blob: 5e832c86d6caea08ea00f863501f0712295eb1b3 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_COMMON_BLOCKD_H_
#define AOM_AV1_COMMON_BLOCKD_H_
#include "config/aom_config.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
#include "aom_scale/yv12config.h"
#include "av1/common/common_data.h"
#include "av1/common/quant_common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/mv.h"
#include "av1/common/scale.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#ifdef __cplusplus
extern "C" {
#endif
#define USE_B_QUANT_NO_TRELLIS 1
#define MAX_MB_PLANE 3
#define MAX_DIFFWTD_MASK_BITS 1
#define INTERINTRA_WEDGE_SIGN 0
// DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
enum {
DIFFWTD_38 = 0,
DIFFWTD_38_INV,
DIFFWTD_MASK_TYPES,
} UENUM1BYTE(DIFFWTD_MASK_TYPE);
enum {
KEY_FRAME = 0,
INTER_FRAME = 1,
INTRA_ONLY_FRAME = 2, // replaces intra-only
S_FRAME = 3,
FRAME_TYPES,
} UENUM1BYTE(FRAME_TYPE);
static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
}
static INLINE int is_inter_mode(PREDICTION_MODE mode) {
return mode >= INTER_MODE_START && mode < INTER_MODE_END;
}
typedef struct {
uint8_t *plane[MAX_MB_PLANE];
int stride[MAX_MB_PLANE];
} BUFFER_SET;
static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
}
static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
}
static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
static const PREDICTION_MODE lut[] = {
DC_PRED, // DC_PRED
V_PRED, // V_PRED
H_PRED, // H_PRED
D45_PRED, // D45_PRED
D135_PRED, // D135_PRED
D113_PRED, // D113_PRED
D157_PRED, // D157_PRED
D203_PRED, // D203_PRED
D67_PRED, // D67_PRED
SMOOTH_PRED, // SMOOTH_PRED
SMOOTH_V_PRED, // SMOOTH_V_PRED
SMOOTH_H_PRED, // SMOOTH_H_PRED
PAETH_PRED, // PAETH_PRED
NEARESTMV, // NEARESTMV
NEARMV, // NEARMV
GLOBALMV, // GLOBALMV
NEWMV, // NEWMV
NEARESTMV, // NEAREST_NEARESTMV
NEARMV, // NEAR_NEARMV
NEARESTMV, // NEAREST_NEWMV
NEWMV, // NEW_NEARESTMV
NEARMV, // NEAR_NEWMV
NEWMV, // NEW_NEARMV
GLOBALMV, // GLOBAL_GLOBALMV
NEWMV, // NEW_NEWMV
};
assert(NELEMENTS(lut) == MB_MODE_COUNT);
assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
return lut[mode];
}
static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
static const PREDICTION_MODE lut[] = {
MB_MODE_COUNT, // DC_PRED
MB_MODE_COUNT, // V_PRED
MB_MODE_COUNT, // H_PRED
MB_MODE_COUNT, // D45_PRED
MB_MODE_COUNT, // D135_PRED
MB_MODE_COUNT, // D113_PRED
MB_MODE_COUNT, // D157_PRED
MB_MODE_COUNT, // D203_PRED
MB_MODE_COUNT, // D67_PRED
MB_MODE_COUNT, // SMOOTH_PRED
MB_MODE_COUNT, // SMOOTH_V_PRED
MB_MODE_COUNT, // SMOOTH_H_PRED
MB_MODE_COUNT, // PAETH_PRED
MB_MODE_COUNT, // NEARESTMV
MB_MODE_COUNT, // NEARMV
MB_MODE_COUNT, // GLOBALMV
MB_MODE_COUNT, // NEWMV
NEARESTMV, // NEAREST_NEARESTMV
NEARMV, // NEAR_NEARMV
NEWMV, // NEAREST_NEWMV
NEARESTMV, // NEW_NEARESTMV
NEWMV, // NEAR_NEWMV
NEARMV, // NEW_NEARMV
GLOBALMV, // GLOBAL_GLOBALMV
NEWMV, // NEW_NEWMV
};
assert(NELEMENTS(lut) == MB_MODE_COUNT);
assert(is_inter_compound_mode(mode));
return lut[mode];
}
static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
mode == NEW_NEARMV);
}
static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
}
static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
}
/* For keyframes, intra block modes are predicted by the (already decoded)
modes for the Y blocks to the left and above us; for interframes, there
is a single probability table. */
typedef struct {
// Value of base colors for Y, U, and V
uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
// Number of base colors for Y (0) and UV (1)
uint8_t palette_size[2];
} PALETTE_MODE_INFO;
typedef struct {
FILTER_INTRA_MODE filter_intra_mode;
uint8_t use_filter_intra;
} FILTER_INTRA_MODE_INFO;
static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
};
#if CONFIG_RD_DEBUG
#define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
#endif
typedef struct RD_STATS {
int rate;
int64_t dist;
// Please be careful of using rdcost, it's not guaranteed to be set all the
// time.
// TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
// these functions, make sure rdcost is always up-to-date according to
// rate/dist.
int64_t rdcost;
int64_t sse;
int skip_txfm; // sse should equal to dist when skip_txfm == 1
int zero_rate;
#if CONFIG_RD_DEBUG
int txb_coeff_cost[MAX_MB_PLANE];
// TODO(jingning): Temporary solution to silence stack over-size warning
// in handle_inter_mode. This should be fixed after rate-distortion
// optimization refactoring.
int16_t txb_coeff_cost_map[MAX_MB_PLANE][TXB_COEFF_COST_MAP_SIZE]
[TXB_COEFF_COST_MAP_SIZE];
#endif // CONFIG_RD_DEBUG
} RD_STATS;
// This struct is used to group function args that are commonly
// sent together in functions related to interinter compound modes
typedef struct {
uint8_t *seg_mask;
int8_t wedge_index;
int8_t wedge_sign;
DIFFWTD_MASK_TYPE mask_type;
COMPOUND_TYPE type;
} INTERINTER_COMPOUND_DATA;
#define INTER_TX_SIZE_BUF_LEN 16
#define TXK_TYPE_BUF_LEN 64
// This structure now relates to 4x4 block regions.
typedef struct MB_MODE_INFO {
// interinter members
INTERINTER_COMPOUND_DATA interinter_comp;
WarpedMotionParams wm_params;
int_mv mv[2];
// q index for the current coding block.
int current_qindex;
// Only for INTER blocks
int_interpfilters interp_filters;
// TODO(debargha): Consolidate these flags
#if CONFIG_RD_DEBUG
RD_STATS rd_stats;
int mi_row;
int mi_col;
#endif
#if CONFIG_INSPECTION
int16_t tx_skip[TXK_TYPE_BUF_LEN];
#endif
PALETTE_MODE_INFO palette_mode_info;
// Common for both INTER and INTRA blocks
BLOCK_SIZE sb_type;
PREDICTION_MODE mode;
// Only for INTRA blocks
UV_PREDICTION_MODE uv_mode;
// interintra members
INTERINTRA_MODE interintra_mode;
MOTION_MODE motion_mode;
PARTITION_TYPE partition;
MV_REFERENCE_FRAME ref_frame[2];
FILTER_INTRA_MODE_INFO filter_intra_mode_info;
int8_t skip_txfm;
uint8_t inter_tx_size[INTER_TX_SIZE_BUF_LEN];
TX_SIZE tx_size;
int8_t delta_lf_from_base;
int8_t delta_lf[FRAME_LF_COUNT];
int8_t interintra_wedge_index;
// The actual prediction angle is the base angle + (angle_delta * step).
int8_t angle_delta[PLANE_TYPES];
/* deringing gain *per-superblock* */
// Joint sign of alpha Cb and alpha Cr
int8_t cfl_alpha_signs;
// Index of the alpha Cb and alpha Cr combination
uint8_t cfl_alpha_idx;
uint8_t num_proj_ref;
uint8_t overlappable_neighbors[2];
// If comp_group_idx=0, indicate if dist_wtd_comp(0) or avg_comp(1) is used.
uint8_t compound_idx;
uint8_t use_wedge_interintra : 1;
uint8_t segment_id : 3;
uint8_t seg_id_predicted : 1; // valid only when temporal_update is enabled
uint8_t skip_mode : 1;
uint8_t use_intrabc : 1;
uint8_t ref_mv_idx : 2;
// Indicate if masked compound is used(1) or not(0).
uint8_t comp_group_idx : 1;
int8_t cdef_strength : 4;
} MB_MODE_INFO;
static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
return mbmi->use_intrabc;
}
static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
assert(mode < UV_INTRA_MODES);
static const PREDICTION_MODE uv2y[] = {
DC_PRED, // UV_DC_PRED
V_PRED, // UV_V_PRED
H_PRED, // UV_H_PRED
D45_PRED, // UV_D45_PRED
D135_PRED, // UV_D135_PRED
D113_PRED, // UV_D113_PRED
D157_PRED, // UV_D157_PRED
D203_PRED, // UV_D203_PRED
D67_PRED, // UV_D67_PRED
SMOOTH_PRED, // UV_SMOOTH_PRED
SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
PAETH_PRED, // UV_PAETH_PRED
DC_PRED, // UV_CFL_PRED
INTRA_INVALID, // UV_INTRA_MODES
INTRA_INVALID, // UV_MODE_INVALID
};
return uv2y[mode];
}
static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
}
static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
return mbmi->ref_frame[1] > INTRA_FRAME;
}
static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
(mbmi->ref_frame[1] >= BWDREF_FRAME)));
}
static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
static const MV_REFERENCE_FRAME lut[] = {
LAST_FRAME, // LAST_LAST2_FRAMES,
LAST_FRAME, // LAST_LAST3_FRAMES,
LAST_FRAME, // LAST_GOLDEN_FRAMES,
BWDREF_FRAME, // BWDREF_ALTREF_FRAMES,
LAST2_FRAME, // LAST2_LAST3_FRAMES
LAST2_FRAME, // LAST2_GOLDEN_FRAMES,
LAST3_FRAME, // LAST3_GOLDEN_FRAMES,
BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES,
ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES,
};
assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
return lut[ref_idx];
}
static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
static const MV_REFERENCE_FRAME lut[] = {
LAST2_FRAME, // LAST_LAST2_FRAMES,
LAST3_FRAME, // LAST_LAST3_FRAMES,
GOLDEN_FRAME, // LAST_GOLDEN_FRAMES,
ALTREF_FRAME, // BWDREF_ALTREF_FRAMES,
LAST3_FRAME, // LAST2_LAST3_FRAMES
GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES,
GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES,
ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES,
ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES,
};
assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
return lut[ref_idx];
}
PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
TransformationType type) {
const PREDICTION_MODE mode = mbmi->mode;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int block_size_allowed =
AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
block_size_allowed;
}
#if CONFIG_MISMATCH_DEBUG
static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
int mi_row, int tx_blk_col, int tx_blk_row,
int subsampling_x, int subsampling_y) {
*pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
(tx_blk_col << MI_SIZE_LOG2);
*pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
(tx_blk_row << MI_SIZE_LOG2);
}
#endif
enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
struct buf_2d {
uint8_t *buf;
uint8_t *buf0;
int width;
int height;
int stride;
};
typedef struct eob_info {
uint16_t eob;
uint16_t max_scan_line;
} eob_info;
typedef struct {
DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
eob_info eob_data[MAX_MB_PLANE]
[MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
} CB_BUFFER;
typedef struct macroblockd_plane {
PLANE_TYPE plane_type;
int subsampling_x;
int subsampling_y;
struct buf_2d dst;
struct buf_2d pre[2];
ENTROPY_CONTEXT *above_entropy_context;
ENTROPY_CONTEXT *left_entropy_context;
// The dequantizers below are true dequantizers used only in the
// dequantization process. They have the same coefficient
// shift/scale as TX.
int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
// Pointer to color index map of:
// - Current coding block, on encoder side.
// - Current superblock, on decoder side.
uint8_t *color_index_map;
// block size in pixels
uint8_t width, height;
qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
} MACROBLOCKD_PLANE;
#define BLOCK_OFFSET(i) ((i) << 4)
typedef struct {
DECLARE_ALIGNED(16, InterpKernel, vfilter);
DECLARE_ALIGNED(16, InterpKernel, hfilter);
} WienerInfo;
typedef struct {
int ep;
int xqd[2];
} SgrprojInfo;
#if CONFIG_DEBUG
#define CFL_SUB8X8_VAL_MI_SIZE (4)
#define CFL_SUB8X8_VAL_MI_SQUARE \
(CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE)
#endif // CONFIG_DEBUG
#define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
#define CFL_BUF_LINE (32)
#define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
#define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
#define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
typedef struct cfl_ctx {
// Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
// shifts)
uint16_t recon_buf_q3[CFL_BUF_SQUARE];
// Q3 AC contributions (reconstructed luma pixels - tx block avg)
int16_t ac_buf_q3[CFL_BUF_SQUARE];
// Cache the DC_PRED when performing RDO, so it does not have to be recomputed
// for every scaling parameter
int dc_pred_is_cached[CFL_PRED_PLANES];
// The DC_PRED cache is disable when decoding
int use_dc_pred_cache;
// Only cache the first row of the DC_PRED
int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
// Height and width currently used in the CfL prediction buffer.
int buf_height, buf_width;
int are_parameters_computed;
// Chroma subsampling
int subsampling_x, subsampling_y;
// Whether the reconstructed luma pixels need to be stored
int store_y;
#if CONFIG_DEBUG
int rate;
#endif // CONFIG_DEBUG
} CFL_CTX;
typedef struct dist_wtd_comp_params {
int use_dist_wtd_comp_avg;
int fwd_offset;
int bck_offset;
} DIST_WTD_COMP_PARAMS;
struct scale_factors;
// Most/all of the pointers are mere pointers to actual arrays are allocated
// elsewhere. This is mostly for coding convenience.
typedef struct macroblockd {
// Row and column position of current macroblock in mi units.
int mi_row;
int mi_col;
// Same as cm->mi_params.mi_stride, copied here for convenience.
int mi_stride;
// True if current block transmits chroma information.
// More detail:
// Smallest supported block size for both luma and chroma plane is 4x4. Hence,
// in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma
// blocks smaller than 8x8 maybe combined into one chroma block.
// For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4
// luma blocks. Then, a single chroma block of size 4x4 will cover the area of
// these four luma blocks. This is implemented in bitstream as follows:
// - There are four MB_MODE_INFO structs for the four luma blocks.
// - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit
// any information for chroma planes.
// - Last block will have is_chroma_ref = true and transmits chroma
// information for the 4x4 chroma block that covers whole 8x8 area covered by
// four luma blocks.
// Similar logic applies for chroma blocks that cover 2 or 3 luma blocks.
bool is_chroma_ref;
// Info specific to each plane.
struct macroblockd_plane plane[MAX_MB_PLANE];
// Tile related info.
TileInfo tile;
// Appropriate offset inside cm->mi_params.mi_grid_base based on current
// mi_row and mi_col.
MB_MODE_INFO **mi;
// True if 4x4 block above the current block is available.
bool up_available;
// True if 4x4 block to the left of the current block is available.
bool left_available;
// True if the above chrome reference block is available.
bool chroma_up_available;
// True if the left chrome reference block is available.
bool chroma_left_available;
// MB_MODE_INFO for 4x4 block to the left of the current block, if
// left_available == true; otherwise NULL.
MB_MODE_INFO *left_mbmi;
// MB_MODE_INFO for 4x4 block above the current block, if
// up_available == true; otherwise NULL.
MB_MODE_INFO *above_mbmi;
// Above chroma reference block if is_chroma_ref == true for the current block
// and chroma_up_available == true; otherwise NULL.
// See also: the special case logic when current chroma block covers more than
// one luma blocks in set_mi_row_col().
MB_MODE_INFO *chroma_left_mbmi;
// Left chroma reference block if is_chroma_ref == true for the current block
// and chroma_left_available == true; otherwise NULL.
// See also: the special case logic when current chroma block covers more than
// one luma blocks in set_mi_row_col().
MB_MODE_INFO *chroma_above_mbmi;
// Appropriate offset based on current 'mi_row' and 'mi_col', inside
// 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or
// 'MACROBLOCK' structs.
uint8_t *tx_type_map;
// Stride for 'tx_type_map'. Note that this may / may not be same as
// 'mi_stride', depending on which actual array 'tx_type_map' points to.
int tx_type_map_stride;
// Distance of this macroblock from frame edges in 1/8th pixel units.
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
// Scale factors for reference frames of the current block.
// These are pointers into 'cm->ref_scale_factors'.
const struct scale_factors *block_ref_scale_factors[2];
// On encoder side: points to cpi->source, which is the buffer containing
// the current *source* frame (maybe filtered).
// On decoder side: points to cm->cur_frame->buf, which is the buffer into
// which current frame is being *decoded*.
const YV12_BUFFER_CONFIG *cur_buf;
// Entropy contexts for the above blocks.
// above_entropy_context[i][j] corresponds to above entropy context for ith
// plane and jth mi column of this *frame*, wrt current 'mi_row'.
// These are pointers into 'cm->above_contexts.entropy'.
ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
// Entropy contexts for the left blocks.
// left_entropy_context[i][j] corresponds to left entropy context for ith
// plane and jth mi row of this *superblock*, wrt current 'mi_col'.
// Note: These contain actual data, NOT pointers.
ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
// Partition contexts for the above blocks.
// above_partition_context[i] corresponds to above partition context for ith
// mi column of this *frame*, wrt current 'mi_row'.
// This is a pointer into 'cm->above_contexts.partition'.
PARTITION_CONTEXT *above_partition_context;
// Partition contexts for the left blocks.
// left_partition_context[i] corresponds to left partition context for ith
// mi row of this *superblock*, wrt current 'mi_col'.
// Note: These contain actual data, NOT pointers.
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
// Transform contexts for the above blocks.
// above_txfm_context[i] corresponds to above transform context for ith mi col
// from the current position (mi row and mi column) for this *frame*.
// This is a pointer into 'cm->above_contexts.txfm'.
TXFM_CONTEXT *above_txfm_context;
// Transform contexts for the left blocks.
// left_txfm_context[i] corresponds to left transform context for ith mi row
// from the current position (mi_row and mi_col) for this *superblock*.
// This is a pointer into 'left_txfm_context_buffer'.
TXFM_CONTEXT *left_txfm_context;
// left_txfm_context_buffer[i] is the left transform context for ith mi_row
// in this *superblock*.
// Behaves like an internal actual buffer which 'left_txt_context' points to,
// and never accessed directly except to fill in initial default values.
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
// Default values for the two restoration filters for each plane.
// These values are used as reference values when writing the bitstream. That
// is, we transmit the delta between the actual values in
// cm->rst_info[plane].unit_info[unit_idx] and these reference values.
WienerInfo wiener_info[MAX_MB_PLANE];
SgrprojInfo sgrproj_info[MAX_MB_PLANE];
// Block dimensions in MB_MODE_INFO units.
uint8_t width;
uint8_t height;
// Contains the motion vector candidates found during motion vector prediction
// process. ref_mv_stack[i] contains the candidates for ith type of
// reference frame (single/compound). The actual number of candidates found in
// ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side)
// or mbmi_ext->ref_mv_count[i] (encoder side).
CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
// weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the
// DRL (dynamic reference list) mode contexts.
uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
// True if this is the last vertical rectangular block in a VERTICAL or
// VERTICAL_4 partition.
bool is_last_vertical_rect;
// True if this is the 1st horizontal rectangular block in a HORIZONTAL or
// HORIZONTAL_4 partition.
bool is_first_horizontal_rect;
// Counts of each reference frame in the above and left neighboring blocks.
// NOTE: Take into account both single and comp references.
uint8_t neighbors_ref_counts[REF_FRAMES];
// Current CDFs of all the symbols for the current tile.
FRAME_CONTEXT *tile_ctx;
// Bit depth: copied from cm->seq_params.bit_depth for convenience.
int bd;
// Quantizer index for each segment (base qindex + delta for each segment).
int qindex[MAX_SEGMENTS];
// lossless[s] is true if segment 's' is coded losslessly.
int lossless[MAX_SEGMENTS];
// Q index for the coding blocks in this superblock will be stored in
// mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is
// true, mbmi->current_qindex is computed by taking 'current_base_qindex' as
// the base, and adding any transmitted delta qindex on top of it.
// Precisely, this is the latest qindex used by the first coding block of a
// non-skip superblock in the current tile; OR
// same as cm->quant_params.base_qindex (if not explicitly set yet).
// Note: This is 'CurrentQIndex' in the AV1 spec.
int current_base_qindex;
// Same as cm->features.cur_frame_force_integer_mv.
int cur_frame_force_integer_mv;
// Pointer to cm->error.
struct aom_internal_error_info *error_info;
// Same as cm->global_motion.
const WarpedMotionParams *global_motion;
// Since actual frame level loop filtering level value is not available
// at the beginning of the tile (only available during actual filtering)
// at encoder side.we record the delta_lf (against the frame level loop
// filtering level) and code the delta between previous superblock's delta
// lf and current delta lf. It is equivalent to the delta between previous
// superblock's actual lf and current lf.
int8_t delta_lf_from_base;
// For this experiment, we have four frame filter levels for different plane
// and direction. So, to support the per superblock update, we need to add
// a few more params as below.
// 0: delta loop filter level for y plane vertical
// 1: delta loop filter level for y plane horizontal
// 2: delta loop filter level for u plane
// 3: delta loop filter level for v plane
// To make it consistent with the reference to each filter level in segment,
// we need to -1, since
// SEG_LVL_ALT_LF_Y_V = 1;
// SEG_LVL_ALT_LF_Y_H = 2;
// SEG_LVL_ALT_LF_U = 3;
// SEG_LVL_ALT_LF_V = 4;
int8_t delta_lf[FRAME_LF_COUNT];
// cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the
// current superblock has already been read from (decoder) / written to
// (encoder) the bitstream; and false otherwise.
// More detail:
// (1) CDEF strength is transmitted only once per CDEF unit, in the 1st
// non-skip coding block. So, we need this array to keep track of whether CDEF
// strengths for the given CDEF units have been transmitted yet or not.
// (2) Superblock size can be either 128x128 or 64x64, but CDEF unit size is
// fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if
// superblock size is 128x128). Hence the array size is 4.
// (3) In the current implementation, CDEF strength for this CDEF unit is
// stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside
// cm->mi_params.mi_grid_base).
bool cdef_transmitted[4];
// Mask for this block used for compound prediction.
DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]);
// CFL (chroma from luma) related parameters.
CFL_CTX cfl;
// Offset to plane[p].color_index_map.
// Currently:
// - On encoder side, this is always 0 as 'color_index_map' is allocated per
// *coding block* there.
// - On decoder side, this may be non-zero, as 'color_index_map' is a (static)
// memory pointing to the base of a *superblock* there, and we need an offset
// to it to get the color index map for current coding block.
uint16_t color_index_map_offset[2];
// Temporary buffer used for convolution in case of compound reference only
// for (weighted or uniform) averaging operation.
// There are pointers to actual buffers allocated elsewhere: e.g. In dec,
// 'pbi->td.tmp_conv_dst' or 'pbi->thread_data[t].td->xd.tmp_conv_dst' and in
// enc, 'x->tmp_conv_dst' or 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'.
CONV_BUF_TYPE *tmp_conv_dst;
// Temporary buffers used to build OBMC prediction by above (index 0) and left
// (index 1) predictors respectively.
// tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'.
// There are pointers to actual buffers allocated elsewhere: e.g. In dec,
// 'pbi->td.tmp_obmc_bufs' or 'pbi->thread_data[t].td->xd.tmp_conv_dst' and in
// enc, 'x->tmp_pred_bufs' or 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'.
uint8_t *tmp_obmc_bufs[2];
} MACROBLOCKD;
static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
}
static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
? CONVERT_TO_BYTEPTR(buf16)
: buf16;
}
static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
switch (bsize) {
case BLOCK_4X4: return 0;
case BLOCK_8X8: return 1;
case BLOCK_16X16: return 2;
case BLOCK_32X32: return 3;
case BLOCK_64X64: return 4;
case BLOCK_128X128: return 5;
default: return SQR_BLOCK_SIZES;
}
}
// For a square block size 'bsize', returns the size of the sub-blocks used by
// the given partition type. If the partition produces sub-blocks of different
// sizes, then the function returns the largest sub-block size.
// Implements the Partition_Subsize lookup table in the spec (Section 9.3.
// Conversion tables).
// Note: the input block size should be square.
// Otherwise it's considered invalid.
static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
PARTITION_TYPE partition) {
if (partition == PARTITION_INVALID) {
return BLOCK_INVALID;
} else {
const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
return sqr_bsize_idx >= SQR_BLOCK_SIZES
? BLOCK_INVALID
: subsize_lookup[partition][sqr_bsize_idx];
}
}
static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
PLANE_TYPE plane_type) {
static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
DCT_DCT, // DC_PRED
ADST_DCT, // V_PRED
DCT_ADST, // H_PRED
DCT_DCT, // D45_PRED
ADST_ADST, // D135_PRED
ADST_DCT, // D113_PRED
DCT_ADST, // D157_PRED
DCT_ADST, // D203_PRED
ADST_DCT, // D67_PRED
ADST_ADST, // SMOOTH_PRED
ADST_DCT, // SMOOTH_V_PRED
DCT_ADST, // SMOOTH_H_PRED
ADST_ADST, // PAETH_PRED
};
const PREDICTION_MODE mode =
(plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
assert(mode < INTRA_MODES);
return _intra_mode_to_tx_type[mode];
}
static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
return bsize > BLOCK_4X4;
}
// Number of transform types in each set type
static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
1, 2, 5, 7, 12, 16,
};
static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
};
static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
0x080F, // DC_PRED: 0000 1000 0000 1111
0x040F, // V_PRED: 0000 0100 0000 1111
0x080F, // H_PRED: 0000 1000 0000 1111
0x020F, // D45_PRED: 0000 0010 0000 1111
0x080F, // D135_PRED: 0000 1000 0000 1111
0x040F, // D113_PRED: 0000 0100 0000 1111
0x080F, // D157_PRED: 0000 1000 0000 1111
0x080F, // D203_PRED: 0000 1000 0000 1111
0x040F, // D67_PRED: 0000 0100 0000 1111
0x080F, // SMOOTH_PRED: 0000 1000 0000 1111
0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111
0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111
0x0C0E, // PAETH_PRED: 0000 1100 0000 1110
};
static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
0x0001, // 0000 0000 0000 0001
0x0201, // 0000 0010 0000 0001
0x020F, // 0000 0010 0000 1111
0x0E0F, // 0000 1110 0000 1111
0x0FFF, // 0000 1111 1111 1111
0xFFFF, // 1111 1111 1111 1111
};
static const TxSetType av1_ext_tx_set_lookup[2][2] = {
{ EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
{ EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
};
static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
int use_reduced_set) {
const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
if (tx_size_sqr_up == TX_32X32)
return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
if (use_reduced_set)
return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
}
// Maps tx set types to the indices.
static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
{ // Intra
0, -1, 2, 1, -1, -1 },
{ // Inter
0, 3, -1, -1, 2, 1 },
};
static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
int use_reduced_set) {
const TxSetType set_type =
av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
return ext_tx_set_index[is_inter][set_type];
}
static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
int use_reduced_set) {
const int set_type =
av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
return av1_num_ext_tx_set[set_type];
}
#define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
#define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
if (bsize == BLOCK_4X4)
return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
return max_rect_tx_size;
else
return largest_tx_size;
}
static const uint8_t mode_to_angle_map[] = {
0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
};
// Converts block_index for given transform size to index of the block in raster
// order.
static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
int block_idx) {
// For transform size 4x8, the possible block_idx values are 0 & 2, because
// block_idx values are incremented in steps of size 'tx_width_unit x
// tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
// block number 1 in raster order, inside an 8x8 MI block.
// For any other transform size, the two indices are equivalent.
return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
}
// Inverse of above function.
// Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
int raster_order) {
assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
// We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
}
static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
const MACROBLOCKD *xd,
TX_SIZE tx_size,
int is_screen_content_type) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
is_screen_content_type)
return DCT_DCT;
return intra_mode_to_tx_type(mbmi, plane_type);
}
// Implements the get_plane_residual_size() function in the spec (Section
// 5.11.38. Get plane residual size function).
static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
int subsampling_x,
int subsampling_y) {
assert(bsize < BLOCK_SIZES_ALL);
assert(subsampling_x >= 0 && subsampling_x < 2);
assert(subsampling_y >= 0 && subsampling_y < 2);
return ss_size_lookup[bsize][subsampling_x][subsampling_y];
}
/*
* Logic to generate the lookup tables:
*
* TX_SIZE txs = max_txsize_rect_lookup[bsize];
* for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
* txs = sub_tx_size_map[txs];
* const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
* const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
* const int bw_uint_log2 = mi_size_wide_log2[bsize];
* const int stride_log2 = bw_uint_log2 - tx_w_log2;
*/
static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
int blk_col) {
static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
};
static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
};
static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
};
const int index =
((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
(blk_col >> tw_w_log2_table[bsize]);
assert(index < INTER_TX_SIZE_BUF_LEN);
return index;
}
#if CONFIG_INSPECTION
/*
* Here is the logic to generate the lookup tables:
*
* TX_SIZE txs = max_txsize_rect_lookup[bsize];
* for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
* txs = sub_tx_size_map[txs];
* const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
* const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
* const int bw_uint_log2 = mi_size_wide_log2[bsize];
* const int stride_log2 = bw_uint_log2 - tx_w_log2;
*/
static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
int blk_col) {
static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
};
static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
};
static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
};
const int index =
((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
(blk_col >> tw_w_log2_table[bsize]);
assert(index < TXK_TYPE_BUF_LEN);
return index;
}
#endif // CONFIG_INSPECTION
static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
int blk_col, TX_SIZE tx_size,
TX_TYPE tx_type) {
const int stride = xd->tx_type_map_stride;
xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
const int txw = tx_size_wide_unit[tx_size];
const int txh = tx_size_high_unit[tx_size];
// The 16x16 unit is due to the constraint from tx_64x64 which sets the
// maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
// size, the constraint takes effect in 32x16 / 16x32 size too. To solve
// the intricacy, cover all the 16x16 units inside a 64 level transform.
if (txw == tx_size_wide_unit[TX_64X64] ||
txh == tx_size_high_unit[TX_64X64]) {
const int tx_unit = tx_size_wide_unit[TX_16X16];
for (int idy = 0; idy < txh; idy += tx_unit) {
for (int idx = 0; idx < txw; idx += tx_unit) {
xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
}
}
}
}
static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
PLANE_TYPE plane_type, int blk_row,
int blk_col, TX_SIZE tx_size,
int reduced_tx_set) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
return DCT_DCT;
}
TX_TYPE tx_type;
if (plane_type == PLANE_TYPE_Y) {
tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
} else {
if (is_inter_block(mbmi)) {
// scale back to y plane's coordinate
const struct macroblockd_plane *const pd = &xd->plane[plane_type];
blk_row <<= pd->subsampling_y;
blk_col <<= pd->subsampling_x;
tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
} else {
// In intra mode, uv planes don't share the same prediction mode as y
// plane, so the tx_type should not be shared
tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
}
const TxSetType tx_set_type =
av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
}
assert(tx_type < TX_TYPES);
assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
reduced_tx_set)][tx_type]);
return tx_type;
}
void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
const int num_planes);
/*
* Logic to generate the lookup table:
*
* TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
* int depth = 0;
* while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
* depth++;
* tx_size = sub_tx_size_map[tx_size];
* }
*/
static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
};
return bsize_to_max_depth_table[bsize];
}
/*
* Logic to generate the lookup table:
*
* TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
* assert(tx_size != TX_4X4);
* int depth = 0;
* while (tx_size != TX_4X4) {
* depth++;
* tx_size = sub_tx_size_map[tx_size];
* }
* assert(depth < 10);
*/
static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
assert(bsize < BLOCK_SIZES_ALL);
static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
};
const int depth = bsize_to_tx_size_depth_table[bsize];
assert(depth <= MAX_TX_CATS);
return depth - 1;
}
static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
TX_SIZE tx_size = max_tx_size;
for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
return tx_size;
}
static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
switch (tx_size) {
case TX_64X64:
case TX_64X32:
case TX_32X64: return TX_32X32;
case TX_64X16: return TX_32X16;
case TX_16X64: return TX_16X32;
default: return tx_size;
}
}
static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
int subsampling_y) {
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, subsampling_x, subsampling_y);
assert(plane_bsize < BLOCK_SIZES_ALL);
const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
return av1_get_adjusted_tx_size(uv_tx);
}
static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
const MB_MODE_INFO *mbmi = xd->mi[0];
if (xd->lossless[mbmi->segment_id]) return TX_4X4;
if (plane == 0) return mbmi->tx_size;
const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
return av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x,
pd->subsampling_y);
}
void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
const int num_planes);
void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
typedef void (*foreach_transformed_block_visitor)(int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg);
void av1_set_entropy_contexts(const MACROBLOCKD *xd,
struct macroblockd_plane *pd, int plane,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
int has_eob, int aoff, int loff);
#define MAX_INTERINTRA_SB_SQUARE 32 * 32
static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
return (mbmi->ref_frame[0] > INTRA_FRAME &&
mbmi->ref_frame[1] == INTRA_FRAME);
}
static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
}
static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
}
static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
}
static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
return is_interintra_allowed_bsize(mbmi->sb_type) &&
is_interintra_allowed_mode(mbmi->mode) &&
is_interintra_allowed_ref(mbmi->ref_frame);
}
static INLINE int is_interintra_allowed_bsize_group(int group) {
int i;
for (i = 0; i < BLOCK_SIZES_ALL; i++) {
if (size_group_lookup[i] == group &&
is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
return 1;
}
}
return 0;
}
static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
return mbmi->ref_frame[0] > INTRA_FRAME &&
mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
}
static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane) {
if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
if (plane == 0) return max_txsize; // luma
return av1_get_adjusted_tx_size(max_txsize); // chroma
}
static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
assert(bsize < BLOCK_SIZES_ALL);
return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
}
static INLINE int is_motion_variation_allowed_compound(
const MB_MODE_INFO *mbmi) {
return !has_second_ref(mbmi);
}
// input: log2 of length, 0(4), 1(8), ...
static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
return !(mbmi->overlappable_neighbors[0] == 0 &&
mbmi->overlappable_neighbors[1] == 0);
}
static INLINE MOTION_MODE
motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi, int allow_warped_motion) {
if (xd->cur_frame_force_integer_mv == 0) {
const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
}
if (is_motion_variation_allowed_bsize(mbmi->sb_type) &&
is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
is_motion_variation_allowed_compound(mbmi)) {
if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
assert(!has_second_ref(mbmi));
if (mbmi->num_proj_ref >= 1 &&
(allow_warped_motion &&
!av1_is_scaled(xd->block_ref_scale_factors[0]))) {
if (xd->cur_frame_force_integer_mv) {
return OBMC_CAUSAL;
}
return WARPED_CAUSAL;
}
return OBMC_CAUSAL;
} else {
return SIMPLE_TRANSLATION;
}
}
static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
return (is_inter_block(mbmi));
}
static INLINE int av1_allow_palette(int allow_screen_content_tools,
BLOCK_SIZE sb_type) {
assert(sb_type < BLOCK_SIZES_ALL);
return allow_screen_content_tools && block_size_wide[sb_type] <= 64 &&
block_size_high[sb_type] <= 64 && sb_type >= BLOCK_8X8;
}
// Returns sub-sampled dimensions of the given block.
// The output values for 'rows_within_bounds' and 'cols_within_bounds' will
// differ from 'height' and 'width' when part of the block is outside the
// right
// and/or bottom image boundary.
static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
const MACROBLOCKD *xd, int *width,
int *height,
int *rows_within_bounds,
int *cols_within_bounds) {
const int block_height = block_size_high[bsize];
const int block_width = block_size_wide[bsize];
const int block_rows = (xd->mb_to_bottom_edge >= 0)
? block_height
: (xd->mb_to_bottom_edge >> 3) + block_height;
const int block_cols = (xd->mb_to_right_edge >= 0)
? block_width
: (xd->mb_to_right_edge >> 3) + block_width;
const struct macroblockd_plane *const pd = &xd->plane[plane];
assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
assert(block_width >= block_cols);
assert(block_height >= block_rows);
const int plane_block_width = block_width >> pd->subsampling_x;
const int plane_block_height = block_height >> pd->subsampling_y;
// Special handling for chroma sub8x8.
const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
if (width) *width = plane_block_width + 2 * is_chroma_sub8_x;
if (height) *height = plane_block_height + 2 * is_chroma_sub8_y;
if (rows_within_bounds) {
*rows_within_bounds =
(block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
}
if (cols_within_bounds) {
*cols_within_bounds =
(block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
}
}
/* clang-format off */
typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
[CDF_SIZE(PALETTE_COLORS)];
typedef const int (*ColorCost)[PALETTE_SIZES][PALETTE_COLOR_INDEX_CONTEXTS]
[PALETTE_COLORS];
/* clang-format on */
typedef struct {
int rows;
int cols;
int n_colors;
int plane_width;
int plane_height;
uint8_t *color_map;
MapCdf map_cdf;
ColorCost color_cost;
} Av1ColorMapParam;
static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi) {
int ref;
// First check if all modes are GLOBALMV
if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
if (AOMMIN(mi_size_wide[mbmi->sb_type], mi_size_high[mbmi->sb_type]) < 2)
return 0;
// Now check if all global motion is non translational
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
}
return 1;
}
static INLINE PLANE_TYPE get_plane_type(int plane) {
return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
}
static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
return 1024;
}
if (tx_size == TX_16X64 || tx_size == TX_64X16) {
return 512;
}
return tx_size_2d[tx_size];
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_COMMON_BLOCKD_H_