blob: 3090d73dc41c695a6183a45f9bc84cd331602e71 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdlib.h>
#include <string.h>
#include "./aom_config.h"
#include "./aom_version.h"
#include "aom/internal/aom_codec_internal.h"
#include "aom/aomdx.h"
#include "aom/aom_decoder.h"
#include "aom_dsp/bitreader_buffer.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_util/aom_thread.h"
#include "av1/common/alloccommon.h"
#include "av1/common/frame_buffers.h"
#include "av1/common/enums.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/decodeframe.h"
#include "av1/av1_iface_common.h"
// This limit is due to framebuffer numbers.
// TODO(hkuang): Remove this limit after implementing ondemand framebuffers.
#define FRAME_CACHE_SIZE 6 // Cache maximum 6 decoded frames.
typedef struct cache_frame {
int fb_idx;
aom_image_t img;
} cache_frame;
struct aom_codec_alg_priv {
aom_codec_priv_t base;
aom_codec_dec_cfg_t cfg;
aom_codec_stream_info_t si;
int postproc_cfg_set;
aom_postproc_cfg_t postproc_cfg;
aom_image_t img;
int img_avail;
int flushed;
int invert_tile_order;
int last_show_frame; // Index of last output frame.
int byte_alignment;
int skip_loop_filter;
int decode_tile_row;
int decode_tile_col;
// Frame parallel related.
int frame_parallel_decode; // frame-based threading.
AVxWorker *frame_workers;
int num_frame_workers;
int next_submit_worker_id;
int last_submit_worker_id;
int next_output_worker_id;
int available_threads;
cache_frame frame_cache[FRAME_CACHE_SIZE];
int frame_cache_write;
int frame_cache_read;
int num_cache_frames;
int need_resync; // wait for key/intra-only frame
// BufferPool that holds all reference frames. Shared by all the FrameWorkers.
BufferPool *buffer_pool;
// External frame buffer info to save for AV1 common.
void *ext_priv; // Private data associated with the external frame buffers.
aom_get_frame_buffer_cb_fn_t get_ext_fb_cb;
aom_release_frame_buffer_cb_fn_t release_ext_fb_cb;
#if CONFIG_INSPECTION
aom_inspect_cb inspect_cb;
void *inspect_ctx;
#endif
};
static aom_codec_err_t decoder_init(aom_codec_ctx_t *ctx,
aom_codec_priv_enc_mr_cfg_t *data) {
// This function only allocates space for the aom_codec_alg_priv_t
// structure. More memory may be required at the time the stream
// information becomes known.
(void)data;
if (!ctx->priv) {
aom_codec_alg_priv_t *const priv =
(aom_codec_alg_priv_t *)aom_calloc(1, sizeof(*priv));
if (priv == NULL) return AOM_CODEC_MEM_ERROR;
ctx->priv = (aom_codec_priv_t *)priv;
ctx->priv->init_flags = ctx->init_flags;
priv->flushed = 0;
// Only do frame parallel decode when threads > 1.
priv->frame_parallel_decode =
(ctx->config.dec && (ctx->config.dec->threads > 1) &&
(ctx->init_flags & AOM_CODEC_USE_FRAME_THREADING))
? 1
: 0;
// TODO(tdaede): this should not be exposed to the API
priv->cfg.allow_lowbitdepth = CONFIG_LOWBITDEPTH;
if (ctx->config.dec) {
priv->cfg = *ctx->config.dec;
ctx->config.dec = &priv->cfg;
}
}
return AOM_CODEC_OK;
}
static aom_codec_err_t decoder_destroy(aom_codec_alg_priv_t *ctx) {
if (ctx->frame_workers != NULL) {
int i;
for (i = 0; i < ctx->num_frame_workers; ++i) {
AVxWorker *const worker = &ctx->frame_workers[i];
FrameWorkerData *const frame_worker_data =
(FrameWorkerData *)worker->data1;
aom_get_worker_interface()->end(worker);
#if CONFIG_MFMV
aom_free(frame_worker_data->pbi->common.tpl_mvs);
frame_worker_data->pbi->common.tpl_mvs = NULL;
#endif
av1_remove_common(&frame_worker_data->pbi->common);
#if CONFIG_LOOP_RESTORATION
av1_free_restoration_buffers(&frame_worker_data->pbi->common);
#endif // CONFIG_LOOP_RESTORATION
av1_decoder_remove(frame_worker_data->pbi);
aom_free(frame_worker_data->scratch_buffer);
#if CONFIG_MULTITHREAD
pthread_mutex_destroy(&frame_worker_data->stats_mutex);
pthread_cond_destroy(&frame_worker_data->stats_cond);
#endif
aom_free(frame_worker_data);
}
#if CONFIG_MULTITHREAD
pthread_mutex_destroy(&ctx->buffer_pool->pool_mutex);
#endif
}
if (ctx->buffer_pool) {
av1_free_ref_frame_buffers(ctx->buffer_pool);
av1_free_internal_frame_buffers(&ctx->buffer_pool->int_frame_buffers);
}
aom_free(ctx->frame_workers);
aom_free(ctx->buffer_pool);
aom_free(ctx);
return AOM_CODEC_OK;
}
#if !CONFIG_OBU
static int parse_bitdepth_colorspace_sampling(BITSTREAM_PROFILE profile,
struct aom_read_bit_buffer *rb) {
aom_color_space_t color_space;
#if CONFIG_COLORSPACE_HEADERS
int subsampling_x = 0;
int subsampling_y = 0;
#endif
if (profile >= PROFILE_2) rb->bit_offset += 1; // Bit-depth 10 or 12.
#if CONFIG_COLORSPACE_HEADERS
color_space = (aom_color_space_t)aom_rb_read_literal(rb, 5);
rb->bit_offset += 5; // Transfer function
#else
color_space =
(aom_color_space_t)aom_rb_read_literal(rb, 3 + CONFIG_MONO_VIDEO);
#endif
if (color_space == AOM_CS_SRGB) {
if (profile == PROFILE_1 || profile == PROFILE_3) {
rb->bit_offset += 1; // unused
} else {
// RGB is only available in version 1.
return 0;
}
#if CONFIG_MONO_VIDEO
} else if (color_space == AOM_CS_MONOCHROME) {
return 1;
#endif // CONFIG_MONO_VIDEO
} else {
rb->bit_offset += 1; // [16,235] (including xvycc) vs [0,255] range.
if (profile == PROFILE_1 || profile == PROFILE_3) {
#if CONFIG_COLORSPACE_HEADERS
subsampling_x = aom_rb_read_bit(rb);
subsampling_y = aom_rb_read_bit(rb);
#else
rb->bit_offset += 2; // subsampling x/y.
#endif
rb->bit_offset += 1; // unused.
#if CONFIG_COLORSPACE_HEADERS
} else {
subsampling_x = 1;
subsampling_y = 1;
}
if (subsampling_x == 1 && subsampling_y == 1) {
rb->bit_offset += 2;
}
#else
}
#endif
}
return 1;
}
#endif
static aom_codec_err_t decoder_peek_si_internal(const uint8_t *data,
unsigned int data_sz,
aom_codec_stream_info_t *si,
int *is_intra_only) {
int intra_only_flag = 0;
if (data + data_sz <= data) return AOM_CODEC_INVALID_PARAM;
si->is_kf = 0;
si->w = si->h = 0;
// skip a potential superframe index
{
uint32_t frame_sizes[8];
int frame_count;
int index_size = 0;
aom_codec_err_t res = av1_parse_superframe_index(data, data_sz, frame_sizes,
&frame_count, &index_size);
if (res != AOM_CODEC_OK) return res;
data += index_size;
data_sz -= index_size;
#if CONFIG_OBU
if (data + data_sz <= data) return AOM_CODEC_INVALID_PARAM;
#endif
}
{
#if CONFIG_OBU
// Proper fix needed
si->is_kf = 1;
intra_only_flag = 1;
si->h = 1;
#else
int show_frame;
int error_resilient;
struct aom_read_bit_buffer rb = { data, data + data_sz, 0, NULL, NULL };
const int frame_marker = aom_rb_read_literal(&rb, 2);
const BITSTREAM_PROFILE profile = av1_read_profile(&rb);
#if CONFIG_EXT_TILE
unsigned int large_scale_tile;
#endif // CONFIG_EXT_TILE
if (frame_marker != AOM_FRAME_MARKER) return AOM_CODEC_UNSUP_BITSTREAM;
if (profile >= MAX_PROFILES) return AOM_CODEC_UNSUP_BITSTREAM;
if ((profile >= 2 && data_sz <= 1) || data_sz < 1)
return AOM_CODEC_UNSUP_BITSTREAM;
#if CONFIG_EXT_TILE
large_scale_tile = aom_rb_read_literal(&rb, 1);
#endif // CONFIG_EXT_TILE
if (aom_rb_read_bit(&rb)) { // show an existing frame
aom_rb_read_literal(&rb, 3); // Frame buffer to show.
return AOM_CODEC_OK;
}
if (data_sz <= 8) return AOM_CODEC_UNSUP_BITSTREAM;
si->is_kf = !aom_rb_read_bit(&rb);
show_frame = aom_rb_read_bit(&rb);
if (!si->is_kf) {
if (!show_frame) intra_only_flag = show_frame ? 0 : aom_rb_read_bit(&rb);
}
error_resilient = aom_rb_read_bit(&rb);
#if CONFIG_REFERENCE_BUFFER
SequenceHeader seq_params;
memset(&seq_params, 0, sizeof(seq_params));
if (si->is_kf) {
/* TODO: Move outside frame loop or inside key-frame branch */
read_sequence_header(&seq_params, &rb);
#if CONFIG_EXT_TILE
if (large_scale_tile) seq_params.frame_id_numbers_present_flag = 0;
#endif // CONFIG_EXT_TILE
}
#endif // CONFIG_REFERENCE_BUFFER
#if CONFIG_REFERENCE_BUFFER
if (seq_params.frame_id_numbers_present_flag) {
aom_rb_read_literal(&rb, seq_params.frame_id_length);
}
#endif // CONFIG_REFERENCE_BUFFER
#if CONFIG_FRAME_SIZE
int frame_size_override_flag = aom_rb_read_bit(&rb);
#endif
if (si->is_kf) {
if (!parse_bitdepth_colorspace_sampling(profile, &rb))
return AOM_CODEC_UNSUP_BITSTREAM;
#if CONFIG_FRAME_SIZE
if (frame_size_override_flag) {
int num_bits_width = seq_params.num_bits_width;
int num_bits_height = seq_params.num_bits_height;
av1_read_frame_size(&rb, num_bits_width, num_bits_height, (int *)&si->w,
(int *)&si->h);
} else {
si->w = seq_params.max_frame_width;
si->h = seq_params.max_frame_height;
}
#else
av1_read_frame_size(&rb, (int *)&si->w, (int *)&si->h);
#endif
} else {
rb.bit_offset += error_resilient ? 0 : 2; // reset_frame_context
if (intra_only_flag) {
if (profile > PROFILE_0) {
if (!parse_bitdepth_colorspace_sampling(profile, &rb))
return AOM_CODEC_UNSUP_BITSTREAM;
}
rb.bit_offset += REF_FRAMES; // refresh_frame_flags
#if CONFIG_FRAME_SIZE
if (frame_size_override_flag) {
int num_bits_width = seq_params.num_bits_width;
int num_bits_height = seq_params.num_bits_height;
av1_read_frame_size(&rb, num_bits_width, num_bits_height,
(int *)&si->w, (int *)&si->h);
} else {
si->w = seq_params.max_frame_width;
si->h = seq_params.max_frame_height;
}
#else
av1_read_frame_size(&rb, (int *)&si->w, (int *)&si->h);
#endif
}
}
#endif // CONFIG_OBU
}
if (is_intra_only != NULL) *is_intra_only = intra_only_flag;
return AOM_CODEC_OK;
}
static aom_codec_err_t decoder_peek_si(const uint8_t *data,
unsigned int data_sz,
aom_codec_stream_info_t *si) {
return decoder_peek_si_internal(data, data_sz, si, NULL);
}
static aom_codec_err_t decoder_get_si(aom_codec_alg_priv_t *ctx,
aom_codec_stream_info_t *si) {
memcpy(si, &ctx->si, sizeof(*si));
return AOM_CODEC_OK;
}
static void set_error_detail(aom_codec_alg_priv_t *ctx,
const char *const error) {
ctx->base.err_detail = error;
}
static aom_codec_err_t update_error_state(
aom_codec_alg_priv_t *ctx, const struct aom_internal_error_info *error) {
if (error->error_code)
set_error_detail(ctx, error->has_detail ? error->detail : NULL);
return error->error_code;
}
static void init_buffer_callbacks(aom_codec_alg_priv_t *ctx) {
int i;
for (i = 0; i < ctx->num_frame_workers; ++i) {
AVxWorker *const worker = &ctx->frame_workers[i];
FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1;
AV1_COMMON *const cm = &frame_worker_data->pbi->common;
BufferPool *const pool = cm->buffer_pool;
cm->new_fb_idx = INVALID_IDX;
cm->byte_alignment = ctx->byte_alignment;
cm->skip_loop_filter = ctx->skip_loop_filter;
if (ctx->get_ext_fb_cb != NULL && ctx->release_ext_fb_cb != NULL) {
pool->get_fb_cb = ctx->get_ext_fb_cb;
pool->release_fb_cb = ctx->release_ext_fb_cb;
pool->cb_priv = ctx->ext_priv;
} else {
pool->get_fb_cb = av1_get_frame_buffer;
pool->release_fb_cb = av1_release_frame_buffer;
if (av1_alloc_internal_frame_buffers(&pool->int_frame_buffers))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to initialize internal frame buffers");
pool->cb_priv = &pool->int_frame_buffers;
}
}
}
static void set_default_ppflags(aom_postproc_cfg_t *cfg) {
cfg->post_proc_flag = AOM_DEBLOCK | AOM_DEMACROBLOCK;
cfg->deblocking_level = 4;
cfg->noise_level = 0;
}
static int frame_worker_hook(void *arg1, void *arg2) {
FrameWorkerData *const frame_worker_data = (FrameWorkerData *)arg1;
const uint8_t *data = frame_worker_data->data;
(void)arg2;
frame_worker_data->result = av1_receive_compressed_data(
frame_worker_data->pbi, frame_worker_data->data_size, &data);
frame_worker_data->data_end = data;
if (frame_worker_data->pbi->common.frame_parallel_decode) {
// In frame parallel decoding, a worker thread must successfully decode all
// the compressed data.
if (frame_worker_data->result != 0 ||
frame_worker_data->data + frame_worker_data->data_size - 1 > data) {
AVxWorker *const worker = frame_worker_data->pbi->frame_worker_owner;
BufferPool *const pool = frame_worker_data->pbi->common.buffer_pool;
// Signal all the other threads that are waiting for this frame.
av1_frameworker_lock_stats(worker);
frame_worker_data->frame_context_ready = 1;
lock_buffer_pool(pool);
frame_worker_data->pbi->cur_buf->buf.corrupted = 1;
unlock_buffer_pool(pool);
frame_worker_data->pbi->need_resync = 1;
av1_frameworker_signal_stats(worker);
av1_frameworker_unlock_stats(worker);
return 0;
}
} else if (frame_worker_data->result != 0) {
// Check decode result in serial decode.
frame_worker_data->pbi->cur_buf->buf.corrupted = 1;
frame_worker_data->pbi->need_resync = 1;
}
return !frame_worker_data->result;
}
static aom_codec_err_t init_decoder(aom_codec_alg_priv_t *ctx) {
int i;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
ctx->last_show_frame = -1;
ctx->next_submit_worker_id = 0;
ctx->last_submit_worker_id = 0;
ctx->next_output_worker_id = 0;
ctx->frame_cache_read = 0;
ctx->frame_cache_write = 0;
ctx->num_cache_frames = 0;
ctx->need_resync = 1;
ctx->num_frame_workers =
(ctx->frame_parallel_decode == 1) ? ctx->cfg.threads : 1;
if (ctx->num_frame_workers > MAX_DECODE_THREADS)
ctx->num_frame_workers = MAX_DECODE_THREADS;
ctx->available_threads = ctx->num_frame_workers;
ctx->flushed = 0;
ctx->buffer_pool = (BufferPool *)aom_calloc(1, sizeof(BufferPool));
if (ctx->buffer_pool == NULL) return AOM_CODEC_MEM_ERROR;
#if CONFIG_MULTITHREAD
if (pthread_mutex_init(&ctx->buffer_pool->pool_mutex, NULL)) {
set_error_detail(ctx, "Failed to allocate buffer pool mutex");
return AOM_CODEC_MEM_ERROR;
}
#endif
ctx->frame_workers = (AVxWorker *)aom_malloc(ctx->num_frame_workers *
sizeof(*ctx->frame_workers));
if (ctx->frame_workers == NULL) {
set_error_detail(ctx, "Failed to allocate frame_workers");
return AOM_CODEC_MEM_ERROR;
}
for (i = 0; i < ctx->num_frame_workers; ++i) {
AVxWorker *const worker = &ctx->frame_workers[i];
FrameWorkerData *frame_worker_data = NULL;
winterface->init(worker);
worker->data1 = aom_memalign(32, sizeof(FrameWorkerData));
if (worker->data1 == NULL) {
set_error_detail(ctx, "Failed to allocate frame_worker_data");
return AOM_CODEC_MEM_ERROR;
}
frame_worker_data = (FrameWorkerData *)worker->data1;
frame_worker_data->pbi = av1_decoder_create(ctx->buffer_pool);
if (frame_worker_data->pbi == NULL) {
set_error_detail(ctx, "Failed to allocate frame_worker_data");
return AOM_CODEC_MEM_ERROR;
}
frame_worker_data->pbi->frame_worker_owner = worker;
frame_worker_data->worker_id = i;
frame_worker_data->scratch_buffer = NULL;
frame_worker_data->scratch_buffer_size = 0;
frame_worker_data->frame_context_ready = 0;
frame_worker_data->received_frame = 0;
#if CONFIG_MULTITHREAD
if (pthread_mutex_init(&frame_worker_data->stats_mutex, NULL)) {
set_error_detail(ctx, "Failed to allocate frame_worker_data mutex");
return AOM_CODEC_MEM_ERROR;
}
if (pthread_cond_init(&frame_worker_data->stats_cond, NULL)) {
set_error_detail(ctx, "Failed to allocate frame_worker_data cond");
return AOM_CODEC_MEM_ERROR;
}
#endif
frame_worker_data->pbi->allow_lowbitdepth = ctx->cfg.allow_lowbitdepth;
// If decoding in serial mode, FrameWorker thread could create tile worker
// thread or loopfilter thread.
frame_worker_data->pbi->max_threads =
(ctx->frame_parallel_decode == 0) ? ctx->cfg.threads : 0;
frame_worker_data->pbi->inv_tile_order = ctx->invert_tile_order;
frame_worker_data->pbi->common.frame_parallel_decode =
ctx->frame_parallel_decode;
worker->hook = (AVxWorkerHook)frame_worker_hook;
if (!winterface->reset(worker)) {
set_error_detail(ctx, "Frame Worker thread creation failed");
return AOM_CODEC_MEM_ERROR;
}
}
// If postprocessing was enabled by the application and a
// configuration has not been provided, default it.
if (!ctx->postproc_cfg_set && (ctx->base.init_flags & AOM_CODEC_USE_POSTPROC))
set_default_ppflags(&ctx->postproc_cfg);
init_buffer_callbacks(ctx);
return AOM_CODEC_OK;
}
static INLINE void check_resync(aom_codec_alg_priv_t *const ctx,
const AV1Decoder *const pbi) {
// Clear resync flag if worker got a key frame or intra only frame.
if (ctx->need_resync == 1 && pbi->need_resync == 0 &&
(pbi->common.intra_only || pbi->common.frame_type == KEY_FRAME))
ctx->need_resync = 0;
}
static aom_codec_err_t decode_one(aom_codec_alg_priv_t *ctx,
const uint8_t **data, unsigned int data_sz,
void *user_priv, int64_t deadline) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
(void)deadline;
// Determine the stream parameters. Note that we rely on peek_si to
// validate that we have a buffer that does not wrap around the top
// of the heap.
if (!ctx->si.h) {
int is_intra_only = 0;
const aom_codec_err_t res =
decoder_peek_si_internal(*data, data_sz, &ctx->si, &is_intra_only);
if (res != AOM_CODEC_OK) return res;
if (!ctx->si.is_kf && !is_intra_only) return AOM_CODEC_ERROR;
}
if (!ctx->frame_parallel_decode) {
AVxWorker *const worker = ctx->frame_workers;
FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1;
frame_worker_data->data = *data;
frame_worker_data->data_size = data_sz;
frame_worker_data->user_priv = user_priv;
frame_worker_data->received_frame = 1;
#if CONFIG_INSPECTION
frame_worker_data->pbi->inspect_cb = ctx->inspect_cb;
frame_worker_data->pbi->inspect_ctx = ctx->inspect_ctx;
#endif
#if CONFIG_EXT_TILE
frame_worker_data->pbi->dec_tile_row = ctx->decode_tile_row;
frame_worker_data->pbi->dec_tile_col = ctx->decode_tile_col;
#endif // CONFIG_EXT_TILE
worker->had_error = 0;
winterface->execute(worker);
// Update data pointer after decode.
*data = frame_worker_data->data_end;
if (worker->had_error)
return update_error_state(ctx, &frame_worker_data->pbi->common.error);
check_resync(ctx, frame_worker_data->pbi);
} else {
AVxWorker *const worker = &ctx->frame_workers[ctx->next_submit_worker_id];
FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1;
// Copy context from last worker thread to next worker thread.
if (ctx->next_submit_worker_id != ctx->last_submit_worker_id)
av1_frameworker_copy_context(
&ctx->frame_workers[ctx->next_submit_worker_id],
&ctx->frame_workers[ctx->last_submit_worker_id]);
frame_worker_data->pbi->ready_for_new_data = 0;
// Copy the compressed data into worker's internal buffer.
// TODO(hkuang): Will all the workers allocate the same size
// as the size of the first intra frame be better? This will
// avoid too many deallocate and allocate.
if (frame_worker_data->scratch_buffer_size < data_sz) {
aom_free(frame_worker_data->scratch_buffer);
frame_worker_data->scratch_buffer = (uint8_t *)aom_malloc(data_sz);
if (frame_worker_data->scratch_buffer == NULL) {
set_error_detail(ctx, "Failed to reallocate scratch buffer");
return AOM_CODEC_MEM_ERROR;
}
frame_worker_data->scratch_buffer_size = data_sz;
}
frame_worker_data->data_size = data_sz;
memcpy(frame_worker_data->scratch_buffer, *data, data_sz);
frame_worker_data->frame_decoded = 0;
frame_worker_data->frame_context_ready = 0;
frame_worker_data->received_frame = 1;
frame_worker_data->data = frame_worker_data->scratch_buffer;
frame_worker_data->user_priv = user_priv;
if (ctx->next_submit_worker_id != ctx->last_submit_worker_id)
ctx->last_submit_worker_id =
(ctx->last_submit_worker_id + 1) % ctx->num_frame_workers;
ctx->next_submit_worker_id =
(ctx->next_submit_worker_id + 1) % ctx->num_frame_workers;
--ctx->available_threads;
worker->had_error = 0;
winterface->launch(worker);
}
return AOM_CODEC_OK;
}
static void wait_worker_and_cache_frame(aom_codec_alg_priv_t *ctx) {
YV12_BUFFER_CONFIG sd;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
AVxWorker *const worker = &ctx->frame_workers[ctx->next_output_worker_id];
FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1;
ctx->next_output_worker_id =
(ctx->next_output_worker_id + 1) % ctx->num_frame_workers;
// TODO(hkuang): Add worker error handling here.
winterface->sync(worker);
frame_worker_data->received_frame = 0;
++ctx->available_threads;
check_resync(ctx, frame_worker_data->pbi);
if (av1_get_raw_frame(frame_worker_data->pbi, &sd) == 0) {
AV1_COMMON *const cm = &frame_worker_data->pbi->common;
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
ctx->frame_cache[ctx->frame_cache_write].fb_idx = cm->new_fb_idx;
yuvconfig2image(&ctx->frame_cache[ctx->frame_cache_write].img, &sd,
frame_worker_data->user_priv);
ctx->frame_cache[ctx->frame_cache_write].img.fb_priv =
frame_bufs[cm->new_fb_idx].raw_frame_buffer.priv;
ctx->frame_cache_write = (ctx->frame_cache_write + 1) % FRAME_CACHE_SIZE;
++ctx->num_cache_frames;
}
}
static aom_codec_err_t decoder_decode(aom_codec_alg_priv_t *ctx,
const uint8_t *data, unsigned int data_sz,
void *user_priv, long deadline) {
const uint8_t *data_start = data;
const uint8_t *const data_end = data + data_sz;
aom_codec_err_t res = AOM_CODEC_OK;
uint32_t frame_sizes[8];
int frame_count = 0;
if (data == NULL && data_sz == 0) {
ctx->flushed = 1;
return AOM_CODEC_OK;
}
// Reset flushed when receiving a valid frame.
ctx->flushed = 0;
// Initialize the decoder workers on the first frame.
if (ctx->frame_workers == NULL) {
res = init_decoder(ctx);
if (res != AOM_CODEC_OK) return res;
}
#if !CONFIG_OBU
int index_size = 0;
res = av1_parse_superframe_index(data, data_sz, frame_sizes, &frame_count,
&index_size);
if (res != AOM_CODEC_OK) return res;
data_start += index_size;
#endif
if (ctx->frame_parallel_decode) {
// Decode in frame parallel mode. When decoding in this mode, the frame
// passed to the decoder must be either a normal frame or a superframe with
// superframe index so the decoder could get each frame's start position
// in the superframe.
if (frame_count > 0) {
int i;
for (i = 0; i < frame_count; ++i) {
const uint8_t *data_start_copy = data_start;
const uint32_t frame_size = frame_sizes[i];
if (data_start < data ||
frame_size > (uint32_t)(data_end - data_start)) {
set_error_detail(ctx, "Invalid frame size in index");
return AOM_CODEC_CORRUPT_FRAME;
}
if (ctx->available_threads == 0) {
// No more threads for decoding. Wait until the next output worker
// finishes decoding. Then copy the decoded frame into cache.
if (ctx->num_cache_frames < FRAME_CACHE_SIZE) {
wait_worker_and_cache_frame(ctx);
} else {
// TODO(hkuang): Add unit test to test this path.
set_error_detail(ctx, "Frame output cache is full.");
return AOM_CODEC_ERROR;
}
}
res =
decode_one(ctx, &data_start_copy, frame_size, user_priv, deadline);
if (res != AOM_CODEC_OK) return res;
data_start += frame_size;
}
} else {
if (ctx->available_threads == 0) {
// No more threads for decoding. Wait until the next output worker
// finishes decoding. Then copy the decoded frame into cache.
if (ctx->num_cache_frames < FRAME_CACHE_SIZE) {
wait_worker_and_cache_frame(ctx);
} else {
// TODO(hkuang): Add unit test to test this path.
set_error_detail(ctx, "Frame output cache is full.");
return AOM_CODEC_ERROR;
}
}
res = decode_one(ctx, &data, data_sz, user_priv, deadline);
if (res != AOM_CODEC_OK) return res;
}
} else {
// Decode in serial mode.
if (frame_count > 0) {
int i;
for (i = 0; i < frame_count; ++i) {
const uint8_t *data_start_copy = data_start;
const uint32_t frame_size = frame_sizes[i];
if (data_start < data ||
frame_size > (uint32_t)(data_end - data_start)) {
set_error_detail(ctx, "Invalid frame size in index");
return AOM_CODEC_CORRUPT_FRAME;
}
res =
decode_one(ctx, &data_start_copy, frame_size, user_priv, deadline);
if (res != AOM_CODEC_OK) return res;
data_start += frame_size;
}
} else {
while (data_start < data_end) {
const uint32_t frame_size = (uint32_t)(data_end - data_start);
res = decode_one(ctx, &data_start, frame_size, user_priv, deadline);
if (res != AOM_CODEC_OK) return res;
// Account for suboptimal termination by the encoder.
while (data_start < data_end) {
const uint8_t marker = read_marker(data_start);
if (marker) break;
++data_start;
}
}
}
}
return res;
}
static void release_last_output_frame(aom_codec_alg_priv_t *ctx) {
RefCntBuffer *const frame_bufs = ctx->buffer_pool->frame_bufs;
// Decrease reference count of last output frame in frame parallel mode.
if (ctx->frame_parallel_decode && ctx->last_show_frame >= 0) {
BufferPool *const pool = ctx->buffer_pool;
lock_buffer_pool(pool);
decrease_ref_count(ctx->last_show_frame, frame_bufs, pool);
unlock_buffer_pool(pool);
}
}
static aom_image_t *decoder_get_frame(aom_codec_alg_priv_t *ctx,
aom_codec_iter_t *iter) {
aom_image_t *img = NULL;
// Only return frame when all the cpu are busy or
// application fluhsed the decoder in frame parallel decode.
if (ctx->frame_parallel_decode && ctx->available_threads > 0 &&
!ctx->flushed) {
return NULL;
}
// Output the frames in the cache first.
if (ctx->num_cache_frames > 0) {
release_last_output_frame(ctx);
ctx->last_show_frame = ctx->frame_cache[ctx->frame_cache_read].fb_idx;
if (ctx->need_resync) return NULL;
img = &ctx->frame_cache[ctx->frame_cache_read].img;
ctx->frame_cache_read = (ctx->frame_cache_read + 1) % FRAME_CACHE_SIZE;
--ctx->num_cache_frames;
return img;
}
// iter acts as a flip flop, so an image is only returned on the first
// call to get_frame.
if (*iter == NULL && ctx->frame_workers != NULL) {
do {
YV12_BUFFER_CONFIG sd;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
AVxWorker *const worker = &ctx->frame_workers[ctx->next_output_worker_id];
FrameWorkerData *const frame_worker_data =
(FrameWorkerData *)worker->data1;
ctx->next_output_worker_id =
(ctx->next_output_worker_id + 1) % ctx->num_frame_workers;
// Wait for the frame from worker thread.
if (winterface->sync(worker)) {
// Check if worker has received any frames.
if (frame_worker_data->received_frame == 1) {
++ctx->available_threads;
frame_worker_data->received_frame = 0;
check_resync(ctx, frame_worker_data->pbi);
}
if (av1_get_raw_frame(frame_worker_data->pbi, &sd) == 0) {
AV1_COMMON *const cm = &frame_worker_data->pbi->common;
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
release_last_output_frame(ctx);
ctx->last_show_frame = frame_worker_data->pbi->common.new_fb_idx;
if (ctx->need_resync) return NULL;
yuvconfig2image(&ctx->img, &sd, frame_worker_data->user_priv);
#if CONFIG_EXT_TILE
if (cm->single_tile_decoding &&
frame_worker_data->pbi->dec_tile_row >= 0) {
const int tile_row =
AOMMIN(frame_worker_data->pbi->dec_tile_row, cm->tile_rows - 1);
const int mi_row = tile_row * cm->tile_height;
const int ssy = ctx->img.y_chroma_shift;
int plane;
ctx->img.planes[0] += mi_row * MI_SIZE * ctx->img.stride[0];
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
ctx->img.planes[plane] +=
mi_row * (MI_SIZE >> ssy) * ctx->img.stride[plane];
}
ctx->img.d_h =
AOMMIN(cm->tile_height, cm->mi_rows - mi_row) * MI_SIZE;
}
if (cm->single_tile_decoding &&
frame_worker_data->pbi->dec_tile_col >= 0) {
const int tile_col =
AOMMIN(frame_worker_data->pbi->dec_tile_col, cm->tile_cols - 1);
const int mi_col = tile_col * cm->tile_width;
const int ssx = ctx->img.x_chroma_shift;
int plane;
ctx->img.planes[0] += mi_col * MI_SIZE;
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
ctx->img.planes[plane] += mi_col * (MI_SIZE >> ssx);
}
ctx->img.d_w =
AOMMIN(cm->tile_width, cm->mi_cols - mi_col) * MI_SIZE;
}
#endif // CONFIG_EXT_TILE
ctx->img.fb_priv = frame_bufs[cm->new_fb_idx].raw_frame_buffer.priv;
img = &ctx->img;
return img;
}
} else {
// Decoding failed. Release the worker thread.
frame_worker_data->received_frame = 0;
++ctx->available_threads;
ctx->need_resync = 1;
if (ctx->flushed != 1) return NULL;
}
} while (ctx->next_output_worker_id != ctx->next_submit_worker_id);
}
return NULL;
}
static aom_codec_err_t decoder_set_fb_fn(
aom_codec_alg_priv_t *ctx, aom_get_frame_buffer_cb_fn_t cb_get,
aom_release_frame_buffer_cb_fn_t cb_release, void *cb_priv) {
if (cb_get == NULL || cb_release == NULL) {
return AOM_CODEC_INVALID_PARAM;
} else if (ctx->frame_workers == NULL) {
// If the decoder has already been initialized, do not accept changes to
// the frame buffer functions.
ctx->get_ext_fb_cb = cb_get;
ctx->release_ext_fb_cb = cb_release;
ctx->ext_priv = cb_priv;
return AOM_CODEC_OK;
}
return AOM_CODEC_ERROR;
}
static aom_codec_err_t ctrl_set_reference(aom_codec_alg_priv_t *ctx,
va_list args) {
av1_ref_frame_t *const data = va_arg(args, av1_ref_frame_t *);
// Only support this function in serial decode.
if (ctx->frame_parallel_decode) {
set_error_detail(ctx, "Not supported in frame parallel decode");
return AOM_CODEC_INCAPABLE;
}
if (data) {
av1_ref_frame_t *const frame = data;
YV12_BUFFER_CONFIG sd;
AVxWorker *const worker = ctx->frame_workers;
FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1;
image2yuvconfig(&frame->img, &sd);
return av1_set_reference_dec(&frame_worker_data->pbi->common, frame->idx,
&sd);
} else {
return AOM_CODEC_INVALID_PARAM;
}
}
static aom_codec_err_t ctrl_copy_reference(aom_codec_alg_priv_t *ctx,
va_list args) {
const av1_ref_frame_t *const frame = va_arg(args, av1_ref_frame_t *);
// Only support this function in serial decode.
if (ctx->frame_parallel_decode) {
set_error_detail(ctx, "Not supported in frame parallel decode");
return AOM_CODEC_INCAPABLE;
}
if (frame) {
YV12_BUFFER_CONFIG sd;
AVxWorker *const worker = ctx->frame_workers;
FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1;
image2yuvconfig(&frame->img, &sd);
return av1_copy_reference_dec(frame_worker_data->pbi, frame->idx, &sd);
} else {
return AOM_CODEC_INVALID_PARAM;
}
}
static aom_codec_err_t ctrl_get_reference(aom_codec_alg_priv_t *ctx,
va_list args) {
av1_ref_frame_t *data = va_arg(args, av1_ref_frame_t *);
// Only support this function in serial decode.
if (ctx->frame_parallel_decode) {
set_error_detail(ctx, "Not supported in frame parallel decode");
return AOM_CODEC_INCAPABLE;
}
if (data) {
YV12_BUFFER_CONFIG *fb;
AVxWorker *const worker = ctx->frame_workers;
FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1;
fb = get_ref_frame(&frame_worker_data->pbi->common, data->idx);
if (fb == NULL) return AOM_CODEC_ERROR;
yuvconfig2image(&data->img, fb, NULL);
return AOM_CODEC_OK;
} else {
return AOM_CODEC_INVALID_PARAM;
}
}
static aom_codec_err_t ctrl_get_new_frame_image(aom_codec_alg_priv_t *ctx,
va_list args) {
aom_image_t *new_img = va_arg(args, aom_image_t *);
// Only support this function in serial decode.
if (ctx->frame_parallel_decode) {
set_error_detail(ctx, "Not supported in frame parallel decode");
return AOM_CODEC_INCAPABLE;
}
if (new_img) {
YV12_BUFFER_CONFIG new_frame;
AVxWorker *const worker = ctx->frame_workers;
FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1;
if (av1_get_frame_to_show(frame_worker_data->pbi, &new_frame) == 0) {
yuvconfig2image(new_img, &new_frame, NULL);
return AOM_CODEC_OK;
} else {
return AOM_CODEC_ERROR;
}
} else {
return AOM_CODEC_INVALID_PARAM;
}
}
static aom_codec_err_t ctrl_set_postproc(aom_codec_alg_priv_t *ctx,
va_list args) {
(void)ctx;
(void)args;
return AOM_CODEC_INCAPABLE;
}
static aom_codec_err_t ctrl_set_dbg_options(aom_codec_alg_priv_t *ctx,
va_list args) {
(void)ctx;
(void)args;
return AOM_CODEC_INCAPABLE;
}
static aom_codec_err_t ctrl_get_last_ref_updates(aom_codec_alg_priv_t *ctx,
va_list args) {
int *const update_info = va_arg(args, int *);
// Only support this function in serial decode.
if (ctx->frame_parallel_decode) {
set_error_detail(ctx, "Not supported in frame parallel decode");
return AOM_CODEC_INCAPABLE;
}
if (update_info) {
if (ctx->frame_workers) {
AVxWorker *const worker = ctx->frame_workers;
FrameWorkerData *const frame_worker_data =
(FrameWorkerData *)worker->data1;
*update_info = frame_worker_data->pbi->refresh_frame_flags;
return AOM_CODEC_OK;
} else {
return AOM_CODEC_ERROR;
}
}
return AOM_CODEC_INVALID_PARAM;
}
static aom_codec_err_t ctrl_get_last_quantizer(aom_codec_alg_priv_t *ctx,
va_list args) {
int *const arg = va_arg(args, int *);
if (arg == NULL) return AOM_CODEC_INVALID_PARAM;
*arg =
((FrameWorkerData *)ctx->frame_workers[0].data1)->pbi->common.base_qindex;
return AOM_CODEC_OK;
}
static aom_codec_err_t ctrl_get_frame_corrupted(aom_codec_alg_priv_t *ctx,
va_list args) {
int *corrupted = va_arg(args, int *);
if (corrupted) {
if (ctx->frame_workers) {
AVxWorker *const worker = ctx->frame_workers;
FrameWorkerData *const frame_worker_data =
(FrameWorkerData *)worker->data1;
RefCntBuffer *const frame_bufs =
frame_worker_data->pbi->common.buffer_pool->frame_bufs;
if (frame_worker_data->pbi->common.frame_to_show == NULL)
return AOM_CODEC_ERROR;
if (ctx->last_show_frame >= 0)
*corrupted = frame_bufs[ctx->last_show_frame].buf.corrupted;
return AOM_CODEC_OK;
} else {
return AOM_CODEC_ERROR;
}
}
return AOM_CODEC_INVALID_PARAM;
}
static aom_codec_err_t ctrl_get_frame_size(aom_codec_alg_priv_t *ctx,
va_list args) {
int *const frame_size = va_arg(args, int *);
// Only support this function in serial decode.
if (ctx->frame_parallel_decode) {
set_error_detail(ctx, "Not supported in frame parallel decode");
return AOM_CODEC_INCAPABLE;
}
if (frame_size) {
if (ctx->frame_workers) {
AVxWorker *const worker = ctx->frame_workers;
FrameWorkerData *const frame_worker_data =
(FrameWorkerData *)worker->data1;
const AV1_COMMON *const cm = &frame_worker_data->pbi->common;
frame_size[0] = cm->width;
frame_size[1] = cm->height;
return AOM_CODEC_OK;
} else {
return AOM_CODEC_ERROR;
}
}
return AOM_CODEC_INVALID_PARAM;
}
static aom_codec_err_t ctrl_get_render_size(aom_codec_alg_priv_t *ctx,
va_list args) {
int *const render_size = va_arg(args, int *);
// Only support this function in serial decode.
if (ctx->frame_parallel_decode) {
set_error_detail(ctx, "Not supported in frame parallel decode");
return AOM_CODEC_INCAPABLE;
}
if (render_size) {
if (ctx->frame_workers) {
AVxWorker *const worker = ctx->frame_workers;
FrameWorkerData *const frame_worker_data =
(FrameWorkerData *)worker->data1;
const AV1_COMMON *const cm = &frame_worker_data->pbi->common;
render_size[0] = cm->render_width;
render_size[1] = cm->render_height;
return AOM_CODEC_OK;
} else {
return AOM_CODEC_ERROR;
}
}
return AOM_CODEC_INVALID_PARAM;
}
static aom_codec_err_t ctrl_get_bit_depth(aom_codec_alg_priv_t *ctx,
va_list args) {
unsigned int *const bit_depth = va_arg(args, unsigned int *);
AVxWorker *const worker = &ctx->frame_workers[ctx->next_output_worker_id];
if (bit_depth) {
if (worker) {
FrameWorkerData *const frame_worker_data =
(FrameWorkerData *)worker->data1;
const AV1_COMMON *const cm = &frame_worker_data->pbi->common;
*bit_depth = cm->bit_depth;
return AOM_CODEC_OK;
} else {
return AOM_CODEC_ERROR;
}
}
return AOM_CODEC_INVALID_PARAM;
}
static aom_codec_err_t ctrl_set_invert_tile_order(aom_codec_alg_priv_t *ctx,
va_list args) {
ctx->invert_tile_order = va_arg(args, int);
return AOM_CODEC_OK;
}
static aom_codec_err_t ctrl_set_byte_alignment(aom_codec_alg_priv_t *ctx,
va_list args) {
const int legacy_byte_alignment = 0;
const int min_byte_alignment = 32;
const int max_byte_alignment = 1024;
const int byte_alignment = va_arg(args, int);
if (byte_alignment != legacy_byte_alignment &&
(byte_alignment < min_byte_alignment ||
byte_alignment > max_byte_alignment ||
(byte_alignment & (byte_alignment - 1)) != 0))
return AOM_CODEC_INVALID_PARAM;
ctx->byte_alignment = byte_alignment;
if (ctx->frame_workers) {
AVxWorker *const worker = ctx->frame_workers;
FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1;
frame_worker_data->pbi->common.byte_alignment = byte_alignment;
}
return AOM_CODEC_OK;
}
static aom_codec_err_t ctrl_set_skip_loop_filter(aom_codec_alg_priv_t *ctx,
va_list args) {
ctx->skip_loop_filter = va_arg(args, int);
if (ctx->frame_workers) {
AVxWorker *const worker = ctx->frame_workers;
FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1;
frame_worker_data->pbi->common.skip_loop_filter = ctx->skip_loop_filter;
}
return AOM_CODEC_OK;
}
static aom_codec_err_t ctrl_get_accounting(aom_codec_alg_priv_t *ctx,
va_list args) {
#if !CONFIG_ACCOUNTING
(void)ctx;
(void)args;
return AOM_CODEC_INCAPABLE;
#else
if (ctx->frame_workers) {
AVxWorker *const worker = ctx->frame_workers;
FrameWorkerData *const frame_worker_data = (FrameWorkerData *)worker->data1;
AV1Decoder *pbi = frame_worker_data->pbi;
Accounting **acct = va_arg(args, Accounting **);
*acct = &pbi->accounting;
return AOM_CODEC_OK;
}
return AOM_CODEC_ERROR;
#endif
}
static aom_codec_err_t ctrl_set_decode_tile_row(aom_codec_alg_priv_t *ctx,
va_list args) {
ctx->decode_tile_row = va_arg(args, int);
return AOM_CODEC_OK;
}
static aom_codec_err_t ctrl_set_decode_tile_col(aom_codec_alg_priv_t *ctx,
va_list args) {
ctx->decode_tile_col = va_arg(args, int);
return AOM_CODEC_OK;
}
static aom_codec_err_t ctrl_set_inspection_callback(aom_codec_alg_priv_t *ctx,
va_list args) {
#if !CONFIG_INSPECTION
(void)ctx;
(void)args;
return AOM_CODEC_INCAPABLE;
#else
aom_inspect_init *init = va_arg(args, aom_inspect_init *);
ctx->inspect_cb = init->inspect_cb;
ctx->inspect_ctx = init->inspect_ctx;
return AOM_CODEC_OK;
#endif
}
static aom_codec_ctrl_fn_map_t decoder_ctrl_maps[] = {
{ AV1_COPY_REFERENCE, ctrl_copy_reference },
// Setters
{ AV1_SET_REFERENCE, ctrl_set_reference },
{ AOM_SET_POSTPROC, ctrl_set_postproc },
{ AOM_SET_DBG_COLOR_REF_FRAME, ctrl_set_dbg_options },
{ AOM_SET_DBG_COLOR_MB_MODES, ctrl_set_dbg_options },
{ AOM_SET_DBG_COLOR_B_MODES, ctrl_set_dbg_options },
{ AOM_SET_DBG_DISPLAY_MV, ctrl_set_dbg_options },
{ AV1_INVERT_TILE_DECODE_ORDER, ctrl_set_invert_tile_order },
{ AV1_SET_BYTE_ALIGNMENT, ctrl_set_byte_alignment },
{ AV1_SET_SKIP_LOOP_FILTER, ctrl_set_skip_loop_filter },
{ AV1_SET_DECODE_TILE_ROW, ctrl_set_decode_tile_row },
{ AV1_SET_DECODE_TILE_COL, ctrl_set_decode_tile_col },
{ AV1_SET_INSPECTION_CALLBACK, ctrl_set_inspection_callback },
// Getters
{ AOMD_GET_FRAME_CORRUPTED, ctrl_get_frame_corrupted },
{ AOMD_GET_LAST_QUANTIZER, ctrl_get_last_quantizer },
{ AOMD_GET_LAST_REF_UPDATES, ctrl_get_last_ref_updates },
{ AV1D_GET_BIT_DEPTH, ctrl_get_bit_depth },
{ AV1D_GET_DISPLAY_SIZE, ctrl_get_render_size },
{ AV1D_GET_FRAME_SIZE, ctrl_get_frame_size },
{ AV1_GET_ACCOUNTING, ctrl_get_accounting },
{ AV1_GET_NEW_FRAME_IMAGE, ctrl_get_new_frame_image },
{ AV1_GET_REFERENCE, ctrl_get_reference },
{ -1, NULL },
};
#ifndef VERSION_STRING
#define VERSION_STRING
#endif
CODEC_INTERFACE(aom_codec_av1_dx) = {
"AOMedia Project AV1 Decoder" VERSION_STRING,
AOM_CODEC_INTERNAL_ABI_VERSION,
AOM_CODEC_CAP_DECODER |
AOM_CODEC_CAP_EXTERNAL_FRAME_BUFFER, // aom_codec_caps_t
decoder_init, // aom_codec_init_fn_t
decoder_destroy, // aom_codec_destroy_fn_t
decoder_ctrl_maps, // aom_codec_ctrl_fn_map_t
{
// NOLINT
decoder_peek_si, // aom_codec_peek_si_fn_t
decoder_get_si, // aom_codec_get_si_fn_t
decoder_decode, // aom_codec_decode_fn_t
decoder_get_frame, // aom_codec_frame_get_fn_t
decoder_set_fb_fn, // aom_codec_set_fb_fn_t
},
{
// NOLINT
0,
NULL, // aom_codec_enc_cfg_map_t
NULL, // aom_codec_encode_fn_t
NULL, // aom_codec_get_cx_data_fn_t
NULL, // aom_codec_enc_config_set_fn_t
NULL, // aom_codec_get_global_headers_fn_t
NULL, // aom_codec_get_preview_frame_fn_t
NULL // aom_codec_enc_mr_get_mem_loc_fn_t
}
};