| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <assert.h> | 
 | #include <math.h> | 
 |  | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "av1/encoder/ml.h" | 
 |  | 
 | // Calculate prediction based on the given input features and neural net config. | 
 | // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden | 
 | // layer. | 
 | void av1_nn_predict_c(const float *input_nodes, | 
 |                       const NN_CONFIG *const nn_config, float *const output) { | 
 |   int num_input_nodes = nn_config->num_inputs; | 
 |   int buf_index = 0; | 
 |   float buf[2][NN_MAX_NODES_PER_LAYER]; | 
 |  | 
 |   // Propagate hidden layers. | 
 |   const int num_layers = nn_config->num_hidden_layers; | 
 |   assert(num_layers <= NN_MAX_HIDDEN_LAYERS); | 
 |   for (int layer = 0; layer < num_layers; ++layer) { | 
 |     const float *layer_weights = nn_config->weights[layer]; | 
 |     const float *layer_bias = nn_config->bias[layer]; | 
 |     float *output_nodes = buf[buf_index]; | 
 |     const int num_output_nodes = nn_config->num_hidden_nodes[layer]; | 
 |     assert(num_output_nodes < NN_MAX_NODES_PER_LAYER); | 
 |     for (int node = 0; node < num_output_nodes; ++node) { | 
 |       float val = layer_bias[node]; | 
 |       for (int i = 0; i < num_input_nodes; ++i) | 
 |         val += layer_weights[node * num_input_nodes + i] * input_nodes[i]; | 
 |       // ReLU as activation function. | 
 |       val = val > 0.0f ? val : 0.0f;  // Could use AOMMAX(). | 
 |       output_nodes[node] = val; | 
 |     } | 
 |     num_input_nodes = num_output_nodes; | 
 |     input_nodes = output_nodes; | 
 |     buf_index = 1 - buf_index; | 
 |   } | 
 |  | 
 |   // Final output layer. | 
 |   const float *layer_weights = nn_config->weights[num_layers]; | 
 |   const float *layer_bias = nn_config->bias[num_layers]; | 
 |   for (int node = 0; node < nn_config->num_outputs; ++node) { | 
 |     float val = layer_bias[node]; | 
 |     for (int i = 0; i < num_input_nodes; ++i) | 
 |       val += layer_weights[node * num_input_nodes + i] * input_nodes[i]; | 
 |     output[node] = val; | 
 |   } | 
 | } | 
 |  | 
 | void av1_nn_softmax(const float *input, float *output, int n) { | 
 |   // Softmax function is invariant to adding the same constant | 
 |   // to all input values, so we subtract the maximum input to avoid | 
 |   // possible overflow. | 
 |   float max_inp = input[0]; | 
 |   for (int i = 1; i < n; i++) max_inp = AOMMAX(max_inp, input[i]); | 
 |   float sum_out = 0.0f; | 
 |   for (int i = 0; i < n; i++) { | 
 |     // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors. | 
 |     const float normalized_input = AOMMAX(input[i] - max_inp, -10.0f); | 
 |     output[i] = (float)exp(normalized_input); | 
 |     sum_out += output[i]; | 
 |   } | 
 |   for (int i = 0; i < n; i++) output[i] /= sum_out; | 
 | } |