|  | /* | 
|  | *  Copyright (c) 2012 The WebM project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "third_party/googletest/src/include/gtest/gtest.h" | 
|  |  | 
|  | extern "C" { | 
|  | #include "vp9/common/vp9_entropy.h" | 
|  | #include "vp9_rtcd.h" | 
|  | } | 
|  |  | 
|  | #include "acm_random.h" | 
|  | #include "vpx/vpx_integer.h" | 
|  |  | 
|  | using libvpx_test::ACMRandom; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | #ifdef _MSC_VER | 
|  | static int round(double x) { | 
|  | if (x < 0) | 
|  | return (int)ceil(x - 0.5); | 
|  | else | 
|  | return (int)floor(x + 0.5); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | const double PI = 3.1415926535898; | 
|  | void reference2_16x16_idct_2d(double *input, double *output) { | 
|  | double x; | 
|  | for (int l = 0; l < 16; ++l) { | 
|  | for (int k = 0; k < 16; ++k) { | 
|  | double s = 0; | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | for (int j = 0; j < 16; ++j) { | 
|  | x=cos(PI*j*(l+0.5)/16.0)*cos(PI*i*(k+0.5)/16.0)*input[i*16+j]/256; | 
|  | if (i != 0) | 
|  | x *= sqrt(2.0); | 
|  | if (j != 0) | 
|  | x *= sqrt(2.0); | 
|  | s += x; | 
|  | } | 
|  | } | 
|  | output[k*16+l] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static const double C1 = 0.995184726672197; | 
|  | static const double C2 = 0.98078528040323; | 
|  | static const double C3 = 0.956940335732209; | 
|  | static const double C4 = 0.923879532511287; | 
|  | static const double C5 = 0.881921264348355; | 
|  | static const double C6 = 0.831469612302545; | 
|  | static const double C7 = 0.773010453362737; | 
|  | static const double C8 = 0.707106781186548; | 
|  | static const double C9 = 0.634393284163646; | 
|  | static const double C10 = 0.555570233019602; | 
|  | static const double C11 = 0.471396736825998; | 
|  | static const double C12 = 0.38268343236509; | 
|  | static const double C13 = 0.290284677254462; | 
|  | static const double C14 = 0.195090322016128; | 
|  | static const double C15 = 0.098017140329561; | 
|  |  | 
|  | static void butterfly_16x16_dct_1d(double input[16], double output[16]) { | 
|  | double step[16]; | 
|  | double intermediate[16]; | 
|  | double temp1, temp2; | 
|  |  | 
|  | // step 1 | 
|  | step[ 0] = input[0] + input[15]; | 
|  | step[ 1] = input[1] + input[14]; | 
|  | step[ 2] = input[2] + input[13]; | 
|  | step[ 3] = input[3] + input[12]; | 
|  | step[ 4] = input[4] + input[11]; | 
|  | step[ 5] = input[5] + input[10]; | 
|  | step[ 6] = input[6] + input[ 9]; | 
|  | step[ 7] = input[7] + input[ 8]; | 
|  | step[ 8] = input[7] - input[ 8]; | 
|  | step[ 9] = input[6] - input[ 9]; | 
|  | step[10] = input[5] - input[10]; | 
|  | step[11] = input[4] - input[11]; | 
|  | step[12] = input[3] - input[12]; | 
|  | step[13] = input[2] - input[13]; | 
|  | step[14] = input[1] - input[14]; | 
|  | step[15] = input[0] - input[15]; | 
|  |  | 
|  | // step 2 | 
|  | output[0] = step[0] + step[7]; | 
|  | output[1] = step[1] + step[6]; | 
|  | output[2] = step[2] + step[5]; | 
|  | output[3] = step[3] + step[4]; | 
|  | output[4] = step[3] - step[4]; | 
|  | output[5] = step[2] - step[5]; | 
|  | output[6] = step[1] - step[6]; | 
|  | output[7] = step[0] - step[7]; | 
|  |  | 
|  | temp1 = step[ 8]*C7; | 
|  | temp2 = step[15]*C9; | 
|  | output[ 8] = temp1 + temp2; | 
|  |  | 
|  | temp1 = step[ 9]*C11; | 
|  | temp2 = step[14]*C5; | 
|  | output[ 9] = temp1 - temp2; | 
|  |  | 
|  | temp1 = step[10]*C3; | 
|  | temp2 = step[13]*C13; | 
|  | output[10] = temp1 + temp2; | 
|  |  | 
|  | temp1 = step[11]*C15; | 
|  | temp2 = step[12]*C1; | 
|  | output[11] = temp1 - temp2; | 
|  |  | 
|  | temp1 = step[11]*C1; | 
|  | temp2 = step[12]*C15; | 
|  | output[12] = temp2 + temp1; | 
|  |  | 
|  | temp1 = step[10]*C13; | 
|  | temp2 = step[13]*C3; | 
|  | output[13] = temp2 - temp1; | 
|  |  | 
|  | temp1 = step[ 9]*C5; | 
|  | temp2 = step[14]*C11; | 
|  | output[14] = temp2 + temp1; | 
|  |  | 
|  | temp1 = step[ 8]*C9; | 
|  | temp2 = step[15]*C7; | 
|  | output[15] = temp2 - temp1; | 
|  |  | 
|  | // step 3 | 
|  | step[ 0] = output[0] + output[3]; | 
|  | step[ 1] = output[1] + output[2]; | 
|  | step[ 2] = output[1] - output[2]; | 
|  | step[ 3] = output[0] - output[3]; | 
|  |  | 
|  | temp1 = output[4]*C14; | 
|  | temp2 = output[7]*C2; | 
|  | step[ 4] = temp1 + temp2; | 
|  |  | 
|  | temp1 = output[5]*C10; | 
|  | temp2 = output[6]*C6; | 
|  | step[ 5] = temp1 + temp2; | 
|  |  | 
|  | temp1 = output[5]*C6; | 
|  | temp2 = output[6]*C10; | 
|  | step[ 6] = temp2 - temp1; | 
|  |  | 
|  | temp1 = output[4]*C2; | 
|  | temp2 = output[7]*C14; | 
|  | step[ 7] = temp2 - temp1; | 
|  |  | 
|  | step[ 8] = output[ 8] + output[11]; | 
|  | step[ 9] = output[ 9] + output[10]; | 
|  | step[10] = output[ 9] - output[10]; | 
|  | step[11] = output[ 8] - output[11]; | 
|  |  | 
|  | step[12] = output[12] + output[15]; | 
|  | step[13] = output[13] + output[14]; | 
|  | step[14] = output[13] - output[14]; | 
|  | step[15] = output[12] - output[15]; | 
|  |  | 
|  | // step 4 | 
|  | output[ 0] = (step[ 0] + step[ 1]); | 
|  | output[ 8] = (step[ 0] - step[ 1]); | 
|  |  | 
|  | temp1 = step[2]*C12; | 
|  | temp2 = step[3]*C4; | 
|  | temp1 = temp1 + temp2; | 
|  | output[ 4] = 2*(temp1*C8); | 
|  |  | 
|  | temp1 = step[2]*C4; | 
|  | temp2 = step[3]*C12; | 
|  | temp1 = temp2 - temp1; | 
|  | output[12] = 2*(temp1*C8); | 
|  |  | 
|  | output[ 2] = 2*((step[4] + step[ 5])*C8); | 
|  | output[14] = 2*((step[7] - step[ 6])*C8); | 
|  |  | 
|  | temp1 = step[4] - step[5]; | 
|  | temp2 = step[6] + step[7]; | 
|  | output[ 6] = (temp1 + temp2); | 
|  | output[10] = (temp1 - temp2); | 
|  |  | 
|  | intermediate[8] = step[8] + step[14]; | 
|  | intermediate[9] = step[9] + step[15]; | 
|  |  | 
|  | temp1 = intermediate[8]*C12; | 
|  | temp2 = intermediate[9]*C4; | 
|  | temp1 = temp1 - temp2; | 
|  | output[3] = 2*(temp1*C8); | 
|  |  | 
|  | temp1 = intermediate[8]*C4; | 
|  | temp2 = intermediate[9]*C12; | 
|  | temp1 = temp2 + temp1; | 
|  | output[13] = 2*(temp1*C8); | 
|  |  | 
|  | output[ 9] = 2*((step[10] + step[11])*C8); | 
|  |  | 
|  | intermediate[11] = step[10] - step[11]; | 
|  | intermediate[12] = step[12] + step[13]; | 
|  | intermediate[13] = step[12] - step[13]; | 
|  | intermediate[14] = step[ 8] - step[14]; | 
|  | intermediate[15] = step[ 9] - step[15]; | 
|  |  | 
|  | output[15] = (intermediate[11] + intermediate[12]); | 
|  | output[ 1] = -(intermediate[11] - intermediate[12]); | 
|  |  | 
|  | output[ 7] = 2*(intermediate[13]*C8); | 
|  |  | 
|  | temp1 = intermediate[14]*C12; | 
|  | temp2 = intermediate[15]*C4; | 
|  | temp1 = temp1 - temp2; | 
|  | output[11] = -2*(temp1*C8); | 
|  |  | 
|  | temp1 = intermediate[14]*C4; | 
|  | temp2 = intermediate[15]*C12; | 
|  | temp1 = temp2 + temp1; | 
|  | output[ 5] = 2*(temp1*C8); | 
|  | } | 
|  |  | 
|  | static void reference_16x16_dct_1d(double in[16], double out[16]) { | 
|  | const double kPi = 3.141592653589793238462643383279502884; | 
|  | const double kInvSqrt2 = 0.707106781186547524400844362104; | 
|  | for (int k = 0; k < 16; k++) { | 
|  | out[k] = 0.0; | 
|  | for (int n = 0; n < 16; n++) | 
|  | out[k] += in[n]*cos(kPi*(2*n+1)*k/32.0); | 
|  | if (k == 0) | 
|  | out[k] = out[k]*kInvSqrt2; | 
|  | } | 
|  | } | 
|  |  | 
|  | void reference_16x16_dct_2d(int16_t input[16*16], double output[16*16]) { | 
|  | // First transform columns | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | double temp_in[16], temp_out[16]; | 
|  | for (int j = 0; j < 16; ++j) | 
|  | temp_in[j] = input[j*16 + i]; | 
|  | butterfly_16x16_dct_1d(temp_in, temp_out); | 
|  | for (int j = 0; j < 16; ++j) | 
|  | output[j*16 + i] = temp_out[j]; | 
|  | } | 
|  | // Then transform rows | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | double temp_in[16], temp_out[16]; | 
|  | for (int j = 0; j < 16; ++j) | 
|  | temp_in[j] = output[j + i*16]; | 
|  | butterfly_16x16_dct_1d(temp_in, temp_out); | 
|  | // Scale by some magic number | 
|  | for (int j = 0; j < 16; ++j) | 
|  | output[j + i*16] = temp_out[j]/2; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | TEST(VP9Idct16x16Test, AccuracyCheck) { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | const int count_test_block = 1000; | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | int16_t in[256], coeff[256]; | 
|  | int16_t out_c[256]; | 
|  | double out_r[256]; | 
|  |  | 
|  | // Initialize a test block with input range [-255, 255]. | 
|  | for (int j = 0; j < 256; ++j) | 
|  | in[j] = rnd.Rand8() - rnd.Rand8(); | 
|  |  | 
|  | reference_16x16_dct_2d(in, out_r); | 
|  | for (int j = 0; j < 256; j++) | 
|  | coeff[j] = round(out_r[j]); | 
|  | vp9_short_idct16x16_c(coeff, out_c, 32); | 
|  | for (int j = 0; j < 256; ++j) { | 
|  | const int diff = out_c[j] - in[j]; | 
|  | const int error = diff * diff; | 
|  | EXPECT_GE(1, error) | 
|  | << "Error: 16x16 IDCT has error " << error | 
|  | << " at index " << j; | 
|  | } | 
|  | } | 
|  | } | 
|  | #if 1 | 
|  | // we need enable fdct test once we re-do the 16 point fdct. | 
|  | TEST(VP9Fdct16x16Test, AccuracyCheck) { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | int max_error = 0; | 
|  | double total_error = 0; | 
|  | const int count_test_block = 1000; | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | int16_t test_input_block[256]; | 
|  | int16_t test_temp_block[256]; | 
|  | int16_t test_output_block[256]; | 
|  |  | 
|  | // Initialize a test block with input range [-255, 255]. | 
|  | for (int j = 0; j < 256; ++j) | 
|  | test_input_block[j] = rnd.Rand8() - rnd.Rand8(); | 
|  |  | 
|  | const int pitch = 32; | 
|  | vp9_short_fdct16x16_c(test_input_block, test_temp_block, pitch); | 
|  | vp9_short_idct16x16_c(test_temp_block, test_output_block, pitch); | 
|  |  | 
|  | for (int j = 0; j < 256; ++j) { | 
|  | const int diff = test_input_block[j] - test_output_block[j]; | 
|  | const int error = diff * diff; | 
|  | if (max_error < error) | 
|  | max_error = error; | 
|  | total_error += error; | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPECT_GE(1, max_error) | 
|  | << "Error: 16x16 FDCT/IDCT has an individual round trip error > 1"; | 
|  |  | 
|  | EXPECT_GE(count_test_block , total_error) | 
|  | << "Error: 16x16 FDCT/IDCT has average round trip error > 1 per block"; | 
|  | } | 
|  |  | 
|  | TEST(VP9Fdct16x16Test, CoeffSizeCheck) { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | const int count_test_block = 1000; | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | int16_t input_block[256], input_extreme_block[256]; | 
|  | int16_t output_block[256], output_extreme_block[256]; | 
|  |  | 
|  | // Initialize a test block with input range [-255, 255]. | 
|  | for (int j = 0; j < 256; ++j) { | 
|  | input_block[j] = rnd.Rand8() - rnd.Rand8(); | 
|  | input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255; | 
|  | } | 
|  | if (i == 0) | 
|  | for (int j = 0; j < 256; ++j) | 
|  | input_extreme_block[j] = 255; | 
|  |  | 
|  | const int pitch = 32; | 
|  | vp9_short_fdct16x16_c(input_block, output_block, pitch); | 
|  | vp9_short_fdct16x16_c(input_extreme_block, output_extreme_block, pitch); | 
|  |  | 
|  | // The minimum quant value is 4. | 
|  | for (int j = 0; j < 256; ++j) { | 
|  | EXPECT_GE(4*DCT_MAX_VALUE, abs(output_block[j])) | 
|  | << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE"; | 
|  | EXPECT_GE(4*DCT_MAX_VALUE, abs(output_extreme_block[j])) | 
|  | << "Error: 16x16 FDCT extreme has coefficient larger than 4*DCT_MAX_VALUE"; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | }  // namespace |