blob: b38d9ca54228b394f1555c9e1078ff6c76da9fc9 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_ENCODER_RD_H_
#define AOM_AV1_ENCODER_RD_H_
#include <limits.h>
#include "av1/common/blockd.h"
#include "av1/encoder/block.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/ratectrl.h"
#ifdef __cplusplus
extern "C" {
#endif
#define RDDIV_BITS 7
#define RD_EPB_SHIFT 6
#define RDCOST(RM, R, D) \
(ROUND_POWER_OF_TWO(((int64_t)(R)) * (RM), AV1_PROB_COST_SHIFT) + \
((D) * (1 << RDDIV_BITS)))
#define RDCOST_NEG_R(RM, R, D) \
(((D) * (1 << RDDIV_BITS)) - \
ROUND_POWER_OF_TWO(((int64_t)(R)) * (RM), AV1_PROB_COST_SHIFT))
#define RDCOST_DBL_WITH_NATIVE_BD_DIST(RM, R, D, BD) \
(((((double)(R)) * (RM)) / (double)(1 << AV1_PROB_COST_SHIFT)) + \
((double)((D) >> (2 * (BD - 8))) * (1 << RDDIV_BITS)))
#define QIDX_SKIP_THRESH 115
#define MV_COST_WEIGHT 108
#define MV_COST_WEIGHT_SUB 120
// The fractional part of rd_thresh factor is stored with 5 bits. The maximum
// factor that we allow is two, which is stored as 2 ** (5+1) = 64
#define RD_THRESH_FAC_FRAC_BITS (5)
#define RD_THRESH_FAC_FRAC_VAL (1 << (RD_THRESH_FAC_FRAC_BITS))
#define RD_THRESH_MAX_FACT ((RD_THRESH_FAC_FRAC_VAL) << 1)
#define RD_THRESH_LOG_DEC_FACTOR (4)
#define RD_THRESH_INC (1)
// Factor to weigh the rate for switchable interp filters.
#define SWITCHABLE_INTERP_RATE_FACTOR 1
// Macros for common video resolutions: width x height
// For example, 720p represents video resolution of 1280x720 pixels.
#define RESOLUTION_288P 352 * 288
#define RESOLUTION_360P 640 * 360
#define RESOLUTION_480P 640 * 480
#define RESOLUTION_720P 1280 * 720
#define RESOLUTION_1080P 1920 * 1080
#define RESOLUTION_1440P 2560 * 1440
#define RESOLUTION_4K 3840 * 2160
#define RTC_REFS 4
static const MV_REFERENCE_FRAME real_time_ref_combos[RTC_REFS][2] = {
{ LAST_FRAME, NONE_FRAME },
{ ALTREF_FRAME, NONE_FRAME },
{ GOLDEN_FRAME, NONE_FRAME },
{ INTRA_FRAME, NONE_FRAME }
};
static INLINE int mode_offset(const PREDICTION_MODE mode) {
if (mode >= NEARESTMV) {
return INTER_OFFSET(mode);
} else {
switch (mode) {
case DC_PRED: return 0;
case V_PRED: return 1;
case H_PRED: return 2;
case SMOOTH_PRED: return 3;
default: assert(0); return -1;
}
}
}
enum {
// Default initialization when we are not using winner mode framework. e.g.
// intrabc
DEFAULT_EVAL = 0,
// Initialization for selecting winner mode
MODE_EVAL,
// Initialization for winner mode evaluation
WINNER_MODE_EVAL,
// All mode evaluation types
MODE_EVAL_TYPES,
} UENUM1BYTE(MODE_EVAL_TYPE);
typedef struct RD_OPT {
// Thresh_mult is used to set a threshold for the rd score. A higher value
// means that we will accept the best mode so far more often. This number
// is used in combination with the current block size, and thresh_freq_fact
// to pick a threshold.
int thresh_mult[MAX_MODES];
int threshes[MAX_SEGMENTS][BLOCK_SIZES_ALL][MAX_MODES];
int RDMULT;
double r0;
} RD_OPT;
static INLINE void av1_init_rd_stats(RD_STATS *rd_stats) {
#if CONFIG_RD_DEBUG
int plane;
#endif
rd_stats->rate = 0;
rd_stats->dist = 0;
rd_stats->rdcost = 0;
rd_stats->sse = 0;
rd_stats->skip_txfm = 1;
rd_stats->zero_rate = 0;
#if CONFIG_RD_DEBUG
// This may run into problems when monochrome video is
// encoded, as there will only be 1 plane
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
rd_stats->txb_coeff_cost[plane] = 0;
}
#endif
}
static INLINE void av1_invalid_rd_stats(RD_STATS *rd_stats) {
#if CONFIG_RD_DEBUG
int plane;
#endif
rd_stats->rate = INT_MAX;
rd_stats->dist = INT64_MAX;
rd_stats->rdcost = INT64_MAX;
rd_stats->sse = INT64_MAX;
rd_stats->skip_txfm = 0;
rd_stats->zero_rate = 0;
#if CONFIG_RD_DEBUG
// This may run into problems when monochrome video is
// encoded, as there will only be 1 plane
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
rd_stats->txb_coeff_cost[plane] = INT_MAX;
}
#endif
}
static INLINE void av1_merge_rd_stats(RD_STATS *rd_stats_dst,
const RD_STATS *rd_stats_src) {
if (rd_stats_dst->rate == INT_MAX || rd_stats_src->rate == INT_MAX) {
// If rd_stats_dst or rd_stats_src has invalid rate, we will make
// rd_stats_dst invalid.
av1_invalid_rd_stats(rd_stats_dst);
return;
}
rd_stats_dst->rate = (int)AOMMIN(
((int64_t)rd_stats_dst->rate + (int64_t)rd_stats_src->rate), INT_MAX);
if (!rd_stats_dst->zero_rate)
rd_stats_dst->zero_rate = rd_stats_src->zero_rate;
rd_stats_dst->dist += rd_stats_src->dist;
if (rd_stats_dst->sse < INT64_MAX && rd_stats_src->sse < INT64_MAX) {
rd_stats_dst->sse += rd_stats_src->sse;
}
rd_stats_dst->skip_txfm &= rd_stats_src->skip_txfm;
#if CONFIG_RD_DEBUG
// This may run into problems when monochrome video is
// encoded, as there will only be 1 plane
for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
rd_stats_dst->txb_coeff_cost[plane] += rd_stats_src->txb_coeff_cost[plane];
}
#endif
}
static INLINE void av1_accumulate_rd_stats(RD_STATS *rd_stats, int64_t dist,
int rate, int skip_txfm, int64_t sse,
int zero_rate) {
assert(rd_stats->rate != INT_MAX && rate != INT_MAX);
rd_stats->rate += rate;
if (!rd_stats->zero_rate) rd_stats->zero_rate = zero_rate;
rd_stats->dist += dist;
rd_stats->skip_txfm &= skip_txfm;
rd_stats->sse += sse;
}
static INLINE int64_t av1_calculate_rd_cost(int mult, int rate, int64_t dist) {
assert(mult >= 0);
if (rate >= 0) {
return RDCOST(mult, rate, dist);
}
return RDCOST_NEG_R(mult, -rate, dist);
}
static INLINE void av1_rd_cost_update(int mult, RD_STATS *rd_cost) {
if (rd_cost->rate < INT_MAX && rd_cost->dist < INT64_MAX &&
rd_cost->rdcost < INT64_MAX) {
rd_cost->rdcost = av1_calculate_rd_cost(mult, rd_cost->rate, rd_cost->dist);
} else {
av1_invalid_rd_stats(rd_cost);
}
}
static INLINE void av1_rd_stats_subtraction(int mult,
const RD_STATS *const left,
const RD_STATS *const right,
RD_STATS *result) {
if (left->rate == INT_MAX || right->rate == INT_MAX ||
left->dist == INT64_MAX || right->dist == INT64_MAX ||
left->rdcost == INT64_MAX || right->rdcost == INT64_MAX) {
av1_invalid_rd_stats(result);
} else {
result->rate = left->rate - right->rate;
result->dist = left->dist - right->dist;
result->rdcost = av1_calculate_rd_cost(mult, result->rate, result->dist);
}
}
struct TileInfo;
struct TileDataEnc;
struct AV1_COMP;
struct macroblock;
/*!\brief Compute rdmult based on q index and frame update type
*
* \param[in] bit_depth bit depth
* \param[in] update_type frame update type
* \param[in] qindex q index
*
* \return rdmult
*/
int av1_compute_rd_mult_based_on_qindex(aom_bit_depth_t bit_depth,
FRAME_UPDATE_TYPE update_type,
int qindex);
int av1_compute_rd_mult(const int qindex, const aom_bit_depth_t bit_depth,
const FRAME_UPDATE_TYPE update_type,
const int layer_depth, const int boost_index,
const FRAME_TYPE frame_type,
const int use_fixed_qp_offsets,
const int is_stat_consumption_stage);
void av1_initialize_rd_consts(struct AV1_COMP *cpi);
// Sets the multiplier to convert mv cost to l1 error during motion search.
void av1_set_sad_per_bit(const struct AV1_COMP *cpi, int *sadperbit,
int qindex);
void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n,
unsigned int qstep, int *rate, int64_t *dist);
void av1_model_rd_curvfit(BLOCK_SIZE bsize, double sse_norm, double xqr,
double *rate_f, double *distbysse_f);
void av1_model_rd_surffit(BLOCK_SIZE bsize, double sse_norm, double xm,
double yl, double *rate_f, double *distbysse_f);
int av1_get_switchable_rate(const MACROBLOCK *x, const MACROBLOCKD *xd,
InterpFilter interp_filter, int dual_filter);
YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const struct AV1_COMP *cpi,
int ref_frame);
void av1_init_me_luts(void);
void av1_set_mvcost(MACROBLOCK *x, int ref, int ref_mv_idx);
void av1_get_entropy_contexts(BLOCK_SIZE plane_bsize,
const struct macroblockd_plane *pd,
ENTROPY_CONTEXT t_above[MAX_MIB_SIZE],
ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]);
void av1_set_rd_speed_thresholds(struct AV1_COMP *cpi);
void av1_update_rd_thresh_fact(const AV1_COMMON *const cm,
int (*fact)[MAX_MODES], int rd_thresh,
BLOCK_SIZE bsize, THR_MODES best_mode_index,
THR_MODES inter_mode_start,
THR_MODES inter_mode_end,
THR_MODES intra_mode_start,
THR_MODES intra_mode_end);
static INLINE void reset_thresh_freq_fact(MACROBLOCK *const x) {
for (int i = 0; i < BLOCK_SIZES_ALL; ++i) {
for (int j = 0; j < MAX_MODES; ++j) {
x->thresh_freq_fact[i][j] = RD_THRESH_FAC_FRAC_VAL;
}
}
}
static INLINE int rd_less_than_thresh(int64_t best_rd, int64_t thresh,
int thresh_fact) {
return best_rd < (thresh * thresh_fact >> 5) || thresh == INT_MAX;
}
void av1_mv_pred(const struct AV1_COMP *cpi, MACROBLOCK *x,
uint8_t *ref_y_buffer, int ref_y_stride, int ref_frame,
BLOCK_SIZE block_size);
// Sets the multiplier to convert mv cost to l2 error during motion search.
static INLINE void av1_set_error_per_bit(int *errorperbit, int rdmult) {
*errorperbit = AOMMAX(rdmult >> RD_EPB_SHIFT, 1);
}
// Get the threshold for R-D optimization of coefficients depending upon mode
// decision/winner mode processing
static INLINE void get_rd_opt_coeff_thresh(
const uint32_t (*const coeff_opt_threshold)[2],
TxfmSearchParams *txfm_params, int enable_winner_mode_for_coeff_opt,
int is_winner_mode) {
if (!enable_winner_mode_for_coeff_opt) {
// Default initialization of threshold
txfm_params->coeff_opt_thresholds[0] = coeff_opt_threshold[DEFAULT_EVAL][0];
txfm_params->coeff_opt_thresholds[1] = coeff_opt_threshold[DEFAULT_EVAL][1];
return;
}
// TODO(any): Experiment with coeff_opt_dist_threshold values when
// enable_winner_mode_for_coeff_opt is ON
// TODO(any): Skip the winner mode processing for blocks with lower residual
// energy as R-D optimization of coefficients would have been enabled during
// mode decision
// Use conservative threshold during mode decision and perform R-D
// optimization of coeffs always for winner modes
if (is_winner_mode) {
txfm_params->coeff_opt_thresholds[0] =
coeff_opt_threshold[WINNER_MODE_EVAL][0];
txfm_params->coeff_opt_thresholds[1] =
coeff_opt_threshold[WINNER_MODE_EVAL][1];
} else {
txfm_params->coeff_opt_thresholds[0] = coeff_opt_threshold[MODE_EVAL][0];
txfm_params->coeff_opt_thresholds[1] = coeff_opt_threshold[MODE_EVAL][1];
}
}
// Used to reset the state of mb rd hash information
static INLINE void reset_mb_rd_record(MB_RD_RECORD *const mb_rd_record) {
if (!mb_rd_record) return;
// Reset the state for use_mb_rd_hash
mb_rd_record->num = mb_rd_record->index_start = 0;
}
void av1_setup_pred_block(const MACROBLOCKD *xd,
struct buf_2d dst[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src,
const struct scale_factors *scale,
const struct scale_factors *scale_uv,
const int num_planes);
int av1_get_intra_cost_penalty(int qindex, int qdelta,
aom_bit_depth_t bit_depth);
void av1_fill_mode_rates(AV1_COMMON *const cm, ModeCosts *mode_costs,
FRAME_CONTEXT *fc);
void av1_fill_lr_rates(ModeCosts *mode_costs, FRAME_CONTEXT *fc);
void av1_fill_coeff_costs(CoeffCosts *coeff_costs, FRAME_CONTEXT *fc,
const int num_planes);
void av1_fill_mv_costs(const nmv_context *nmvc, int integer_mv, int usehp,
MvCosts *mv_costs);
void av1_fill_dv_costs(const nmv_context *ndvc, IntraBCMVCosts *dv_costs);
int av1_get_adaptive_rdmult(const struct AV1_COMP *cpi, double beta);
int av1_get_deltaq_offset(aom_bit_depth_t bit_depth, int qindex, double beta);
/*!\brief Adjust current superblock's q_index based on delta q resolution
*
* \param[in] delta_q_res delta q resolution
* \param[in] prev_qindex previous superblock's q index
* \param[in] curr_qindex current superblock's q index
*
* \return the current superblock's adjusted q_index
*/
int av1_adjust_q_from_delta_q_res(int delta_q_res, int prev_qindex,
int curr_qindex);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_ENCODER_RD_H_