| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_BLOCKD_H_ |
| #define AOM_AV1_COMMON_BLOCKD_H_ |
| |
| #include "config/aom_config.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_ports/mem.h" |
| #include "aom_scale/yv12config.h" |
| |
| #include "av1/common/common_data.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/mv.h" |
| #include "av1/common/scale.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/tile_common.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #define USE_B_QUANT_NO_TRELLIS 1 |
| |
| #define MAX_MB_PLANE 3 |
| |
| #define MAX_DIFFWTD_MASK_BITS 1 |
| |
| #define INTERINTRA_WEDGE_SIGN 0 |
| |
| // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS |
| enum { |
| DIFFWTD_38 = 0, |
| DIFFWTD_38_INV, |
| DIFFWTD_MASK_TYPES, |
| } UENUM1BYTE(DIFFWTD_MASK_TYPE); |
| |
| enum { |
| KEY_FRAME = 0, |
| INTER_FRAME = 1, |
| INTRA_ONLY_FRAME = 2, // replaces intra-only |
| S_FRAME = 3, |
| FRAME_TYPES, |
| } UENUM1BYTE(FRAME_TYPE); |
| |
| static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) { |
| return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; |
| } |
| |
| static INLINE int is_inter_mode(PREDICTION_MODE mode) { |
| return mode >= INTER_MODE_START && mode < INTER_MODE_END; |
| } |
| |
| typedef struct { |
| uint8_t *plane[MAX_MB_PLANE]; |
| int stride[MAX_MB_PLANE]; |
| } BUFFER_SET; |
| |
| static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) { |
| return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END; |
| } |
| static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) { |
| return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END; |
| } |
| |
| static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) { |
| static const PREDICTION_MODE lut[] = { |
| DC_PRED, // DC_PRED |
| V_PRED, // V_PRED |
| H_PRED, // H_PRED |
| D45_PRED, // D45_PRED |
| D135_PRED, // D135_PRED |
| D113_PRED, // D113_PRED |
| D157_PRED, // D157_PRED |
| D203_PRED, // D203_PRED |
| D67_PRED, // D67_PRED |
| SMOOTH_PRED, // SMOOTH_PRED |
| SMOOTH_V_PRED, // SMOOTH_V_PRED |
| SMOOTH_H_PRED, // SMOOTH_H_PRED |
| PAETH_PRED, // PAETH_PRED |
| NEARESTMV, // NEARESTMV |
| NEARMV, // NEARMV |
| GLOBALMV, // GLOBALMV |
| NEWMV, // NEWMV |
| NEARESTMV, // NEAREST_NEARESTMV |
| NEARMV, // NEAR_NEARMV |
| NEARESTMV, // NEAREST_NEWMV |
| NEWMV, // NEW_NEARESTMV |
| NEARMV, // NEAR_NEWMV |
| NEWMV, // NEW_NEARMV |
| GLOBALMV, // GLOBAL_GLOBALMV |
| NEWMV, // NEW_NEWMV |
| }; |
| assert(NELEMENTS(lut) == MB_MODE_COUNT); |
| assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode)); |
| return lut[mode]; |
| } |
| |
| static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) { |
| static const PREDICTION_MODE lut[] = { |
| MB_MODE_COUNT, // DC_PRED |
| MB_MODE_COUNT, // V_PRED |
| MB_MODE_COUNT, // H_PRED |
| MB_MODE_COUNT, // D45_PRED |
| MB_MODE_COUNT, // D135_PRED |
| MB_MODE_COUNT, // D113_PRED |
| MB_MODE_COUNT, // D157_PRED |
| MB_MODE_COUNT, // D203_PRED |
| MB_MODE_COUNT, // D67_PRED |
| MB_MODE_COUNT, // SMOOTH_PRED |
| MB_MODE_COUNT, // SMOOTH_V_PRED |
| MB_MODE_COUNT, // SMOOTH_H_PRED |
| MB_MODE_COUNT, // PAETH_PRED |
| MB_MODE_COUNT, // NEARESTMV |
| MB_MODE_COUNT, // NEARMV |
| MB_MODE_COUNT, // GLOBALMV |
| MB_MODE_COUNT, // NEWMV |
| NEARESTMV, // NEAREST_NEARESTMV |
| NEARMV, // NEAR_NEARMV |
| NEWMV, // NEAREST_NEWMV |
| NEARESTMV, // NEW_NEARESTMV |
| NEWMV, // NEAR_NEWMV |
| NEARMV, // NEW_NEARMV |
| GLOBALMV, // GLOBAL_GLOBALMV |
| NEWMV, // NEW_NEWMV |
| }; |
| assert(NELEMENTS(lut) == MB_MODE_COUNT); |
| assert(is_inter_compound_mode(mode)); |
| return lut[mode]; |
| } |
| |
| static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) { |
| return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV || |
| mode == NEW_NEARMV); |
| } |
| |
| static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) { |
| return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV || |
| mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV); |
| } |
| |
| static INLINE int is_masked_compound_type(COMPOUND_TYPE type) { |
| return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD); |
| } |
| |
| /* For keyframes, intra block modes are predicted by the (already decoded) |
| modes for the Y blocks to the left and above us; for interframes, there |
| is a single probability table. */ |
| |
| typedef struct { |
| // Value of base colors for Y, U, and V |
| uint16_t palette_colors[3 * PALETTE_MAX_SIZE]; |
| // Number of base colors for Y (0) and UV (1) |
| uint8_t palette_size[2]; |
| } PALETTE_MODE_INFO; |
| |
| typedef struct { |
| FILTER_INTRA_MODE filter_intra_mode; |
| uint8_t use_filter_intra; |
| } FILTER_INTRA_MODE_INFO; |
| |
| static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = { |
| DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED |
| }; |
| |
| #if CONFIG_RD_DEBUG |
| #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE) |
| #endif |
| |
| typedef struct RD_STATS { |
| int rate; |
| int64_t dist; |
| // Please be careful of using rdcost, it's not guaranteed to be set all the |
| // time. |
| // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In |
| // these functions, make sure rdcost is always up-to-date according to |
| // rate/dist. |
| int64_t rdcost; |
| int64_t sse; |
| int skip_txfm; // sse should equal to dist when skip_txfm == 1 |
| int zero_rate; |
| #if CONFIG_RD_DEBUG |
| int txb_coeff_cost[MAX_MB_PLANE]; |
| // TODO(jingning): Temporary solution to silence stack over-size warning |
| // in handle_inter_mode. This should be fixed after rate-distortion |
| // optimization refactoring. |
| int16_t txb_coeff_cost_map[MAX_MB_PLANE][TXB_COEFF_COST_MAP_SIZE] |
| [TXB_COEFF_COST_MAP_SIZE]; |
| #endif // CONFIG_RD_DEBUG |
| } RD_STATS; |
| |
| // This struct is used to group function args that are commonly |
| // sent together in functions related to interinter compound modes |
| typedef struct { |
| uint8_t *seg_mask; |
| int8_t wedge_index; |
| int8_t wedge_sign; |
| DIFFWTD_MASK_TYPE mask_type; |
| COMPOUND_TYPE type; |
| } INTERINTER_COMPOUND_DATA; |
| |
| #define INTER_TX_SIZE_BUF_LEN 16 |
| #define TXK_TYPE_BUF_LEN 64 |
| // This structure now relates to 4x4 block regions. |
| typedef struct MB_MODE_INFO { |
| // interinter members |
| INTERINTER_COMPOUND_DATA interinter_comp; |
| WarpedMotionParams wm_params; |
| int_mv mv[2]; |
| // q index for the current coding block. |
| int current_qindex; |
| // Only for INTER blocks |
| int_interpfilters interp_filters; |
| // TODO(debargha): Consolidate these flags |
| #if CONFIG_RD_DEBUG |
| RD_STATS rd_stats; |
| int mi_row; |
| int mi_col; |
| #endif |
| #if CONFIG_INSPECTION |
| int16_t tx_skip[TXK_TYPE_BUF_LEN]; |
| #endif |
| PALETTE_MODE_INFO palette_mode_info; |
| // Common for both INTER and INTRA blocks |
| BLOCK_SIZE sb_type; |
| PREDICTION_MODE mode; |
| // Only for INTRA blocks |
| UV_PREDICTION_MODE uv_mode; |
| // interintra members |
| INTERINTRA_MODE interintra_mode; |
| MOTION_MODE motion_mode; |
| PARTITION_TYPE partition; |
| MV_REFERENCE_FRAME ref_frame[2]; |
| FILTER_INTRA_MODE_INFO filter_intra_mode_info; |
| int8_t skip_txfm; |
| uint8_t inter_tx_size[INTER_TX_SIZE_BUF_LEN]; |
| TX_SIZE tx_size; |
| int8_t delta_lf_from_base; |
| int8_t delta_lf[FRAME_LF_COUNT]; |
| int8_t interintra_wedge_index; |
| // The actual prediction angle is the base angle + (angle_delta * step). |
| int8_t angle_delta[PLANE_TYPES]; |
| /* deringing gain *per-superblock* */ |
| // Joint sign of alpha Cb and alpha Cr |
| int8_t cfl_alpha_signs; |
| // Index of the alpha Cb and alpha Cr combination |
| uint8_t cfl_alpha_idx; |
| uint8_t num_proj_ref; |
| uint8_t overlappable_neighbors[2]; |
| // If comp_group_idx=0, indicate if dist_wtd_comp(0) or avg_comp(1) is used. |
| uint8_t compound_idx; |
| uint8_t use_wedge_interintra : 1; |
| uint8_t segment_id : 3; |
| uint8_t seg_id_predicted : 1; // valid only when temporal_update is enabled |
| uint8_t skip_mode : 1; |
| uint8_t use_intrabc : 1; |
| uint8_t ref_mv_idx : 2; |
| // Indicate if masked compound is used(1) or not(0). |
| uint8_t comp_group_idx : 1; |
| int8_t cdef_strength : 4; |
| } MB_MODE_INFO; |
| |
| static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) { |
| return mbmi->use_intrabc; |
| } |
| |
| static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) { |
| assert(mode < UV_INTRA_MODES); |
| static const PREDICTION_MODE uv2y[] = { |
| DC_PRED, // UV_DC_PRED |
| V_PRED, // UV_V_PRED |
| H_PRED, // UV_H_PRED |
| D45_PRED, // UV_D45_PRED |
| D135_PRED, // UV_D135_PRED |
| D113_PRED, // UV_D113_PRED |
| D157_PRED, // UV_D157_PRED |
| D203_PRED, // UV_D203_PRED |
| D67_PRED, // UV_D67_PRED |
| SMOOTH_PRED, // UV_SMOOTH_PRED |
| SMOOTH_V_PRED, // UV_SMOOTH_V_PRED |
| SMOOTH_H_PRED, // UV_SMOOTH_H_PRED |
| PAETH_PRED, // UV_PAETH_PRED |
| DC_PRED, // UV_CFL_PRED |
| INTRA_INVALID, // UV_INTRA_MODES |
| INTRA_INVALID, // UV_MODE_INVALID |
| }; |
| return uv2y[mode]; |
| } |
| |
| static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) { |
| return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME; |
| } |
| |
| static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) { |
| return mbmi->ref_frame[1] > INTRA_FRAME; |
| } |
| |
| static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) { |
| return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^ |
| (mbmi->ref_frame[1] >= BWDREF_FRAME))); |
| } |
| |
| static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) { |
| static const MV_REFERENCE_FRAME lut[] = { |
| LAST_FRAME, // LAST_LAST2_FRAMES, |
| LAST_FRAME, // LAST_LAST3_FRAMES, |
| LAST_FRAME, // LAST_GOLDEN_FRAMES, |
| BWDREF_FRAME, // BWDREF_ALTREF_FRAMES, |
| LAST2_FRAME, // LAST2_LAST3_FRAMES |
| LAST2_FRAME, // LAST2_GOLDEN_FRAMES, |
| LAST3_FRAME, // LAST3_GOLDEN_FRAMES, |
| BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES, |
| ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES, |
| }; |
| assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS); |
| return lut[ref_idx]; |
| } |
| |
| static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) { |
| static const MV_REFERENCE_FRAME lut[] = { |
| LAST2_FRAME, // LAST_LAST2_FRAMES, |
| LAST3_FRAME, // LAST_LAST3_FRAMES, |
| GOLDEN_FRAME, // LAST_GOLDEN_FRAMES, |
| ALTREF_FRAME, // BWDREF_ALTREF_FRAMES, |
| LAST3_FRAME, // LAST2_LAST3_FRAMES |
| GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES, |
| GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES, |
| ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES, |
| ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES, |
| }; |
| assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS); |
| return lut[ref_idx]; |
| } |
| |
| PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi); |
| |
| PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi); |
| |
| static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi, |
| TransformationType type) { |
| const PREDICTION_MODE mode = mbmi->mode; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int block_size_allowed = |
| AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; |
| return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION && |
| block_size_allowed; |
| } |
| |
| #if CONFIG_MISMATCH_DEBUG |
| static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col, |
| int mi_row, int tx_blk_col, int tx_blk_row, |
| int subsampling_x, int subsampling_y) { |
| *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) + |
| (tx_blk_col << MI_SIZE_LOG2); |
| *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) + |
| (tx_blk_row << MI_SIZE_LOG2); |
| } |
| #endif |
| |
| enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision); |
| |
| struct buf_2d { |
| uint8_t *buf; |
| uint8_t *buf0; |
| int width; |
| int height; |
| int stride; |
| }; |
| |
| typedef struct eob_info { |
| uint16_t eob; |
| uint16_t max_scan_line; |
| } eob_info; |
| |
| typedef struct { |
| DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]); |
| eob_info eob_data[MAX_MB_PLANE] |
| [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)]; |
| DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]); |
| } CB_BUFFER; |
| |
| typedef struct macroblockd_plane { |
| PLANE_TYPE plane_type; |
| int subsampling_x; |
| int subsampling_y; |
| struct buf_2d dst; |
| struct buf_2d pre[2]; |
| ENTROPY_CONTEXT *above_entropy_context; |
| ENTROPY_CONTEXT *left_entropy_context; |
| |
| // The dequantizers below are true dequantizers used only in the |
| // dequantization process. They have the same coefficient |
| // shift/scale as TX. |
| int16_t seg_dequant_QTX[MAX_SEGMENTS][2]; |
| // Pointer to color index map of: |
| // - Current coding block, on encoder side. |
| // - Current superblock, on decoder side. |
| uint8_t *color_index_map; |
| |
| // block size in pixels |
| uint8_t width, height; |
| |
| qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; |
| qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; |
| } MACROBLOCKD_PLANE; |
| |
| #define BLOCK_OFFSET(i) ((i) << 4) |
| |
| typedef struct { |
| DECLARE_ALIGNED(16, InterpKernel, vfilter); |
| DECLARE_ALIGNED(16, InterpKernel, hfilter); |
| } WienerInfo; |
| |
| typedef struct { |
| int ep; |
| int xqd[2]; |
| } SgrprojInfo; |
| |
| #if CONFIG_DEBUG |
| #define CFL_SUB8X8_VAL_MI_SIZE (4) |
| #define CFL_SUB8X8_VAL_MI_SQUARE \ |
| (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE) |
| #endif // CONFIG_DEBUG |
| #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32) |
| #define CFL_BUF_LINE (32) |
| #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3) |
| #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4) |
| #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE) |
| typedef struct cfl_ctx { |
| // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid |
| // shifts) |
| uint16_t recon_buf_q3[CFL_BUF_SQUARE]; |
| // Q3 AC contributions (reconstructed luma pixels - tx block avg) |
| int16_t ac_buf_q3[CFL_BUF_SQUARE]; |
| |
| // Cache the DC_PRED when performing RDO, so it does not have to be recomputed |
| // for every scaling parameter |
| int dc_pred_is_cached[CFL_PRED_PLANES]; |
| // The DC_PRED cache is disable when decoding |
| int use_dc_pred_cache; |
| // Only cache the first row of the DC_PRED |
| int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE]; |
| |
| // Height and width currently used in the CfL prediction buffer. |
| int buf_height, buf_width; |
| |
| int are_parameters_computed; |
| |
| // Chroma subsampling |
| int subsampling_x, subsampling_y; |
| |
| // Whether the reconstructed luma pixels need to be stored |
| int store_y; |
| |
| #if CONFIG_DEBUG |
| int rate; |
| #endif // CONFIG_DEBUG |
| } CFL_CTX; |
| |
| typedef struct dist_wtd_comp_params { |
| int use_dist_wtd_comp_avg; |
| int fwd_offset; |
| int bck_offset; |
| } DIST_WTD_COMP_PARAMS; |
| |
| struct scale_factors; |
| |
| // Most/all of the pointers are mere pointers to actual arrays are allocated |
| // elsewhere. This is mostly for coding convenience. |
| typedef struct macroblockd { |
| // Row and column position of current macroblock in mi units. |
| int mi_row; |
| int mi_col; |
| // Same as cm->mi_params.mi_stride, copied here for convenience. |
| int mi_stride; |
| |
| // True if current block transmits chroma information. |
| // More detail: |
| // Smallest supported block size for both luma and chroma plane is 4x4. Hence, |
| // in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma |
| // blocks smaller than 8x8 maybe combined into one chroma block. |
| // For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4 |
| // luma blocks. Then, a single chroma block of size 4x4 will cover the area of |
| // these four luma blocks. This is implemented in bitstream as follows: |
| // - There are four MB_MODE_INFO structs for the four luma blocks. |
| // - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit |
| // any information for chroma planes. |
| // - Last block will have is_chroma_ref = true and transmits chroma |
| // information for the 4x4 chroma block that covers whole 8x8 area covered by |
| // four luma blocks. |
| // Similar logic applies for chroma blocks that cover 2 or 3 luma blocks. |
| bool is_chroma_ref; |
| |
| // Info specific to each plane. |
| struct macroblockd_plane plane[MAX_MB_PLANE]; |
| |
| // Tile related info. |
| TileInfo tile; |
| |
| // Appropriate offset inside cm->mi_params.mi_grid_base based on current |
| // mi_row and mi_col. |
| MB_MODE_INFO **mi; |
| |
| // True if 4x4 block above the current block is available. |
| bool up_available; |
| // True if 4x4 block to the left of the current block is available. |
| bool left_available; |
| // True if the above chrome reference block is available. |
| bool chroma_up_available; |
| // True if the left chrome reference block is available. |
| bool chroma_left_available; |
| |
| // MB_MODE_INFO for 4x4 block to the left of the current block, if |
| // left_available == true; otherwise NULL. |
| MB_MODE_INFO *left_mbmi; |
| // MB_MODE_INFO for 4x4 block above the current block, if |
| // up_available == true; otherwise NULL. |
| MB_MODE_INFO *above_mbmi; |
| // Above chroma reference block if is_chroma_ref == true for the current block |
| // and chroma_up_available == true; otherwise NULL. |
| // See also: the special case logic when current chroma block covers more than |
| // one luma blocks in set_mi_row_col(). |
| MB_MODE_INFO *chroma_left_mbmi; |
| // Left chroma reference block if is_chroma_ref == true for the current block |
| // and chroma_left_available == true; otherwise NULL. |
| // See also: the special case logic when current chroma block covers more than |
| // one luma blocks in set_mi_row_col(). |
| MB_MODE_INFO *chroma_above_mbmi; |
| |
| // Appropriate offset based on current 'mi_row' and 'mi_col', inside |
| // 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or |
| // 'MACROBLOCK' structs. |
| uint8_t *tx_type_map; |
| // Stride for 'tx_type_map'. Note that this may / may not be same as |
| // 'mi_stride', depending on which actual array 'tx_type_map' points to. |
| int tx_type_map_stride; |
| |
| // Distance of this macroblock from frame edges in 1/8th pixel units. |
| int mb_to_left_edge; |
| int mb_to_right_edge; |
| int mb_to_top_edge; |
| int mb_to_bottom_edge; |
| |
| // Scale factors for reference frames of the current block. |
| // These are pointers into 'cm->ref_scale_factors'. |
| const struct scale_factors *block_ref_scale_factors[2]; |
| |
| // On encoder side: points to cpi->source, which is the buffer containing |
| // the current *source* frame (maybe filtered). |
| // On decoder side: points to cm->cur_frame->buf, which is the buffer into |
| // which current frame is being *decoded*. |
| const YV12_BUFFER_CONFIG *cur_buf; |
| |
| // Entropy contexts for the above blocks. |
| // above_entropy_context[i][j] corresponds to above entropy context for ith |
| // plane and jth mi column of this *frame*, wrt current 'mi_row'. |
| // These are pointers into 'cm->above_contexts.entropy'. |
| ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE]; |
| // Entropy contexts for the left blocks. |
| // left_entropy_context[i][j] corresponds to left entropy context for ith |
| // plane and jth mi row of this *superblock*, wrt current 'mi_col'. |
| // Note: These contain actual data, NOT pointers. |
| ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE]; |
| |
| // Partition contexts for the above blocks. |
| // above_partition_context[i] corresponds to above partition context for ith |
| // mi column of this *frame*, wrt current 'mi_row'. |
| // This is a pointer into 'cm->above_contexts.partition'. |
| PARTITION_CONTEXT *above_partition_context; |
| // Partition contexts for the left blocks. |
| // left_partition_context[i] corresponds to left partition context for ith |
| // mi row of this *superblock*, wrt current 'mi_col'. |
| // Note: These contain actual data, NOT pointers. |
| PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]; |
| |
| // Transform contexts for the above blocks. |
| // above_txfm_context[i] corresponds to above transform context for ith mi col |
| // from the current position (mi row and mi column) for this *frame*. |
| // This is a pointer into 'cm->above_contexts.txfm'. |
| TXFM_CONTEXT *above_txfm_context; |
| // Transform contexts for the left blocks. |
| // left_txfm_context[i] corresponds to left transform context for ith mi row |
| // from the current position (mi_row and mi_col) for this *superblock*. |
| // This is a pointer into 'left_txfm_context_buffer'. |
| TXFM_CONTEXT *left_txfm_context; |
| // left_txfm_context_buffer[i] is the left transform context for ith mi_row |
| // in this *superblock*. |
| // Behaves like an internal actual buffer which 'left_txt_context' points to, |
| // and never accessed directly except to fill in initial default values. |
| TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]; |
| |
| // Default values for the two restoration filters for each plane. |
| // These values are used as reference values when writing the bitstream. That |
| // is, we transmit the delta between the actual values in |
| // cm->rst_info[plane].unit_info[unit_idx] and these reference values. |
| WienerInfo wiener_info[MAX_MB_PLANE]; |
| SgrprojInfo sgrproj_info[MAX_MB_PLANE]; |
| |
| // Block dimensions in MB_MODE_INFO units. |
| uint8_t width; |
| uint8_t height; |
| |
| // Contains the motion vector candidates found during motion vector prediction |
| // process. ref_mv_stack[i] contains the candidates for ith type of |
| // reference frame (single/compound). The actual number of candidates found in |
| // ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side) |
| // or mbmi_ext->ref_mv_count[i] (encoder side). |
| CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; |
| // weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the |
| // DRL (dynamic reference list) mode contexts. |
| uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; |
| |
| // True if this is the last vertical rectangular block in a VERTICAL or |
| // VERTICAL_4 partition. |
| bool is_last_vertical_rect; |
| // True if this is the 1st horizontal rectangular block in a HORIZONTAL or |
| // HORIZONTAL_4 partition. |
| bool is_first_horizontal_rect; |
| |
| // Counts of each reference frame in the above and left neighboring blocks. |
| // NOTE: Take into account both single and comp references. |
| uint8_t neighbors_ref_counts[REF_FRAMES]; |
| |
| // Current CDFs of all the symbols for the current tile. |
| FRAME_CONTEXT *tile_ctx; |
| |
| // Bit depth: copied from cm->seq_params.bit_depth for convenience. |
| int bd; |
| |
| // Quantizer index for each segment (base qindex + delta for each segment). |
| int qindex[MAX_SEGMENTS]; |
| // lossless[s] is true if segment 's' is coded losslessly. |
| int lossless[MAX_SEGMENTS]; |
| // Q index for the coding blocks in this superblock will be stored in |
| // mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is |
| // true, mbmi->current_qindex is computed by taking 'current_base_qindex' as |
| // the base, and adding any transmitted delta qindex on top of it. |
| // Precisely, this is the latest qindex used by the first coding block of a |
| // non-skip superblock in the current tile; OR |
| // same as cm->quant_params.base_qindex (if not explicitly set yet). |
| // Note: This is 'CurrentQIndex' in the AV1 spec. |
| int current_base_qindex; |
| |
| // Same as cm->features.cur_frame_force_integer_mv. |
| int cur_frame_force_integer_mv; |
| |
| // Pointer to cm->error. |
| struct aom_internal_error_info *error_info; |
| |
| // Same as cm->global_motion. |
| const WarpedMotionParams *global_motion; |
| |
| // Since actual frame level loop filtering level value is not available |
| // at the beginning of the tile (only available during actual filtering) |
| // at encoder side.we record the delta_lf (against the frame level loop |
| // filtering level) and code the delta between previous superblock's delta |
| // lf and current delta lf. It is equivalent to the delta between previous |
| // superblock's actual lf and current lf. |
| int8_t delta_lf_from_base; |
| // For this experiment, we have four frame filter levels for different plane |
| // and direction. So, to support the per superblock update, we need to add |
| // a few more params as below. |
| // 0: delta loop filter level for y plane vertical |
| // 1: delta loop filter level for y plane horizontal |
| // 2: delta loop filter level for u plane |
| // 3: delta loop filter level for v plane |
| // To make it consistent with the reference to each filter level in segment, |
| // we need to -1, since |
| // SEG_LVL_ALT_LF_Y_V = 1; |
| // SEG_LVL_ALT_LF_Y_H = 2; |
| // SEG_LVL_ALT_LF_U = 3; |
| // SEG_LVL_ALT_LF_V = 4; |
| int8_t delta_lf[FRAME_LF_COUNT]; |
| // cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the |
| // current superblock has already been read from (decoder) / written to |
| // (encoder) the bitstream; and false otherwise. |
| // More detail: |
| // (1) CDEF strength is transmitted only once per CDEF unit, in the 1st |
| // non-skip coding block. So, we need this array to keep track of whether CDEF |
| // strengths for the given CDEF units have been transmitted yet or not. |
| // (2) Superblock size can be either 128x128 or 64x64, but CDEF unit size is |
| // fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if |
| // superblock size is 128x128). Hence the array size is 4. |
| // (3) In the current implementation, CDEF strength for this CDEF unit is |
| // stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside |
| // cm->mi_params.mi_grid_base). |
| bool cdef_transmitted[4]; |
| |
| // Mask for this block used for compound prediction. |
| DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]); |
| |
| // CFL (chroma from luma) related parameters. |
| CFL_CTX cfl; |
| |
| // Offset to plane[p].color_index_map. |
| // Currently: |
| // - On encoder side, this is always 0 as 'color_index_map' is allocated per |
| // *coding block* there. |
| // - On decoder side, this may be non-zero, as 'color_index_map' is a (static) |
| // memory pointing to the base of a *superblock* there, and we need an offset |
| // to it to get the color index map for current coding block. |
| uint16_t color_index_map_offset[2]; |
| |
| // Temporary buffer used for convolution in case of compound reference only |
| // for (weighted or uniform) averaging operation. |
| // There are pointers to actual buffers allocated elsewhere: e.g. In dec, |
| // 'pbi->td.tmp_conv_dst' or 'pbi->thread_data[t].td->xd.tmp_conv_dst' and in |
| // enc, 'x->tmp_conv_dst' or 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'. |
| CONV_BUF_TYPE *tmp_conv_dst; |
| // Temporary buffers used to build OBMC prediction by above (index 0) and left |
| // (index 1) predictors respectively. |
| // tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'. |
| // There are pointers to actual buffers allocated elsewhere: e.g. In dec, |
| // 'pbi->td.tmp_obmc_bufs' or 'pbi->thread_data[t].td->xd.tmp_conv_dst' and in |
| // enc, 'x->tmp_pred_bufs' or 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'. |
| uint8_t *tmp_obmc_bufs[2]; |
| } MACROBLOCKD; |
| |
| static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) { |
| return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0; |
| } |
| |
| static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) { |
| return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| ? CONVERT_TO_BYTEPTR(buf16) |
| : buf16; |
| } |
| |
| static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) { |
| switch (bsize) { |
| case BLOCK_4X4: return 0; |
| case BLOCK_8X8: return 1; |
| case BLOCK_16X16: return 2; |
| case BLOCK_32X32: return 3; |
| case BLOCK_64X64: return 4; |
| case BLOCK_128X128: return 5; |
| default: return SQR_BLOCK_SIZES; |
| } |
| } |
| |
| // For a square block size 'bsize', returns the size of the sub-blocks used by |
| // the given partition type. If the partition produces sub-blocks of different |
| // sizes, then the function returns the largest sub-block size. |
| // Implements the Partition_Subsize lookup table in the spec (Section 9.3. |
| // Conversion tables). |
| // Note: the input block size should be square. |
| // Otherwise it's considered invalid. |
| static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize, |
| PARTITION_TYPE partition) { |
| if (partition == PARTITION_INVALID) { |
| return BLOCK_INVALID; |
| } else { |
| const int sqr_bsize_idx = get_sqr_bsize_idx(bsize); |
| return sqr_bsize_idx >= SQR_BLOCK_SIZES |
| ? BLOCK_INVALID |
| : subsize_lookup[partition][sqr_bsize_idx]; |
| } |
| } |
| |
| static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi, |
| PLANE_TYPE plane_type) { |
| static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = { |
| DCT_DCT, // DC_PRED |
| ADST_DCT, // V_PRED |
| DCT_ADST, // H_PRED |
| DCT_DCT, // D45_PRED |
| ADST_ADST, // D135_PRED |
| ADST_DCT, // D113_PRED |
| DCT_ADST, // D157_PRED |
| DCT_ADST, // D203_PRED |
| ADST_DCT, // D67_PRED |
| ADST_ADST, // SMOOTH_PRED |
| ADST_DCT, // SMOOTH_V_PRED |
| DCT_ADST, // SMOOTH_H_PRED |
| ADST_ADST, // PAETH_PRED |
| }; |
| const PREDICTION_MODE mode = |
| (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode); |
| assert(mode < INTRA_MODES); |
| return _intra_mode_to_tx_type[mode]; |
| } |
| |
| static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; } |
| |
| static INLINE int block_signals_txsize(BLOCK_SIZE bsize) { |
| return bsize > BLOCK_4X4; |
| } |
| |
| // Number of transform types in each set type |
| static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = { |
| 1, 2, 5, 7, 12, 16, |
| }; |
| |
| static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = { |
| { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
| { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| }; |
| |
| static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = { |
| 0x080F, // DC_PRED: 0000 1000 0000 1111 |
| 0x040F, // V_PRED: 0000 0100 0000 1111 |
| 0x080F, // H_PRED: 0000 1000 0000 1111 |
| 0x020F, // D45_PRED: 0000 0010 0000 1111 |
| 0x080F, // D135_PRED: 0000 1000 0000 1111 |
| 0x040F, // D113_PRED: 0000 0100 0000 1111 |
| 0x080F, // D157_PRED: 0000 1000 0000 1111 |
| 0x080F, // D203_PRED: 0000 1000 0000 1111 |
| 0x040F, // D67_PRED: 0000 0100 0000 1111 |
| 0x080F, // SMOOTH_PRED: 0000 1000 0000 1111 |
| 0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111 |
| 0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111 |
| 0x0C0E, // PAETH_PRED: 0000 1100 0000 1110 |
| }; |
| |
| static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = { |
| 0x0001, // 0000 0000 0000 0001 |
| 0x0201, // 0000 0010 0000 0001 |
| 0x020F, // 0000 0010 0000 1111 |
| 0x0E0F, // 0000 1110 0000 1111 |
| 0x0FFF, // 0000 1111 1111 1111 |
| 0xFFFF, // 1111 1111 1111 1111 |
| }; |
| |
| static const TxSetType av1_ext_tx_set_lookup[2][2] = { |
| { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX }, |
| { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT }, |
| }; |
| |
| static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter, |
| int use_reduced_set) { |
| const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size]; |
| if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY; |
| if (tx_size_sqr_up == TX_32X32) |
| return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY; |
| if (use_reduced_set) |
| return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX; |
| const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size]; |
| return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16]; |
| } |
| |
| // Maps tx set types to the indices. |
| static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = { |
| { // Intra |
| 0, -1, 2, 1, -1, -1 }, |
| { // Inter |
| 0, 3, -1, -1, 2, 1 }, |
| }; |
| |
| static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter, |
| int use_reduced_set) { |
| const TxSetType set_type = |
| av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set); |
| return ext_tx_set_index[is_inter][set_type]; |
| } |
| |
| static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter, |
| int use_reduced_set) { |
| const int set_type = |
| av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set); |
| return av1_num_ext_tx_set[set_type]; |
| } |
| |
| #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2)) |
| #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2)) |
| |
| static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) { |
| const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; |
| const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize]; |
| if (bsize == BLOCK_4X4) |
| return AOMMIN(max_txsize_lookup[bsize], largest_tx_size); |
| if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size) |
| return max_rect_tx_size; |
| else |
| return largest_tx_size; |
| } |
| |
| static const uint8_t mode_to_angle_map[] = { |
| 0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0, |
| }; |
| |
| // Converts block_index for given transform size to index of the block in raster |
| // order. |
| static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size, |
| int block_idx) { |
| // For transform size 4x8, the possible block_idx values are 0 & 2, because |
| // block_idx values are incremented in steps of size 'tx_width_unit x |
| // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to |
| // block number 1 in raster order, inside an 8x8 MI block. |
| // For any other transform size, the two indices are equivalent. |
| return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx; |
| } |
| |
| // Inverse of above function. |
| // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now. |
| static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size, |
| int raster_order) { |
| assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4); |
| // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4. |
| return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0; |
| } |
| |
| static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type, |
| const MACROBLOCKD *xd, |
| TX_SIZE tx_size, |
| int is_screen_content_type) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| |
| if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y || |
| xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 || |
| is_screen_content_type) |
| return DCT_DCT; |
| |
| return intra_mode_to_tx_type(mbmi, plane_type); |
| } |
| |
| // Implements the get_plane_residual_size() function in the spec (Section |
| // 5.11.38. Get plane residual size function). |
| static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize, |
| int subsampling_x, |
| int subsampling_y) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| assert(subsampling_x >= 0 && subsampling_x < 2); |
| assert(subsampling_y >= 0 && subsampling_y < 2); |
| return ss_size_lookup[bsize][subsampling_x][subsampling_y]; |
| } |
| |
| /* |
| * Logic to generate the lookup tables: |
| * |
| * TX_SIZE txs = max_txsize_rect_lookup[bsize]; |
| * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level) |
| * txs = sub_tx_size_map[txs]; |
| * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; |
| * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; |
| * const int bw_uint_log2 = mi_size_wide_log2[bsize]; |
| * const int stride_log2 = bw_uint_log2 - tx_w_log2; |
| */ |
| static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row, |
| int blk_col) { |
| static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = { |
| 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3, |
| }; |
| static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = { |
| 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2, |
| }; |
| static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = { |
| 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1, |
| }; |
| const int index = |
| ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) + |
| (blk_col >> tw_w_log2_table[bsize]); |
| assert(index < INTER_TX_SIZE_BUF_LEN); |
| return index; |
| } |
| |
| #if CONFIG_INSPECTION |
| /* |
| * Here is the logic to generate the lookup tables: |
| * |
| * TX_SIZE txs = max_txsize_rect_lookup[bsize]; |
| * for (int level = 0; level < MAX_VARTX_DEPTH; ++level) |
| * txs = sub_tx_size_map[txs]; |
| * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; |
| * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; |
| * const int bw_uint_log2 = mi_size_wide_log2[bsize]; |
| * const int stride_log2 = bw_uint_log2 - tx_w_log2; |
| */ |
| static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row, |
| int blk_col) { |
| static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = { |
| 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2, |
| }; |
| static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = { |
| 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2, |
| }; |
| static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = { |
| 0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2, |
| }; |
| const int index = |
| ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) + |
| (blk_col >> tw_w_log2_table[bsize]); |
| assert(index < TXK_TYPE_BUF_LEN); |
| return index; |
| } |
| #endif // CONFIG_INSPECTION |
| |
| static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row, |
| int blk_col, TX_SIZE tx_size, |
| TX_TYPE tx_type) { |
| const int stride = xd->tx_type_map_stride; |
| xd->tx_type_map[blk_row * stride + blk_col] = tx_type; |
| |
| const int txw = tx_size_wide_unit[tx_size]; |
| const int txh = tx_size_high_unit[tx_size]; |
| // The 16x16 unit is due to the constraint from tx_64x64 which sets the |
| // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block |
| // size, the constraint takes effect in 32x16 / 16x32 size too. To solve |
| // the intricacy, cover all the 16x16 units inside a 64 level transform. |
| if (txw == tx_size_wide_unit[TX_64X64] || |
| txh == tx_size_high_unit[TX_64X64]) { |
| const int tx_unit = tx_size_wide_unit[TX_16X16]; |
| for (int idy = 0; idy < txh; idy += tx_unit) { |
| for (int idx = 0; idx < txw; idx += tx_unit) { |
| xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type; |
| } |
| } |
| } |
| } |
| |
| static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd, |
| PLANE_TYPE plane_type, int blk_row, |
| int blk_col, TX_SIZE tx_size, |
| int reduced_tx_set) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) { |
| return DCT_DCT; |
| } |
| |
| TX_TYPE tx_type; |
| if (plane_type == PLANE_TYPE_Y) { |
| tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col]; |
| } else { |
| if (is_inter_block(mbmi)) { |
| // scale back to y plane's coordinate |
| const struct macroblockd_plane *const pd = &xd->plane[plane_type]; |
| blk_row <<= pd->subsampling_y; |
| blk_col <<= pd->subsampling_x; |
| tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col]; |
| } else { |
| // In intra mode, uv planes don't share the same prediction mode as y |
| // plane, so the tx_type should not be shared |
| tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV); |
| } |
| const TxSetType tx_set_type = |
| av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set); |
| if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT; |
| } |
| assert(tx_type < TX_TYPES); |
| assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), |
| reduced_tx_set)][tx_type]); |
| return tx_type; |
| } |
| |
| void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y, |
| const int num_planes); |
| |
| /* |
| * Logic to generate the lookup table: |
| * |
| * TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; |
| * int depth = 0; |
| * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) { |
| * depth++; |
| * tx_size = sub_tx_size_map[tx_size]; |
| * } |
| */ |
| static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) { |
| static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = { |
| 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| }; |
| return bsize_to_max_depth_table[bsize]; |
| } |
| |
| /* |
| * Logic to generate the lookup table: |
| * |
| * TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; |
| * assert(tx_size != TX_4X4); |
| * int depth = 0; |
| * while (tx_size != TX_4X4) { |
| * depth++; |
| * tx_size = sub_tx_size_map[tx_size]; |
| * } |
| * assert(depth < 10); |
| */ |
| static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = { |
| 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4, |
| }; |
| const int depth = bsize_to_tx_size_depth_table[bsize]; |
| assert(depth <= MAX_TX_CATS); |
| return depth - 1; |
| } |
| |
| static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) { |
| TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; |
| TX_SIZE tx_size = max_tx_size; |
| for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size]; |
| return tx_size; |
| } |
| |
| static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) { |
| switch (tx_size) { |
| case TX_64X64: |
| case TX_64X32: |
| case TX_32X64: return TX_32X32; |
| case TX_64X16: return TX_32X16; |
| case TX_16X64: return TX_16X32; |
| default: return tx_size; |
| } |
| } |
| |
| static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x, |
| int subsampling_y) { |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, subsampling_x, subsampling_y); |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize]; |
| return av1_get_adjusted_tx_size(uv_tx); |
| } |
| |
| static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) { |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| if (xd->lossless[mbmi->segment_id]) return TX_4X4; |
| if (plane == 0) return mbmi->tx_size; |
| const MACROBLOCKD_PLANE *pd = &xd->plane[plane]; |
| return av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x, |
| pd->subsampling_y); |
| } |
| |
| void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| const int num_planes); |
| |
| void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes); |
| |
| void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes); |
| |
| typedef void (*foreach_transformed_block_visitor)(int plane, int block, |
| int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, void *arg); |
| |
| void av1_set_entropy_contexts(const MACROBLOCKD *xd, |
| struct macroblockd_plane *pd, int plane, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| int has_eob, int aoff, int loff); |
| |
| #define MAX_INTERINTRA_SB_SQUARE 32 * 32 |
| static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) { |
| return (mbmi->ref_frame[0] > INTRA_FRAME && |
| mbmi->ref_frame[1] == INTRA_FRAME); |
| } |
| |
| static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) { |
| return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32); |
| } |
| |
| static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) { |
| return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END); |
| } |
| |
| static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) { |
| return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME); |
| } |
| |
| static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) { |
| return is_interintra_allowed_bsize(mbmi->sb_type) && |
| is_interintra_allowed_mode(mbmi->mode) && |
| is_interintra_allowed_ref(mbmi->ref_frame); |
| } |
| |
| static INLINE int is_interintra_allowed_bsize_group(int group) { |
| int i; |
| for (i = 0; i < BLOCK_SIZES_ALL; i++) { |
| if (size_group_lookup[i] == group && |
| is_interintra_allowed_bsize((BLOCK_SIZE)i)) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) { |
| return mbmi->ref_frame[0] > INTRA_FRAME && |
| mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi); |
| } |
| |
| static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| int plane) { |
| if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4; |
| const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize]; |
| if (plane == 0) return max_txsize; // luma |
| return av1_get_adjusted_tx_size(max_txsize); // chroma |
| } |
| |
| static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; |
| } |
| |
| static INLINE int is_motion_variation_allowed_compound( |
| const MB_MODE_INFO *mbmi) { |
| return !has_second_ref(mbmi); |
| } |
| |
| // input: log2 of length, 0(4), 1(8), ... |
| static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 }; |
| |
| static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) { |
| return !(mbmi->overlappable_neighbors[0] == 0 && |
| mbmi->overlappable_neighbors[1] == 0); |
| } |
| |
| static INLINE MOTION_MODE |
| motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi, int allow_warped_motion) { |
| if (xd->cur_frame_force_integer_mv == 0) { |
| const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype; |
| if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION; |
| } |
| if (is_motion_variation_allowed_bsize(mbmi->sb_type) && |
| is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME && |
| is_motion_variation_allowed_compound(mbmi)) { |
| if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION; |
| assert(!has_second_ref(mbmi)); |
| if (mbmi->num_proj_ref >= 1 && |
| (allow_warped_motion && |
| !av1_is_scaled(xd->block_ref_scale_factors[0]))) { |
| if (xd->cur_frame_force_integer_mv) { |
| return OBMC_CAUSAL; |
| } |
| return WARPED_CAUSAL; |
| } |
| return OBMC_CAUSAL; |
| } else { |
| return SIMPLE_TRANSLATION; |
| } |
| } |
| |
| static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) { |
| return (is_inter_block(mbmi)); |
| } |
| |
| static INLINE int av1_allow_palette(int allow_screen_content_tools, |
| BLOCK_SIZE sb_type) { |
| assert(sb_type < BLOCK_SIZES_ALL); |
| return allow_screen_content_tools && block_size_wide[sb_type] <= 64 && |
| block_size_high[sb_type] <= 64 && sb_type >= BLOCK_8X8; |
| } |
| |
| // Returns sub-sampled dimensions of the given block. |
| // The output values for 'rows_within_bounds' and 'cols_within_bounds' will |
| // differ from 'height' and 'width' when part of the block is outside the |
| // right |
| // and/or bottom image boundary. |
| static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane, |
| const MACROBLOCKD *xd, int *width, |
| int *height, |
| int *rows_within_bounds, |
| int *cols_within_bounds) { |
| const int block_height = block_size_high[bsize]; |
| const int block_width = block_size_wide[bsize]; |
| const int block_rows = (xd->mb_to_bottom_edge >= 0) |
| ? block_height |
| : (xd->mb_to_bottom_edge >> 3) + block_height; |
| const int block_cols = (xd->mb_to_right_edge >= 0) |
| ? block_width |
| : (xd->mb_to_right_edge >> 3) + block_width; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0)); |
| assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0)); |
| assert(block_width >= block_cols); |
| assert(block_height >= block_rows); |
| const int plane_block_width = block_width >> pd->subsampling_x; |
| const int plane_block_height = block_height >> pd->subsampling_y; |
| // Special handling for chroma sub8x8. |
| const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4; |
| const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4; |
| if (width) *width = plane_block_width + 2 * is_chroma_sub8_x; |
| if (height) *height = plane_block_height + 2 * is_chroma_sub8_y; |
| if (rows_within_bounds) { |
| *rows_within_bounds = |
| (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y; |
| } |
| if (cols_within_bounds) { |
| *cols_within_bounds = |
| (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x; |
| } |
| } |
| |
| /* clang-format off */ |
| typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS] |
| [CDF_SIZE(PALETTE_COLORS)]; |
| typedef const int (*ColorCost)[PALETTE_SIZES][PALETTE_COLOR_INDEX_CONTEXTS] |
| [PALETTE_COLORS]; |
| /* clang-format on */ |
| |
| typedef struct { |
| int rows; |
| int cols; |
| int n_colors; |
| int plane_width; |
| int plane_height; |
| uint8_t *color_map; |
| MapCdf map_cdf; |
| ColorCost color_cost; |
| } Av1ColorMapParam; |
| |
| static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi) { |
| int ref; |
| |
| // First check if all modes are GLOBALMV |
| if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0; |
| |
| if (AOMMIN(mi_size_wide[mbmi->sb_type], mi_size_high[mbmi->sb_type]) < 2) |
| return 0; |
| |
| // Now check if all global motion is non translational |
| for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { |
| if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0; |
| } |
| return 1; |
| } |
| |
| static INLINE PLANE_TYPE get_plane_type(int plane) { |
| return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; |
| } |
| |
| static INLINE int av1_get_max_eob(TX_SIZE tx_size) { |
| if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) { |
| return 1024; |
| } |
| if (tx_size == TX_16X64 || tx_size == TX_64X16) { |
| return 512; |
| } |
| return tx_size_2d[tx_size]; |
| } |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |
| |
| #endif // AOM_AV1_COMMON_BLOCKD_H_ |