blob: fe01955facf4f67672891c5b3d61b618b8ff93bf [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_timer.h"
#include "av1/common/reconinter.h"
#include "av1/common/blockd.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/var_based_part.h"
#include "av1/encoder/reconinter_enc.h"
extern const uint8_t AV1_VAR_OFFS[];
// Possible values for the force_split variable while evaluating variance based
// partitioning.
enum {
// Evaluate all partition types
PART_EVAL_ALL = 0,
// Force PARTITION_SPLIT
PART_EVAL_ONLY_SPLIT = 1,
// Force PARTITION_NONE
PART_EVAL_ONLY_NONE = 2
} UENUM1BYTE(PART_EVAL_STATUS);
typedef struct {
VPVariance *part_variances;
VPartVar *split[4];
} variance_node;
static AOM_INLINE void tree_to_node(void *data, BLOCK_SIZE bsize,
variance_node *node) {
int i;
node->part_variances = NULL;
switch (bsize) {
case BLOCK_128X128: {
VP128x128 *vt = (VP128x128 *)data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_64X64: {
VP64x64 *vt = (VP64x64 *)data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_32X32: {
VP32x32 *vt = (VP32x32 *)data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_16X16: {
VP16x16 *vt = (VP16x16 *)data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_8X8: {
VP8x8 *vt = (VP8x8 *)data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
default: {
VP4x4 *vt = (VP4x4 *)data;
assert(bsize == BLOCK_4X4);
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++) node->split[i] = &vt->split[i];
break;
}
}
}
// Set variance values given sum square error, sum error, count.
static AOM_INLINE void fill_variance(uint32_t s2, int32_t s, int c,
VPartVar *v) {
v->sum_square_error = s2;
v->sum_error = s;
v->log2_count = c;
}
static AOM_INLINE void get_variance(VPartVar *v) {
v->variance =
(int)(256 * (v->sum_square_error -
(uint32_t)(((int64_t)v->sum_error * v->sum_error) >>
v->log2_count)) >>
v->log2_count);
}
static AOM_INLINE void sum_2_variances(const VPartVar *a, const VPartVar *b,
VPartVar *r) {
assert(a->log2_count == b->log2_count);
fill_variance(a->sum_square_error + b->sum_square_error,
a->sum_error + b->sum_error, a->log2_count + 1, r);
}
static AOM_INLINE void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
variance_node node;
memset(&node, 0, sizeof(node));
tree_to_node(data, bsize, &node);
sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
&node.part_variances->none);
}
static AOM_INLINE void set_block_size(AV1_COMP *const cpi, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
if (cpi->common.mi_params.mi_cols > mi_col &&
cpi->common.mi_params.mi_rows > mi_row) {
CommonModeInfoParams *mi_params = &cpi->common.mi_params;
const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
MB_MODE_INFO *mi = mi_params->mi_grid_base[mi_grid_idx] =
&mi_params->mi_alloc[mi_alloc_idx];
mi->bsize = bsize;
}
}
static int set_vt_partitioning(AV1_COMP *cpi, MACROBLOCKD *const xd,
const TileInfo *const tile, void *data,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int64_t threshold, BLOCK_SIZE bsize_min,
PART_EVAL_STATUS force_split) {
AV1_COMMON *const cm = &cpi->common;
variance_node vt;
const int block_width = mi_size_wide[bsize];
const int block_height = mi_size_high[bsize];
int bs_width_check = block_width;
int bs_height_check = block_height;
int bs_width_vert_check = block_width >> 1;
int bs_height_horiz_check = block_height >> 1;
// On the right and bottom boundary we only need to check
// if half the bsize fits, because boundary is extended
// up to 64. So do this check only for sb_size = 64X64.
if (cm->seq_params->sb_size == BLOCK_64X64) {
if (tile->mi_col_end == cm->mi_params.mi_cols) {
bs_width_check = (block_width >> 1) + 1;
bs_width_vert_check = (block_width >> 2) + 1;
}
if (tile->mi_row_end == cm->mi_params.mi_rows) {
bs_height_check = (block_height >> 1) + 1;
bs_height_horiz_check = (block_height >> 2) + 1;
}
}
assert(block_height == block_width);
tree_to_node(data, bsize, &vt);
if (mi_col + bs_width_check <= tile->mi_col_end &&
mi_row + bs_height_check <= tile->mi_row_end &&
force_split == PART_EVAL_ONLY_NONE) {
set_block_size(cpi, mi_row, mi_col, bsize);
return 1;
}
if (force_split == PART_EVAL_ONLY_SPLIT) return 0;
// For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
// variance is below threshold, otherwise split will be selected.
// No check for vert/horiz split as too few samples for variance.
if (bsize == bsize_min) {
// Variance already computed to set the force_split.
if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
if (mi_col + bs_width_check <= tile->mi_col_end &&
mi_row + bs_height_check <= tile->mi_row_end &&
vt.part_variances->none.variance < threshold) {
set_block_size(cpi, mi_row, mi_col, bsize);
return 1;
}
return 0;
} else if (bsize > bsize_min) {
// Variance already computed to set the force_split.
if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
// For key frame: take split for bsize above 32X32 or very high variance.
if (frame_is_intra_only(cm) &&
(bsize > BLOCK_32X32 ||
vt.part_variances->none.variance > (threshold << 4))) {
return 0;
}
// If variance is low, take the bsize (no split).
if (mi_col + bs_width_check <= tile->mi_col_end &&
mi_row + bs_height_check <= tile->mi_row_end &&
vt.part_variances->none.variance < threshold) {
set_block_size(cpi, mi_row, mi_col, bsize);
return 1;
}
// Check vertical split.
if (mi_row + bs_height_check <= tile->mi_row_end &&
mi_col + bs_width_vert_check <= tile->mi_col_end) {
BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT);
get_variance(&vt.part_variances->vert[0]);
get_variance(&vt.part_variances->vert[1]);
if (vt.part_variances->vert[0].variance < threshold &&
vt.part_variances->vert[1].variance < threshold &&
get_plane_block_size(subsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y) < BLOCK_INVALID) {
set_block_size(cpi, mi_row, mi_col, subsize);
set_block_size(cpi, mi_row, mi_col + block_width / 2, subsize);
return 1;
}
}
// Check horizontal split.
if (mi_col + bs_width_check <= tile->mi_col_end &&
mi_row + bs_height_horiz_check <= tile->mi_row_end) {
BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
get_variance(&vt.part_variances->horz[0]);
get_variance(&vt.part_variances->horz[1]);
if (vt.part_variances->horz[0].variance < threshold &&
vt.part_variances->horz[1].variance < threshold &&
get_plane_block_size(subsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y) < BLOCK_INVALID) {
set_block_size(cpi, mi_row, mi_col, subsize);
set_block_size(cpi, mi_row + block_height / 2, mi_col, subsize);
return 1;
}
}
return 0;
}
return 0;
}
static AOM_INLINE int all_blks_inside(int x16_idx, int y16_idx, int pixels_wide,
int pixels_high) {
int all_inside = 1;
for (int k = 0; k < 4; k++) {
all_inside &= ((x16_idx + ((k & 1) << 3)) < pixels_wide);
all_inside &= ((y16_idx + ((k >> 1) << 3)) < pixels_high);
}
return all_inside;
}
#if CONFIG_AV1_HIGHBITDEPTH
// TODO(yunqingwang): Perform average of four 8x8 blocks similar to lowbd
static AOM_INLINE void fill_variance_8x8avg_highbd(
const uint8_t *s, int sp, const uint8_t *d, int dp, int x16_idx,
int y16_idx, VP16x16 *vst, int pixels_wide, int pixels_high) {
for (int k = 0; k < 4; k++) {
const int x8_idx = x16_idx + ((k & 1) << 3);
const int y8_idx = y16_idx + ((k >> 1) << 3);
unsigned int sse = 0;
int sum = 0;
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
int s_avg;
int d_avg = 128;
s_avg = aom_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
d_avg = aom_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
sum = s_avg - d_avg;
sse = sum * sum;
}
fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
}
}
#endif
static AOM_INLINE void fill_variance_8x8avg_lowbd(const uint8_t *s, int sp,
const uint8_t *d, int dp,
int x16_idx, int y16_idx,
VP16x16 *vst, int pixels_wide,
int pixels_high) {
unsigned int sse[4] = { 0 };
int sum[4] = { 0 };
int d_avg[4] = { 128, 128, 128, 128 };
int s_avg[4];
if (all_blks_inside(x16_idx, y16_idx, pixels_wide, pixels_high)) {
aom_avg_8x8_quad(s, sp, x16_idx, y16_idx, s_avg);
aom_avg_8x8_quad(d, dp, x16_idx, y16_idx, d_avg);
for (int k = 0; k < 4; k++) {
sum[k] = s_avg[k] - d_avg[k];
sse[k] = sum[k] * sum[k];
}
} else {
for (int k = 0; k < 4; k++) {
const int x8_idx = x16_idx + ((k & 1) << 3);
const int y8_idx = y16_idx + ((k >> 1) << 3);
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
s_avg[k] = aom_avg_8x8(s + y8_idx * sp + x8_idx, sp);
d_avg[k] = aom_avg_8x8(d + y8_idx * dp + x8_idx, dp);
sum[k] = s_avg[k] - d_avg[k];
sse[k] = sum[k] * sum[k];
}
}
}
for (int k = 0; k < 4; k++) {
fill_variance(sse[k], sum[k], 0, &vst->split[k].part_variances.none);
}
}
// Obtain parameters required to calculate variance (such as sum, sse, etc,.)
// at 8x8 sub-block level for a given 16x16 block.
// The function can be called only when is_key_frame is false since sum is
// computed between source and reference frames.
static AOM_INLINE void fill_variance_8x8avg(const uint8_t *s, int sp,
const uint8_t *d, int dp,
int x16_idx, int y16_idx,
VP16x16 *vst, int highbd_flag,
int pixels_wide, int pixels_high) {
#if CONFIG_AV1_HIGHBITDEPTH
if (highbd_flag) {
fill_variance_8x8avg_highbd(s, sp, d, dp, x16_idx, y16_idx, vst,
pixels_wide, pixels_high);
return;
}
#else
(void)highbd_flag;
#endif // CONFIG_AV1_HIGHBITDEPTH
fill_variance_8x8avg_lowbd(s, sp, d, dp, x16_idx, y16_idx, vst, pixels_wide,
pixels_high);
}
static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
int dp, int x16_idx, int y16_idx,
#if CONFIG_AV1_HIGHBITDEPTH
int highbd_flag,
#endif
int pixels_wide, int pixels_high) {
int k;
int minmax_max = 0;
int minmax_min = 255;
// Loop over the 4 8x8 subblocks.
for (k = 0; k < 4; k++) {
int x8_idx = x16_idx + ((k & 1) << 3);
int y8_idx = y16_idx + ((k >> 1) << 3);
int min = 0;
int max = 0;
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
#if CONFIG_AV1_HIGHBITDEPTH
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
d + y8_idx * dp + x8_idx, dp, &min, &max);
} else {
aom_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx,
dp, &min, &max);
}
#else
aom_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp,
&min, &max);
#endif
if ((max - min) > minmax_max) minmax_max = (max - min);
if ((max - min) < minmax_min) minmax_min = (max - min);
}
}
return (minmax_max - minmax_min);
}
// Function to compute average and variance of 4x4 sub-block.
// The function can be called only when is_key_frame is true since sum is
// computed using source frame only.
static AOM_INLINE void fill_variance_4x4avg(const uint8_t *s, int sp,
int x8_idx, int y8_idx, VP8x8 *vst,
#if CONFIG_AV1_HIGHBITDEPTH
int highbd_flag,
#endif
int pixels_wide, int pixels_high,
int border_offset_4x4) {
int k;
for (k = 0; k < 4; k++) {
int x4_idx = x8_idx + ((k & 1) << 2);
int y4_idx = y8_idx + ((k >> 1) << 2);
unsigned int sse = 0;
int sum = 0;
if (x4_idx < pixels_wide - border_offset_4x4 &&
y4_idx < pixels_high - border_offset_4x4) {
int s_avg;
int d_avg = 128;
#if CONFIG_AV1_HIGHBITDEPTH
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
s_avg = aom_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
} else {
s_avg = aom_avg_4x4(s + y4_idx * sp + x4_idx, sp);
}
#else
s_avg = aom_avg_4x4(s + y4_idx * sp + x4_idx, sp);
#endif
sum = s_avg - d_avg;
sse = sum * sum;
}
fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
}
}
// TODO(kyslov) Bring back threshold adjustment based on content state
static int64_t scale_part_thresh_content(int64_t threshold_base, int speed,
int width, int height,
int non_reference_frame) {
(void)width;
(void)height;
int64_t threshold = threshold_base;
if (non_reference_frame) threshold = (3 * threshold) >> 1;
if (speed >= 8) {
return (5 * threshold) >> 2;
}
return threshold;
}
static AOM_INLINE void tune_thresh_based_on_qindex_window(
int qindex, int th, int win, int fac, int64_t thresholds[]) {
double weight;
if (qindex < th - win)
weight = 1.0;
else if (qindex > th + win)
weight = 0.0;
else
weight = 1.0 - (qindex - th + win) / (2 * win);
thresholds[1] =
(int)((1 - weight) * (thresholds[1] << 1) + weight * thresholds[1]);
thresholds[2] =
(int)((1 - weight) * (thresholds[2] << 1) + weight * thresholds[2]);
thresholds[3] =
(int)((1 - weight) * (thresholds[3] << fac) + weight * thresholds[3]);
}
static AOM_INLINE void set_vbp_thresholds(AV1_COMP *cpi, int64_t thresholds[],
int q, int content_lowsumdiff,
int source_sad_nonrd,
int source_sad_rd, int segment_id,
uint64_t blk_sad,
int lighting_change) {
AV1_COMMON *const cm = &cpi->common;
const int is_key_frame = frame_is_intra_only(cm);
const int threshold_multiplier = is_key_frame ? 120 : 1;
const int ac_q = av1_ac_quant_QTX(q, 0, cm->seq_params->bit_depth);
int64_t threshold_base = (int64_t)(threshold_multiplier * ac_q);
const int current_qindex = cm->quant_params.base_qindex;
const int threshold_left_shift = cpi->sf.rt_sf.var_part_split_threshold_shift;
if (is_key_frame) {
if (cpi->sf.rt_sf.force_large_partition_blocks_intra) {
const int shift_steps =
threshold_left_shift - (cpi->oxcf.mode == ALLINTRA ? 7 : 8);
assert(shift_steps >= 0);
threshold_base <<= shift_steps;
}
thresholds[0] = threshold_base;
thresholds[1] = threshold_base;
if (cm->width * cm->height < 1280 * 720) {
thresholds[2] = threshold_base / 3;
thresholds[3] = threshold_base >> 1;
} else {
int shift_val = 2;
if (cpi->sf.rt_sf.force_large_partition_blocks_intra) {
shift_val = 0;
}
thresholds[2] = threshold_base >> shift_val;
thresholds[3] = threshold_base >> shift_val;
}
thresholds[4] = threshold_base << 2;
return;
}
// Increase partition thresholds for noisy content. Apply it only for
// superblocks where sumdiff is low, as we assume the sumdiff of superblock
// whose only change is due to noise will be low (i.e, noise will average
// out over large block).
if (cpi->noise_estimate.enabled && content_lowsumdiff &&
(cm->width * cm->height > 640 * 480) &&
cm->current_frame.frame_number > 60) {
NOISE_LEVEL noise_level =
av1_noise_estimate_extract_level(&cpi->noise_estimate);
if (noise_level == kHigh)
threshold_base = (5 * threshold_base) >> 1;
else if (noise_level == kMedium &&
!cpi->sf.rt_sf.prefer_large_partition_blocks)
threshold_base = (5 * threshold_base) >> 2;
}
// TODO(kyslov) Enable var based partition adjusment on temporal denoising
#if 0 // CONFIG_AV1_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow)
threshold_base =
av1_scale_part_thresh(threshold_base, cpi->denoiser.denoising_level,
content_state, cpi->svc.temporal_layer_id);
else
threshold_base =
scale_part_thresh_content(threshold_base, cpi->oxcf.speed, cm->width,
cm->height, cpi->ppi->rtc_ref.non_reference_frame);
#else
// Increase base variance threshold based on content_state/sum_diff level.
threshold_base = scale_part_thresh_content(
threshold_base, cpi->oxcf.speed, cm->width, cm->height,
cpi->ppi->rtc_ref.non_reference_frame);
#endif
thresholds[0] = threshold_base >> 1;
thresholds[1] = threshold_base;
thresholds[3] = threshold_base << threshold_left_shift;
if (cm->width >= 1280 && cm->height >= 720)
thresholds[3] = thresholds[3] << 1;
if (cm->width * cm->height <= 352 * 288) {
const int qindex_thr[5][2] = {
{ 200, 220 }, { 140, 170 }, { 120, 150 }, { 200, 210 }, { 170, 220 },
};
int th_idx = 0;
if (cpi->sf.rt_sf.var_part_based_on_qidx >= 1)
th_idx =
(source_sad_rd <= kLowSad) ? cpi->sf.rt_sf.var_part_based_on_qidx : 0;
if (cpi->sf.rt_sf.var_part_based_on_qidx >= 3)
th_idx = cpi->sf.rt_sf.var_part_based_on_qidx;
const int qindex_low_thr = qindex_thr[th_idx][0];
const int qindex_high_thr = qindex_thr[th_idx][1];
if (current_qindex >= qindex_high_thr) {
threshold_base = (5 * threshold_base) >> 1;
thresholds[1] = threshold_base >> 3;
thresholds[2] = threshold_base << 2;
thresholds[3] = threshold_base << 5;
} else if (current_qindex < qindex_low_thr) {
thresholds[1] = threshold_base >> 3;
thresholds[2] = threshold_base >> 1;
thresholds[3] = threshold_base << 3;
} else {
int64_t qi_diff_low = current_qindex - qindex_low_thr;
int64_t qi_diff_high = qindex_high_thr - current_qindex;
int64_t threshold_diff = qindex_high_thr - qindex_low_thr;
int64_t threshold_base_high = (5 * threshold_base) >> 1;
threshold_diff = threshold_diff > 0 ? threshold_diff : 1;
threshold_base =
(qi_diff_low * threshold_base_high + qi_diff_high * threshold_base) /
threshold_diff;
thresholds[1] = threshold_base >> 3;
thresholds[2] = ((qi_diff_low * threshold_base) +
qi_diff_high * (threshold_base >> 1)) /
threshold_diff;
thresholds[3] = ((qi_diff_low * (threshold_base << 5)) +
qi_diff_high * (threshold_base << 3)) /
threshold_diff;
}
} else if (cm->width < 1280 && cm->height < 720) {
thresholds[2] = (5 * threshold_base) >> 2;
} else if (cm->width < 1920 && cm->height < 1080) {
thresholds[2] = threshold_base << 1;
} else if (cm->width < 2560 && cm->height < 1440) {
thresholds[2] = (5 * threshold_base) >> 1;
} else {
thresholds[2] = (7 * threshold_base) >> 1;
}
// Tune thresholds less or more aggressively to prefer larger partitions
if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 3) {
double weight;
const int win = 20;
if (current_qindex < QINDEX_LARGE_BLOCK_THR - win)
weight = 1.0;
else if (current_qindex > QINDEX_LARGE_BLOCK_THR + win)
weight = 0.0;
else
weight =
1.0 - (current_qindex - QINDEX_LARGE_BLOCK_THR + win) / (2 * win);
if (cm->width * cm->height > 640 * 480) {
for (int i = 0; i < 4; i++) {
thresholds[i] <<= 1;
}
}
if (cm->width * cm->height <= 352 * 288) {
thresholds[3] = INT64_MAX;
if (segment_id == 0) {
thresholds[1] <<= 2;
thresholds[2] <<= (source_sad_nonrd <= kLowSad) ? 5 : 4;
} else {
thresholds[1] <<= 1;
thresholds[2] <<= 3;
}
// Allow for split to 8x8 for superblocks where part of it has
// moving boundary. So allow for sb with source_sad above threshold,
// and avoid very large source_sad or high source content, to avoid
// too many 8x8 within superblock.
if (segment_id == 0 && cpi->rc.avg_source_sad < 25000 &&
blk_sad > 25000 && blk_sad < 50000 && !lighting_change) {
thresholds[2] = (3 * thresholds[2]) >> 2;
thresholds[3] = thresholds[2] << 3;
}
// Condition the increase of partition thresholds on the segment
// and the content. Avoid the increase for superblocks which have
// high source sad, unless the whole frame has very high motion
// (i.e, cpi->rc.avg_source_sad is very large, in which case all blocks
// have high source sad).
} else if (cm->width * cm->height > 640 * 480 && segment_id == 0 &&
(source_sad_nonrd != kHighSad ||
cpi->rc.avg_source_sad > 50000)) {
thresholds[0] = (3 * thresholds[0]) >> 1;
thresholds[3] = INT64_MAX;
if (current_qindex > QINDEX_LARGE_BLOCK_THR) {
thresholds[1] =
(int)((1 - weight) * (thresholds[1] << 1) + weight * thresholds[1]);
thresholds[2] =
(int)((1 - weight) * (thresholds[2] << 1) + weight * thresholds[2]);
}
} else if (current_qindex > QINDEX_LARGE_BLOCK_THR && segment_id == 0 &&
(source_sad_nonrd != kHighSad ||
cpi->rc.avg_source_sad > 50000)) {
thresholds[1] =
(int)((1 - weight) * (thresholds[1] << 2) + weight * thresholds[1]);
thresholds[2] =
(int)((1 - weight) * (thresholds[2] << 4) + weight * thresholds[2]);
thresholds[3] = INT64_MAX;
}
} else if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 2) {
thresholds[1] <<= (source_sad_nonrd <= kLowSad) ? 2 : 0;
thresholds[2] =
(source_sad_nonrd <= kLowSad) ? (3 * thresholds[2]) : thresholds[2];
} else if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 1) {
const int fac = (source_sad_nonrd <= kLowSad) ? 2 : 1;
tune_thresh_based_on_qindex_window(current_qindex, QINDEX_LARGE_BLOCK_THR,
45, fac, thresholds);
}
if (cpi->sf.part_sf.disable_8x8_part_based_on_qidx && (current_qindex < 128))
thresholds[3] = INT64_MAX;
}
// Set temporal variance low flag for superblock 64x64.
// Only first 25 in the array are used in this case.
static AOM_INLINE void set_low_temp_var_flag_64x64(
CommonModeInfoParams *mi_params, PartitionSearchInfo *part_info,
MACROBLOCKD *xd, VP64x64 *vt, const int64_t thresholds[], int mi_col,
int mi_row) {
if (xd->mi[0]->bsize == BLOCK_64X64) {
if ((vt->part_variances).none.variance < (thresholds[0] >> 1))
part_info->variance_low[0] = 1;
} else if (xd->mi[0]->bsize == BLOCK_64X32) {
for (int i = 0; i < 2; i++) {
if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2))
part_info->variance_low[i + 1] = 1;
}
} else if (xd->mi[0]->bsize == BLOCK_32X64) {
for (int i = 0; i < 2; i++) {
if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2))
part_info->variance_low[i + 3] = 1;
}
} else {
static const int idx[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } };
for (int i = 0; i < 4; i++) {
const int idx_str =
mi_params->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1];
MB_MODE_INFO **this_mi = mi_params->mi_grid_base + idx_str;
if (mi_params->mi_cols <= mi_col + idx[i][1] ||
mi_params->mi_rows <= mi_row + idx[i][0])
continue;
if (*this_mi == NULL) continue;
if ((*this_mi)->bsize == BLOCK_32X32) {
int64_t threshold_32x32 = (5 * thresholds[1]) >> 3;
if (vt->split[i].part_variances.none.variance < threshold_32x32)
part_info->variance_low[i + 5] = 1;
} else {
// For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
// inside.
if ((*this_mi)->bsize == BLOCK_16X16 ||
(*this_mi)->bsize == BLOCK_32X16 ||
(*this_mi)->bsize == BLOCK_16X32) {
for (int j = 0; j < 4; j++) {
if (vt->split[i].split[j].part_variances.none.variance <
(thresholds[2] >> 8))
part_info->variance_low[(i << 2) + j + 9] = 1;
}
}
}
}
}
}
static AOM_INLINE void set_low_temp_var_flag_128x128(
CommonModeInfoParams *mi_params, PartitionSearchInfo *part_info,
MACROBLOCKD *xd, VP128x128 *vt, const int64_t thresholds[], int mi_col,
int mi_row) {
if (xd->mi[0]->bsize == BLOCK_128X128) {
if (vt->part_variances.none.variance < (thresholds[0] >> 1))
part_info->variance_low[0] = 1;
} else if (xd->mi[0]->bsize == BLOCK_128X64) {
for (int i = 0; i < 2; i++) {
if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2))
part_info->variance_low[i + 1] = 1;
}
} else if (xd->mi[0]->bsize == BLOCK_64X128) {
for (int i = 0; i < 2; i++) {
if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2))
part_info->variance_low[i + 3] = 1;
}
} else {
static const int idx64[4][2] = {
{ 0, 0 }, { 0, 16 }, { 16, 0 }, { 16, 16 }
};
static const int idx32[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } };
for (int i = 0; i < 4; i++) {
const int idx_str =
mi_params->mi_stride * (mi_row + idx64[i][0]) + mi_col + idx64[i][1];
MB_MODE_INFO **mi_64 = mi_params->mi_grid_base + idx_str;
if (*mi_64 == NULL) continue;
if (mi_params->mi_cols <= mi_col + idx64[i][1] ||
mi_params->mi_rows <= mi_row + idx64[i][0])
continue;
const int64_t threshold_64x64 = (5 * thresholds[1]) >> 3;
if ((*mi_64)->bsize == BLOCK_64X64) {
if (vt->split[i].part_variances.none.variance < threshold_64x64)
part_info->variance_low[5 + i] = 1;
} else if ((*mi_64)->bsize == BLOCK_64X32) {
for (int j = 0; j < 2; j++)
if (vt->split[i].part_variances.horz[j].variance <
(threshold_64x64 >> 1))
part_info->variance_low[9 + (i << 1) + j] = 1;
} else if ((*mi_64)->bsize == BLOCK_32X64) {
for (int j = 0; j < 2; j++)
if (vt->split[i].part_variances.vert[j].variance <
(threshold_64x64 >> 1))
part_info->variance_low[17 + (i << 1) + j] = 1;
} else {
for (int k = 0; k < 4; k++) {
const int idx_str1 = mi_params->mi_stride * idx32[k][0] + idx32[k][1];
MB_MODE_INFO **mi_32 = mi_params->mi_grid_base + idx_str + idx_str1;
if (*mi_32 == NULL) continue;
if (mi_params->mi_cols <= mi_col + idx64[i][1] + idx32[k][1] ||
mi_params->mi_rows <= mi_row + idx64[i][0] + idx32[k][0])
continue;
const int64_t threshold_32x32 = (5 * thresholds[2]) >> 3;
if ((*mi_32)->bsize == BLOCK_32X32) {
if (vt->split[i].split[k].part_variances.none.variance <
threshold_32x32)
part_info->variance_low[25 + (i << 2) + k] = 1;
} else {
// For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
// inside.
if ((*mi_32)->bsize == BLOCK_16X16 ||
(*mi_32)->bsize == BLOCK_32X16 ||
(*mi_32)->bsize == BLOCK_16X32) {
for (int j = 0; j < 4; j++) {
if (vt->split[i]
.split[k]
.split[j]
.part_variances.none.variance < (thresholds[3] >> 8))
part_info->variance_low[41 + (i << 4) + (k << 2) + j] = 1;
}
}
}
}
}
}
}
}
static AOM_INLINE void set_low_temp_var_flag(
AV1_COMP *cpi, PartitionSearchInfo *part_info, MACROBLOCKD *xd,
VP128x128 *vt, int64_t thresholds[], MV_REFERENCE_FRAME ref_frame_partition,
int mi_col, int mi_row, const bool is_small_sb) {
AV1_COMMON *const cm = &cpi->common;
// Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected.
// If the temporal variance is small set the flag
// variance_low for the block. The variance threshold can be adjusted, the
// higher the more aggressive.
if (ref_frame_partition == LAST_FRAME) {
if (is_small_sb)
set_low_temp_var_flag_64x64(&cm->mi_params, part_info, xd,
&(vt->split[0]), thresholds, mi_col, mi_row);
else
set_low_temp_var_flag_128x128(&cm->mi_params, part_info, xd, vt,
thresholds, mi_col, mi_row);
}
}
static const int pos_shift_16x16[4][4] = {
{ 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 }
};
int av1_get_force_skip_low_temp_var_small_sb(const uint8_t *variance_low,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
// Relative indices of MB inside the superblock.
const int mi_x = mi_row & 0xF;
const int mi_y = mi_col & 0xF;
// Relative indices of 16x16 block inside the superblock.
const int i = mi_x >> 2;
const int j = mi_y >> 2;
int force_skip_low_temp_var = 0;
// Set force_skip_low_temp_var based on the block size and block offset.
switch (bsize) {
case BLOCK_64X64: force_skip_low_temp_var = variance_low[0]; break;
case BLOCK_64X32:
if (!mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[1];
} else if (!mi_y && mi_x) {
force_skip_low_temp_var = variance_low[2];
}
break;
case BLOCK_32X64:
if (!mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[3];
} else if (mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[4];
}
break;
case BLOCK_32X32:
if (!mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[5];
} else if (mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[6];
} else if (!mi_y && mi_x) {
force_skip_low_temp_var = variance_low[7];
} else if (mi_y && mi_x) {
force_skip_low_temp_var = variance_low[8];
}
break;
case BLOCK_32X16:
case BLOCK_16X32:
case BLOCK_16X16:
force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]];
break;
default: break;
}
return force_skip_low_temp_var;
}
int av1_get_force_skip_low_temp_var(const uint8_t *variance_low, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
int force_skip_low_temp_var = 0;
int x, y;
x = (mi_col & 0x1F) >> 4;
// y = (mi_row & 0x1F) >> 4;
// const int idx64 = (y << 1) + x;
y = (mi_row & 0x17) >> 3;
const int idx64 = y + x;
x = (mi_col & 0xF) >> 3;
// y = (mi_row & 0xF) >> 3;
// const int idx32 = (y << 1) + x;
y = (mi_row & 0xB) >> 2;
const int idx32 = y + x;
x = (mi_col & 0x7) >> 2;
// y = (mi_row & 0x7) >> 2;
// const int idx16 = (y << 1) + x;
y = (mi_row & 0x5) >> 1;
const int idx16 = y + x;
// Set force_skip_low_temp_var based on the block size and block offset.
switch (bsize) {
case BLOCK_128X128: force_skip_low_temp_var = variance_low[0]; break;
case BLOCK_128X64:
assert((mi_col & 0x1F) == 0);
force_skip_low_temp_var = variance_low[1 + ((mi_row & 0x1F) != 0)];
break;
case BLOCK_64X128:
assert((mi_row & 0x1F) == 0);
force_skip_low_temp_var = variance_low[3 + ((mi_col & 0x1F) != 0)];
break;
case BLOCK_64X64:
// Location of this 64x64 block inside the 128x128 superblock
force_skip_low_temp_var = variance_low[5 + idx64];
break;
case BLOCK_64X32:
x = (mi_col & 0x1F) >> 4;
y = (mi_row & 0x1F) >> 3;
/*
.---------------.---------------.
| x=0,y=0,idx=0 | x=0,y=0,idx=2 |
:---------------+---------------:
| x=0,y=1,idx=1 | x=1,y=1,idx=3 |
:---------------+---------------:
| x=0,y=2,idx=4 | x=1,y=2,idx=6 |
:---------------+---------------:
| x=0,y=3,idx=5 | x=1,y=3,idx=7 |
'---------------'---------------'
*/
const int idx64x32 = (x << 1) + (y % 2) + ((y >> 1) << 2);
force_skip_low_temp_var = variance_low[9 + idx64x32];
break;
case BLOCK_32X64:
x = (mi_col & 0x1F) >> 3;
y = (mi_row & 0x1F) >> 4;
const int idx32x64 = (y << 2) + x;
force_skip_low_temp_var = variance_low[17 + idx32x64];
break;
case BLOCK_32X32:
force_skip_low_temp_var = variance_low[25 + (idx64 << 2) + idx32];
break;
case BLOCK_32X16:
case BLOCK_16X32:
case BLOCK_16X16:
force_skip_low_temp_var =
variance_low[41 + (idx64 << 4) + (idx32 << 2) + idx16];
break;
default: break;
}
return force_skip_low_temp_var;
}
void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int q,
int content_lowsumdiff) {
SPEED_FEATURES *const sf = &cpi->sf;
if (sf->part_sf.partition_search_type != VAR_BASED_PARTITION) {
return;
} else {
set_vbp_thresholds(cpi, cpi->vbp_info.thresholds, q, content_lowsumdiff, 0,
0, 0, 0, 0);
// The threshold below is not changed locally.
cpi->vbp_info.threshold_minmax = 15 + (q >> 3);
}
}
static AOM_INLINE void chroma_check(AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, unsigned int y_sad,
unsigned int y_sad_g, bool is_key_frame,
bool zero_motion, unsigned int *uv_sad) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
int shift = 3;
if (is_key_frame || cpi->oxcf.tool_cfg.enable_monochrome) return;
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
cpi->rc.high_source_sad)
shift = 5;
MB_MODE_INFO *mi = xd->mi[0];
const AV1_COMMON *const cm = &cpi->common;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);
const YV12_BUFFER_CONFIG *yv12_g = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
const struct scale_factors *const sf =
get_ref_scale_factors_const(cm, LAST_FRAME);
struct buf_2d dst;
unsigned int uv_sad_g = 0;
for (i = 1; i <= 2; ++i) {
struct macroblock_plane *p = &x->plane[i];
struct macroblockd_plane *pd = &xd->plane[i];
const BLOCK_SIZE bs =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
if (bs != BLOCK_INVALID) {
// For last:
if (zero_motion) {
if (mi->ref_frame[0] == LAST_FRAME) {
uv_sad[i - 1] = cpi->ppi->fn_ptr[bs].sdf(
p->src.buf, p->src.stride, pd->pre[0].buf, pd->pre[0].stride);
} else {
uint8_t *src = (i == 1) ? yv12->u_buffer : yv12->v_buffer;
setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12->uv_crop_width,
yv12->uv_crop_height, yv12->uv_stride, xd->mi_row,
xd->mi_col, sf, xd->plane[i].subsampling_x,
xd->plane[i].subsampling_y);
uv_sad[i - 1] = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride,
dst.buf, dst.stride);
}
} else {
uv_sad[i - 1] = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
// For golden:
if (y_sad_g != UINT_MAX) {
uint8_t *src = (i == 1) ? yv12_g->u_buffer : yv12_g->v_buffer;
setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12_g->uv_crop_width,
yv12_g->uv_crop_height, yv12_g->uv_stride, xd->mi_row,
xd->mi_col, sf, xd->plane[i].subsampling_x,
xd->plane[i].subsampling_y);
uv_sad_g = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, dst.buf,
dst.stride);
}
}
if (uv_sad[i - 1] > (y_sad >> 1))
x->color_sensitivity_sb[i - 1] = 1;
else if (uv_sad[i - 1] < (y_sad >> shift))
x->color_sensitivity_sb[i - 1] = 0;
// Borderline case: to be refined at coding block level in nonrd_pickmode,
// for coding block size < sb_size.
else
x->color_sensitivity_sb[i - 1] = 2;
x->color_sensitivity_sb_g[i - 1] = uv_sad_g > y_sad_g / 6;
}
}
static void fill_variance_tree_leaves(
AV1_COMP *cpi, MACROBLOCK *x, VP128x128 *vt, PART_EVAL_STATUS *force_split,
int avg_16x16[][4], int maxvar_16x16[][4], int minvar_16x16[][4],
int *variance4x4downsample, int64_t *thresholds, const uint8_t *src,
int src_stride, const uint8_t *dst, int dst_stride, bool is_key_frame,
const bool is_small_sb) {
MACROBLOCKD *xd = &x->e_mbd;
const int num_64x64_blocks = is_small_sb ? 1 : 4;
// TODO(kyslov) Bring back compute_minmax_variance with content type detection
const int compute_minmax_variance = 0;
const int segment_id = xd->mi[0]->segment_id;
int pixels_wide = 128, pixels_high = 128;
int border_offset_4x4 = 0;
int temporal_denoising = cpi->sf.rt_sf.use_rtc_tf;
if (is_small_sb) {
pixels_wide = 64;
pixels_high = 64;
}
if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
#if CONFIG_AV1_TEMPORAL_DENOISING
temporal_denoising |= cpi->oxcf.noise_sensitivity;
#endif
// For temporal filtering or temporal denoiser enabled: since the source
// is modified we need to avoid 4x4 avg along superblock boundary, since
// simd code will load 8 pixels for 4x4 avg and so can access source
// data outside superblock (while its being modified by temporal filter).
// Temporal filtering is never done on key frames.
if (!is_key_frame && temporal_denoising) border_offset_4x4 = 4;
for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; blk64_idx++) {
const int x64_idx = ((blk64_idx & 1) << 6);
const int y64_idx = ((blk64_idx >> 1) << 6);
const int blk64_scale_idx = blk64_idx << 2;
force_split[blk64_idx + 1] = PART_EVAL_ALL;
for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) {
const int x32_idx = x64_idx + ((lvl1_idx & 1) << 5);
const int y32_idx = y64_idx + ((lvl1_idx >> 1) << 5);
const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2;
force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ALL;
avg_16x16[blk64_idx][lvl1_idx] = 0;
maxvar_16x16[blk64_idx][lvl1_idx] = 0;
minvar_16x16[blk64_idx][lvl1_idx] = INT_MAX;
for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) {
const int x16_idx = x32_idx + ((lvl2_idx & 1) << 4);
const int y16_idx = y32_idx + ((lvl2_idx >> 1) << 4);
const int split_index = 21 + lvl1_scale_idx + lvl2_idx;
VP16x16 *vst = &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx];
force_split[split_index] = PART_EVAL_ALL;
variance4x4downsample[lvl1_scale_idx + lvl2_idx] = 0;
if (!is_key_frame) {
fill_variance_8x8avg(src, src_stride, dst, dst_stride, x16_idx,
y16_idx, vst, is_cur_buf_hbd(xd), pixels_wide,
pixels_high);
fill_variance_tree(vst, BLOCK_16X16);
VPartVar *none_var = &vt->split[blk64_idx]
.split[lvl1_idx]
.split[lvl2_idx]
.part_variances.none;
get_variance(none_var);
const int val_none_var = none_var->variance;
avg_16x16[blk64_idx][lvl1_idx] += val_none_var;
minvar_16x16[blk64_idx][lvl1_idx] =
AOMMIN(minvar_16x16[blk64_idx][lvl1_idx], val_none_var);
maxvar_16x16[blk64_idx][lvl1_idx] =
AOMMAX(maxvar_16x16[blk64_idx][lvl1_idx], val_none_var);
if (val_none_var > thresholds[3]) {
// 16X16 variance is above threshold for split, so force split to
// 8x8 for this 16x16 block (this also forces splits for upper
// levels).
force_split[split_index] = PART_EVAL_ONLY_SPLIT;
force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT;
force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
force_split[0] = PART_EVAL_ONLY_SPLIT;
} else if (!cyclic_refresh_segment_id_boosted(segment_id) &&
compute_minmax_variance && val_none_var > thresholds[2]) {
// We have some nominal amount of 16x16 variance (based on average),
// compute the minmax over the 8x8 sub-blocks, and if above
// threshold, force split to 8x8 block for this 16x16 block.
int minmax = compute_minmax_8x8(src, src_stride, dst, dst_stride,
x16_idx, y16_idx,
#if CONFIG_AV1_HIGHBITDEPTH
xd->cur_buf->flags,
#endif
pixels_wide, pixels_high);
const int thresh_minmax = (int)cpi->vbp_info.threshold_minmax;
if (minmax > thresh_minmax) {
force_split[split_index] = PART_EVAL_ONLY_SPLIT;
force_split[5 + blk64_scale_idx + lvl1_idx] =
PART_EVAL_ONLY_SPLIT;
force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
force_split[0] = PART_EVAL_ONLY_SPLIT;
}
}
}
if (is_key_frame) {
force_split[split_index] = PART_EVAL_ALL;
// Go down to 4x4 down-sampling for variance.
variance4x4downsample[lvl1_scale_idx + lvl2_idx] = 1;
for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++) {
int x8_idx = x16_idx + ((lvl3_idx & 1) << 3);
int y8_idx = y16_idx + ((lvl3_idx >> 1) << 3);
VP8x8 *vst2 = &vst->split[lvl3_idx];
fill_variance_4x4avg(src, src_stride, x8_idx, y8_idx, vst2,
#if CONFIG_AV1_HIGHBITDEPTH
xd->cur_buf->flags,
#endif
pixels_wide, pixels_high, border_offset_4x4);
}
}
}
}
}
}
static void setup_planes(AV1_COMP *cpi, MACROBLOCK *x, unsigned int *y_sad,
unsigned int *y_sad_g, unsigned int *y_sad_alt,
unsigned int *y_sad_last,
MV_REFERENCE_FRAME *ref_frame_partition, int mi_row,
int mi_col, const bool is_small_sb) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
const int num_planes = av1_num_planes(cm);
BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128;
MB_MODE_INFO *mi = xd->mi[0];
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);
assert(yv12 != NULL);
const YV12_BUFFER_CONFIG *yv12_g = NULL;
const YV12_BUFFER_CONFIG *yv12_alt = NULL;
// Check if LAST is a reference. For spatial layers always use it as
// reference scaling (golden or altref being lower resolution) is not
// handled/check here.
int use_last_ref = (cpi->ref_frame_flags & AOM_LAST_FLAG) ||
cpi->svc.number_spatial_layers > 1;
int use_golden_ref = cpi->ref_frame_flags & AOM_GOLD_FLAG;
int use_alt_ref = cpi->ppi->rtc_ref.set_ref_frame_config ||
cpi->sf.rt_sf.use_nonrd_altref_frame;
// For 1 spatial layer: GOLDEN is another temporal reference.
// Check if it should be used as reference for partitioning.
if (cpi->svc.number_spatial_layers == 1 && use_golden_ref &&
(x->content_state_sb.source_sad_nonrd != kZeroSad || !use_last_ref)) {
yv12_g = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
if (yv12_g && yv12_g != yv12) {
av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
get_ref_scale_factors(cm, GOLDEN_FRAME), num_planes);
*y_sad_g = cpi->ppi->fn_ptr[bsize].sdf(
x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
xd->plane[0].pre[0].stride);
}
}
// For 1 spatial layer: ALTREF is another temporal reference.
// Check if it should be used as reference for partitioning.
if (cpi->svc.number_spatial_layers == 1 && use_alt_ref &&
(cpi->ref_frame_flags & AOM_ALT_FLAG) &&
(x->content_state_sb.source_sad_nonrd != kZeroSad || !use_last_ref)) {
yv12_alt = get_ref_frame_yv12_buf(cm, ALTREF_FRAME);
if (yv12_alt && yv12_alt != yv12) {
av1_setup_pre_planes(xd, 0, yv12_alt, mi_row, mi_col,
get_ref_scale_factors(cm, ALTREF_FRAME), num_planes);
*y_sad_alt = cpi->ppi->fn_ptr[bsize].sdf(
x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
xd->plane[0].pre[0].stride);
}
}
if (use_last_ref) {
av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
get_ref_scale_factors(cm, LAST_FRAME), num_planes);
mi->ref_frame[0] = LAST_FRAME;
mi->ref_frame[1] = NONE_FRAME;
mi->bsize = cm->seq_params->sb_size;
mi->mv[0].as_int = 0;
mi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
if (cpi->sf.rt_sf.estimate_motion_for_var_based_partition) {
if (xd->mb_to_right_edge >= 0 && xd->mb_to_bottom_edge >= 0) {
const MV dummy_mv = { 0, 0 };
*y_sad = av1_int_pro_motion_estimation(cpi, x, cm->seq_params->sb_size,
mi_row, mi_col, &dummy_mv);
}
}
if (*y_sad == UINT_MAX) {
*y_sad = cpi->ppi->fn_ptr[bsize].sdf(
x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
xd->plane[0].pre[0].stride);
}
*y_sad_last = *y_sad;
}
// Pick the ref frame for partitioning, use golden or altref frame only if
// its lower sad, bias to LAST with factor 0.9.
if (*y_sad_g < 0.9 * *y_sad && *y_sad_g < *y_sad_alt) {
av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
get_ref_scale_factors(cm, GOLDEN_FRAME), num_planes);
mi->ref_frame[0] = GOLDEN_FRAME;
mi->mv[0].as_int = 0;
*y_sad = *y_sad_g;
*ref_frame_partition = GOLDEN_FRAME;
x->nonrd_prune_ref_frame_search = 0;
} else if (*y_sad_alt < 0.9 * *y_sad && *y_sad_alt < *y_sad_g) {
av1_setup_pre_planes(xd, 0, yv12_alt, mi_row, mi_col,
get_ref_scale_factors(cm, ALTREF_FRAME), num_planes);
mi->ref_frame[0] = ALTREF_FRAME;
mi->mv[0].as_int = 0;
*y_sad = *y_sad_alt;
*ref_frame_partition = ALTREF_FRAME;
x->nonrd_prune_ref_frame_search = 0;
} else {
*ref_frame_partition = LAST_FRAME;
x->nonrd_prune_ref_frame_search =
cpi->sf.rt_sf.nonrd_prune_ref_frame_search;
}
// Only calculate the predictor for non-zero MV.
if (mi->mv[0].as_int != 0) {
set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL,
cm->seq_params->sb_size, AOM_PLANE_Y,
num_planes - 1);
}
}
// Decides whether to split or merge a 16x16 partition block in variance based
// partitioning based on the 8x8 sub-block variances.
static AOM_INLINE PART_EVAL_STATUS get_part_eval_based_on_sub_blk_var(
VP16x16 *var_16x16_info, int64_t threshold16) {
int max_8x8_var = 0, min_8x8_var = INT_MAX;
for (int k = 0; k < 4; k++) {
get_variance(&var_16x16_info->split[k].part_variances.none);
int this_8x8_var = var_16x16_info->split[k].part_variances.none.variance;
max_8x8_var = AOMMAX(this_8x8_var, max_8x8_var);
min_8x8_var = AOMMIN(this_8x8_var, min_8x8_var);
}
// If the difference between maximum and minimum sub-block variances is high,
// then only evaluate PARTITION_SPLIT for the 16x16 block. Otherwise, evaluate
// only PARTITION_NONE. The shift factor for threshold16 has been derived
// empirically.
return ((max_8x8_var - min_8x8_var) > (threshold16 << 2))
? PART_EVAL_ONLY_SPLIT
: PART_EVAL_ONLY_NONE;
}
static AOM_INLINE bool is_set_force_zeromv_skip_based_on_src_sad(
int set_zeromv_skip_based_on_source_sad, SOURCE_SAD source_sad_nonrd) {
if (set_zeromv_skip_based_on_source_sad == 0) return false;
if (set_zeromv_skip_based_on_source_sad >= 2)
return source_sad_nonrd <= kVeryLowSad;
else if (set_zeromv_skip_based_on_source_sad >= 1)
return source_sad_nonrd == kZeroSad;
return false;
}
int av1_choose_var_based_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
ThreadData *td, MACROBLOCK *x, int mi_row,
int mi_col) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, choose_var_based_partitioning_time);
#endif
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
const int64_t *const vbp_thresholds = cpi->vbp_info.thresholds;
VP128x128 *vt;
VP16x16 *vt2 = NULL;
PART_EVAL_STATUS force_split[85];
int avg_64x64;
int max_var_32x32[4];
int min_var_32x32[4];
int var_32x32;
int var_64x64;
int min_var_64x64 = INT_MAX;
int max_var_64x64 = 0;
int avg_16x16[4][4];
int maxvar_16x16[4][4];
int minvar_16x16[4][4];
int64_t threshold_4x4avg;
const uint8_t *src_buf;
const uint8_t *dst_buf;
int dst_stride;
unsigned int uv_sad[2];
NOISE_LEVEL noise_level = kLow;
bool is_zero_motion = true;
bool is_key_frame =
(frame_is_intra_only(cm) ||
(cpi->ppi->use_svc &&
cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame));
assert(cm->seq_params->sb_size == BLOCK_64X64 ||
cm->seq_params->sb_size == BLOCK_128X128);
const bool is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64);
const int num_64x64_blocks = is_small_sb ? 1 : 4;
unsigned int y_sad = UINT_MAX;
unsigned int y_sad_g = UINT_MAX;
unsigned int y_sad_alt = UINT_MAX;
unsigned int y_sad_last = UINT_MAX;
BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128;
// Ref frame used in partitioning.
MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME;
CHECK_MEM_ERROR(cm, vt, aom_malloc(sizeof(*vt)));
vt->split = td->vt64x64;
int64_t thresholds[5] = { vbp_thresholds[0], vbp_thresholds[1],
vbp_thresholds[2], vbp_thresholds[3],
vbp_thresholds[4] };
const int low_res = (cm->width <= 352 && cm->height <= 288);
int variance4x4downsample[64];
const int segment_id = xd->mi[0]->segment_id;
uint64_t blk_sad = 0;
if (cpi->src_sad_blk_64x64 != NULL && !cpi->ppi->use_svc) {
const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128)
? (cm->seq_params->mib_size >> 1)
: cm->seq_params->mib_size;
const int sb_cols =
(cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb;
const int sbi_col = mi_col / sb_size_by_mb;
const int sbi_row = mi_row / sb_size_by_mb;
blk_sad = cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols];
}
if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
cyclic_refresh_segment_id_boosted(segment_id)) {
const int qindex =
av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex);
set_vbp_thresholds(cpi, thresholds, qindex, x->content_state_sb.low_sumdiff,
x->content_state_sb.source_sad_nonrd,
x->content_state_sb.source_sad_rd, 1, blk_sad,
x->content_state_sb.lighting_change);
} else {
set_vbp_thresholds(cpi, thresholds, cm->quant_params.base_qindex,
x->content_state_sb.low_sumdiff,
x->content_state_sb.source_sad_nonrd,
x->content_state_sb.source_sad_rd, 0, blk_sad,
x->content_state_sb.lighting_change);
}
// For non keyframes, disable 4x4 average for low resolution when speed = 8
threshold_4x4avg = INT64_MAX;
src_buf = x->plane[0].src.buf;
int src_stride = x->plane[0].src.stride;
// Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
// 5-20 for the 16x16 blocks.
force_split[0] = PART_EVAL_ALL;
memset(x->part_search_info.variance_low, 0,
sizeof(x->part_search_info.variance_low));
// Check if LAST frame is NULL or if the resolution of LAST is
// different than the current frame resolution, and if so, treat this frame
// as a key frame, for the purpose of the superblock partitioning.
// LAST == NULL can happen in cases where enhancement spatial layers are
// enabled dyanmically and the only reference is the spatial(GOLDEN).
// TODO(marpan): Check se of scaled references for the different resoln.
if (!frame_is_intra_only(cm)) {
const YV12_BUFFER_CONFIG *const ref =
get_ref_frame_yv12_buf(cm, LAST_FRAME);
if (ref == NULL || ref->y_crop_height != cm->height ||
ref->y_crop_width != cm->width) {
is_key_frame = true;
}
}
if (!is_key_frame) {
setup_planes(cpi, x, &y_sad, &y_sad_g, &y_sad_alt, &y_sad_last,
&ref_frame_partition, mi_row, mi_col, is_small_sb);
MB_MODE_INFO *mi = xd->mi[0];
// Use reference SB directly for zero mv.
if (mi->mv[0].as_int != 0) {
dst_buf = xd->plane[0].dst.buf;
dst_stride = xd->plane[0].dst.stride;
is_zero_motion = false;
} else {
dst_buf = xd->plane[0].pre[0].buf;
dst_stride = xd->plane[0].pre[0].stride;
}
} else {
dst_buf = AV1_VAR_OFFS;
dst_stride = 0;
}
// check and set the color sensitivity of sb.
uv_sad[0] = 0;
uv_sad[1] = 0;
chroma_check(cpi, x, bsize, y_sad_last, y_sad_g, is_key_frame, is_zero_motion,
uv_sad);
x->force_zeromv_skip_for_sb = 0;
const bool is_set_force_zeromv_skip =
is_set_force_zeromv_skip_based_on_src_sad(
cpi->sf.rt_sf.set_zeromv_skip_based_on_source_sad,
x->content_state_sb.source_sad_nonrd);
// If the superblock is completely static (zero source sad) and
// the y_sad (relative to LAST ref) is very small, take the sb_size partition
// and exit, and force zeromv_last skip mode for nonrd_pickmode.
// Only do this on the base segment (so the QP-boosted segment, if applied,
// can still continue cleaning/ramping up the quality).
// Condition on color uv_sad is also added.
if (!is_key_frame && cpi->sf.rt_sf.part_early_exit_zeromv &&
cpi->rc.frames_since_key > 30 && segment_id == CR_SEGMENT_ID_BASE &&
is_set_force_zeromv_skip && ref_frame_partition == LAST_FRAME &&
xd->mi[0]->mv[0].as_int == 0) {
const int block_width = mi_size_wide[cm->seq_params->sb_size];
const int block_height = mi_size_high[cm->seq_params->sb_size];
const unsigned int thresh_exit_part_y =
cpi->zeromv_skip_thresh_exit_part[bsize];
const unsigned int thresh_exit_part_uv =
CALC_CHROMA_THRESH_FOR_ZEROMV_SKIP(thresh_exit_part_y);
if (mi_col + block_width <= tile->mi_col_end &&
mi_row + block_height <= tile->mi_row_end &&
y_sad < thresh_exit_part_y && uv_sad[0] < thresh_exit_part_uv &&
uv_sad[1] < thresh_exit_part_uv) {
set_block_size(cpi, mi_row, mi_col, bsize);
x->force_zeromv_skip_for_sb = 1;
if (vt2) aom_free(vt2);
if (vt) aom_free(vt);
return 0;
} else if (x->content_state_sb.source_sad_nonrd == kZeroSad &&
cpi->sf.rt_sf.part_early_exit_zeromv >= 2) {
x->force_zeromv_skip_for_sb = 2;
}
}
if (cpi->noise_estimate.enabled)
noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate);
if (low_res && threshold_4x4avg < INT64_MAX)
CHECK_MEM_ERROR(cm, vt2, aom_malloc(sizeof(*vt2)));
// Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
// for splits.
fill_variance_tree_leaves(cpi, x, vt, force_split, avg_16x16, maxvar_16x16,
minvar_16x16, variance4x4downsample, thresholds,
src_buf, src_stride, dst_buf, dst_stride,
is_key_frame, is_small_sb);
avg_64x64 = 0;
for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; ++blk64_idx) {
max_var_32x32[blk64_idx] = 0;
min_var_32x32[blk64_idx] = INT_MAX;
const int blk64_scale_idx = blk64_idx << 2;
for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) {
const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2;
for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) {
const int split_index = 21 + lvl1_scale_idx + lvl2_idx;
if (variance4x4downsample[lvl1_scale_idx + lvl2_idx] == 1) {
VP16x16 *vtemp =
(!is_key_frame)
? &vt2[lvl1_scale_idx + lvl2_idx]
: &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx];
for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++)
fill_variance_tree(&vtemp->split[lvl3_idx], BLOCK_8X8);
fill_variance_tree(vtemp, BLOCK_16X16);
// If variance of this 16x16 block is above the threshold, force block
// to split. This also forces a split on the upper levels.
get_variance(&vtemp->part_variances.none);
if (vtemp->part_variances.none.variance > thresholds[3]) {
force_split[split_index] =
cpi->sf.rt_sf.vbp_prune_16x16_split_using_min_max_sub_blk_var
? get_part_eval_based_on_sub_blk_var(vtemp, thresholds[3])
: PART_EVAL_ONLY_SPLIT;
force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT;
force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
force_split[0] = PART_EVAL_ONLY_SPLIT;
}
}
}
fill_variance_tree(&vt->split[blk64_idx].split[lvl1_idx], BLOCK_32X32);
// If variance of this 32x32 block is above the threshold, or if its above
// (some threshold of) the average variance over the sub-16x16 blocks,
// then force this block to split. This also forces a split on the upper
// (64x64) level.
uint64_t frame_sad_thresh = 20000;
const int is_360p_or_smaller = cm->width * cm->height <= 640 * 360;
if (cpi->svc.number_temporal_layers > 2 &&
cpi->svc.temporal_layer_id == 0)
frame_sad_thresh = frame_sad_thresh << 1;
if (force_split[5 + blk64_scale_idx + lvl1_idx] == PART_EVAL_ALL) {
get_variance(&vt->split[blk64_idx].split[lvl1_idx].part_variances.none);
var_32x32 =
vt->split[blk64_idx].split[lvl1_idx].part_variances.none.variance;
max_var_32x32[blk64_idx] = AOMMAX(var_32x32, max_var_32x32[blk64_idx]);
min_var_32x32[blk64_idx] = AOMMIN(var_32x32, min_var_32x32[blk64_idx]);
const int max_min_var_16X16_diff = (maxvar_16x16[blk64_idx][lvl1_idx] -
minvar_16x16[blk64_idx][lvl1_idx]);
if (var_32x32 > thresholds[2] ||
(!is_key_frame && var_32x32 > (thresholds[2] >> 1) &&
var_32x32 > (avg_16x16[blk64_idx][lvl1_idx] >> 1))) {
force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT;
force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
force_split[0] = PART_EVAL_ONLY_SPLIT;
} else if (!is_key_frame && is_360p_or_smaller &&
((max_min_var_16X16_diff > (thresholds[2] >> 1) &&
maxvar_16x16[blk64_idx][lvl1_idx] > thresholds[2]) ||
(cpi->sf.rt_sf.prefer_large_partition_blocks &&
x->content_state_sb.source_sad_nonrd > kLowSad &&
cpi->rc.frame_source_sad < frame_sad_thresh &&
maxvar_16x16[blk64_idx][lvl1_idx] > (thresholds[2] >> 4) &&
maxvar_16x16[blk64_idx][lvl1_idx] >
(minvar_16x16[blk64_idx][lvl1_idx] << 2)))) {
force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT;
force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
force_split[0] = PART_EVAL_ONLY_SPLIT;
}
}
}
if (force_split[1 + blk64_idx] == PART_EVAL_ALL) {
fill_variance_tree(&vt->split[blk64_idx], BLOCK_64X64);
get_variance(&vt->split[blk64_idx].part_variances.none);
var_64x64 = vt->split[blk64_idx].part_variances.none.variance;
max_var_64x64 = AOMMAX(var_64x64, max_var_64x64);
min_var_64x64 = AOMMIN(var_64x64, min_var_64x64);
// If the difference of the max-min variances of sub-blocks or max
// variance of a sub-block is above some threshold of then force this
// block to split. Only checking this for noise level >= medium, if
// encoder is in SVC or if we already forced large blocks.
const int max_min_var_32x32_diff =
max_var_32x32[blk64_idx] - min_var_32x32[blk64_idx];
const int check_max_var = max_var_32x32[blk64_idx] > thresholds[1] >> 1;
const bool check_noise_lvl = noise_level >= kMedium ||
cpi->ppi->use_svc ||
cpi->sf.rt_sf.prefer_large_partition_blocks;
const int64_t set_threshold = 3 * (thresholds[1] >> 3);
if (!is_key_frame && max_min_var_32x32_diff > set_threshold &&
check_max_var && check_noise_lvl) {
force_split[1 + blk64_idx] = PART_EVAL_ONLY_SPLIT;
force_split[0] = PART_EVAL_ONLY_SPLIT;
}
avg_64x64 += var_64x64;
}
if (is_small_sb) force_split[0] = PART_EVAL_ONLY_SPLIT;
}
if (force_split[0] == PART_EVAL_ALL) {
fill_variance_tree(vt, BLOCK_128X128);
get_variance(&vt->part_variances.none);
const int set_avg_64x64 = (9 * avg_64x64) >> 5;
if (!is_key_frame && vt->part_variances.none.variance > set_avg_64x64)
force_split[0] = PART_EVAL_ONLY_SPLIT;
if (!is_key_frame &&
(max_var_64x64 - min_var_64x64) > 3 * (thresholds[0] >> 3) &&
max_var_64x64 > thresholds[0] >> 1)
force_split[0] = PART_EVAL_ONLY_SPLIT;
}
if (mi_col + 32 > tile->mi_col_end || mi_row + 32 > tile->mi_row_end ||
!set_vt_partitioning(cpi, xd, tile, vt, BLOCK_128X128, mi_row, mi_col,
thresholds[0], BLOCK_16X16, force_split[0])) {
for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; ++blk64_idx) {
const int x64_idx = ((blk64_idx & 1) << 4);
const int y64_idx = ((blk64_idx >> 1) << 4);
const int blk64_scale_idx = blk64_idx << 2;
// Now go through the entire structure, splitting every block size until
// we get to one that's got a variance lower than our threshold.
if (!set_vt_partitioning(cpi, xd, tile, &vt->split[blk64_idx],
BLOCK_64X64, mi_row + y64_idx, mi_col + x64_idx,
thresholds[1], BLOCK_16X16,
force_split[1 + blk64_idx])) {
for (int lvl1_idx = 0; lvl1_idx < 4; ++lvl1_idx) {
const int x32_idx = ((lvl1_idx & 1) << 3);
const int y32_idx = ((lvl1_idx >> 1) << 3);
const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2;
if (!set_vt_partitioning(
cpi, xd, tile, &vt->split[blk64_idx].split[lvl1_idx],
BLOCK_32X32, (mi_row + y64_idx + y32_idx),
(mi_col + x64_idx + x32_idx), thresholds[2], BLOCK_16X16,
force_split[5 + blk64_scale_idx + lvl1_idx])) {
for (int lvl2_idx = 0; lvl2_idx < 4; ++lvl2_idx) {
const int x16_idx = ((lvl2_idx & 1) << 2);
const int y16_idx = ((lvl2_idx >> 1) << 2);
const int split_index = 21 + lvl1_scale_idx + lvl2_idx;
// For inter frames: if variance4x4downsample[] == 1 for this
// 16x16 block, then the variance is based on 4x4 down-sampling,
// so use vt2 in set_vt_partioning(), otherwise use vt.
VP16x16 *vtemp =
(!is_key_frame &&
variance4x4downsample[lvl1_scale_idx + lvl2_idx] == 1)
? &vt2[lvl1_scale_idx + lvl2_idx]
: &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx];
if (!set_vt_partitioning(cpi, xd, tile, vtemp, BLOCK_16X16,
mi_row + y64_idx + y32_idx + y16_idx,
mi_col + x64_idx + x32_idx + x16_idx,
thresholds[3], BLOCK_8X8,
force_split[split_index])) {
for (int lvl3_idx = 0; lvl3_idx < 4; ++lvl3_idx) {
const int x8_idx = (lvl3_idx & 1) << 1;
const int y8_idx = (lvl3_idx >> 1) << 1;
set_block_size(
cpi, (mi_row + y64_idx + y32_idx + y16_idx + y8_idx),
(mi_col + x64_idx + x32_idx + x16_idx + x8_idx),
BLOCK_8X8);
}
}
}
}
}
}
}
}
if (cpi->sf.rt_sf.short_circuit_low_temp_var) {
set_low_temp_var_flag(cpi, &x->part_search_info, xd, vt, thresholds,
ref_frame_partition, mi_col, mi_row, is_small_sb);
}
if (vt2) aom_free(vt2);
if (vt) aom_free(vt);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, choose_var_based_partitioning_time);
#endif
return 0;
}