm_info, GlobalMotionThreadData *thread_data) { |
| for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) { |
| MotionModel motion_params = thread_data->motion_models[m]; |
| av1_zero(motion_params.params); |
| motion_params.num_inliers = 0; |
| } |
| |
| av1_zero_array(thread_data->segment_map, |
| gm_info->segment_map_w * gm_info->segment_map_h); |
| } |
| |
| // Hook function for each thread in global motion multi-threading. |
| static int gm_mt_worker_hook(void *arg1, void *unused) { |
| (void)unused; |
| |
| EncWorkerData *thread_data = (EncWorkerData *)arg1; |
| AV1_COMP *cpi = thread_data->cpi; |
| GlobalMotionInfo *gm_info = &cpi->gm_info; |
| MultiThreadInfo *mt_info = &cpi->mt_info; |
| JobInfo *job_info = &mt_info->gm_sync.job_info; |
| int thread_id = thread_data->thread_id; |
| GlobalMotionThreadData *gm_thread_data = |
| &mt_info->gm_sync.thread_data[thread_id]; |
| int cur_dir = job_info->thread_id_to_dir[thread_id]; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t *gm_mt_mutex_ = mt_info->gm_sync.mutex_; |
| #endif |
| |
| while (1) { |
| int ref_buf_idx = -1; |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(gm_mt_mutex_); |
| #endif |
| |
| // Populates ref_buf_idx(the reference frame type) for which global motion |
| // estimation will be done. |
| if (!get_next_gm_job(cpi, &ref_buf_idx, cur_dir)) { |
| // No jobs are available for the current direction. Switch |
| // to other direction and get the next job, if available. |
| switch_direction(cpi, &ref_buf_idx, &cur_dir); |
| } |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(gm_mt_mutex_); |
| #endif |
| |
| if (ref_buf_idx == -1) break; |
| |
| init_gm_thread_data(gm_info, gm_thread_data); |
| |
| // Compute global motion for the given ref_buf_idx. |
| av1_compute_gm_for_valid_ref_frames( |
| cpi, gm_info->ref_buf, ref_buf_idx, gm_thread_data->motion_models, |
| gm_thread_data->segment_map, gm_info->segment_map_w, |
| gm_info->segment_map_h); |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(gm_mt_mutex_); |
| #endif |
| // If global motion w.r.t. current ref frame is |
| // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t |
| // the remaining ref frames in that direction. |
| if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search && |
| cpi->common.global_motion[ref_buf_idx].wmtype != ROTZOOM) |
| job_info->early_exit[cur_dir] = 1; |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(gm_mt_mutex_); |
| #endif |
| } |
| return 1; |
| } |
| |
| // Assigns global motion hook function and thread data to each worker. |
| static AOM_INLINE void prepare_gm_workers(AV1_COMP *cpi, AVxWorkerHook hook, |
| int num_workers) { |
| MultiThreadInfo *mt_info = &cpi->mt_info; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *worker = &mt_info->workers[i]; |
| EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; |
| |
| worker->hook = hook; |
| worker->data1 = thread_data; |
| worker->data2 = NULL; |
| |
| thread_data->thread_id = i; |
| // Set the starting tile for each thread. |
| thread_data->start = i; |
| |
| thread_data->cpi = cpi; |
| if (i == 0) { |
| thread_data->td = &cpi->td; |
| } else { |
| thread_data->td = thread_data->original_td; |
| } |
| } |
| } |
| |
| // Assigns available threads to past/future direction. |
| static AOM_INLINE void assign_thread_to_dir(int8_t *thread_id_to_dir, |
| int num_workers) { |
| int8_t frame_dir_idx = 0; |
| |
| for (int i = 0; i < num_workers; i++) { |
| thread_id_to_dir[i] = frame_dir_idx++; |
| if (frame_dir_idx == MAX_DIRECTIONS) frame_dir_idx = 0; |
| } |
| } |
| |
| // Computes number of workers for global motion multi-threading. |
| static AOM_INLINE int compute_gm_workers(const AV1_COMP *cpi) { |
| int total_refs = |
| cpi->gm_info.num_ref_frames[0] + cpi->gm_info.num_ref_frames[1]; |
| int num_gm_workers = cpi->sf.gm_sf.prune_ref_frame_for_gm_search |
| ? AOMMIN(MAX_DIRECTIONS, total_refs) |
| : total_refs; |
| num_gm_workers = AOMMIN(num_gm_workers, cpi->mt_info.num_workers); |
| return (num_gm_workers); |
| } |
| |
| // Frees the memory allocated for each worker in global motion multi-threading. |
| void av1_gm_dealloc(AV1GlobalMotionSync *gm_sync_data) { |
| if (gm_sync_data->thread_data != NULL) { |
| for (int j = 0; j < gm_sync_data->allocated_workers; j++) { |
| GlobalMotionThreadData *thread_data = &gm_sync_data->thread_data[j]; |
| aom_free(thread_data->segment_map); |
| |
| for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) |
| aom_free(thread_data->motion_models[m].inliers); |
| } |
| aom_free(gm_sync_data->thread_data); |
| } |
| } |
| |
| // Allocates memory for inliers and segment_map for each worker in global motion |
| // multi-threading. |
| static AOM_INLINE void gm_alloc(AV1_COMP *cpi, int num_workers) { |
| AV1_COMMON *cm = &cpi->common; |
| AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync; |
| GlobalMotionInfo *gm_info = &cpi->gm_info; |
| |
| gm_sync->allocated_workers = num_workers; |
| gm_sync->allocated_width = cpi->source->y_width; |
| gm_sync->allocated_height = cpi->source->y_height; |
| |
| CHECK_MEM_ERROR(cm, gm_sync->thread_data, |
| aom_malloc(sizeof(*gm_sync->thread_data) * num_workers)); |
| |
| for (int i = 0; i < num_workers; i++) { |
| GlobalMotionThreadData *thread_data = &gm_sync->thread_data[i]; |
| CHECK_MEM_ERROR( |
| cm, thread_data->segment_map, |
| aom_malloc(sizeof(*thread_data->segment_map) * gm_info->segment_map_w * |
| gm_info->segment_map_h)); |
| |
| for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) { |
| CHECK_MEM_ERROR( |
| cm, thread_data->motion_models[m].inliers, |
| aom_malloc(sizeof(*thread_data->motion_models[m].inliers) * 2 * |
| MAX_CORNERS)); |
| } |
| } |
| } |
| |
| // Implements multi-threading for global motion. |
| void av1_global_motion_estimation_mt(AV1_COMP *cpi) { |
| AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync; |
| JobInfo *job_info = &gm_sync->job_info; |
| |
| av1_zero(*job_info); |
| |
| int num_workers = compute_gm_workers(cpi); |
| |
| if (num_workers > gm_sync->allocated_workers || |
| cpi->source->y_width != gm_sync->allocated_width || |
| cpi->source->y_height != gm_sync->allocated_height) { |
| av1_gm_dealloc(gm_sync); |
| gm_alloc(cpi, num_workers); |
| } |
| |
| assign_thread_to_dir(job_info->thread_id_to_dir, num_workers); |
| prepare_gm_workers(cpi, gm_mt_worker_hook, num_workers); |
| launch_workers(&cpi->mt_info, num_workers); |
| sync_enc_workers(&cpi->mt_info, &cpi->common, num_workers); |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static AOM_INLINE int get_next_job_allintra( |
| AV1EncRowMultiThreadSync *const row_mt_sync, const int mi_row_end, |
| int *current_mi_row, int mib_size) { |
| if (row_mt_sync->next_mi_row < mi_row_end) { |
| *current_mi_row = row_mt_sync->next_mi_row; |
| row_mt_sync->num_threads_working++; |
| row_mt_sync->next_mi_row += mib_size; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static AOM_INLINE void prepare_wiener_var_workers(AV1_COMP *const cpi, |
| AVxWorkerHook hook, |
| const int num_workers) { |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &mt_info->workers[i]; |
| EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; |
| |
| worker->hook = hook; |
| worker->data1 = thread_data; |
| worker->data2 = NULL; |
| |
| thread_data->thread_id = i; |
| // Set the starting tile for each thread, in this case the preprocessing |
| // stage does not need tiles. So we set it to 0. |
| thread_data->start = 0; |
| |
| thread_data->cpi = cpi; |
| if (i == 0) { |
| thread_data->td = &cpi->td; |
| } else { |
| thread_data->td = thread_data->original_td; |
| } |
| |
| if (thread_data->td != &cpi->td) { |
| thread_data->td->mb = cpi->td.mb; |
| } |
| } |
| } |
| |
| static int cal_mb_wiener_var_hook(void *arg1, void *unused) { |
| (void)unused; |
| EncWorkerData *const thread_data = (EncWorkerData *)arg1; |
| AV1_COMP *const cpi = thread_data->cpi; |
| MACROBLOCK *x = &thread_data->td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| const BLOCK_SIZE bsize = cpi->weber_bsize; |
| const int mb_step = mi_size_wide[bsize]; |
| AV1EncRowMultiThreadSync *const intra_row_mt_sync = |
| &cpi->ppi->intra_row_mt_sync; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; |
| (void)enc_row_mt; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_; |
| #endif |
| DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]); |
| DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]); |
| DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]); |
| DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]); |
| double sum_rec_distortion = 0; |
| double sum_est_rate = 0; |
| int has_jobs = 1; |
| while (has_jobs) { |
| int current_mi_row = -1; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(enc_row_mt_mutex_); |
| #endif |
| has_jobs = |
| get_next_job_allintra(intra_row_mt_sync, cpi->common.mi_params.mi_rows, |
| ¤t_mi_row, mb_step); |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(enc_row_mt_mutex_); |
| #endif |
| if (!has_jobs) break; |
| // TODO(chengchen): properly accumulate the distortion and rate. |
| av1_calc_mb_wiener_var_row(cpi, x, xd, current_mi_row, src_diff, coeff, |
| qcoeff, dqcoeff, &sum_rec_distortion, |
| &sum_est_rate); |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(enc_row_mt_mutex_); |
| #endif |
| intra_row_mt_sync->num_threads_working--; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(enc_row_mt_mutex_); |
| #endif |
| } |
| return 1; |
| } |
| |
| // This function is the multi-threading version of computing the wiener |
| // variance. |
| // Note that the wiener variance is used for allintra mode (1 pass) and its |
| // computation is before the frame encoding, so we don't need to consider |
| // the number of tiles, instead we allocate all available threads to |
| // the computation. |
| void av1_calc_mb_wiener_var_mt(AV1_COMP *cpi, int num_workers, |
| double *sum_rec_distortion, |
| double *sum_est_rate) { |
| (void)sum_rec_distortion; |
| (void)sum_est_rate; |
| AV1_COMMON *const cm = &cpi->common; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| AV1EncRowMultiThreadSync *const intra_row_mt_sync = |
| &cpi->ppi->intra_row_mt_sync; |
| |
| // TODO(chengchen): the memory usage could be improved. |
| const int mi_rows = cm->mi_params.mi_rows; |
| row_mt_sync_mem_alloc(intra_row_mt_sync, cm, mi_rows); |
| |
| intra_row_mt_sync->intrabc_extra_top_right_sb_delay = 0; |
| intra_row_mt_sync->num_threads_working = num_workers; |
| intra_row_mt_sync->next_mi_row = 0; |
| memset(intra_row_mt_sync->num_finished_cols, -1, |
| sizeof(*intra_row_mt_sync->num_finished_cols) * num_workers); |
| |
| prepare_wiener_var_workers(cpi, cal_mb_wiener_var_hook, num_workers); |
| launch_workers(mt_info, num_workers); |
| sync_enc_workers(mt_info, cm, num_workers); |
| |
| row_mt_sync_mem_dealloc(intra_row_mt_sync); |
| } |
| |
| // Compare and order tiles based on absolute sum of tx coeffs. |
| static int compare_tile_order(const void *a, const void *b) { |
| const PackBSTileOrder *const tile_a = (const PackBSTileOrder *)a; |
| const PackBSTileOrder *const tile_b = (const PackBSTileOrder *)b; |
| |
| if (tile_a->abs_sum_level > tile_b->abs_sum_level) |
| return -1; |
| else if (tile_a->abs_sum_level == tile_b->abs_sum_level) |
| return (tile_a->tile_idx > tile_b->tile_idx ? 1 : -1); |
| else |
| return 1; |
| } |
| |
| // Get next tile index to be processed for pack bitstream |
| static AOM_INLINE int get_next_pack_bs_tile_idx( |
| AV1EncPackBSSync *const pack_bs_sync, const int num_tiles) { |
| assert(pack_bs_sync->next_job_idx <= num_tiles); |
| if (pack_bs_sync->next_job_idx == num_tiles) return -1; |
| |
| return pack_bs_sync->pack_bs_tile_order[pack_bs_sync->next_job_idx++] |
| .tile_idx; |
| } |
| |
| // Calculates bitstream chunk size based on total buffer size and tile or tile |
| // group size. |
| static AOM_INLINE size_t get_bs_chunk_size(int tg_or_tile_size, |
| const int frame_or_tg_size, |
| size_t *remain_buf_size, |
| size_t max_buf_size, |
| int is_last_chunk) { |
| size_t this_chunk_size; |
| assert(*remain_buf_size > 0); |
| if (is_last_chunk) { |
| this_chunk_size = *remain_buf_size; |
| *remain_buf_size = 0; |
| } else { |
| const uint64_t size_scale = (uint64_t)max_buf_size * tg_or_tile_size; |
| this_chunk_size = (size_t)(size_scale / frame_or_tg_size); |
| *remain_buf_size -= this_chunk_size; |
| assert(*remain_buf_size > 0); |
| } |
| assert(this_chunk_size > 0); |
| return this_chunk_size; |
| } |
| |
| // Initializes params required for pack bitstream tile. |
| static void init_tile_pack_bs_params(AV1_COMP *const cpi, uint8_t *const dst, |
| struct aom_write_bit_buffer *saved_wb, |
| PackBSParams *const pack_bs_params_arr, |
| uint8_t obu_extn_header) { |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| AV1_COMMON *const cm = &cpi->common; |
| const CommonTileParams *const tiles = &cm->tiles; |
| const int num_tiles = tiles->cols * tiles->rows; |
| // Fixed size tile groups for the moment |
| const int num_tg_hdrs = cpi->num_tg; |
| // Tile group size in terms of number of tiles. |
| const int tg_size_in_tiles = (num_tiles + num_tg_hdrs - 1) / num_tg_hdrs; |
| uint8_t *tile_dst = dst; |
| uint8_t *tile_data_curr = dst; |
| // Max tile group count can not be more than MAX_TILES. |
| int tg_size_mi[MAX_TILES] = { 0 }; // Size of tile group in mi units |
| int tile_idx; |
| int tg_idx = 0; |
| int tile_count_in_tg = 0; |
| int new_tg = 1; |
| |
| // Populate pack bitstream params of all tiles. |
| for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) { |
| const TileInfo *const tile_info = &cpi->tile_data[tile_idx].tile_info; |
| PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx]; |
| // Calculate tile size in mi units. |
| const int tile_size_mi = (tile_info->mi_col_end - tile_info->mi_col_start) * |
| (tile_info->mi_row_end - tile_info->mi_row_start); |
| int is_last_tile_in_tg = 0; |
| tile_count_in_tg++; |
| if (tile_count_in_tg == tg_size_in_tiles || tile_idx == (num_tiles - 1)) |
| is_last_tile_in_tg = 1; |
| |
| // Populate pack bitstream params of this tile. |
| pack_bs_params->curr_tg_hdr_size = 0; |
| pack_bs_params->obu_extn_header = obu_extn_header; |
| pack_bs_params->saved_wb = saved_wb; |
| pack_bs_params->obu_header_size = 0; |
| pack_bs_params->is_last_tile_in_tg = is_last_tile_in_tg; |
| pack_bs_params->new_tg = new_tg; |
| pack_bs_params->tile_col = tile_info->tile_col; |
| pack_bs_params->tile_row = tile_info->tile_row; |
| pack_bs_params->tile_size_mi = tile_size_mi; |
| tg_size_mi[tg_idx] += tile_size_mi; |
| |
| if (new_tg) new_tg = 0; |
| if (is_last_tile_in_tg) { |
| tile_count_in_tg = 0; |
| new_tg = 1; |
| tg_idx++; |
| } |
| } |
| |
| assert(cpi->available_bs_size > 0); |
| size_t tg_buf_size[MAX_TILES] = { 0 }; |
| size_t max_buf_size = cpi->available_bs_size; |
| size_t remain_buf_size = max_buf_size; |
| const int frame_size_mi = cm->mi_params.mi_rows * cm->mi_params.mi_cols; |
| |
| tile_idx = 0; |
| // Prepare obu, tile group and frame header of each tile group. |
| for (tg_idx = 0; tg_idx < cpi->num_tg; tg_idx++) { |
| PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx]; |
| int is_last_tg = tg_idx == cpi->num_tg - 1; |
| // Prorate bitstream buffer size based on tile group size and available |
| // buffer size. This buffer will be used to store headers and tile data. |
| tg_buf_size[tg_idx] = |
| get_bs_chunk_size(tg_size_mi[tg_idx], frame_size_mi, &remain_buf_size, |
| max_buf_size, is_last_tg); |
| |
| pack_bs_params->dst = tile_dst; |
| pack_bs_params->tile_data_curr = tile_dst; |
| |
| // Write obu, tile group and frame header at first tile in the tile |
| // group. |
| av1_write_obu_tg_tile_headers(cpi, xd, pack_bs_params, tile_idx); |
| tile_dst += tg_buf_size[tg_idx]; |
| |
| // Exclude headers from tile group buffer size. |
| tg_buf_size[tg_idx] -= pack_bs_params->curr_tg_hdr_size; |
| tile_idx += tg_size_in_tiles; |
| } |
| |
| tg_idx = 0; |
| // Calculate bitstream buffer size of each tile in the tile group. |
| for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) { |
| PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx]; |
| |
| if (pack_bs_params->new_tg) { |
| max_buf_size = tg_buf_size[tg_idx]; |
| remain_buf_size = max_buf_size; |
| } |
| |
| // Prorate bitstream buffer size of this tile based on tile size and |
| // available buffer size. For this proration, header size is not accounted. |
| const size_t tile_buf_size = get_bs_chunk_size( |
| pack_bs_params->tile_size_mi, tg_size_mi[tg_idx], &remain_buf_size, |
| max_buf_size, pack_bs_params->is_last_tile_in_tg); |
| pack_bs_params->tile_buf_size = tile_buf_size; |
| |
| // Update base address of bitstream buffer for tile and tile group. |
| if (pack_bs_params->new_tg) { |
| tile_dst = pack_bs_params->dst; |
| tile_data_curr = pack_bs_params->tile_data_curr; |
| // Account header size in first tile of a tile group. |
| pack_bs_params->tile_buf_size += pack_bs_params->curr_tg_hdr_size; |
| } else { |
| pack_bs_params->dst = tile_dst; |
| pack_bs_params->tile_data_curr = tile_data_curr; |
| } |
| |
| if (pack_bs_params->is_last_tile_in_tg) tg_idx++; |
| tile_dst += pack_bs_params->tile_buf_size; |
| } |
| } |
| |
| // Worker hook function of pack bitsteam multithreading. |
| static int pack_bs_worker_hook(void *arg1, void *arg2) { |
| EncWorkerData *const thread_data = (EncWorkerData *)arg1; |
| PackBSParams *const pack_bs_params = (PackBSParams *)arg2; |
| AV1_COMP *const cpi = thread_data->cpi; |
| AV1_COMMON *const cm = &cpi->common; |
| AV1EncPackBSSync *const pack_bs_sync = &cpi->mt_info.pack_bs_sync; |
| const CommonTileParams *const tiles = &cm->tiles; |
| const int num_tiles = tiles->cols * tiles->rows; |
| |
| while (1) { |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pack_bs_sync->mutex_); |
| #endif |
| const int tile_idx = get_next_pack_bs_tile_idx(pack_bs_sync, num_tiles); |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(pack_bs_sync->mutex_); |
| #endif |
| if (tile_idx == -1) break; |
| TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; |
| thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx; |
| |
| av1_pack_tile_info(cpi, thread_data->td, &pack_bs_params[tile_idx]); |
| } |
| |
| return 1; |
| } |
| |
| // Prepares thread data and workers of pack bitsteam multithreading. |
| static void prepare_pack_bs_workers(AV1_COMP *const cpi, |
| PackBSParams *const pack_bs_params, |
| AVxWorkerHook hook, const int num_workers) { |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *worker = &mt_info->workers[i]; |
| EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; |
| if (i == 0) { |
| thread_data->td = &cpi->td; |
| } else { |
| thread_data->td = thread_data->original_td; |
| } |
| |
| if (thread_data->td != &cpi->td) thread_data->td->mb = cpi->td.mb; |
| |
| thread_data->cpi = cpi; |
| thread_data->start = i; |
| thread_data->thread_id = i; |
| av1_reset_pack_bs_thread_data(thread_data->td); |
| |
| worker->hook = hook; |
| worker->data1 = thread_data; |
| worker->data2 = pack_bs_params; |
| } |
| |
| AV1_COMMON *const cm = &cpi->common; |
| AV1EncPackBSSync *const pack_bs_sync = &mt_info->pack_bs_sync; |
| const uint16_t num_tiles = cm->tiles.rows * cm->tiles.cols; |
| pack_bs_sync->next_job_idx = 0; |
| |
| PackBSTileOrder *const pack_bs_tile_order = pack_bs_sync->pack_bs_tile_order; |
| // Reset tile order data of pack bitstream |
| av1_zero_array(pack_bs_tile_order, num_tiles); |
| |
| // Populate pack bitstream tile order structure |
| for (uint16_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) { |
| pack_bs_tile_order[tile_idx].abs_sum_level = |
| cpi->tile_data[tile_idx].abs_sum_level; |
| pack_bs_tile_order[tile_idx].tile_idx = tile_idx; |
| } |
| |
| // Sort tiles in descending order based on tile area. |
| qsort(pack_bs_tile_order, num_tiles, sizeof(*pack_bs_tile_order), |
| compare_tile_order); |
| } |
| |
| // Accumulates data after pack bitsteam processing. |
| static void accumulate_pack_bs_data( |
| AV1_COMP *const cpi, const PackBSParams *const pack_bs_params_arr, |
| uint8_t *const dst, uint32_t *total_size, const FrameHeaderInfo *fh_info, |
| int *const largest_tile_id, unsigned int *max_tile_size, |
| uint32_t *const obu_header_size, uint8_t **tile_data_start, |
| const int num_workers) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const CommonTileParams *const tiles = &cm->tiles; |
| const int tile_count = tiles->cols * tiles->rows; |
| // Fixed size tile groups for the moment |
| size_t curr_tg_data_size = 0; |
| int is_first_tg = 1; |
| uint8_t *curr_tg_start = dst; |
| size_t src_offset = 0; |
| size_t dst_offset = 0; |
| |
| for (int tile_idx = 0; tile_idx < tile_count; tile_idx++) { |
| // PackBSParams stores all parameters required to pack tile and header |
| // info. |
| const PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx]; |
| uint32_t tile_size = 0; |
| |
| if (pack_bs_params->new_tg) { |
| curr_tg_start = dst + *total_size; |
| curr_tg_data_size = pack_bs_params->curr_tg_hdr_size; |
| *tile_data_start += pack_bs_params->curr_tg_hdr_size; |
| *obu_header_size = pack_bs_params->obu_header_size; |
| } |
| curr_tg_data_size += |
| pack_bs_params->buf.size + (pack_bs_params->is_last_tile_in_tg ? 0 : 4); |
| |
| if (pack_bs_params->buf.size > *max_tile_size) { |
| *largest_tile_id = tile_idx; |
| *max_tile_size = (unsigned int)pack_bs_params->buf.size; |
| } |
| tile_size += |
| (uint32_t)pack_bs_params->buf.size + *pack_bs_params->total_size; |
| |
| // Pack all the chunks of tile bitstreams together |
| if (tile_idx != 0) memmove(dst + dst_offset, dst + src_offset, tile_size); |
| |
| if (pack_bs_params->is_last_tile_in_tg) |
| av1_write_last_tile_info( |
| cpi, fh_info, pack_bs_params->saved_wb, &curr_tg_data_size, |
| curr_tg_start, &tile_size, tile_data_start, largest_tile_id, |
| &is_first_tg, *obu_header_size, pack_bs_params->obu_extn_header); |
| src_offset += pack_bs_params->tile_buf_size; |
| dst_offset += tile_size; |
| *total_size += tile_size; |
| } |
| |
| // Accumulate thread data |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| for (int idx = num_workers - 1; idx >= 0; idx--) { |
| ThreadData const *td = mt_info->tile_thr_data[idx].td; |
| av1_accumulate_pack_bs_thread_data(cpi, td); |
| } |
| } |
| |
| void av1_write_tile_obu_mt( |
| AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size, |
| struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header, |
| const FrameHeaderInfo *fh_info, int *const largest_tile_id, |
| unsigned int *max_tile_size, uint32_t *const obu_header_size, |
| uint8_t **tile_data_start, const int num_workers) { |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| |
| PackBSParams pack_bs_params[MAX_TILES]; |
| uint32_t tile_size[MAX_TILES] = { 0 }; |
| |
| for (int tile_idx = 0; tile_idx < MAX_TILES; tile_idx++) |
| pack_bs_params[tile_idx].total_size = &tile_size[tile_idx]; |
| |
| init_tile_pack_bs_params(cpi, dst, saved_wb, pack_bs_params, obu_extn_header); |
| prepare_pack_bs_workers(cpi, pack_bs_params, pack_bs_worker_hook, |
| num_workers); |
| launch_workers(mt_info, num_workers); |
| sync_enc_workers(mt_info, &cpi->common, num_workers); |
| accumulate_pack_bs_data(cpi, pack_bs_params, dst, total_size, fh_info, |
| largest_tile_id, max_tile_size, obu_header_size, |
| tile_data_start, num_workers); |
| } |
| |
| // Deallocate memory for CDEF search multi-thread synchronization. |
| void av1_cdef_mt_dealloc(AV1CdefSync *cdef_sync) { |
| (void)cdef_sync; |
| assert(cdef_sync != NULL); |
| #if CONFIG_MULTITHREAD |
| if (cdef_sync->mutex_ != NULL) { |
| pthread_mutex_destroy(cdef_sync->mutex_); |
| aom_free(cdef_sync->mutex_); |
| } |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| // Updates the row and column indices of the next job to be processed. |
| // Also updates end_of_frame flag when the processing of all blocks is complete. |
| static void update_next_job_info(AV1CdefSync *cdef_sync, int nvfb, int nhfb) { |
| cdef_sync->fbc++; |
| if (cdef_sync->fbc == nhfb) { |
| cdef_sync->fbr++; |
| if (cdef_sync->fbr == nvfb) { |
| cdef_sync->end_of_frame = 1; |
| } else { |
| cdef_sync->fbc = 0; |
| } |
| } |
| } |
| |
| // Initializes cdef_sync parameters. |
| static AOM_INLINE void cdef_reset_job_info(AV1CdefSync *cdef_sync) { |
| #if CONFIG_MULTITHREAD |
| if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL); |
| #endif // CONFIG_MULTITHREAD |
| cdef_sync->end_of_frame = 0; |
| cdef_sync->fbr = 0; |
| cdef_sync->fbc = 0; |
| } |
| |
| // Checks if a job is available. If job is available, |
| // populates next job information and returns 1, else returns 0. |
| static AOM_INLINE int cdef_get_next_job(AV1CdefSync *cdef_sync, |
| CdefSearchCtx *cdef_search_ctx, |
| int *cur_fbr, int *cur_fbc, |
| int *sb_count) { |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(cdef_sync->mutex_); |
| #endif // CONFIG_MULTITHREAD |
| int do_next_block = 0; |
| const int nvfb = cdef_search_ctx->nvfb; |
| const int nhfb = cdef_search_ctx->nhfb; |
| |
| // If a block is skip, do not process the block and |
| // check the skip condition for the next block. |
| while ((!cdef_sync->end_of_frame) && |
| (cdef_sb_skip(cdef_search_ctx->mi_params, cdef_sync->fbr, |
| cdef_sync->fbc))) { |
| update_next_job_info(cdef_sync, nvfb, nhfb); |
| } |
| |
| // Populates information needed for current job and update the row, |
| // column indices of the next block to be processed. |
| if (cdef_sync->end_of_frame == 0) { |
| do_next_block = 1; |
| *cur_fbr = cdef_sync->fbr; |
| *cur_fbc = cdef_sync->fbc; |
| *sb_count = cdef_search_ctx->sb_count; |
| cdef_search_ctx->sb_count++; |
| update_next_job_info(cdef_sync, nvfb, nhfb); |
| } |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(cdef_sync->mutex_); |
| #endif // CONFIG_MULTITHREAD |
| return do_next_block; |
| } |
| |
| // Hook function for each thread in CDEF search multi-threading. |
| static int cdef_filter_block_worker_hook(void *arg1, void *arg2) { |
| AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1; |
| CdefSearchCtx *cdef_search_ctx = (CdefSearchCtx *)arg2; |
| int cur_fbr, cur_fbc, sb_count; |
| while (cdef_get_next_job(cdef_sync, cdef_search_ctx, &cur_fbr, &cur_fbc, |
| &sb_count)) { |
| av1_cdef_mse_calc_block(cdef_search_ctx, cur_fbr, cur_fbc, sb_count); |
| } |
| return 1; |
| } |
| |
| // Assigns CDEF search hook function and thread data to each worker. |
| static void prepare_cdef_workers(MultiThreadInfo *mt_info, |
| CdefSearchCtx *cdef_search_ctx, |
| AVxWorkerHook hook, int num_workers) { |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *worker = &mt_info->workers[i]; |
| worker->hook = hook; |
| worker->data1 = &mt_info->cdef_sync; |
| worker->data2 = cdef_search_ctx; |
| } |
| } |
| |
| // Implements multi-threading for CDEF search. |
| void av1_cdef_mse_calc_frame_mt(AV1_COMMON *cm, MultiThreadInfo *mt_info, |
| CdefSearchCtx *cdef_search_ctx) { |
| AV1CdefSync *cdef_sync = &mt_info->cdef_sync; |
| const int num_workers = mt_info->num_mod_workers[MOD_CDEF_SEARCH]; |
| |
| cdef_reset_job_info(cdef_sync); |
| prepare_cdef_workers(mt_info, cdef_search_ctx, cdef_filter_block_worker_hook, |
| num_workers); |
| launch_workers(mt_info, num_workers); |
| sync_enc_workers(mt_info, cm, num_workers); |
| } |
| |
| // Computes num_workers for temporal filter multi-threading. |
| static AOM_INLINE int compute_num_tf_workers(AV1_COMP *cpi) { |
| // For single-pass encode, using no. of workers as per tf block size was not |
| // found to improve speed. Hence the thread assignment for single-pass encode |
| // is kept based on compute_num_enc_workers(). |
| if (cpi->oxcf.pass < AOM_RC_SECOND_PASS) |
| return (av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads)); |
| |
| if (cpi->oxcf.max_threads <= 1) return 1; |
| |
| const int frame_height = cpi->common.height; |
| const BLOCK_SIZE block_size = TF_BLOCK_SIZE; |
| const int mb_height = block_size_high[block_size]; |
| const int mb_rows = get_num_blocks(frame_height, mb_height); |
| return AOMMIN(cpi->oxcf.max_threads, mb_rows); |
| } |
| |
| // Computes num_workers for tpl multi-threading. |
| static AOM_INLINE int compute_num_tpl_workers(AV1_COMP *cpi) { |
| return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads); |
| } |
| |
| // Computes num_workers for loop filter multi-threading. |
| static AOM_INLINE int compute_num_lf_workers(AV1_COMP *cpi) { |
| return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads); |
| } |
| |
| // Computes num_workers for cdef multi-threading. |
| static AOM_INLINE int compute_num_cdef_workers(AV1_COMP *cpi) { |
| return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads); |
| } |
| |
| // Computes num_workers for loop-restoration multi-threading. |
| static AOM_INLINE int compute_num_lr_workers(AV1_COMP *cpi) { |
| return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads); |
| } |
| |
| // Computes num_workers for pack bitstream multi-threading. |
| static AOM_INLINE int compute_num_pack_bs_workers(AV1_COMP *cpi) { |
| if (cpi->oxcf.max_threads <= 1) return 1; |
| return compute_num_enc_tile_mt_workers(&cpi->common, cpi->oxcf.max_threads); |
| } |
| |
| // Computes num_workers for all intra multi-threading. |
| static AOM_INLINE int compute_num_ai_workers(AV1_COMP *cpi) { |
| if (cpi->oxcf.max_threads <= 1) return 1; |
| cpi->weber_bsize = BLOCK_8X8; |
| const BLOCK_SIZE bsize = cpi->weber_bsize; |
| const int mb_step = mi_size_wide[bsize]; |
| const int num_mb_rows = cpi->common.mi_params.mi_rows / mb_step; |
| return AOMMIN(num_mb_rows, cpi->oxcf.max_threads); |
| } |
| |
| int compute_num_mod_workers(AV1_COMP *cpi, MULTI_THREADED_MODULES mod_name) { |
| int num_mod_workers = 0; |
| switch (mod_name) { |
| case MOD_FP: |
| if (cpi->oxcf.pass >= AOM_RC_SECOND_PASS) |
| num_mod_workers = 0; |
| else |
| num_mod_workers = |
| av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads); |
| break; |
| case MOD_TF: num_mod_workers = compute_num_tf_workers(cpi); break; |
| case MOD_TPL: num_mod_workers = compute_num_tpl_workers(cpi); break; |
| case MOD_GME: num_mod_workers = 1; break; |
| case MOD_ENC: |
| num_mod_workers = av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads); |
| break; |
| case MOD_LPF: num_mod_workers = compute_num_lf_workers(cpi); break; |
| case MOD_CDEF_SEARCH: |
| num_mod_workers = compute_num_cdef_workers(cpi); |
| break; |
| case MOD_CDEF: num_mod_workers = compute_num_cdef_workers(cpi); break; |
| case MOD_LR: num_mod_workers = compute_num_lr_workers(cpi); break; |
| case MOD_PACK_BS: num_mod_workers = compute_num_pack_bs_workers(cpi); break; |
| case MOD_FRAME_ENC: |
| num_mod_workers = cpi->ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC]; |
| break; |
| case MOD_AI: |
| if (cpi->oxcf.pass == AOM_RC_ONE_PASS) { |
| num_mod_workers = compute_num_ai_workers(cpi); |
| break; |
| } else { |
| num_mod_workers = 0; |
| break; |
| } |
| default: assert(0); break; |
| } |
| return (num_mod_workers); |
| } |
| // Computes the number of workers for each MT modules in the encoder |
| void av1_compute_num_workers_for_mt(AV1_COMP *cpi) { |
| for (int i = MOD_FP; i < NUM_MT_MODULES; i++) |
| cpi->ppi->p_mt_info.num_mod_workers[i] = |
| compute_num_mod_workers(cpi, (MULTI_THREADED_MODULES)i); |
| } |