| /* | 
 |  * Copyright (c) 2019, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <stdint.h> | 
 | #include <float.h> | 
 |  | 
 | #include "config/aom_config.h" | 
 | #include "config/aom_dsp_rtcd.h" | 
 |  | 
 | #include "aom/aom_codec.h" | 
 |  | 
 | #include "av1/common/enums.h" | 
 | #include "av1/common/onyxc_int.h" | 
 | #include "av1/common/reconintra.h" | 
 |  | 
 | #include "av1/encoder/encoder.h" | 
 | #include "av1/encoder/reconinter_enc.h" | 
 |  | 
 | #define MC_FLOW_BSIZE 16 | 
 | #define MC_FLOW_NUM_PELS (MC_FLOW_BSIZE * MC_FLOW_BSIZE) | 
 |  | 
 | static void wht_fwd_txfm(int16_t *src_diff, int bw, tran_low_t *coeff, | 
 |                          TX_SIZE tx_size) { | 
 |   switch (tx_size) { | 
 |     case TX_8X8: aom_hadamard_8x8(src_diff, bw, coeff); break; | 
 |     case TX_16X16: aom_hadamard_16x16(src_diff, bw, coeff); break; | 
 |     case TX_32X32: aom_hadamard_32x32(src_diff, bw, coeff); break; | 
 |     default: assert(0); | 
 |   } | 
 | } | 
 |  | 
 | static uint32_t motion_compensated_prediction(AV1_COMP *cpi, ThreadData *td, | 
 |                                               uint8_t *cur_frame_buf, | 
 |                                               uint8_t *ref_frame_buf, | 
 |                                               int stride, int stride_ref, | 
 |                                               BLOCK_SIZE bsize, int mi_row, | 
 |                                               int mi_col) { | 
 |   AV1_COMMON *cm = &cpi->common; | 
 |   MACROBLOCK *const x = &td->mb; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv; | 
 |   const SEARCH_METHODS search_method = NSTEP; | 
 |   int step_param; | 
 |   int sadpb = x->sadperbit16; | 
 |   uint32_t bestsme = UINT_MAX; | 
 |   int distortion; | 
 |   uint32_t sse; | 
 |   int cost_list[5]; | 
 |   const MvLimits tmp_mv_limits = x->mv_limits; | 
 |  | 
 |   MV best_ref_mv1 = { 0, 0 }; | 
 |   MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */ | 
 |  | 
 |   best_ref_mv1_full.col = best_ref_mv1.col >> 3; | 
 |   best_ref_mv1_full.row = best_ref_mv1.row >> 3; | 
 |  | 
 |   // Setup frame pointers | 
 |   x->plane[0].src.buf = cur_frame_buf; | 
 |   x->plane[0].src.stride = stride; | 
 |   xd->plane[0].pre[0].buf = ref_frame_buf; | 
 |   xd->plane[0].pre[0].stride = stride_ref; | 
 |  | 
 |   step_param = mv_sf->reduce_first_step_size; | 
 |   step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2); | 
 |  | 
 |   av1_set_mv_search_range(&x->mv_limits, &best_ref_mv1); | 
 |  | 
 |   av1_full_pixel_search(cpi, x, bsize, &best_ref_mv1_full, step_param, | 
 |                         search_method, 0, sadpb, cond_cost_list(cpi, cost_list), | 
 |                         &best_ref_mv1, INT_MAX, 0, (MI_SIZE * mi_col), | 
 |                         (MI_SIZE * mi_row), 0, &cpi->ss_cfg[SS_CFG_SRC]); | 
 |  | 
 |   /* restore UMV window */ | 
 |   x->mv_limits = tmp_mv_limits; | 
 |  | 
 |   const int pw = block_size_wide[bsize]; | 
 |   const int ph = block_size_high[bsize]; | 
 |   bestsme = cpi->find_fractional_mv_step( | 
 |       x, cm, mi_row, mi_col, &best_ref_mv1, cpi->common.allow_high_precision_mv, | 
 |       x->errorperbit, &cpi->fn_ptr[bsize], 0, mv_sf->subpel_iters_per_step, | 
 |       cond_cost_list(cpi, cost_list), NULL, NULL, &distortion, &sse, NULL, NULL, | 
 |       0, 0, pw, ph, 1, 1); | 
 |  | 
 |   return bestsme; | 
 | } | 
 |  | 
 | static void mode_estimation(AV1_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, | 
 |                             struct scale_factors *sf, int frame_idx, | 
 |                             int16_t *src_diff, tran_low_t *coeff, int mi_row, | 
 |                             int mi_col, BLOCK_SIZE bsize, TX_SIZE tx_size, | 
 |                             YV12_BUFFER_CONFIG *ref_frame[], uint8_t *predictor, | 
 |                             TplDepStats *tpl_stats) { | 
 |   AV1_COMMON *cm = &cpi->common; | 
 |   ThreadData *td = &cpi->td; | 
 |   const GF_GROUP *gf_group = &cpi->twopass.gf_group; | 
 |  | 
 |   const int bw = 4 << mi_size_wide_log2[bsize]; | 
 |   const int bh = 4 << mi_size_high_log2[bsize]; | 
 |   const int pix_num = bw * bh; | 
 |   const InterpFilters kernel = | 
 |       av1_make_interp_filters(EIGHTTAP_REGULAR, EIGHTTAP_REGULAR); | 
 |  | 
 |   int64_t best_intra_cost = INT64_MAX; | 
 |   int64_t intra_cost; | 
 |   PREDICTION_MODE mode; | 
 |   int mb_y_offset = mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE; | 
 |   MB_MODE_INFO mi_above, mi_left; | 
 |  | 
 |   memset(tpl_stats, 0, sizeof(*tpl_stats)); | 
 |  | 
 |   xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); | 
 |   xd->mb_to_bottom_edge = ((cm->mi_rows - 1 - mi_row) * MI_SIZE) * 8; | 
 |   xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); | 
 |   xd->mb_to_right_edge = ((cm->mi_cols - 1 - mi_col) * MI_SIZE) * 8; | 
 |   xd->above_mbmi = (mi_row > 0) ? &mi_above : NULL; | 
 |   xd->left_mbmi = (mi_col > 0) ? &mi_left : NULL; | 
 |   xd->mi[0]->sb_type = bsize; | 
 |   xd->mi[0]->motion_mode = SIMPLE_TRANSLATION; | 
 |  | 
 |   // Intra prediction search | 
 |   xd->mi[0]->ref_frame[0] = INTRA_FRAME; | 
 |   for (mode = DC_PRED; mode <= PAETH_PRED; ++mode) { | 
 |     uint8_t *src, *dst; | 
 |     int src_stride, dst_stride; | 
 |  | 
 |     src = xd->cur_buf->y_buffer + mb_y_offset; | 
 |     src_stride = xd->cur_buf->y_stride; | 
 |  | 
 |     dst = &predictor[0]; | 
 |     dst_stride = bw; | 
 |  | 
 |     av1_predict_intra_block( | 
 |         cm, xd, block_size_wide[bsize], block_size_high[bsize], tx_size, mode, | 
 |         0, 0, FILTER_INTRA_MODES, src, src_stride, dst, dst_stride, 0, 0, 0); | 
 |  | 
 |     if (is_cur_buf_hbd(xd)) { | 
 |       aom_highbd_subtract_block(bh, bw, src_diff, bw, src, src_stride, dst, | 
 |                                 dst_stride, xd->bd); | 
 |     } else { | 
 |       aom_subtract_block(bh, bw, src_diff, bw, src, src_stride, dst, | 
 |                          dst_stride); | 
 |     } | 
 |  | 
 |     wht_fwd_txfm(src_diff, bw, coeff, tx_size); | 
 |  | 
 |     intra_cost = aom_satd(coeff, pix_num); | 
 |  | 
 |     if (intra_cost < best_intra_cost) best_intra_cost = intra_cost; | 
 |   } | 
 |  | 
 |   // Motion compensated prediction | 
 |   xd->mi[0]->ref_frame[0] = GOLDEN_FRAME; | 
 |  | 
 |   int best_rf_idx = -1; | 
 |   int_mv best_mv; | 
 |   int64_t inter_cost; | 
 |   int64_t best_inter_cost; | 
 |   int64_t inter_cost_weighted; | 
 |   int64_t best_inter_cost_weighted = INT64_MAX; | 
 |   int rf_idx; | 
 |   int q_current = gf_group->q_val[frame_idx]; | 
 |  | 
 |   best_mv.as_int = 0; | 
 |  | 
 |   (void)mb_y_offset; | 
 |   // Motion estimation column boundary | 
 |   x->mv_limits.col_min = -((mi_col * MI_SIZE) + (17 - 2 * AOM_INTERP_EXTEND)); | 
 |   x->mv_limits.col_max = | 
 |       ((cm->mi_cols - 1 - mi_col) * MI_SIZE) + (17 - 2 * AOM_INTERP_EXTEND); | 
 |  | 
 |   for (rf_idx = 0; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) { | 
 |     if (ref_frame[rf_idx] == NULL) continue; | 
 |  | 
 |     int q_ref = gf_group->q_val[gf_group->ref_frame_gop_idx[frame_idx][rf_idx]]; | 
 |     double delta_q = (double)(q_ref - q_current); | 
 |  | 
 |     int mb_y_offset_ref = | 
 |         mi_row * MI_SIZE * ref_frame[rf_idx]->y_stride + mi_col * MI_SIZE; | 
 |  | 
 |     motion_compensated_prediction( | 
 |         cpi, td, xd->cur_buf->y_buffer + mb_y_offset, | 
 |         ref_frame[rf_idx]->y_buffer + mb_y_offset_ref, xd->cur_buf->y_stride, | 
 |         ref_frame[rf_idx]->y_stride, bsize, mi_row, mi_col); | 
 |  | 
 |     ConvolveParams conv_params = get_conv_params(0, 0, xd->bd); | 
 |     WarpTypesAllowed warp_types; | 
 |     memset(&warp_types, 0, sizeof(WarpTypesAllowed)); | 
 |  | 
 |     av1_build_inter_predictor(ref_frame[rf_idx]->y_buffer + mb_y_offset_ref, | 
 |                               ref_frame[rf_idx]->y_stride, &predictor[0], bw, | 
 |                               &x->best_mv.as_mv, sf, bw, bh, &conv_params, | 
 |                               kernel, &warp_types, mi_col * MI_SIZE, | 
 |                               mi_row * MI_SIZE, 0, 0, MV_PRECISION_Q3, | 
 |                               mi_col * MI_SIZE, mi_row * MI_SIZE, xd, 0); | 
 |     if (is_cur_buf_hbd(xd)) { | 
 |       aom_highbd_subtract_block( | 
 |           bh, bw, src_diff, bw, xd->cur_buf->y_buffer + mb_y_offset, | 
 |           xd->cur_buf->y_stride, &predictor[0], bw, xd->bd); | 
 |     } else { | 
 |       aom_subtract_block(bh, bw, src_diff, bw, | 
 |                          xd->cur_buf->y_buffer + mb_y_offset, | 
 |                          xd->cur_buf->y_stride, &predictor[0], bw); | 
 |     } | 
 |     wht_fwd_txfm(src_diff, bw, coeff, tx_size); | 
 |  | 
 |     inter_cost = aom_satd(coeff, pix_num); | 
 |     const double weight_factor = 0.5; | 
 |     inter_cost_weighted = (int64_t)( | 
 |         (double)inter_cost * | 
 |             (delta_q < 0 | 
 |                  ? (1.0 - weight_factor) + weight_factor * exp(delta_q / 16) | 
 |                  : (1.0 + weight_factor * (1.0 - exp(-delta_q / 16)))) + | 
 |         0.5); | 
 |     if (inter_cost_weighted < best_inter_cost_weighted) { | 
 |       best_rf_idx = rf_idx; | 
 |       best_inter_cost_weighted = inter_cost_weighted; | 
 |       best_mv.as_int = x->best_mv.as_int; | 
 |     } | 
 |   } | 
 |   best_intra_cost = AOMMAX(best_intra_cost, 1); | 
 |   best_inter_cost = AOMMIN(best_intra_cost, (int64_t)best_inter_cost_weighted); | 
 |   tpl_stats->inter_cost = best_inter_cost << TPL_DEP_COST_SCALE_LOG2; | 
 |   tpl_stats->intra_cost = best_intra_cost << TPL_DEP_COST_SCALE_LOG2; | 
 |  | 
 |   const int idx = gf_group->ref_frame_gop_idx[frame_idx][best_rf_idx]; | 
 |   tpl_stats->ref_frame_index = idx; | 
 |   tpl_stats->ref_disp_frame_index = cpi->twopass.gf_group.frame_disp_idx[idx]; | 
 |   tpl_stats->mv.as_int = best_mv.as_int; | 
 | } | 
 |  | 
 | static int round_floor(int ref_pos, int bsize_pix) { | 
 |   int round; | 
 |   if (ref_pos < 0) | 
 |     round = -(1 + (-ref_pos - 1) / bsize_pix); | 
 |   else | 
 |     round = ref_pos / bsize_pix; | 
 |  | 
 |   return round; | 
 | } | 
 |  | 
 | static int get_overlap_area(int grid_pos_row, int grid_pos_col, int ref_pos_row, | 
 |                             int ref_pos_col, int block, BLOCK_SIZE bsize) { | 
 |   int width = 0, height = 0; | 
 |   int bw = 4 << mi_size_wide_log2[bsize]; | 
 |   int bh = 4 << mi_size_high_log2[bsize]; | 
 |  | 
 |   switch (block) { | 
 |     case 0: | 
 |       width = grid_pos_col + bw - ref_pos_col; | 
 |       height = grid_pos_row + bh - ref_pos_row; | 
 |       break; | 
 |     case 1: | 
 |       width = ref_pos_col + bw - grid_pos_col; | 
 |       height = grid_pos_row + bh - ref_pos_row; | 
 |       break; | 
 |     case 2: | 
 |       width = grid_pos_col + bw - ref_pos_col; | 
 |       height = ref_pos_row + bh - grid_pos_row; | 
 |       break; | 
 |     case 3: | 
 |       width = ref_pos_col + bw - grid_pos_col; | 
 |       height = ref_pos_row + bh - grid_pos_row; | 
 |       break; | 
 |     default: assert(0); | 
 |   } | 
 |  | 
 |   return width * height; | 
 | } | 
 |  | 
 | static void tpl_model_update_b(TplDepFrame *tpl_frame, | 
 |                                TplDepStats *tpl_stats_ptr, int mi_row, | 
 |                                int mi_col, const BLOCK_SIZE bsize) { | 
 |   TplDepFrame *ref_tpl_frame = &tpl_frame[tpl_stats_ptr->ref_disp_frame_index]; | 
 |   TplDepStats *ref_stats_ptr = ref_tpl_frame->tpl_stats_ptr; | 
 |   MV mv = tpl_stats_ptr->mv.as_mv; | 
 |   int mv_row = mv.row >> 3; | 
 |   int mv_col = mv.col >> 3; | 
 |  | 
 |   int ref_pos_row = mi_row * MI_SIZE + mv_row; | 
 |   int ref_pos_col = mi_col * MI_SIZE + mv_col; | 
 |  | 
 |   const int bw = 4 << mi_size_wide_log2[bsize]; | 
 |   const int bh = 4 << mi_size_high_log2[bsize]; | 
 |   const int mi_height = mi_size_high[bsize]; | 
 |   const int mi_width = mi_size_wide[bsize]; | 
 |   const int pix_num = bw * bh; | 
 |  | 
 |   // top-left on grid block location in pixel | 
 |   int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh; | 
 |   int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw; | 
 |   int block; | 
 |  | 
 |   for (block = 0; block < 4; ++block) { | 
 |     int grid_pos_row = grid_pos_row_base + bh * (block >> 1); | 
 |     int grid_pos_col = grid_pos_col_base + bw * (block & 0x01); | 
 |  | 
 |     if (grid_pos_row >= 0 && grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE && | 
 |         grid_pos_col >= 0 && grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) { | 
 |       int overlap_area = get_overlap_area( | 
 |           grid_pos_row, grid_pos_col, ref_pos_row, ref_pos_col, block, bsize); | 
 |       int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height; | 
 |       int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width; | 
 |  | 
 |       int64_t mc_flow = | 
 |           tpl_stats_ptr->mc_dep_cost - | 
 |           (tpl_stats_ptr->mc_dep_cost * tpl_stats_ptr->inter_cost) / | 
 |               tpl_stats_ptr->intra_cost; | 
 |       int64_t mc_saved = tpl_stats_ptr->intra_cost - tpl_stats_ptr->inter_cost; | 
 |       int idx, idy; | 
 |       for (idy = 0; idy < mi_height; ++idy) { | 
 |         for (idx = 0; idx < mi_width; ++idx) { | 
 |           TplDepStats *des_stats = | 
 |               &ref_stats_ptr[(ref_mi_row + idy) * ref_tpl_frame->stride + | 
 |                              (ref_mi_col + idx)]; | 
 |           des_stats->mc_flow += (mc_flow * overlap_area) / pix_num; | 
 |           des_stats->mc_count += overlap_area << TPL_DEP_COST_SCALE_LOG2; | 
 |           des_stats->mc_saved += (mc_saved * overlap_area) / pix_num; | 
 |           assert(overlap_area >= 0); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void tpl_model_update(TplDepFrame *tpl_frame, TplDepStats *tpl_stats_ptr, | 
 |                              int mi_row, int mi_col, const BLOCK_SIZE bsize) { | 
 |   int idx, idy; | 
 |   const int mi_height = mi_size_high[bsize]; | 
 |   const int mi_width = mi_size_wide[bsize]; | 
 |  | 
 |   for (idy = 0; idy < mi_height; ++idy) { | 
 |     for (idx = 0; idx < mi_width; ++idx) { | 
 |       TplDepStats *tpl_ptr = | 
 |           &tpl_stats_ptr[(mi_row + idy) * tpl_frame->stride + (mi_col + idx)]; | 
 |       tpl_model_update_b(tpl_frame, tpl_ptr, mi_row + idy, mi_col + idx, | 
 |                          BLOCK_4X4); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void tpl_model_store(TplDepStats *tpl_stats_ptr, int mi_row, int mi_col, | 
 |                             BLOCK_SIZE bsize, int stride, | 
 |                             const TplDepStats *src_stats) { | 
 |   const int mi_height = mi_size_high[bsize]; | 
 |   const int mi_width = mi_size_wide[bsize]; | 
 |   int idx, idy; | 
 |  | 
 |   int64_t intra_cost = src_stats->intra_cost / (mi_height * mi_width); | 
 |   int64_t inter_cost = src_stats->inter_cost / (mi_height * mi_width); | 
 |  | 
 |   TplDepStats *tpl_ptr; | 
 |  | 
 |   intra_cost = AOMMAX(1, intra_cost); | 
 |   inter_cost = AOMMAX(1, inter_cost); | 
 |  | 
 |   for (idy = 0; idy < mi_height; ++idy) { | 
 |     tpl_ptr = &tpl_stats_ptr[(mi_row + idy) * stride + mi_col]; | 
 |     for (idx = 0; idx < mi_width; ++idx) { | 
 |       tpl_ptr->intra_cost = intra_cost; | 
 |       tpl_ptr->inter_cost = inter_cost; | 
 |       tpl_ptr->mc_dep_cost = tpl_ptr->intra_cost + tpl_ptr->mc_flow; | 
 |       tpl_ptr->ref_frame_index = src_stats->ref_frame_index; | 
 |       tpl_ptr->ref_disp_frame_index = src_stats->ref_disp_frame_index; | 
 |       tpl_ptr->mv.as_int = src_stats->mv.as_int; | 
 |       ++tpl_ptr; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static YV12_BUFFER_CONFIG *get_framebuf( | 
 |     AV1_COMP *cpi, const EncodeFrameInput *const frame_input, int frame_idx) { | 
 |   if (frame_idx == 0) { | 
 |     RefCntBuffer *ref_buf = get_ref_frame_buf(&cpi->common, GOLDEN_FRAME); | 
 |     return &ref_buf->buf; | 
 |   } else if (frame_idx == 1) { | 
 |     return frame_input ? frame_input->source : NULL; | 
 |   } else { | 
 |     const GF_GROUP *gf_group = &cpi->twopass.gf_group; | 
 |     const int frame_disp_idx = gf_group->frame_disp_idx[frame_idx]; | 
 |     struct lookahead_entry *buf = av1_lookahead_peek( | 
 |         cpi->lookahead, frame_disp_idx - cpi->num_gf_group_show_frames); | 
 |     return &buf->img; | 
 |   } | 
 | } | 
 |  | 
 | static void mc_flow_dispenser(AV1_COMP *cpi, YV12_BUFFER_CONFIG **gf_picture, | 
 |                               int frame_idx) { | 
 |   const GF_GROUP *gf_group = &cpi->twopass.gf_group; | 
 |   if (frame_idx == gf_group->size) return; | 
 |   int tpl_idx = gf_group->frame_disp_idx[frame_idx]; | 
 |   TplDepFrame *tpl_frame = &cpi->tpl_stats[tpl_idx]; | 
 |   YV12_BUFFER_CONFIG *this_frame = gf_picture[frame_idx]; | 
 |   YV12_BUFFER_CONFIG *ref_frame[7] = { | 
 |     NULL, NULL, NULL, NULL, NULL, NULL, NULL | 
 |   }; | 
 |  | 
 |   AV1_COMMON *cm = &cpi->common; | 
 |   struct scale_factors sf; | 
 |   int rdmult, idx; | 
 |   ThreadData *td = &cpi->td; | 
 |   MACROBLOCK *x = &td->mb; | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   int mi_row, mi_col; | 
 | #if MC_FLOW_BSIZE == 64 | 
 |   const BLOCK_SIZE bsize = BLOCK_64X64; | 
 | #elif MC_FLOW_BSIZE == 32 | 
 |   const BLOCK_SIZE bsize = BLOCK_32X32; | 
 | #elif MC_FLOW_BSIZE == 16 | 
 |   const BLOCK_SIZE bsize = BLOCK_16X16; | 
 | #elif MC_FLOW_BSIZE == 8 | 
 |   const BLOCK_SIZE bsize = BLOCK_8X8; | 
 | #elif MC_FLOW_BSIZE == 4 | 
 |   const BLOCK_SIZE bsize = BLOCK_4X4; | 
 | #else | 
 | #error "Invalid block size for tpl model" | 
 | #endif  // MC_FLOW_BSIZE == 64 | 
 |  | 
 |   DECLARE_ALIGNED(32, uint16_t, predictor16[MC_FLOW_NUM_PELS * 3]); | 
 |   DECLARE_ALIGNED(32, uint8_t, predictor8[MC_FLOW_NUM_PELS * 3]); | 
 |   uint8_t *predictor; | 
 |   DECLARE_ALIGNED(32, int16_t, src_diff[MC_FLOW_NUM_PELS]); | 
 |   DECLARE_ALIGNED(32, tran_low_t, coeff[MC_FLOW_NUM_PELS]); | 
 |  | 
 |   const TX_SIZE tx_size = max_txsize_lookup[bsize]; | 
 |   const int mi_height = mi_size_high[bsize]; | 
 |   const int mi_width = mi_size_wide[bsize]; | 
 |  | 
 |   // Setup scaling factor | 
 |   av1_setup_scale_factors_for_frame( | 
 |       &sf, this_frame->y_crop_width, this_frame->y_crop_height, | 
 |       this_frame->y_crop_width, this_frame->y_crop_height); | 
 |  | 
 |   if (is_cur_buf_hbd(xd)) | 
 |     predictor = CONVERT_TO_BYTEPTR(predictor16); | 
 |   else | 
 |     predictor = predictor8; | 
 |  | 
 |   // Prepare reference frame pointers. If any reference frame slot is | 
 |   // unavailable, the pointer will be set to Null. | 
 |   for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) { | 
 |     int rf_idx = gf_group->ref_frame_gop_idx[frame_idx][idx]; | 
 |     if (rf_idx > 0) ref_frame[idx] = gf_picture[rf_idx]; | 
 |   } | 
 |  | 
 |   xd->mi = cm->mi_grid_visible; | 
 |   xd->mi[0] = cm->mi; | 
 |   xd->cur_buf = this_frame; | 
 |  | 
 |   const int base_qindex = gf_group->q_val[frame_idx]; | 
 |   // Get rd multiplier set up. | 
 |   rdmult = (int)av1_compute_rd_mult(cpi, base_qindex); | 
 |   if (rdmult < 1) rdmult = 1; | 
 |   set_error_per_bit(x, rdmult); | 
 |   av1_initialize_me_consts(cpi, x, base_qindex); | 
 |  | 
 |   tpl_frame->is_valid = 1; | 
 |  | 
 |   cm->base_qindex = base_qindex; | 
 |   av1_frame_init_quantizer(cpi); | 
 |  | 
 |   for (mi_row = 0; mi_row < cm->mi_rows; mi_row += mi_height) { | 
 |     // Motion estimation row boundary | 
 |     x->mv_limits.row_min = -((mi_row * MI_SIZE) + (17 - 2 * AOM_INTERP_EXTEND)); | 
 |     x->mv_limits.row_max = | 
 |         (cm->mi_rows - 1 - mi_row) * MI_SIZE + (17 - 2 * AOM_INTERP_EXTEND); | 
 |     for (mi_col = 0; mi_col < cm->mi_cols; mi_col += mi_width) { | 
 |       TplDepStats tpl_stats; | 
 |       mode_estimation(cpi, x, xd, &sf, frame_idx, src_diff, coeff, mi_row, | 
 |                       mi_col, bsize, tx_size, ref_frame, predictor, &tpl_stats); | 
 |  | 
 |       // Motion flow dependency dispenser. | 
 |       tpl_model_store(tpl_frame->tpl_stats_ptr, mi_row, mi_col, bsize, | 
 |                       tpl_frame->stride, &tpl_stats); | 
 |  | 
 |       tpl_model_update(cpi->tpl_stats, tpl_frame->tpl_stats_ptr, mi_row, mi_col, | 
 |                        bsize); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #define REF_IDX(ref) ((ref)-LAST_FRAME) | 
 |  | 
 | static void init_gop_frames_for_tpl(AV1_COMP *cpi, | 
 |                                     YV12_BUFFER_CONFIG **gf_picture, | 
 |                                     GF_GROUP *gf_group, int *tpl_group_frames, | 
 |                                     const EncodeFrameInput *const frame_input) { | 
 |   AV1_COMMON *cm = &cpi->common; | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   int frame_idx = 0; | 
 |   int frame_disp_idx = 0; | 
 |   RefCntBuffer *frame_bufs = cm->buffer_pool->frame_bufs; | 
 |   int pframe_qindex = 0; | 
 |  | 
 |   for (int i = 0; i < FRAME_BUFFERS && frame_idx < INTER_REFS_PER_FRAME + 1; | 
 |        ++i) { | 
 |     if (frame_bufs[i].ref_count == 0) { | 
 |       alloc_frame_mvs(cm, &frame_bufs[i]); | 
 |       if (aom_realloc_frame_buffer( | 
 |               &frame_bufs[i].buf, cm->width, cm->height, | 
 |               seq_params->subsampling_x, seq_params->subsampling_y, | 
 |               seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, | 
 |               cm->byte_alignment, NULL, NULL, NULL)) | 
 |         aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
 |                            "Failed to allocate frame buffer"); | 
 |       ++frame_idx; | 
 |     } | 
 |   } | 
 |  | 
 |   *tpl_group_frames = 0; | 
 |  | 
 |   // Initialize Golden reference frame. | 
 |   RefCntBuffer *ref_buf = get_ref_frame_buf(cm, GOLDEN_FRAME); | 
 |   gf_picture[0] = &ref_buf->buf; | 
 |   ++*tpl_group_frames; | 
 |  | 
 |   // Initialize frames in the GF group | 
 |   for (frame_idx = 1; | 
 |        frame_idx <= AOMMIN(gf_group->size, MAX_LENGTH_TPL_FRAME_STATS - 1); | 
 |        ++frame_idx) { | 
 |     if (frame_idx == 1) { | 
 |       gf_picture[frame_idx] = frame_input->source; | 
 |       frame_disp_idx = gf_group->frame_disp_idx[frame_idx]; | 
 |     } else { | 
 |       frame_disp_idx = frame_idx == gf_group->size | 
 |                            ? gf_group->frame_disp_idx[1] | 
 |                            : gf_group->frame_disp_idx[frame_idx]; | 
 |       struct lookahead_entry *buf = | 
 |           av1_lookahead_peek(cpi->lookahead, frame_disp_idx - 1); | 
 |  | 
 |       if (buf == NULL) break; | 
 |  | 
 |       gf_picture[frame_idx] = &buf->img; | 
 |       if (frame_idx == gf_group->size) { | 
 |         gf_group->frame_disp_idx[frame_idx] = frame_disp_idx; | 
 |         gf_group->q_val[frame_idx] = pframe_qindex; | 
 |       } | 
 |     } | 
 |  | 
 |     if (gf_group->update_type[frame_idx] == LF_UPDATE) | 
 |       pframe_qindex = gf_group->q_val[frame_idx]; | 
 |  | 
 |     ++*tpl_group_frames; | 
 |   } | 
 |  | 
 |   if (frame_idx < MAX_LENGTH_TPL_FRAME_STATS) { | 
 |     ++frame_disp_idx; | 
 |     int extend_frame_count = 0; | 
 |     const int gld_idx_next_gop = gf_group->size; | 
 |     const int lst_idx_next_gop = | 
 |         gf_group->ref_frame_gop_idx[gld_idx_next_gop][REF_IDX(LAST_FRAME)]; | 
 |     const int lst2_idx_next_gop = | 
 |         gf_group->ref_frame_gop_idx[gld_idx_next_gop][REF_IDX(LAST2_FRAME)]; | 
 |     const int lst3_idx_next_gop = | 
 |         gf_group->ref_frame_gop_idx[gld_idx_next_gop][REF_IDX(LAST3_FRAME)]; | 
 |  | 
 |     // Extend two frames outside the current gf group. | 
 |     for (; frame_idx < MAX_LENGTH_TPL_FRAME_STATS && extend_frame_count < 2; | 
 |          ++frame_idx) { | 
 |       struct lookahead_entry *buf = | 
 |           av1_lookahead_peek(cpi->lookahead, frame_disp_idx - 1); | 
 |  | 
 |       if (buf == NULL) break; | 
 |  | 
 |       gf_picture[frame_idx] = &buf->img; | 
 |       gf_group->q_val[frame_idx] = pframe_qindex; | 
 |       gf_group->frame_disp_idx[frame_idx] = frame_disp_idx; | 
 |  | 
 |       gf_group->ref_frame_gop_idx[frame_idx][REF_IDX(GOLDEN_FRAME)] = | 
 |           gld_idx_next_gop; | 
 |       gf_group->ref_frame_gop_idx[frame_idx][REF_IDX(LAST_FRAME)] = | 
 |           lst_idx_next_gop; | 
 |       gf_group->ref_frame_gop_idx[frame_idx][REF_IDX(LAST2_FRAME)] = | 
 |           lst2_idx_next_gop; | 
 |       gf_group->ref_frame_gop_idx[frame_idx][REF_IDX(LAST3_FRAME)] = | 
 |           lst3_idx_next_gop; | 
 |  | 
 |       ++*tpl_group_frames; | 
 |       ++extend_frame_count; | 
 |       ++frame_disp_idx; | 
 |     } | 
 |   } | 
 |  | 
 |   for (frame_idx = 0; frame_idx < *tpl_group_frames; ++frame_idx) { | 
 |     assert(gf_picture[frame_idx] == get_framebuf(cpi, frame_input, frame_idx)); | 
 |   } | 
 |   /* | 
 |   for (frame_idx = 0; frame_idx < *tpl_group_frames; ++frame_idx) { | 
 |     printf("frame_idx:%d -> %d [ %d ]\n", frame_idx, | 
 |            gf_group->frame_disp_idx[frame_idx], | 
 |            gf_group->q_val[frame_idx]); | 
 |     for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) | 
 |       printf("%d, ", gf_group->ref_frame_gop_idx[frame_idx][i]); | 
 |     printf(" -> "); | 
 |     for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) | 
 |       printf( | 
 |           "%d, ", | 
 |           gf_group->frame_disp_idx[gf_group->ref_frame_gop_idx[frame_idx][i]]); | 
 |     printf(" -> "); | 
 |     for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) | 
 |       printf("%d, ", | 
 |              gf_group->q_val[gf_group->ref_frame_gop_idx[frame_idx][i]]); | 
 |     printf("\n"); | 
 |   } | 
 |   */ | 
 | } | 
 |  | 
 | static void init_tpl_stats(AV1_COMP *cpi) { | 
 |   int frame_idx; | 
 |   for (frame_idx = 0; frame_idx < MAX_LENGTH_TPL_FRAME_STATS; ++frame_idx) { | 
 |     TplDepFrame *tpl_frame = &cpi->tpl_stats[frame_idx]; | 
 |     memset(tpl_frame->tpl_stats_ptr, 0, | 
 |            tpl_frame->height * tpl_frame->width * | 
 |                sizeof(*tpl_frame->tpl_stats_ptr)); | 
 |     tpl_frame->is_valid = 0; | 
 |   } | 
 | } | 
 |  | 
 | void av1_tpl_setup_stats(AV1_COMP *cpi, | 
 |                          const EncodeFrameInput *const frame_input) { | 
 |   YV12_BUFFER_CONFIG *gf_picture[MAX_LENGTH_TPL_FRAME_STATS]; | 
 |   GF_GROUP *gf_group = &cpi->twopass.gf_group; | 
 |   int frame_idx; | 
 |  | 
 |   init_gop_frames_for_tpl(cpi, gf_picture, gf_group, &cpi->tpl_gf_group_frames, | 
 |                           frame_input); | 
 |  | 
 |   init_tpl_stats(cpi); | 
 |  | 
 |   if (cpi->oxcf.enable_tpl_model == 1) { | 
 |     // Backward propagation from tpl_group_frames to 1. | 
 |     for (frame_idx = cpi->tpl_gf_group_frames - 1; frame_idx > 0; --frame_idx) | 
 |       mc_flow_dispenser(cpi, gf_picture, frame_idx); | 
 |   } | 
 | } | 
 |  | 
 | static void get_tpl_forward_stats(AV1_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, | 
 |                                   BLOCK_SIZE bsize, YV12_BUFFER_CONFIG *ref, | 
 |                                   YV12_BUFFER_CONFIG *src, | 
 |                                   TplDepFrame *ref_tpl_frame) { | 
 |   AV1_COMMON *cm = &cpi->common; | 
 |   ThreadData *td = &cpi->td; | 
 |  | 
 |   const int bw = 4 << mi_size_wide_log2[bsize]; | 
 |   const int bh = 4 << mi_size_high_log2[bsize]; | 
 |   const int mi_height = mi_size_high[bsize]; | 
 |   const int mi_width = mi_size_wide[bsize]; | 
 |   const int pix_num = bw * bh; | 
 |   const TX_SIZE tx_size = max_txsize_lookup[bsize]; | 
 |  | 
 |   DECLARE_ALIGNED(32, uint16_t, predictor16[MC_FLOW_NUM_PELS * 3]); | 
 |   DECLARE_ALIGNED(32, uint8_t, predictor8[MC_FLOW_NUM_PELS * 3]); | 
 |   uint8_t *predictor; | 
 |   DECLARE_ALIGNED(32, int16_t, src_diff[MC_FLOW_NUM_PELS]); | 
 |   DECLARE_ALIGNED(32, tran_low_t, coeff[MC_FLOW_NUM_PELS]); | 
 |  | 
 |   if (is_cur_buf_hbd(xd)) | 
 |     predictor = CONVERT_TO_BYTEPTR(predictor16); | 
 |   else | 
 |     predictor = predictor8; | 
 |  | 
 |   // Initialize advanced prediction parameters as default values | 
 |   struct scale_factors sf; | 
 |   av1_setup_scale_factors_for_frame(&sf, ref->y_crop_width, ref->y_crop_height, | 
 |                                     src->y_crop_width, src->y_crop_height); | 
 |   ConvolveParams conv_params = get_conv_params(0, 0, xd->bd); | 
 |   WarpTypesAllowed warp_types; | 
 |   memset(&warp_types, 0, sizeof(WarpTypesAllowed)); | 
 |   const InterpFilters kernel = | 
 |       av1_make_interp_filters(EIGHTTAP_REGULAR, EIGHTTAP_REGULAR); | 
 |   xd->above_mbmi = NULL; | 
 |   xd->left_mbmi = NULL; | 
 |   xd->mi[0]->sb_type = bsize; | 
 |   xd->mi[0]->motion_mode = SIMPLE_TRANSLATION; | 
 |  | 
 |   for (int mi_row = 0; mi_row < cm->mi_rows; mi_row += mi_height) { | 
 |     // Motion estimation row boundary | 
 |     x->mv_limits.row_min = -((mi_row * MI_SIZE) + (17 - 2 * AOM_INTERP_EXTEND)); | 
 |     x->mv_limits.row_max = | 
 |         (cm->mi_rows - 1 - mi_row) * MI_SIZE + (17 - 2 * AOM_INTERP_EXTEND); | 
 |     xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); | 
 |     xd->mb_to_bottom_edge = ((cm->mi_rows - 1 - mi_row) * MI_SIZE) * 8; | 
 |  | 
 |     for (int mi_col = 0; mi_col < cm->mi_cols; mi_col += mi_width) { | 
 |       int64_t inter_cost, intra_cost; | 
 |  | 
 |       // Intra mode | 
 |       xd->mi[0]->ref_frame[0] = INTRA_FRAME; | 
 |       int64_t best_intra_cost = INT64_MAX; | 
 |       for (PREDICTION_MODE mode = DC_PRED; mode <= PAETH_PRED; ++mode) { | 
 |         uint8_t *src_buf = | 
 |             src->y_buffer + mi_row * MI_SIZE * src->y_stride + mi_col * MI_SIZE; | 
 |         const int src_stride = src->y_stride; | 
 |  | 
 |         uint8_t *dst_buf = &predictor[0]; | 
 |         const int dst_stride = bw; | 
 |  | 
 |         av1_predict_intra_block(cm, xd, bw, bh, tx_size, mode, 0, 0, | 
 |                                 FILTER_INTRA_MODES, src_buf, src_stride, | 
 |                                 dst_buf, dst_stride, 0, 0, 0); | 
 |  | 
 |         if (is_cur_buf_hbd(xd)) { | 
 |           aom_highbd_subtract_block(bh, bw, src_diff, bw, src_buf, src_stride, | 
 |                                     dst_buf, dst_stride, xd->bd); | 
 |         } else { | 
 |           aom_subtract_block(bh, bw, src_diff, bw, src_buf, src_stride, dst_buf, | 
 |                              dst_stride); | 
 |         } | 
 |  | 
 |         wht_fwd_txfm(src_diff, bw, coeff, tx_size); | 
 |  | 
 |         intra_cost = aom_satd(coeff, pix_num); | 
 |  | 
 |         if (intra_cost < best_intra_cost) best_intra_cost = intra_cost; | 
 |       } | 
 |  | 
 |       // Inter mode | 
 |       // Motion estimation column boundary | 
 |       xd->mi[0]->ref_frame[0] = GOLDEN_FRAME; | 
 |       x->mv_limits.col_min = | 
 |           -((mi_col * MI_SIZE) + (17 - 2 * AOM_INTERP_EXTEND)); | 
 |       x->mv_limits.col_max = | 
 |           ((cm->mi_cols - 1 - mi_col) * MI_SIZE) + (17 - 2 * AOM_INTERP_EXTEND); | 
 |       xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); | 
 |       xd->mb_to_right_edge = ((cm->mi_cols - 1 - mi_col) * MI_SIZE) * 8; | 
 |  | 
 |       const int mb_y_offset = | 
 |           mi_row * MI_SIZE * src->y_stride + mi_col * MI_SIZE; | 
 |       const int mb_y_offset_ref = | 
 |           mi_row * MI_SIZE * ref->y_stride + mi_col * MI_SIZE; | 
 |       motion_compensated_prediction( | 
 |           cpi, td, src->y_buffer + mb_y_offset, ref->y_buffer + mb_y_offset_ref, | 
 |           src->y_stride, ref->y_stride, bsize, mi_row, mi_col); | 
 |  | 
 |       av1_build_inter_predictor( | 
 |           ref->y_buffer + mb_y_offset_ref, ref->y_stride, &predictor[0], bw, | 
 |           &x->best_mv.as_mv, &sf, bw, bh, &conv_params, kernel, &warp_types, | 
 |           mi_col * MI_SIZE, mi_row * MI_SIZE, 0, 0, MV_PRECISION_Q3, | 
 |           mi_col * MI_SIZE, mi_row * MI_SIZE, xd, 0); | 
 |       if (is_cur_buf_hbd(xd)) { | 
 |         aom_highbd_subtract_block(bh, bw, src_diff, bw, | 
 |                                   src->y_buffer + mb_y_offset, src->y_stride, | 
 |                                   &predictor[0], bw, xd->bd); | 
 |       } else { | 
 |         aom_subtract_block(bh, bw, src_diff, bw, src->y_buffer + mb_y_offset, | 
 |                            src->y_stride, &predictor[0], bw); | 
 |       } | 
 |       wht_fwd_txfm(src_diff, bw, coeff, tx_size); | 
 |       inter_cost = aom_satd(coeff, pix_num); | 
 |  | 
 |       // Finalize stats | 
 |       best_intra_cost = AOMMAX(best_intra_cost, 1); | 
 |       inter_cost = AOMMIN(best_intra_cost, inter_cost); | 
 |  | 
 |       // Project stats to reference block | 
 |       TplDepStats *ref_stats_ptr = ref_tpl_frame->tpl_stats_ptr; | 
 |       const MV mv = x->best_mv.as_mv; | 
 |       const int mv_row = mv.row >> 3; | 
 |       const int mv_col = mv.col >> 3; | 
 |       const int ref_pos_row = mi_row * MI_SIZE + mv_row; | 
 |       const int ref_pos_col = mi_col * MI_SIZE + mv_col; | 
 |       const int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh; | 
 |       const int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw; | 
 |  | 
 |       for (int block = 0; block < 4; ++block) { | 
 |         const int grid_pos_row = grid_pos_row_base + bh * (block >> 1); | 
 |         const int grid_pos_col = grid_pos_col_base + bw * (block & 0x01); | 
 |  | 
 |         if (grid_pos_row >= 0 && | 
 |             grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE && | 
 |             grid_pos_col >= 0 && | 
 |             grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) { | 
 |           const int overlap_area = | 
 |               get_overlap_area(grid_pos_row, grid_pos_col, ref_pos_row, | 
 |                                ref_pos_col, block, bsize); | 
 |           const int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height; | 
 |           const int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width; | 
 |  | 
 |           const int64_t mc_saved = (best_intra_cost - inter_cost) | 
 |                                    << TPL_DEP_COST_SCALE_LOG2; | 
 |           for (int idy = 0; idy < mi_height; ++idy) { | 
 |             for (int idx = 0; idx < mi_width; ++idx) { | 
 |               TplDepStats *des_stats = | 
 |                   &ref_stats_ptr[(ref_mi_row + idy) * ref_tpl_frame->stride + | 
 |                                  (ref_mi_col + idx)]; | 
 |               des_stats->mc_count += overlap_area << TPL_DEP_COST_SCALE_LOG2; | 
 |               des_stats->mc_saved += (mc_saved * overlap_area) / pix_num; | 
 |               assert(overlap_area >= 0); | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void av1_tpl_setup_forward_stats(AV1_COMP *cpi) { | 
 |   ThreadData *td = &cpi->td; | 
 |   MACROBLOCK *x = &td->mb; | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 | #if MC_FLOW_BSIZE == 64 | 
 |   const BLOCK_SIZE bsize = BLOCK_64X64; | 
 | #elif MC_FLOW_BSIZE == 32 | 
 |   const BLOCK_SIZE bsize = BLOCK_32X32; | 
 | #elif MC_FLOW_BSIZE == 16 | 
 |   const BLOCK_SIZE bsize = BLOCK_16X16; | 
 | #elif MC_FLOW_BSIZE == 8 | 
 |   const BLOCK_SIZE bsize = BLOCK_8X8; | 
 | #elif MC_FLOW_BSIZE == 4 | 
 |   const BLOCK_SIZE bsize = BLOCK_4X4; | 
 | #else | 
 | #error "Invalid block size for tpl model" | 
 | #endif  // MC_FLOW_BSIZE == 64 | 
 |  | 
 |   const GF_GROUP *gf_group = &cpi->twopass.gf_group; | 
 |   const int tpl_cur_idx = cpi->twopass.gf_group.frame_disp_idx[gf_group->index]; | 
 |   TplDepFrame *tpl_frame = &cpi->tpl_stats[tpl_cur_idx]; | 
 |   memset( | 
 |       tpl_frame->tpl_stats_ptr, 0, | 
 |       tpl_frame->height * tpl_frame->width * sizeof(*tpl_frame->tpl_stats_ptr)); | 
 |   tpl_frame->is_valid = 0; | 
 |   int tpl_used_mask[MAX_LENGTH_TPL_FRAME_STATS] = { 0 }; | 
 |   for (int idx = gf_group->index + 1; idx < cpi->tpl_gf_group_frames; ++idx) { | 
 |     const int tpl_future_idx = cpi->twopass.gf_group.frame_disp_idx[idx]; | 
 |  | 
 |     if (tpl_future_idx == tpl_cur_idx) continue; | 
 |     if (tpl_used_mask[tpl_future_idx]) continue; | 
 |  | 
 |     for (int ridx = 0; ridx < INTER_REFS_PER_FRAME; ++ridx) { | 
 |       const int ref_idx = gf_group->ref_frame_gop_idx[idx][ridx]; | 
 |       const int tpl_ref_idx = cpi->twopass.gf_group.frame_disp_idx[ref_idx]; | 
 |       if (tpl_ref_idx == tpl_cur_idx) { | 
 |         // Do tpl stats computation between current buffer and the one at | 
 |         // gf_group index given by idx (and with disp index given by | 
 |         // tpl_future_idx). | 
 |         assert(idx >= 2); | 
 |         YV12_BUFFER_CONFIG *cur_buf = &cpi->common.cur_frame->buf; | 
 |         YV12_BUFFER_CONFIG *future_buf = get_framebuf(cpi, NULL, idx); | 
 |         get_tpl_forward_stats(cpi, x, xd, bsize, cur_buf, future_buf, | 
 |                               tpl_frame); | 
 |         tpl_frame->is_valid = 1; | 
 |         tpl_used_mask[tpl_future_idx] = 1; | 
 |       } | 
 |     } | 
 |   } | 
 | } |