| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <limits.h> |
| #include <float.h> |
| #include <math.h> |
| #include <stdbool.h> |
| #include <stdio.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/binary_codes_writer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/aom_timer.h" |
| #include "aom_ports/system_state.h" |
| |
| #if CONFIG_MISMATCH_DEBUG |
| #include "aom_util/debug_util.h" |
| #endif // CONFIG_MISMATCH_DEBUG |
| |
| #include "av1/common/cfl.h" |
| #include "av1/common/common.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/mv.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/tile_common.h" |
| #include "av1/common/warped_motion.h" |
| |
| #include "av1/encoder/aq_complexity.h" |
| #include "av1/encoder/aq_cyclicrefresh.h" |
| #include "av1/encoder/aq_variance.h" |
| #include "av1/encoder/corner_detect.h" |
| #include "av1/encoder/global_motion.h" |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/encodemb.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encodetxb.h" |
| #include "av1/encoder/ethread.h" |
| #include "av1/encoder/extend.h" |
| #include "av1/encoder/ml.h" |
| #include "av1/encoder/partition_strategy.h" |
| #if !CONFIG_REALTIME_ONLY |
| #include "av1/encoder/partition_model_weights.h" |
| #endif |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/rdopt.h" |
| #include "av1/encoder/reconinter_enc.h" |
| #include "av1/encoder/segmentation.h" |
| #include "av1/encoder/tokenize.h" |
| #include "av1/encoder/var_based_part.h" |
| |
| static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data, |
| ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| int *rate); |
| |
| // This is used as a reference when computing the source variance for the |
| // purposes of activity masking. |
| // Eventually this should be replaced by custom no-reference routines, |
| // which will be faster. |
| const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128 |
| }; |
| |
| static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128 |
| }; |
| |
| static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = { |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 |
| }; |
| |
| static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = { |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16 |
| }; |
| |
| enum { PICK_MODE_RD = 0, PICK_MODE_NONRD, PICK_MODE_FAST_NONRD }; |
| |
| unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi, |
| const struct buf_2d *ref, |
| BLOCK_SIZE bs) { |
| unsigned int sse; |
| const unsigned int var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse); |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); |
| } |
| |
| unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi, |
| const struct buf_2d *ref, |
| BLOCK_SIZE bs, int bd) { |
| unsigned int var, sse; |
| switch (bd) { |
| case 10: |
| var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, |
| CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse); |
| break; |
| case 12: |
| var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, |
| CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse); |
| break; |
| case 8: |
| default: |
| var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, |
| CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse); |
| break; |
| } |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi, |
| const struct buf_2d *ref, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bs) { |
| unsigned int sse, var; |
| uint8_t *last_y; |
| const YV12_BUFFER_CONFIG *last = |
| get_ref_frame_yv12_buf(&cpi->common, LAST_FRAME); |
| |
| assert(last != NULL); |
| last_y = |
| &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE]; |
| var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse); |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); |
| } |
| |
| static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x, |
| int mi_row, int mi_col) { |
| unsigned int var = get_sby_perpixel_diff_variance( |
| cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64); |
| if (var < 8) |
| return BLOCK_64X64; |
| else if (var < 128) |
| return BLOCK_32X32; |
| else if (var < 2048) |
| return BLOCK_16X16; |
| else |
| return BLOCK_8X8; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static int set_deltaq_rdmult(const AV1_COMP *const cpi, MACROBLOCKD *const xd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| |
| return av1_compute_rd_mult( |
| cpi, cm->base_qindex + xd->delta_qindex + cm->y_dc_delta_q); |
| } |
| |
| static void set_ssim_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, const int mi_row, |
| const int mi_col, int *const rdmult) { |
| const AV1_COMMON *const cm = &cpi->common; |
| |
| const int bsize_base = BLOCK_16X16; |
| const int num_mi_w = mi_size_wide[bsize_base]; |
| const int num_mi_h = mi_size_high[bsize_base]; |
| const int num_cols = (cm->mi_cols + num_mi_w - 1) / num_mi_w; |
| const int num_rows = (cm->mi_rows + num_mi_h - 1) / num_mi_h; |
| const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w; |
| const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; |
| int row, col; |
| double num_of_mi = 0.0; |
| double geom_mean_of_scale = 0.0; |
| |
| assert(cpi->oxcf.tuning == AOM_TUNE_SSIM); |
| |
| for (row = mi_row / num_mi_w; |
| row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { |
| for (col = mi_col / num_mi_h; |
| col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) { |
| const int index = row * num_cols + col; |
| geom_mean_of_scale += log(cpi->ssim_rdmult_scaling_factors[index]); |
| num_of_mi += 1.0; |
| } |
| } |
| geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi); |
| |
| *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale); |
| *rdmult = AOMMAX(*rdmult, 0); |
| set_error_per_bit(x, *rdmult); |
| aom_clear_system_state(); |
| } |
| |
| static void setup_block_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| int mi_row, int mi_col, BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| x->rdmult = cpi->rd.RDMULT; |
| if (cm->delta_q_info.delta_q_present_flag) { |
| x->rdmult = set_deltaq_rdmult(cpi, xd); |
| } |
| if (cpi->oxcf.tuning == AOM_TUNE_SSIM) { |
| set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); |
| } |
| } |
| |
| static void set_offsets_without_segment_id(const AV1_COMP *const cpi, |
| const TileInfo *const tile, |
| MACROBLOCK *const x, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| |
| set_mode_info_offsets(cpi, x, xd, mi_row, mi_col); |
| |
| set_skip_context(xd, mi_row, mi_col, num_planes); |
| xd->above_txfm_context = cm->above_txfm_context[tile->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| // Set up destination pointers. |
| av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, |
| num_planes); |
| |
| // Set up limit values for MV components. |
| // Mv beyond the range do not produce new/different prediction block. |
| x->mv_limits.row_min = |
| -(((mi_row + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND); |
| x->mv_limits.col_min = -(((mi_col + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND); |
| x->mv_limits.row_max = (cm->mi_rows - mi_row) * MI_SIZE + AOM_INTERP_EXTEND; |
| x->mv_limits.col_max = (cm->mi_cols - mi_col) * MI_SIZE + AOM_INTERP_EXTEND; |
| |
| set_plane_n4(xd, mi_width, mi_height, num_planes); |
| |
| // Set up distance of MB to edge of frame in 1/8th pel units. |
| assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); |
| set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows, |
| cm->mi_cols); |
| |
| // Set up source buffers. |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); |
| |
| // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs() |
| xd->tile = *tile; |
| |
| xd->cfl.mi_row = mi_row; |
| xd->cfl.mi_col = mi_col; |
| } |
| |
| static void set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const struct segmentation *const seg = &cm->seg; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi; |
| |
| set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); |
| |
| // Setup segment ID. |
| mbmi = xd->mi[0]; |
| mbmi->segment_id = 0; |
| if (seg->enabled) { |
| if (seg->enabled && !cpi->vaq_refresh) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| mbmi->segment_id = |
| map ? get_segment_id(cm, map, bsize, mi_row, mi_col) : 0; |
| } |
| av1_init_plane_quantizers(cpi, x, mbmi->segment_id); |
| } |
| } |
| |
| static void update_filter_type_count(uint8_t allow_update_cdf, |
| FRAME_COUNTS *counts, |
| const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi) { |
| int dir; |
| for (dir = 0; dir < 2; ++dir) { |
| const int ctx = av1_get_pred_context_switchable_interp(xd, dir); |
| InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir); |
| ++counts->switchable_interp[ctx][filter]; |
| if (allow_update_cdf) { |
| update_cdf(xd->tile_ctx->switchable_interp_cdf[ctx], filter, |
| SWITCHABLE_FILTERS); |
| } |
| } |
| } |
| |
| static void update_global_motion_used(PREDICTION_MODE mode, BLOCK_SIZE bsize, |
| const MB_MODE_INFO *mbmi, |
| RD_COUNTS *rdc) { |
| if (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) { |
| const int num_4x4s = mi_size_wide[bsize] * mi_size_high[bsize]; |
| int ref; |
| for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { |
| rdc->global_motion_used[mbmi->ref_frame[ref]] += num_4x4s; |
| } |
| } |
| } |
| |
| static void reset_tx_size(MACROBLOCK *x, MB_MODE_INFO *mbmi, |
| const TX_MODE tx_mode) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| if (xd->lossless[mbmi->segment_id]) { |
| mbmi->tx_size = TX_4X4; |
| } else if (tx_mode != TX_MODE_SELECT) { |
| mbmi->tx_size = tx_size_from_tx_mode(mbmi->sb_type, tx_mode); |
| } else { |
| BLOCK_SIZE bsize = mbmi->sb_type; |
| TX_SIZE min_tx_size = depth_to_tx_size(MAX_TX_DEPTH, bsize); |
| mbmi->tx_size = (TX_SIZE)TXSIZEMAX(mbmi->tx_size, min_tx_size); |
| } |
| if (is_inter_block(mbmi)) { |
| memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); |
| } |
| memset(mbmi->txk_type, DCT_DCT, sizeof(mbmi->txk_type[0]) * TXK_TYPE_BUF_LEN); |
| av1_zero(x->blk_skip); |
| x->skip = 0; |
| } |
| |
| static void update_state(const AV1_COMP *const cpi, |
| const TileDataEnc *const tile_data, ThreadData *td, |
| const PICK_MODE_CONTEXT *const ctx, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) { |
| int i, x_idx, y; |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| RD_COUNTS *const rdc = &td->rd_counts; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const MB_MODE_INFO *const mi = &ctx->mic; |
| MB_MODE_INFO *const mi_addr = xd->mi[0]; |
| const struct segmentation *const seg = &cm->seg; |
| const int bw = mi_size_wide[mi->sb_type]; |
| const int bh = mi_size_high[mi->sb_type]; |
| const int mis = cm->mi_stride; |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| |
| assert(mi->sb_type == bsize); |
| |
| *mi_addr = *mi; |
| *x->mbmi_ext = ctx->mbmi_ext; |
| |
| memcpy(x->blk_skip, ctx->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| |
| x->skip = ctx->rd_stats.skip; |
| |
| // If segmentation in use |
| if (seg->enabled) { |
| // For in frame complexity AQ copy the segment id from the segment map. |
| if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| mi_addr->segment_id = |
| map ? get_segment_id(cm, map, bsize, mi_row, mi_col) : 0; |
| reset_tx_size(x, mi_addr, cm->tx_mode); |
| } |
| // Else for cyclic refresh mode update the segment map, set the segment id |
| // and then update the quantizer. |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { |
| av1_cyclic_refresh_update_segment(cpi, mi_addr, mi_row, mi_col, bsize, |
| ctx->rd_stats.rate, ctx->rd_stats.dist, |
| x->skip); |
| } |
| if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd)) |
| mi_addr->uv_mode = UV_DC_PRED; |
| } |
| |
| for (i = 0; i < num_planes; ++i) { |
| p[i].coeff = ctx->coeff[i]; |
| p[i].qcoeff = ctx->qcoeff[i]; |
| pd[i].dqcoeff = ctx->dqcoeff[i]; |
| p[i].eobs = ctx->eobs[i]; |
| p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; |
| } |
| for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; |
| // Restore the coding context of the MB to that that was in place |
| // when the mode was picked for it |
| for (y = 0; y < mi_height; y++) |
| for (x_idx = 0; x_idx < mi_width; x_idx++) |
| if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && |
| (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { |
| xd->mi[x_idx + y * mis] = mi_addr; |
| } |
| |
| if (cpi->oxcf.aq_mode) av1_init_plane_quantizers(cpi, x, mi_addr->segment_id); |
| |
| if (dry_run) return; |
| |
| #if CONFIG_INTERNAL_STATS |
| { |
| unsigned int *const mode_chosen_counts = |
| (unsigned int *)cpi->mode_chosen_counts; // Cast const away. |
| if (frame_is_intra_only(cm)) { |
| static const int kf_mode_index[] = { |
| THR_DC /*DC_PRED*/, |
| THR_V_PRED /*V_PRED*/, |
| THR_H_PRED /*H_PRED*/, |
| THR_D45_PRED /*D45_PRED*/, |
| THR_D135_PRED /*D135_PRED*/, |
| THR_D113_PRED /*D113_PRED*/, |
| THR_D157_PRED /*D157_PRED*/, |
| THR_D203_PRED /*D203_PRED*/, |
| THR_D67_PRED /*D67_PRED*/, |
| THR_SMOOTH, /*SMOOTH_PRED*/ |
| THR_SMOOTH_V, /*SMOOTH_V_PRED*/ |
| THR_SMOOTH_H, /*SMOOTH_H_PRED*/ |
| THR_PAETH /*PAETH_PRED*/, |
| }; |
| ++mode_chosen_counts[kf_mode_index[mi_addr->mode]]; |
| } else { |
| // Note how often each mode chosen as best |
| ++mode_chosen_counts[ctx->best_mode_index]; |
| } |
| } |
| #endif |
| if (!frame_is_intra_only(cm)) { |
| if (is_inter_block(mi_addr)) { |
| // TODO(sarahparker): global motion stats need to be handled per-tile |
| // to be compatible with tile-based threading. |
| update_global_motion_used(mi_addr->mode, bsize, mi_addr, rdc); |
| } |
| |
| if (cm->interp_filter == SWITCHABLE && |
| mi_addr->motion_mode != WARPED_CAUSAL && |
| !is_nontrans_global_motion(xd, xd->mi[0])) { |
| update_filter_type_count(tile_data->allow_update_cdf, td->counts, xd, |
| mi_addr); |
| } |
| |
| rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; |
| rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; |
| rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; |
| } |
| |
| const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); |
| const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); |
| if (cm->seq_params.order_hint_info.enable_ref_frame_mvs) |
| av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis); |
| } |
| |
| void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, |
| int mi_row, int mi_col, const int num_planes, |
| BLOCK_SIZE bsize) { |
| // Set current frame pointer. |
| x->e_mbd.cur_buf = src; |
| |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) { |
| const int is_uv = i > 0; |
| setup_pred_plane( |
| &x->plane[i].src, bsize, src->buffers[i], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, NULL, |
| x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y); |
| } |
| } |
| |
| static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| int8_t segment_id) { |
| const AV1_COMMON *const cm = &cpi->common; |
| av1_init_plane_quantizers(cpi, x, segment_id); |
| aom_clear_system_state(); |
| int segment_qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex); |
| return av1_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q); |
| } |
| |
| static EdgeInfo edge_info(const struct buf_2d *ref, const BLOCK_SIZE bsize, |
| const bool high_bd, const int bd) { |
| const int width = block_size_wide[bsize]; |
| const int height = block_size_high[bsize]; |
| // Implementation requires width to be a multiple of 8. It also requires |
| // height to be a multiple of 4, but this is always the case. |
| assert(height % 4 == 0); |
| if (width % 8 != 0) { |
| EdgeInfo ei = { .magnitude = 0, .x = 0, .y = 0 }; |
| return ei; |
| } |
| return av1_edge_exists(ref->buf, ref->stride, width, height, high_bd, bd); |
| } |
| |
| static int use_pb_simple_motion_pred_sse(const AV1_COMP *const cpi) { |
| // TODO(debargha, yuec): Not in use, need to implement a speed feature |
| // utilizing this data point, and replace '0' by the corresponding speed |
| // feature flag. |
| return 0 && !frame_is_intra_only(&cpi->common); |
| } |
| |
| static void pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| RD_STATS *rd_cost, PARTITION_TYPE partition, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, |
| RD_STATS best_rd, int pick_mode_type) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi; |
| MB_MODE_INFO *ctx_mbmi = &ctx->mic; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const AQ_MODE aq_mode = cpi->oxcf.aq_mode; |
| int i; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, rd_pick_sb_modes_time); |
| #endif |
| |
| if (best_rd.rdcost < 0) { |
| ctx->rd_stats.rdcost = INT64_MAX; |
| ctx->rd_stats.skip = 0; |
| av1_invalid_rd_stats(rd_cost); |
| return; |
| } |
| |
| aom_clear_system_state(); |
| |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| |
| mbmi = xd->mi[0]; |
| |
| if (ctx->rd_mode_is_ready) { |
| assert(ctx_mbmi->sb_type == bsize); |
| assert(ctx_mbmi->partition == partition); |
| *mbmi = *ctx_mbmi; |
| rd_cost->rate = ctx->rd_stats.rate; |
| rd_cost->dist = ctx->rd_stats.dist; |
| rd_cost->rdcost = ctx->rd_stats.rdcost; |
| } else { |
| mbmi->sb_type = bsize; |
| mbmi->partition = partition; |
| } |
| |
| #if CONFIG_RD_DEBUG |
| mbmi->mi_row = mi_row; |
| mbmi->mi_col = mi_col; |
| #endif |
| |
| for (i = 0; i < num_planes; ++i) { |
| p[i].coeff = ctx->coeff[i]; |
| p[i].qcoeff = ctx->qcoeff[i]; |
| pd[i].dqcoeff = ctx->dqcoeff[i]; |
| p[i].eobs = ctx->eobs[i]; |
| p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; |
| } |
| |
| for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; |
| |
| if (!ctx->rd_mode_is_ready) { |
| ctx->skippable = 0; |
| |
| // Set to zero to make sure we do not use the previous encoded frame stats |
| mbmi->skip = 0; |
| |
| // Reset skip mode flag. |
| mbmi->skip_mode = 0; |
| } |
| |
| x->skip_chroma_rd = |
| !is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, |
| xd->plane[1].subsampling_y); |
| |
| if (ctx->rd_mode_is_ready) { |
| x->skip = ctx->rd_stats.skip; |
| *x->mbmi_ext = ctx->mbmi_ext; |
| return; |
| } |
| |
| if (is_cur_buf_hbd(xd)) { |
| x->source_variance = av1_high_get_sby_perpixel_variance( |
| cpi, &x->plane[0].src, bsize, xd->bd); |
| } else { |
| x->source_variance = |
| av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); |
| } |
| if (use_pb_simple_motion_pred_sse(cpi)) { |
| const MV ref_mv_full = { .row = 0, .col = 0 }; |
| unsigned int var = 0; |
| av1_simple_motion_sse_var(cpi, x, mi_row, mi_col, bsize, ref_mv_full, 0, |
| &x->simple_motion_pred_sse, &var); |
| } |
| |
| // If the threshold for disabling wedge search is zero, it means the feature |
| // should not be used. Use a value that will always succeed in the check. |
| if (cpi->sf.disable_wedge_search_edge_thresh == 0) { |
| x->edge_strength = UINT16_MAX; |
| x->edge_strength_x = UINT16_MAX; |
| x->edge_strength_y = UINT16_MAX; |
| } else { |
| EdgeInfo ei = |
| edge_info(&x->plane[0].src, bsize, is_cur_buf_hbd(xd), xd->bd); |
| x->edge_strength = ei.magnitude; |
| x->edge_strength_x = ei.x; |
| x->edge_strength_y = ei.y; |
| } |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| const int orig_rdmult = x->rdmult; |
| x->rdmult = cpi->rd.RDMULT; |
| |
| if (aq_mode == VARIANCE_AQ) { |
| if (cpi->vaq_refresh) { |
| const int energy = bsize <= BLOCK_16X16 |
| ? x->mb_energy |
| : av1_log_block_var(cpi, x, bsize); |
| mbmi->segment_id = energy; |
| } |
| x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); |
| } else if (aq_mode == COMPLEXITY_AQ) { |
| x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); |
| } else if (aq_mode == CYCLIC_REFRESH_AQ) { |
| // If segment is boosted, use rdmult for that segment. |
| if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) |
| x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); |
| } |
| |
| if (cm->delta_q_info.delta_q_present_flag) { |
| x->rdmult = set_deltaq_rdmult(cpi, xd); |
| } |
| |
| // Set error per bit for current rdmult |
| set_error_per_bit(x, x->rdmult); |
| |
| if (cpi->oxcf.tuning == AOM_TUNE_SSIM) { |
| set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); |
| } |
| av1_rd_cost_update(x->rdmult, &best_rd); |
| |
| // Find best coding mode & reconstruct the MB so it is available |
| // as a predictor for MBs that follow in the SB |
| if (frame_is_intra_only(cm)) { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_rd_pick_intra_mode_sb_time); |
| #endif |
| av1_rd_pick_intra_mode_sb(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx, |
| best_rd.rdcost); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_rd_pick_intra_mode_sb_time); |
| #endif |
| } else { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_rd_pick_inter_mode_sb_time); |
| #endif |
| if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col, |
| rd_cost, bsize, ctx, best_rd.rdcost); |
| } else { |
| // TODO(kyslov): do the same for pick_intra_mode and |
| // pick_inter_mode_sb_seg_skip |
| switch (pick_mode_type) { |
| #if !CONFIG_REALTIME_ONLY |
| case PICK_MODE_RD: |
| av1_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost, |
| bsize, ctx, best_rd.rdcost); |
| break; |
| #endif |
| case PICK_MODE_NONRD: |
| av1_nonrd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, |
| rd_cost, bsize, ctx, best_rd.rdcost); |
| break; |
| case PICK_MODE_FAST_NONRD: |
| av1_fast_nonrd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, |
| rd_cost, bsize, ctx, |
| best_rd.rdcost); |
| break; |
| default: assert(0 && "Unknown pick mode type."); |
| } |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_rd_pick_inter_mode_sb_time); |
| #endif |
| } |
| |
| // Examine the resulting rate and for AQ mode 2 make a segment choice. |
| if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) && |
| (bsize >= BLOCK_16X16) && |
| (cm->current_frame.frame_type == KEY_FRAME || |
| cpi->refresh_alt_ref_frame || cpi->refresh_alt2_ref_frame || |
| (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) { |
| av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); |
| } |
| |
| x->rdmult = orig_rdmult; |
| |
| // TODO(jingning) The rate-distortion optimization flow needs to be |
| // refactored to provide proper exit/return handle. |
| if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; |
| |
| ctx->rd_stats.rate = rd_cost->rate; |
| ctx->rd_stats.dist = rd_cost->dist; |
| ctx->rd_stats.rdcost = rd_cost->rdcost; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, rd_pick_sb_modes_time); |
| #endif |
| } |
| |
| static void update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts, |
| PREDICTION_MODE mode, int16_t mode_context, |
| uint8_t allow_update_cdf) { |
| (void)counts; |
| |
| int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; |
| if (mode == NEWMV) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->newmv_mode[mode_ctx][0]; |
| #endif |
| if (allow_update_cdf) update_cdf(fc->newmv_cdf[mode_ctx], 0, 2); |
| return; |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->newmv_mode[mode_ctx][1]; |
| #endif |
| if (allow_update_cdf) update_cdf(fc->newmv_cdf[mode_ctx], 1, 2); |
| |
| mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| if (mode == GLOBALMV) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->zeromv_mode[mode_ctx][0]; |
| #endif |
| if (allow_update_cdf) update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2); |
| return; |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->zeromv_mode[mode_ctx][1]; |
| #endif |
| if (allow_update_cdf) update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2); |
| mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| #if CONFIG_ENTROPY_STATS |
| ++counts->refmv_mode[mode_ctx][mode != NEARESTMV]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2); |
| } |
| } |
| } |
| |
| static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, |
| FRAME_COUNTS *counts, uint8_t allow_update_cdf) { |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize); |
| |
| (void)counts; |
| |
| if (mbmi->mode == DC_PRED) { |
| const int n = pmi->palette_size[0]; |
| const int palette_mode_ctx = av1_get_palette_mode_ctx(xd); |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx], |
| n > 0, 2); |
| if (n > 0) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx], |
| n - PALETTE_MIN_SIZE, PALETTE_SIZES); |
| } |
| } |
| } |
| |
| if (mbmi->uv_mode == UV_DC_PRED) { |
| const int n = pmi->palette_size[1]; |
| const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2); |
| |
| if (n > 0) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx], |
| n - PALETTE_MIN_SIZE, PALETTE_SIZES); |
| } |
| } |
| } |
| } |
| |
| static void sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts, |
| MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, |
| const MB_MODE_INFO *above_mi, |
| const MB_MODE_INFO *left_mi, const int intraonly, |
| const int mi_row, const int mi_col, |
| uint8_t allow_update_cdf) { |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| const PREDICTION_MODE y_mode = mbmi->mode; |
| const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; |
| (void)counts; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| |
| if (intraonly) { |
| #if CONFIG_ENTROPY_STATS |
| const PREDICTION_MODE above = av1_above_block_mode(above_mi); |
| const PREDICTION_MODE left = av1_left_block_mode(left_mi); |
| const int above_ctx = intra_mode_context[above]; |
| const int left_ctx = intra_mode_context[left]; |
| ++counts->kf_y_mode[above_ctx][left_ctx][y_mode]; |
| #endif // CONFIG_ENTROPY_STATS |
| if (allow_update_cdf) |
| update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES); |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->y_mode[size_group_lookup[bsize]][y_mode]; |
| #endif // CONFIG_ENTROPY_STATS |
| if (allow_update_cdf) |
| update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES); |
| } |
| |
| if (av1_filter_intra_allowed(cm, mbmi)) { |
| const int use_filter_intra_mode = |
| mbmi->filter_intra_mode_info.use_filter_intra; |
| #if CONFIG_ENTROPY_STATS |
| ++counts->filter_intra[mbmi->sb_type][use_filter_intra_mode]; |
| if (use_filter_intra_mode) { |
| ++counts |
| ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode]; |
| } |
| #endif // CONFIG_ENTROPY_STATS |
| if (allow_update_cdf) { |
| update_cdf(fc->filter_intra_cdfs[mbmi->sb_type], use_filter_intra_mode, |
| 2); |
| if (use_filter_intra_mode) { |
| update_cdf(fc->filter_intra_mode_cdf, |
| mbmi->filter_intra_mode_info.filter_intra_mode, |
| FILTER_INTRA_MODES); |
| } |
| } |
| } |
| if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->angle_delta[mbmi->mode - V_PRED] |
| [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED], |
| mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA, |
| 2 * MAX_ANGLE_DELTA + 1); |
| } |
| } |
| |
| if (!is_chroma_reference(mi_row, mi_col, bsize, |
| xd->plane[AOM_PLANE_U].subsampling_x, |
| xd->plane[AOM_PLANE_U].subsampling_y)) |
| return; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->uv_mode[is_cfl_allowed(xd)][y_mode][uv_mode]; |
| #endif // CONFIG_ENTROPY_STATS |
| if (allow_update_cdf) { |
| const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd); |
| update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode, |
| UV_INTRA_MODES - !cfl_allowed); |
| } |
| if (uv_mode == UV_CFL_PRED) { |
| const int8_t joint_sign = mbmi->cfl_alpha_signs; |
| const uint8_t idx = mbmi->cfl_alpha_idx; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->cfl_sign[joint_sign]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS); |
| if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE); |
| } |
| if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE); |
| } |
| } |
| if (av1_is_directional_mode(get_uv_mode(uv_mode)) && |
| av1_use_angle_delta(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->angle_delta[uv_mode - UV_V_PRED] |
| [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->angle_delta_cdf[uv_mode - UV_V_PRED], |
| mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA, |
| 2 * MAX_ANGLE_DELTA + 1); |
| } |
| } |
| if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) |
| update_palette_cdf(xd, mbmi, counts, allow_update_cdf); |
| } |
| |
| static void update_stats(const AV1_COMMON *const cm, TileDataEnc *tile_data, |
| ThreadData *td, int mi_row, int mi_col) { |
| MACROBLOCK *x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const CurrentFrame *const current_frame = &cm->current_frame; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| const uint8_t allow_update_cdf = tile_data->allow_update_cdf; |
| |
| // delta quant applies to both intra and inter |
| const int super_block_upper_left = |
| ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && |
| ((mi_col & (cm->seq_params.mib_size - 1)) == 0); |
| |
| const int seg_ref_active = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); |
| |
| if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active && |
| is_comp_ref_allowed(bsize)) { |
| const int skip_mode_ctx = av1_get_skip_mode_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2); |
| } |
| |
| if (!mbmi->skip_mode) { |
| if (!seg_ref_active) { |
| const int skip_ctx = av1_get_skip_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| td->counts->skip[skip_ctx][mbmi->skip]++; |
| #endif |
| if (allow_update_cdf) update_cdf(fc->skip_cdfs[skip_ctx], mbmi->skip, 2); |
| } |
| } |
| |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| if (delta_q_info->delta_q_present_flag && |
| (bsize != cm->seq_params.sb_size || !mbmi->skip) && |
| super_block_upper_left) { |
| #if CONFIG_ENTROPY_STATS |
| const int dq = |
| (mbmi->current_qindex - xd->current_qindex) / delta_q_info->delta_q_res; |
| const int absdq = abs(dq); |
| for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) { |
| td->counts->delta_q[i][1]++; |
| } |
| if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++; |
| #endif |
| xd->current_qindex = mbmi->current_qindex; |
| if (delta_q_info->delta_lf_present_flag) { |
| if (delta_q_info->delta_lf_multi) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| #if CONFIG_ENTROPY_STATS |
| const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / |
| delta_q_info->delta_lf_res; |
| const int abs_delta_lf = abs(delta_lf); |
| for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { |
| td->counts->delta_lf_multi[lf_id][i][1]++; |
| } |
| if (abs_delta_lf < DELTA_LF_SMALL) |
| td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++; |
| #endif |
| xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; |
| } |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| const int delta_lf = |
| (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / |
| delta_q_info->delta_lf_res; |
| const int abs_delta_lf = abs(delta_lf); |
| for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { |
| td->counts->delta_lf[i][1]++; |
| } |
| if (abs_delta_lf < DELTA_LF_SMALL) |
| td->counts->delta_lf[abs_delta_lf][0]++; |
| #endif |
| xd->delta_lf_from_base = mbmi->delta_lf_from_base; |
| } |
| } |
| } |
| |
| if (!is_inter_block(mbmi)) { |
| sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi, |
| frame_is_intra_only(cm), mi_row, mi_col, |
| tile_data->allow_update_cdf); |
| } |
| |
| if (av1_allow_intrabc(cm)) { |
| if (allow_update_cdf) |
| update_cdf(fc->intrabc_cdf, is_intrabc_block(mbmi), 2); |
| #if CONFIG_ENTROPY_STATS |
| ++td->counts->intrabc[is_intrabc_block(mbmi)]; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| |
| if (!frame_is_intra_only(cm)) { |
| RD_COUNTS *rdc = &td->rd_counts; |
| |
| FRAME_COUNTS *const counts = td->counts; |
| |
| if (mbmi->skip_mode) { |
| rdc->skip_mode_used_flag = 1; |
| if (current_frame->reference_mode == REFERENCE_MODE_SELECT) { |
| assert(has_second_ref(mbmi)); |
| rdc->compound_ref_used_flag = 1; |
| } |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| return; |
| } |
| |
| const int inter_block = is_inter_block(mbmi); |
| |
| if (!seg_ref_active) { |
| #if CONFIG_ENTROPY_STATS |
| counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)], |
| inter_block, 2); |
| } |
| // If the segment reference feature is enabled we have only a single |
| // reference frame allowed for the segment so exclude it from |
| // the reference frame counts used to work out probabilities. |
| if (inter_block) { |
| const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; |
| |
| av1_collect_neighbors_ref_counts(xd); |
| |
| if (current_frame->reference_mode == REFERENCE_MODE_SELECT) { |
| if (has_second_ref(mbmi)) |
| // This flag is also updated for 4x4 blocks |
| rdc->compound_ref_used_flag = 1; |
| if (is_comp_ref_allowed(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_inter[av1_get_reference_mode_context(xd)] |
| [has_second_ref(mbmi)]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (allow_update_cdf) { |
| update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi), |
| 2); |
| } |
| } |
| } |
| |
| if (has_second_ref(mbmi)) { |
| const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) |
| ? UNIDIR_COMP_REFERENCE |
| : BIDIR_COMP_REFERENCE; |
| if (allow_update_cdf) { |
| update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type, |
| COMP_REFERENCE_TYPES); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref_type[av1_get_comp_reference_type_context(xd)] |
| [comp_ref_type]++; |
| #endif // CONFIG_ENTROPY_STATS |
| |
| if (comp_ref_type == UNIDIR_COMP_REFERENCE) { |
| const int bit = (ref0 == BWDREF_FRAME); |
| if (allow_update_cdf) |
| update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0] |
| [bit]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (!bit) { |
| const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME); |
| if (allow_update_cdf) |
| update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1] |
| [bit1]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (bit1) { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd), |
| ref1 == GOLDEN_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)] |
| [2][ref1 == GOLDEN_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| } else { |
| const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME); |
| if (allow_update_cdf) |
| update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (!bit) { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_comp_ref_p1(xd), |
| ref0 == LAST2_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1] |
| [ref0 == LAST2_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } else { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_comp_ref_p2(xd), |
| ref0 == GOLDEN_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2] |
| [ref0 == GOLDEN_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd), |
| ref1 == ALTREF_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0] |
| [ref1 == ALTREF_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (ref1 != ALTREF_FRAME) { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd), |
| ref1 == ALTREF2_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1] |
| [ref1 == ALTREF2_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| } else { |
| const int bit = (ref0 >= BWDREF_FRAME); |
| if (allow_update_cdf) |
| update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (bit) { |
| assert(ref0 <= ALTREF_FRAME); |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_single_ref_p2(xd), |
| ref0 == ALTREF_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1] |
| [ref0 == ALTREF_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (ref0 != ALTREF_FRAME) { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_single_ref_p6(xd), |
| ref0 == ALTREF2_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5] |
| [ref0 == ALTREF2_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } else { |
| const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME); |
| if (allow_update_cdf) |
| update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts |
| ->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (!bit1) { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_single_ref_p4(xd), |
| ref0 != LAST_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3] |
| [ref0 != LAST_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } else { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_single_ref_p5(xd), |
| ref0 != LAST3_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4] |
| [ref0 != LAST3_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| } |
| |
| if (cm->seq_params.enable_interintra_compound && |
| is_interintra_allowed(mbmi)) { |
| const int bsize_group = size_group_lookup[bsize]; |
| if (mbmi->ref_frame[1] == INTRA_FRAME) { |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra[bsize_group][1]++; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->interintra_cdf[bsize_group], 1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->interintra_mode_cdf[bsize_group], |
| mbmi->interintra_mode, INTERINTRA_MODES); |
| } |
| if (is_interintra_wedge_used(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->wedge_interintra_cdf[bsize], |
| mbmi->use_wedge_interintra, 2); |
| } |
| if (mbmi->use_wedge_interintra) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->wedge_idx_cdf[bsize], |
| mbmi->interintra_wedge_index, 16); |
| } |
| } |
| } |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra[bsize_group][0]++; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->interintra_cdf[bsize_group], 0, 2); |
| } |
| } |
| |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| const MOTION_MODE motion_allowed = |
| cm->switchable_motion_mode |
| ? motion_mode_allowed(xd->global_motion, xd, mbmi, |
| cm->allow_warped_motion) |
| : SIMPLE_TRANSLATION; |
| if (mbmi->ref_frame[1] != INTRA_FRAME) { |
| if (motion_allowed == WARPED_CAUSAL) { |
| #if CONFIG_ENTROPY_STATS |
| counts->motion_mode[bsize][mbmi->motion_mode]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode, |
| MOTION_MODES); |
| } |
| } else if (motion_allowed == OBMC_CAUSAL) { |
| #if CONFIG_ENTROPY_STATS |
| counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, |
| 2); |
| } |
| } |
| } |
| |
| if (has_second_ref(mbmi)) { |
| assert(current_frame->reference_mode != SINGLE_REFERENCE && |
| is_inter_compound_mode(mbmi->mode) && |
| mbmi->motion_mode == SIMPLE_TRANSLATION); |
| |
| const int masked_compound_used = |
| is_any_masked_compound_used(bsize) && |
| cm->seq_params.enable_masked_compound; |
| if (masked_compound_used) { |
| const int comp_group_idx_ctx = get_comp_group_idx_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx], |
| mbmi->comp_group_idx, 2); |
| } |
| } |
| |
| if (mbmi->comp_group_idx == 0) { |
| const int comp_index_ctx = get_comp_index_context(cm, xd); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->compound_index[comp_index_ctx][mbmi->compound_idx]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->compound_index_cdf[comp_index_ctx], |
| mbmi->compound_idx, 2); |
| } |
| } else { |
| assert(masked_compound_used); |
| if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->compound_type[bsize][mbmi->interinter_comp.type - |
| COMPOUND_WEDGE]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->compound_type_cdf[bsize], |
| mbmi->interinter_comp.type - COMPOUND_WEDGE, |
| MASKED_COMPOUND_TYPES); |
| } |
| } |
| } |
| } |
| if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { |
| if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->wedge_idx_cdf[bsize], |
| mbmi->interinter_comp.wedge_index, 16); |
| } |
| } |
| } |
| } |
| } |
| |
| if (inter_block && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| int16_t mode_ctx; |
| const PREDICTION_MODE mode = mbmi->mode; |
| |
| mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); |
| if (has_second_ref(mbmi)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->inter_compound_mode_cdf[mode_ctx], |
| INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES); |
| } else { |
| update_inter_mode_stats(fc, counts, mode, mode_ctx, allow_update_cdf); |
| } |
| |
| int mode_allowed = (mbmi->mode == NEWMV); |
| mode_allowed |= (mbmi->mode == NEW_NEWMV); |
| if (mode_allowed) { |
| uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| int idx; |
| |
| for (idx = 0; idx < 2; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| #if CONFIG_ENTROPY_STATS |
| uint8_t drl_ctx = |
| av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); |
| ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx]; |
| #endif |
| |
| if (mbmi->ref_mv_idx == idx) break; |
| } |
| } |
| } |
| |
| if (have_nearmv_in_inter_mode(mbmi->mode)) { |
| uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| int idx; |
| |
| for (idx = 1; idx < 3; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| #if CONFIG_ENTROPY_STATS |
| uint8_t drl_ctx = |
| av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); |
| ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1]; |
| #endif |
| |
| if (mbmi->ref_mv_idx == idx - 1) break; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| typedef struct { |
| ENTROPY_CONTEXT a[MAX_MIB_SIZE * MAX_MB_PLANE]; |
| ENTROPY_CONTEXT l[MAX_MIB_SIZE * MAX_MB_PLANE]; |
| PARTITION_CONTEXT sa[MAX_MIB_SIZE]; |
| PARTITION_CONTEXT sl[MAX_MIB_SIZE]; |
| TXFM_CONTEXT *p_ta; |
| TXFM_CONTEXT *p_tl; |
| TXFM_CONTEXT ta[MAX_MIB_SIZE]; |
| TXFM_CONTEXT tl[MAX_MIB_SIZE]; |
| } RD_SEARCH_MACROBLOCK_CONTEXT; |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void restore_context(MACROBLOCK *x, |
| const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, |
| const int num_planes) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| int p; |
| const int num_4x4_blocks_wide = |
| block_size_wide[bsize] >> tx_size_wide_log2[0]; |
| const int num_4x4_blocks_high = |
| block_size_high[bsize] >> tx_size_high_log2[0]; |
| int mi_width = mi_size_wide[bsize]; |
| int mi_height = mi_size_high[bsize]; |
| for (p = 0; p < num_planes; p++) { |
| int tx_col = mi_col; |
| int tx_row = mi_row & MAX_MIB_MASK; |
| memcpy(xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x), |
| ctx->a + num_4x4_blocks_wide * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> |
| xd->plane[p].subsampling_x); |
| memcpy(xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y), |
| ctx->l + num_4x4_blocks_high * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> |
| xd->plane[p].subsampling_y); |
| } |
| memcpy(xd->above_seg_context + mi_col, ctx->sa, |
| sizeof(*xd->above_seg_context) * mi_width); |
| memcpy(xd->left_seg_context + (mi_row & MAX_MIB_MASK), ctx->sl, |
| sizeof(xd->left_seg_context[0]) * mi_height); |
| xd->above_txfm_context = ctx->p_ta; |
| xd->left_txfm_context = ctx->p_tl; |
| memcpy(xd->above_txfm_context, ctx->ta, |
| sizeof(*xd->above_txfm_context) * mi_width); |
| memcpy(xd->left_txfm_context, ctx->tl, |
| sizeof(*xd->left_txfm_context) * mi_height); |
| } |
| |
| static void save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| const int num_planes) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| int p; |
| const int num_4x4_blocks_wide = |
| block_size_wide[bsize] >> tx_size_wide_log2[0]; |
| const int num_4x4_blocks_high = |
| block_size_high[bsize] >> tx_size_high_log2[0]; |
| int mi_width = mi_size_wide[bsize]; |
| int mi_height = mi_size_high[bsize]; |
| |
| // buffer the above/left context information of the block in search. |
| for (p = 0; p < num_planes; ++p) { |
| int tx_col = mi_col; |
| int tx_row = mi_row & MAX_MIB_MASK; |
| memcpy(ctx->a + num_4x4_blocks_wide * p, |
| xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x), |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> |
| xd->plane[p].subsampling_x); |
| memcpy(ctx->l + num_4x4_blocks_high * p, |
| xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y), |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> |
| xd->plane[p].subsampling_y); |
| } |
| memcpy(ctx->sa, xd->above_seg_context + mi_col, |
| sizeof(*xd->above_seg_context) * mi_width); |
| memcpy(ctx->sl, xd->left_seg_context + (mi_row & MAX_MIB_MASK), |
| sizeof(xd->left_seg_context[0]) * mi_height); |
| memcpy(ctx->ta, xd->above_txfm_context, |
| sizeof(*xd->above_txfm_context) * mi_width); |
| memcpy(ctx->tl, xd->left_txfm_context, |
| sizeof(*xd->left_txfm_context) * mi_height); |
| ctx->p_ta = xd->above_txfm_context; |
| ctx->p_tl = xd->left_txfm_context; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data, |
| ThreadData *td, TOKENEXTRA **tp, int mi_row, int mi_col, |
| RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| PARTITION_TYPE partition, |
| const PICK_MODE_CONTEXT *const ctx, int *rate) { |
| TileInfo *const tile = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| |
| set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); |
| const int origin_mult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize); |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| mbmi->partition = partition; |
| update_state(cpi, tile_data, td, ctx, mi_row, mi_col, bsize, dry_run); |
| |
| if (!dry_run) { |
| x->mbmi_ext->cb_offset = x->cb_offset; |
| assert(x->cb_offset < |
| (1 << num_pels_log2_lookup[cpi->common.seq_params.sb_size])); |
| } |
| |
| encode_superblock(cpi, tile_data, td, tp, dry_run, mi_row, mi_col, bsize, |
| rate); |
| |
| if (!dry_run) { |
| x->cb_offset += block_size_wide[bsize] * block_size_high[bsize]; |
| if (bsize == cpi->common.seq_params.sb_size && mbmi->skip == 1 && |
| cpi->common.delta_q_info.delta_lf_present_flag) { |
| const int frame_lf_count = av1_num_planes(&cpi->common) > 1 |
| ? FRAME_LF_COUNT |
| : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) |
| mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; |
| mbmi->delta_lf_from_base = xd->delta_lf_from_base; |
| } |
| if (has_second_ref(mbmi)) { |
| if (mbmi->compound_idx == 0 || |
| mbmi->interinter_comp.type == COMPOUND_AVERAGE) |
| mbmi->comp_group_idx = 0; |
| else |
| mbmi->comp_group_idx = 1; |
| } |
| update_stats(&cpi->common, tile_data, td, mi_row, mi_col); |
| } |
| x->rdmult = origin_mult; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void encode_sb(const AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TOKENEXTRA **tp, int mi_row, |
| int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| PC_TREE *pc_tree, int *rate) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int hbs = mi_size_wide[bsize] / 2; |
| const int is_partition_root = bsize >= BLOCK_8X8; |
| const int ctx = is_partition_root |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : -1; |
| const PARTITION_TYPE partition = pc_tree->partitioning; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| int quarter_step = mi_size_wide[bsize] / 4; |
| int i; |
| BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| if (!dry_run && ctx >= 0) { |
| const int has_rows = (mi_row + hbs) < cm->mi_rows; |
| const int has_cols = (mi_col + hbs) < cm->mi_cols; |
| |
| if (has_rows && has_cols) { |
| #if CONFIG_ENTROPY_STATS |
| td->counts->partition[ctx][partition]++; |
| #endif |
| |
| if (tile_data->allow_update_cdf) { |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| update_cdf(fc->partition_cdf[ctx], partition, |
| partition_cdf_length(bsize)); |
| } |
| } |
| } |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, &pc_tree->none, rate); |
| break; |
| case PARTITION_VERT: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, &pc_tree->vertical[0], rate); |
| if (mi_col + hbs < cm->mi_cols) { |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| partition, &pc_tree->vertical[1], rate); |
| } |
| break; |
| case PARTITION_HORZ: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, &pc_tree->horizontal[0], rate); |
| if (mi_row + hbs < cm->mi_rows) { |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| partition, &pc_tree->horizontal[1], rate); |
| } |
| break; |
| case PARTITION_SPLIT: |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, |
| pc_tree->split[0], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| pc_tree->split[1], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| pc_tree->split[2], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run, |
| subsize, pc_tree->split[3], rate); |
| break; |
| |
| case PARTITION_HORZ_A: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, |
| partition, &pc_tree->horizontala[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, |
| partition, &pc_tree->horizontala[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| partition, &pc_tree->horizontala[2], rate); |
| break; |
| case PARTITION_HORZ_B: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, &pc_tree->horizontalb[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, |
| partition, &pc_tree->horizontalb[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, |
| bsize2, partition, &pc_tree->horizontalb[2], rate); |
| break; |
| case PARTITION_VERT_A: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, |
| partition, &pc_tree->verticala[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, |
| partition, &pc_tree->verticala[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| partition, &pc_tree->verticala[2], rate); |
| |
| break; |
| case PARTITION_VERT_B: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, &pc_tree->verticalb[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, |
| partition, &pc_tree->verticalb[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, |
| bsize2, partition, &pc_tree->verticalb[2], rate); |
| break; |
| case PARTITION_HORZ_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_row = mi_row + i * quarter_step; |
| if (i > 0 && this_mi_row >= cm->mi_rows) break; |
| |
| encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize, |
| partition, &pc_tree->horizontal4[i], rate); |
| } |
| break; |
| case PARTITION_VERT_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_col = mi_col + i * quarter_step; |
| if (i > 0 && this_mi_col >= cm->mi_cols) break; |
| |
| encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize, |
| partition, &pc_tree->vertical4[i], rate); |
| } |
| break; |
| default: assert(0 && "Invalid partition type."); break; |
| } |
| |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); |
| } |
| |
| static void set_partial_sb_partition(const AV1_COMMON *const cm, |
| MB_MODE_INFO *mi, int bh_in, int bw_in, |
| int mi_rows_remaining, |
| int mi_cols_remaining, BLOCK_SIZE bsize, |
| MB_MODE_INFO **mib) { |
| int bh = bh_in; |
| int r, c; |
| for (r = 0; r < cm->seq_params.mib_size; r += bh) { |
| int bw = bw_in; |
| for (c = 0; c < cm->seq_params.mib_size; c += bw) { |
| const int index = r * cm->mi_stride + c; |
| mib[index] = mi + index; |
| mib[index]->sb_type = find_partition_size( |
| bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw); |
| } |
| } |
| } |
| |
| // This function attempts to set all mode info entries in a given superblock |
| // to the same block partition size. |
| // However, at the bottom and right borders of the image the requested size |
| // may not be allowed in which case this code attempts to choose the largest |
| // allowable partition. |
| static void set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile, |
| MB_MODE_INFO **mib, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int mi_rows_remaining = tile->mi_row_end - mi_row; |
| const int mi_cols_remaining = tile->mi_col_end - mi_col; |
| int block_row, block_col; |
| MB_MODE_INFO *const mi_upper_left = cm->mi + mi_row * cm->mi_stride + mi_col; |
| int bh = mi_size_high[bsize]; |
| int bw = mi_size_wide[bsize]; |
| |
| assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0)); |
| |
| // Apply the requested partition size to the SB if it is all "in image" |
| if ((mi_cols_remaining >= cm->seq_params.mib_size) && |
| (mi_rows_remaining >= cm->seq_params.mib_size)) { |
| for (block_row = 0; block_row < cm->seq_params.mib_size; block_row += bh) { |
| for (block_col = 0; block_col < cm->seq_params.mib_size; |
| block_col += bw) { |
| int index = block_row * cm->mi_stride + block_col; |
| mib[index] = mi_upper_left + index; |
| mib[index]->sb_type = bsize; |
| } |
| } |
| } else { |
| // Else this is a partial SB. |
| set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining, |
| mi_cols_remaining, bsize, mib); |
| } |
| } |
| |
| static void rd_use_partition(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, MB_MODE_INFO **mib, |
| TOKENEXTRA **tp, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int *rate, int64_t *dist, |
| int do_recon, PC_TREE *pc_tree) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int bs = mi_size_wide[bsize]; |
| const int hbs = bs / 2; |
| int i; |
| const int pl = (bsize >= BLOCK_8X8) |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : 0; |
| const PARTITION_TYPE partition = |
| (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) |
| : PARTITION_NONE; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| RD_STATS last_part_rdc, none_rdc, chosen_rdc, invalid_rdc; |
| BLOCK_SIZE sub_subsize = BLOCK_4X4; |
| int splits_below = 0; |
| BLOCK_SIZE bs_type = mib[0]->sb_type; |
| int do_partition_search = 1; |
| PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| |
| av1_invalid_rd_stats(&last_part_rdc); |
| av1_invalid_rd_stats(&none_rdc); |
| av1_invalid_rd_stats(&chosen_rdc); |
| av1_invalid_rd_stats(&invalid_rdc); |
| |
| pc_tree->partitioning = partition; |
| |
| xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| if (bsize == BLOCK_16X16 && cpi->vaq_refresh) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| x->mb_energy = av1_log_block_var(cpi, x, bsize); |
| } |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| const int orig_rdmult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize); |
| |
| if (do_partition_search && |
| cpi->sf.partition_search_type == SEARCH_PARTITION && |
| cpi->sf.adjust_partitioning_from_last_frame) { |
| // Check if any of the sub blocks are further split. |
| if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { |
| sub_subsize = get_partition_subsize(subsize, PARTITION_SPLIT); |
| splits_below = 1; |
| for (i = 0; i < 4; i++) { |
| int jj = i >> 1, ii = i & 0x01; |
| MB_MODE_INFO *this_mi = mib[jj * hbs * cm->mi_stride + ii * hbs]; |
| if (this_mi && this_mi->sb_type >= sub_subsize) { |
| splits_below = 0; |
| } |
| } |
| } |
| |
| // If partition is not none try none unless each of the 4 splits are split |
| // even further.. |
| if (partition != PARTITION_NONE && !splits_below && |
| mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) { |
| pc_tree->partitioning = PARTITION_NONE; |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, |
| PARTITION_NONE, bsize, ctx_none, invalid_rdc, PICK_MODE_RD); |
| |
| if (none_rdc.rate < INT_MAX) { |
| none_rdc.rate += x->partition_cost[pl][PARTITION_NONE]; |
| none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| mib[0]->sb_type = bs_type; |
| pc_tree->partitioning = partition; |
| } |
| } |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| PARTITION_NONE, bsize, ctx_none, invalid_rdc, PICK_MODE_RD); |
| break; |
| case PARTITION_HORZ: |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| PARTITION_HORZ, subsize, &pc_tree->horizontal[0], |
| invalid_rdc, PICK_MODE_RD); |
| if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && |
| mi_row + hbs < cm->mi_rows) { |
| RD_STATS tmp_rdc; |
| const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0]; |
| av1_init_rd_stats(&tmp_rdc); |
| update_state(cpi, tile_data, td, ctx_h, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, |
| mi_col, subsize, NULL); |
| pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc, |
| PARTITION_HORZ, subsize, &pc_tree->horizontal[1], |
| invalid_rdc, PICK_MODE_RD); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| last_part_rdc.rdcost += tmp_rdc.rdcost; |
| } |
| break; |
| case PARTITION_VERT: |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| PARTITION_VERT, subsize, &pc_tree->vertical[0], invalid_rdc, |
| PICK_MODE_RD); |
| if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && |
| mi_col + hbs < cm->mi_cols) { |
| RD_STATS tmp_rdc; |
| const PICK_MODE_CONTEXT *const ctx_v = &pc_tree->vertical[0]; |
| av1_init_rd_stats(&tmp_rdc); |
| update_state(cpi, tile_data, td, ctx_v, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, |
| mi_col, subsize, NULL); |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc, |
| PARTITION_VERT, subsize, |
| &pc_tree->vertical[bsize > BLOCK_8X8], invalid_rdc, |
| PICK_MODE_RD); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| last_part_rdc.rdcost += tmp_rdc.rdcost; |
| } |
| break; |
| case PARTITION_SPLIT: |
| last_part_rdc.rate = 0; |
| last_part_rdc.dist = 0; |
| last_part_rdc.rdcost = 0; |
| for (i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| int jj = i >> 1, ii = i & 0x01; |
| RD_STATS tmp_rdc; |
| if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) |
| continue; |
| |
| av1_init_rd_stats(&tmp_rdc); |
| rd_use_partition(cpi, td, tile_data, |
| mib + jj * hbs * cm->mi_stride + ii * hbs, tp, |
| mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate, |
| &tmp_rdc.dist, i != 3, pc_tree->split[i]); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| } |
| break; |
| case PARTITION_VERT_A: |
| case PARTITION_VERT_B: |
| case PARTITION_HORZ_A: |
| case PARTITION_HORZ_B: |
| case PARTITION_HORZ_4: |
| case PARTITION_VERT_4: |
| assert(0 && "Cannot handle extended partition types"); |
| default: assert(0); break; |
| } |
| |
| if (last_part_rdc.rate < INT_MAX) { |
| last_part_rdc.rate += x->partition_cost[pl][partition]; |
| last_part_rdc.rdcost = |
| RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist); |
| } |
| |
| if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame && |
| cpi->sf.partition_search_type == SEARCH_PARTITION && |
| partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && |
| (mi_row + bs < cm->mi_rows || mi_row + hbs == cm->mi_rows) && |
| (mi_col + bs < cm->mi_cols || mi_col + hbs == cm->mi_cols)) { |
| BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| chosen_rdc.rate = 0; |
| chosen_rdc.dist = 0; |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| pc_tree->partitioning = PARTITION_SPLIT; |
| |
| // Split partition. |
| for (i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| RD_STATS tmp_rdc; |
| |
| if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) |
| continue; |
| |
| save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| pc_tree->split[i]->partitioning = PARTITION_NONE; |
| pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &tmp_rdc, |
| PARTITION_SPLIT, split_subsize, &pc_tree->split[i]->none, |
| invalid_rdc, PICK_MODE_RD); |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&chosen_rdc); |
| break; |
| } |
| |
| chosen_rdc.rate += tmp_rdc.rate; |
| chosen_rdc.dist += tmp_rdc.dist; |
| |
| if (i != 3) |
| encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, |
| OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL); |
| |
| chosen_rdc.rate += x->partition_cost[pl][PARTITION_NONE]; |
| } |
| if (chosen_rdc.rate < INT_MAX) { |
| chosen_rdc.rate += x->partition_cost[pl][PARTITION_SPLIT]; |
| chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist); |
| } |
| } |
| |
| // If last_part is better set the partitioning to that. |
| if (last_part_rdc.rdcost < chosen_rdc.rdcost) { |
| mib[0]->sb_type = bsize; |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; |
| chosen_rdc = last_part_rdc; |
| } |
| // If none was better set the partitioning to that. |
| if (none_rdc.rdcost < chosen_rdc.rdcost) { |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; |
| chosen_rdc = none_rdc; |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| // We must have chosen a partitioning and encoding or we'll fail later on. |
| // No other opportunities for success. |
| if (bsize == cm->seq_params.sb_size) |
| assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX); |
| |
| if (do_recon) { |
| if (bsize == cm->seq_params.sb_size) { |
| // NOTE: To get estimate for rate due to the tokens, use: |
| // int rate_coeffs = 0; |
| // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, |
| // bsize, pc_tree, &rate_coeffs); |
| x->cb_offset = 0; |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, |
| pc_tree, NULL); |
| } else { |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| } |
| |
| *rate = chosen_rdc.rate; |
| *dist = chosen_rdc.dist; |
| x->rdmult = orig_rdmult; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static void nonrd_use_partition(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, MB_MODE_INFO **mib, |
| TOKENEXTRA **tp, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, PC_TREE *pc_tree) { |
| AV1_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| // Only square blocks from 8x8 to 128x128 are supported |
| assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128); |
| const int bs = mi_size_wide[bsize]; |
| const int hbs = bs / 2; |
| const PARTITION_TYPE partition = |
| (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) |
| : PARTITION_NONE; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| RD_STATS dummy_cost; |
| av1_invalid_rd_stats(&dummy_cost); |
| RD_STATS invalid_rd; |
| av1_invalid_rd_stats(&invalid_rd); |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| |
| pc_tree->partitioning = partition; |
| |
| xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, |
| PARTITION_NONE, bsize, &pc_tree->none, invalid_rd, |
| sf->use_fast_nonrd_pick_mode ? PICK_MODE_FAST_NONRD |
| : PICK_MODE_NONRD); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition, |
| &pc_tree->none, NULL); |
| break; |
| case PARTITION_VERT: |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, |
| PARTITION_VERT, subsize, &pc_tree->vertical[0], invalid_rd, |
| sf->use_fast_nonrd_pick_mode ? PICK_MODE_FAST_NONRD |
| : PICK_MODE_NONRD); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize, |
| PARTITION_VERT, &pc_tree->vertical[0], NULL); |
| if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &dummy_cost, |
| PARTITION_VERT, subsize, &pc_tree->vertical[1], |
| invalid_rd, |
| sf->use_fast_nonrd_pick_mode ? PICK_MODE_FAST_NONRD |
| : PICK_MODE_NONRD); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, 0, subsize, |
| PARTITION_VERT, &pc_tree->vertical[1], NULL); |
| } |
| break; |
| case PARTITION_HORZ: |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, |
| PARTITION_HORZ, subsize, &pc_tree->horizontal[0], |
| invalid_rd, |
| sf->use_fast_nonrd_pick_mode ? PICK_MODE_FAST_NONRD |
| : PICK_MODE_NONRD); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize, |
| PARTITION_HORZ, &pc_tree->horizontal[0], NULL); |
| |
| if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { |
| pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &dummy_cost, |
| PARTITION_HORZ, subsize, &pc_tree->horizontal[1], |
| invalid_rd, |
| sf->use_fast_nonrd_pick_mode ? PICK_MODE_FAST_NONRD |
| : PICK_MODE_NONRD); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, 0, subsize, |
| PARTITION_HORZ, &pc_tree->horizontal[1], NULL); |
| } |
| break; |
| case PARTITION_SPLIT: |
| for (int i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| int jj = i >> 1, ii = i & 0x01; |
| if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) |
| continue; |
| nonrd_use_partition( |
| cpi, td, tile_data, mib + jj * hbs * cm->mi_stride + ii * hbs, tp, |
| mi_row + y_idx, mi_col + x_idx, subsize, pc_tree->split[i]); |
| } |
| break; |
| case PARTITION_VERT_A: |
| case PARTITION_VERT_B: |
| case PARTITION_HORZ_A: |
| case PARTITION_HORZ_B: |
| case PARTITION_HORZ_4: |
| case PARTITION_VERT_4: |
| assert(0 && "Cannot handle extended partition types"); |
| default: assert(0); break; |
| } |
| if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| // Checks to see if a super block is on a horizontal image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| static int active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) { |
| int top_edge = 0; |
| int bottom_edge = cpi->common.mi_rows; |
| int is_active_h_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (cpi->oxcf.pass == 2) { |
| const TWO_PASS *const twopass = &cpi->twopass; |
| const FIRSTPASS_STATS *const this_frame_stats = |
| twopass->frame_stats_arr + twopass->frame_stats_next_idx; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| top_edge += (int)(this_frame_stats->inactive_zone_rows * 2); |
| |
| bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 2); |
| bottom_edge = AOMMAX(top_edge, bottom_edge); |
| } |
| |
| if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || |
| ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { |
| is_active_h_edge = 1; |
| } |
| return is_active_h_edge; |
| } |
| |
| // Checks to see if a super block is on a vertical image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| static int active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) { |
| int left_edge = 0; |
| int right_edge = cpi->common.mi_cols; |
| int is_active_v_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (cpi->oxcf.pass == 2) { |
| const TWO_PASS *const twopass = &cpi->twopass; |
| const FIRSTPASS_STATS *const this_frame_stats = |
| twopass->frame_stats_arr + twopass->frame_stats_next_idx; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| left_edge += (int)(this_frame_stats->inactive_zone_cols * 2); |
| |
| right_edge -= (int)(this_frame_stats->inactive_zone_cols * 2); |
| right_edge = AOMMAX(left_edge, right_edge); |
| } |
| |
| if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || |
| ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { |
| is_active_v_edge = 1; |
| } |
| return is_active_v_edge; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { |
| memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); |
| } |
| |
| static INLINE void load_pred_mv(MACROBLOCK *x, |
| const PICK_MODE_CONTEXT *const ctx) { |
| memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| // Try searching for an encoding for the given subblock. Returns zero if the |
| // rdcost is already too high (to tell the caller not to bother searching for |
| // encodings of further subblocks) |
| static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TOKENEXTRA **tp, int is_last, |
| int mi_row, int mi_col, BLOCK_SIZE subsize, |
| RD_STATS best_rdcost, RD_STATS *sum_rdc, |
| PARTITION_TYPE partition, |
| PICK_MODE_CONTEXT *prev_ctx, |
| PICK_MODE_CONTEXT *this_ctx) { |
| MACROBLOCK *const x = &td->mb; |
| const int orig_mult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, subsize); |
| |
| av1_rd_cost_update(x->rdmult, &best_rdcost); |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, prev_ctx); |
| |
| RD_STATS rdcost_remaining; |
| av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining); |
| RD_STATS this_rdc; |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, partition, |
| subsize, this_ctx, rdcost_remaining, PICK_MODE_RD); |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc->rdcost = INT64_MAX; |
| } else { |
| sum_rdc->rate += this_rdc.rate; |
| sum_rdc->dist += this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, sum_rdc); |
| } |
| |
| if (sum_rdc->rdcost >= best_rdcost.rdcost) { |
| x->rdmult = orig_mult; |
| return 0; |
| } |
| |
| if (!is_last) { |
| update_state(cpi, tile_data, td, this_ctx, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, |
| subsize, NULL); |
| } |
| |
| x->rdmult = orig_mult; |
| return 1; |
| } |
| |
| static bool rd_test_partition3(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TOKENEXTRA **tp, |
| PC_TREE *pc_tree, RD_STATS *best_rdc, |
| PICK_MODE_CONTEXT ctxs[3], |
| PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, PARTITION_TYPE partition, |
| int mi_row0, int mi_col0, BLOCK_SIZE subsize0, |
| int mi_row1, int mi_col1, BLOCK_SIZE subsize1, |
| int mi_row2, int mi_col2, BLOCK_SIZE subsize2) { |
| const MACROBLOCK *const x = &td->mb; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| RD_STATS sum_rdc; |
| av1_init_rd_stats(&sum_rdc); |
| sum_rdc.rate = x->partition_cost[pl][partition]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row0, mi_col0, subsize0, |
| *best_rdc, &sum_rdc, partition, ctx, &ctxs[0])) |
| return false; |
| |
| if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row1, mi_col1, subsize1, |
| *best_rdc, &sum_rdc, partition, &ctxs[0], &ctxs[1])) |
| return false; |
| |
| if (!rd_try_subblock(cpi, td, tile_data, tp, 1, mi_row2, mi_col2, subsize2, |
| *best_rdc, &sum_rdc, partition, &ctxs[1], &ctxs[2])) |
| return false; |
| |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| if (sum_rdc.rdcost >= best_rdc->rdcost) return false; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| if (sum_rdc.rdcost >= best_rdc->rdcost) return false; |
| |
| *best_rdc = sum_rdc; |
| pc_tree->partitioning = partition; |
| return true; |
| } |
| |
| static void reset_partition(PC_TREE *pc_tree, BLOCK_SIZE bsize) { |
| pc_tree->partitioning = PARTITION_NONE; |
| pc_tree->none.rd_stats.skip = 0; |
| |
| if (bsize >= BLOCK_8X8) { |
| BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| for (int idx = 0; idx < 4; ++idx) |
| reset_partition(pc_tree->split[idx], subsize); |
| } |
| } |
| |
| // Record the ref frames that have been selected by square partition blocks. |
| static void update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type, |
| BLOCK_SIZE bsize, int mib_size, |
| int mi_row, int mi_col) { |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| const int sb_size_mask = mib_size - 1; |
| const int mi_row_in_sb = mi_row & sb_size_mask; |
| const int mi_col_in_sb = mi_col & sb_size_mask; |
| const int mi_size = mi_size_wide[bsize]; |
| for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) { |
| for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) { |
| x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type; |
| } |
| } |
| } |
| |
| // TODO(jinging,jimbankoski,rbultje): properly skip partition types that are |
| // unlikely to be selected depending on previous rate-distortion optimization |
| // results, for encoding speed-up. |
| static bool rd_pick_partition(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TOKENEXTRA **tp, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| BLOCK_SIZE max_sq_part, BLOCK_SIZE min_sq_part, |
| RD_STATS *rd_cost, RD_STATS best_rdc, |
| PC_TREE *pc_tree, int64_t *none_rd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mi_step = mi_size_wide[bsize] / 2; |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| const TOKENEXTRA *const tp_orig = *tp; |
| PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; |
| int tmp_partition_cost[PARTITION_TYPES]; |
| BLOCK_SIZE subsize; |
| RD_STATS this_rdc, sum_rdc; |
| const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8); |
| int do_square_split = bsize_at_least_8x8; |
| const int pl = bsize_at_least_8x8 |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : 0; |
| const int *partition_cost = |
| pl >= 0 ? x->partition_cost[pl] : x->partition_cost[0]; |
| |
| int do_rectangular_split = cpi->oxcf.enable_rect_partitions; |
| int64_t cur_none_rd = 0; |
| int64_t split_rd[4] = { 0, 0, 0, 0 }; |
| int64_t horz_rd[2] = { 0, 0 }; |
| int64_t vert_rd[2] = { 0, 0 }; |
| int prune_horz = 0; |
| int prune_vert = 0; |
| int terminate_partition_search = 0; |
| |
| int split_ctx_is_ready[2] = { 0, 0 }; |
| int horz_ctx_is_ready = 0; |
| int vert_ctx_is_ready = 0; |
| BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); |
| |
| bool found_best_partition = false; |
| if (best_rdc.rdcost < 0) { |
| av1_invalid_rd_stats(rd_cost); |
| return found_best_partition; |
| } |
| |
| if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) { |
| x->quad_tree_idx = 0; |
| x->cnn_output_valid = 0; |
| } |
| |
| if (bsize == cm->seq_params.sb_size) x->must_find_valid_partition = 0; |
| |
| // Override skipping rectangular partition operations for edge blocks |
| const int has_rows = (mi_row + mi_step < cm->mi_rows); |
| const int has_cols = (mi_col + mi_step < cm->mi_cols); |
| const int xss = x->e_mbd.plane[1].subsampling_x; |
| const int yss = x->e_mbd.plane[1].subsampling_y; |
| |
| if (none_rd) *none_rd = 0; |
| int partition_none_allowed = has_rows && has_cols; |
| int partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8 && |
| cpi->oxcf.enable_rect_partitions; |
| int partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8 && |
| cpi->oxcf.enable_rect_partitions; |
| |
| (void)*tp_orig; |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| int partition_decisions[EXT_PARTITION_TYPES] = { 0 }; |
| int partition_attempts[EXT_PARTITION_TYPES] = { 0 }; |
| int64_t partition_times[EXT_PARTITION_TYPES] = { 0 }; |
| struct aom_usec_timer partition_timer = { 0 }; |
| int partition_timer_on = 0; |
| #if CONFIG_COLLECT_PARTITION_STATS == 2 |
| PartitionStats *part_stats = &cpi->partition_stats; |
| #endif |
| #endif |
| |
| // Override partition costs at the edges of the frame in the same |
| // way as in read_partition (see decodeframe.c) |
| if (!(has_rows && has_cols)) { |
| assert(bsize_at_least_8x8 && pl >= 0); |
| const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[pl]; |
| const int max_cost = av1_cost_symbol(0); |
| for (int i = 0; i < PARTITION_TYPES; ++i) tmp_partition_cost[i] = max_cost; |
| if (has_cols) { |
| // At the bottom, the two possibilities are HORZ and SPLIT |
| aom_cdf_prob bot_cdf[2]; |
| partition_gather_vert_alike(bot_cdf, partition_cdf, bsize); |
| static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT }; |
| av1_cost_tokens_from_cdf(tmp_partition_cost, bot_cdf, bot_inv_map); |
| } else if (has_rows) { |
| // At the right, the two possibilities are VERT and SPLIT |
| aom_cdf_prob rhs_cdf[2]; |
| partition_gather_horz_alike(rhs_cdf, partition_cdf, bsize); |
| static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT }; |
| av1_cost_tokens_from_cdf(tmp_partition_cost, rhs_cdf, rhs_inv_map); |
| } else { |
| // At the bottom right, we always split |
| tmp_partition_cost[PARTITION_SPLIT] = 0; |
| } |
| |
| partition_cost = tmp_partition_cost; |
| } |
| |
| #ifndef NDEBUG |
| // Nothing should rely on the default value of this array (which is just |
| // leftover from encoding the previous block. Setting it to fixed pattern |
| // when debugging. |
| // bit 0, 1, 2 are blk_skip of each plane |
| // bit 4, 5, 6 are initialization checking of each plane |
| memset(x->blk_skip, 0x77, sizeof(x->blk_skip)); |
| #endif // NDEBUG |
| |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| |
| av1_init_rd_stats(&this_rdc); |
| |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| const int orig_rdmult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize); |
| |
| av1_rd_cost_update(x->rdmult, &best_rdc); |
| |
| if (bsize == BLOCK_16X16 && cpi->vaq_refresh) |
| x->mb_energy = av1_log_block_var(cpi, x, bsize); |
| |
| if (bsize > cpi->sf.use_square_partition_only_threshold) { |
| partition_horz_allowed &= !has_rows; |
| partition_vert_allowed &= !has_cols; |
| } |
| |
| xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| const int try_intra_cnn_split = |
| frame_is_intra_only(cm) && cpi->sf.intra_cnn_split && |
| cm->seq_params.sb_size >= BLOCK_64X64 && bsize <= BLOCK_64X64 && |
| bsize >= BLOCK_8X8 && mi_row + mi_size_high[bsize] <= cm->mi_rows && |
| mi_col + mi_size_wide[bsize] <= cm->mi_cols; |
| |
| if (try_intra_cnn_split) { |
| av1_intra_mode_cnn_partition( |
| &cpi->common, x, bsize, x->quad_tree_idx, &partition_none_allowed, |
| &partition_horz_allowed, &partition_vert_allowed, &do_rectangular_split, |
| &do_square_split); |
| } |
| |
| // Use simple_motion_search to prune partitions. This must be done prior to |
| // PARTITION_SPLIT to propagate the initial mvs to a smaller blocksize. |
| const int try_split_only = |
| cpi->sf.simple_motion_search_split && do_square_split && |
| bsize >= BLOCK_8X8 && mi_row + mi_size_high[bsize] <= cm->mi_rows && |
| mi_col + mi_size_wide[bsize] <= cm->mi_cols && !frame_is_intra_only(cm) && |
| !av1_superres_scaled(cm); |
| |
| if (try_split_only) { |
| av1_simple_motion_search_based_split( |
| cpi, x, pc_tree, mi_row, mi_col, bsize, &partition_none_allowed, |
| &partition_horz_allowed, &partition_vert_allowed, &do_rectangular_split, |
| &do_square_split); |
| } |
| |
| const int try_prune_rect = |
| cpi->sf.simple_motion_search_prune_rect && !frame_is_intra_only(cm) && |
| do_rectangular_split && |
| (do_square_split || partition_none_allowed || |
| (prune_horz && prune_vert)) && |
| (partition_horz_allowed || partition_vert_allowed) && bsize >= BLOCK_8X8; |
| |
| if (try_prune_rect) { |
| av1_simple_motion_search_prune_part( |
| cpi, x, pc_tree, mi_row, mi_col, bsize, &partition_none_allowed, |
| &partition_horz_allowed, &partition_vert_allowed, &do_square_split, |
| &do_rectangular_split, &prune_horz, &prune_vert); |
| } |
| |
| // Max and min square partition levels are defined as the partition nodes that |
| // the recursive function rd_pick_partition() can reach. To implement this: |
| // only PARTITION_NONE is allowed if the current node equals min_sq_part, |
| // only PARTITION_SPLIT is allowed if the current node exceeds max_sq_part. |
| assert(block_size_wide[min_sq_part] == block_size_high[min_sq_part]); |
| assert(block_size_wide[max_sq_part] == block_size_high[max_sq_part]); |
| assert(min_sq_part <= max_sq_part); |
| assert(block_size_wide[bsize] == block_size_high[bsize]); |
| const int max_partition_size = block_size_wide[max_sq_part]; |
| const int min_partition_size = block_size_wide[min_sq_part]; |
| const int blksize = block_size_wide[bsize]; |
| assert(min_partition_size <= max_partition_size); |
| const int is_le_min_sq_part = blksize <= min_partition_size; |
| const int is_gt_max_sq_part = blksize > max_partition_size; |
| if (is_gt_max_sq_part) { |
| // If current block size is larger than max, only allow split. |
| partition_none_allowed = 0; |
| partition_horz_allowed = 0; |
| partition_vert_allowed = 0; |
| do_square_split = 1; |
| } else if (is_le_min_sq_part) { |
| // If current block size is less or equal to min, only allow none if valid |
| // block large enough; only allow split otherwise. |
| partition_horz_allowed = 0; |
| partition_vert_allowed = 0; |
| // only disable square split when current block is not at the picture |
| // boundary. otherwise, inherit the square split flag from previous logic |
| if (has_rows && has_cols) do_square_split = 0; |
| partition_none_allowed = !do_square_split; |
| } |
| |
| BEGIN_PARTITION_SEARCH: |
| if (x->must_find_valid_partition) { |
| do_square_split = bsize_at_least_8x8; |
| partition_none_allowed = has_rows && has_cols; |
| partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8 && |
| cpi->oxcf.enable_rect_partitions; |
| partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8 && |
| cpi->oxcf.enable_rect_partitions; |
| terminate_partition_search = 0; |
| } |
| |
| // Partition block source pixel variance. |
| unsigned int pb_source_variance = UINT_MAX; |
| |
| // Partition block sse after simple motion compensation, not in use now, |
| // but will be used for upcoming speed features |
| unsigned int pb_simple_motion_pred_sse = UINT_MAX; |
| (void)pb_simple_motion_pred_sse; |
| |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8) { |
| if (block_size_high[bsize] <= 8) partition_horz_allowed = 0; |
| if (block_size_wide[bsize] <= 8) partition_vert_allowed = 0; |
| if (block_size_high[bsize] <= 8 || block_size_wide[bsize] <= 8) |
| do_square_split = 0; |
| } |
| #endif |
| |
| // PARTITION_NONE |
| if (is_le_min_sq_part && has_rows && has_cols) partition_none_allowed = 1; |
| int64_t part_none_rd = INT64_MAX; |
| if (!terminate_partition_search && partition_none_allowed && |
| !is_gt_max_sq_part) { |
| int pt_cost = 0; |
| if (bsize_at_least_8x8) { |
| pt_cost = partition_cost[PARTITION_NONE] < INT_MAX |
| ? partition_cost[PARTITION_NONE] |
| : 0; |
| } |
| RD_STATS partition_rdcost; |
| av1_init_rd_stats(&partition_rdcost); |
| partition_rdcost.rate = pt_cost; |
| av1_rd_cost_update(x->rdmult, &partition_rdcost); |
| RD_STATS best_remain_rdcost; |
| av1_rd_stats_subtraction(x->rdmult, &best_rdc, &partition_rdcost, |
| &best_remain_rdcost); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_remain_rdcost >= 0) { |
| partition_attempts[PARTITION_NONE] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| #endif |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_NONE, |
| bsize, ctx_none, best_remain_rdcost, PICK_MODE_RD); |
| av1_rd_cost_update(x->rdmult, &this_rdc); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_NONE] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| pb_source_variance = x->source_variance; |
| pb_simple_motion_pred_sse = x->simple_motion_pred_sse; |
| if (none_rd) *none_rd = this_rdc.rdcost; |
| cur_none_rd = this_rdc.rdcost; |
| if (this_rdc.rate != INT_MAX) { |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) { |
| const int ref_type = av1_ref_frame_type(ctx_none->mic.ref_frame); |
| update_picked_ref_frames_mask(x, ref_type, bsize, |
| cm->seq_params.mib_size, mi_row, mi_col); |
| } |
| if (bsize_at_least_8x8) { |
| this_rdc.rate += pt_cost; |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| } |
| |
| part_none_rd = this_rdc.rdcost; |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| // Adjust dist breakout threshold according to the partition size. |
| const int64_t dist_breakout_thr = |
| cpi->sf.partition_search_breakout_dist_thr >> |
| ((2 * (MAX_SB_SIZE_LOG2 - 2)) - |
| (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize])); |
| const int rate_breakout_thr = |
| cpi->sf.partition_search_breakout_rate_thr * |
| num_pels_log2_lookup[bsize]; |
| |
| best_rdc = this_rdc; |
| found_best_partition = true; |
| if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE; |
| |
| if (!frame_is_intra_only(cm) && |
| (do_square_split || do_rectangular_split) && |
| !x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) { |
| const int use_ml_based_breakout = |
| bsize <= cpi->sf.use_square_partition_only_threshold && |
| bsize > BLOCK_4X4 && xd->bd == 8; |
| if (use_ml_based_breakout) { |
| if (av1_ml_predict_breakout(cpi, bsize, x, &this_rdc, |
| pb_source_variance)) { |
| do_square_split = 0; |
| do_rectangular_split = 0; |
| } |
| } |
| |
| // If all y, u, v transform blocks in this partition are skippable, |
| // and the dist & rate are within the thresholds, the partition |
| // search is terminated for current branch of the partition search |
| // tree. The dist & rate thresholds are set to 0 at speed 0 to |
| // disable the early termination at that speed. |
| if (best_rdc.dist < dist_breakout_thr && |
| best_rdc.rate < rate_breakout_thr) { |
| do_square_split = 0; |
| do_rectangular_split = 0; |
| } |
| } |
| |
| if (cpi->sf.simple_motion_search_early_term_none && cm->show_frame && |
| !frame_is_intra_only(cm) && bsize >= BLOCK_16X16 && |
| mi_row + mi_step < cm->mi_rows && mi_col + mi_step < cm->mi_cols && |
| this_rdc.rdcost < INT64_MAX && this_rdc.rdcost >= 0 && |
| this_rdc.rate < INT_MAX && this_rdc.rate >= 0 && |
| (do_square_split || do_rectangular_split)) { |
| av1_simple_motion_search_early_term_none(cpi, x, pc_tree, mi_row, |
| mi_col, bsize, &this_rdc, |
| &terminate_partition_search); |
| } |
| } |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // store estimated motion vector |
| if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none); |
| |
| // PARTITION_SPLIT |
| int64_t part_split_rd = INT64_MAX; |
| if ((!terminate_partition_search && do_square_split) || is_gt_max_sq_part) { |
| av1_init_rd_stats(&sum_rdc); |
| subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| sum_rdc.rate = partition_cost[PARTITION_SPLIT]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| |
| int idx; |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_rdc.rdcost - sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_SPLIT] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| #endif |
| for (idx = 0; idx < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++idx) { |
| const int x_idx = (idx & 1) * mi_step; |
| const int y_idx = (idx >> 1) * mi_step; |
| |
| if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) |
| continue; |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| |
| pc_tree->split[idx]->index = idx; |
| int64_t *p_split_rd = &split_rd[idx]; |
| |
| RD_STATS best_remain_rdcost; |
| av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc, |
| &best_remain_rdcost); |
| |
| int curr_quad_tree_idx = 0; |
| if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { |
| curr_quad_tree_idx = x->quad_tree_idx; |
| x->quad_tree_idx = 4 * curr_quad_tree_idx + idx + 1; |
| } |
| if (!rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, |
| mi_col + x_idx, subsize, max_sq_part, min_sq_part, |
| &this_rdc, best_remain_rdcost, pc_tree->split[idx], |
| p_split_rd)) { |
| av1_invalid_rd_stats(&sum_rdc); |
| break; |
| } |
| if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { |
| x->quad_tree_idx = curr_quad_tree_idx; |
| } |
| |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| if (idx <= 1 && (bsize <= BLOCK_8X8 || |
| pc_tree->split[idx]->partitioning == PARTITION_NONE)) { |
| const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none.mic; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| // Neither palette mode nor cfl predicted |
| if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { |
| if (mbmi->uv_mode != UV_CFL_PRED) split_ctx_is_ready[idx] = 1; |
| } |
| } |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_SPLIT] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| const int reached_last_index = (idx == 4); |
| |
| part_split_rd = sum_rdc.rdcost; |
| if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) { |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| found_best_partition = true; |
| pc_tree->partitioning = PARTITION_SPLIT; |
| } |
| } else if (cpi->sf.less_rectangular_check_level > 0) { |
| // Skip rectangular partition test when partition type none gives better |
| // rd than partition type split. |
| if (cpi->sf.less_rectangular_check_level == 2 || idx <= 2) { |
| const int partition_none_valid = cur_none_rd > 0; |
| const int partition_none_better = cur_none_rd < sum_rdc.rdcost; |
| do_rectangular_split &= |
| !(partition_none_valid && partition_none_better); |
| } |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } // if (do_split) |
| |
| if (cpi->sf.ml_early_term_after_part_split_level && |
| !frame_is_intra_only(cm) && !terminate_partition_search && |
| do_rectangular_split && |
| (partition_horz_allowed || partition_vert_allowed)) { |
| av1_ml_early_term_after_split(cpi, x, pc_tree, bsize, best_rdc.rdcost, |
| part_none_rd, part_split_rd, split_rd, mi_row, |
| mi_col, &terminate_partition_search); |
| } |
| |
| if (!cpi->sf.ml_early_term_after_part_split_level && |
| cpi->sf.ml_prune_rect_partition && !frame_is_intra_only(cm) && |
| (partition_horz_allowed || partition_vert_allowed) && |
| !(prune_horz || prune_vert) && !terminate_partition_search) { |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); |
| av1_ml_prune_rect_partition(cpi, x, bsize, best_rdc.rdcost, cur_none_rd, |
| split_rd, &prune_horz, &prune_vert); |
| } |
| |
| // PARTITION_HORZ |
| assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_horz_allowed)); |
| if (!terminate_partition_search && partition_horz_allowed && !prune_horz && |
| (do_rectangular_split || active_h_edge(cpi, mi_row, mi_step)) && |
| !is_gt_max_sq_part) { |
| av1_init_rd_stats(&sum_rdc); |
| subsize = get_partition_subsize(bsize, PARTITION_HORZ); |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| sum_rdc.rate = partition_cost[PARTITION_HORZ]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| RD_STATS best_remain_rdcost; |
| av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc, |
| &best_remain_rdcost); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_remain_rdcost >= 0) { |
| partition_attempts[PARTITION_HORZ] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| #endif |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_HORZ, |
| subsize, &pc_tree->horizontal[0], best_remain_rdcost, |
| PICK_MODE_RD); |
| av1_rd_cost_update(x->rdmult, &this_rdc); |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| } |
| horz_rd[0] = this_rdc.rdcost; |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost && has_rows) { |
| const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0]; |
| const MB_MODE_INFO *const mbmi = &pc_tree->horizontal[0].mic; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| // Neither palette mode nor cfl predicted |
| if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { |
| if (mbmi->uv_mode != UV_CFL_PRED) horz_ctx_is_ready = 1; |
| } |
| update_state(cpi, tile_data, td, ctx_h, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, |
| subsize, NULL); |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_h); |
| |
| av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc, |
| &best_remain_rdcost); |
| |
| pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc, |
| PARTITION_HORZ, subsize, &pc_tree->horizontal[1], |
| best_remain_rdcost, PICK_MODE_RD); |
| av1_rd_cost_update(x->rdmult, &this_rdc); |
| horz_rd[1] = this_rdc.rdcost; |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| } |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_HORZ] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| found_best_partition = true; |
| pc_tree->partitioning = PARTITION_HORZ; |
| } |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // PARTITION_VERT |
| assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_vert_allowed)); |
| if (!terminate_partition_search && partition_vert_allowed && !prune_vert && |
| (do_rectangular_split || active_v_edge(cpi, mi_col, mi_step)) && |
| !is_gt_max_sq_part) { |
| av1_init_rd_stats(&sum_rdc); |
| subsize = get_partition_subsize(bsize, PARTITION_VERT); |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| |
| sum_rdc.rate = partition_cost[PARTITION_VERT]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| RD_STATS best_remain_rdcost; |
| av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc, |
| &best_remain_rdcost); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_remain_rdcost >= 0) { |
| partition_attempts[PARTITION_VERT] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| #endif |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_VERT, |
| subsize, &pc_tree->vertical[0], best_remain_rdcost, |
| PICK_MODE_RD); |
| av1_rd_cost_update(x->rdmult, &this_rdc); |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| } |
| vert_rd[0] = this_rdc.rdcost; |
| if (sum_rdc.rdcost < best_rdc.rdcost && has_cols) { |
| const MB_MODE_INFO *const mbmi = &pc_tree->vertical[0].mic; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| // Neither palette mode nor cfl predicted |
| if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { |
| if (mbmi->uv_mode != UV_CFL_PRED) vert_ctx_is_ready = 1; |
| } |
| update_state(cpi, tile_data, td, &pc_tree->vertical[0], mi_row, mi_col, |
| subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, |
| subsize, NULL); |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| |
| av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc, |
| &best_remain_rdcost); |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc, |
| PARTITION_VERT, subsize, &pc_tree->vertical[1], |
| best_remain_rdcost, PICK_MODE_RD); |
| av1_rd_cost_update(x->rdmult, &this_rdc); |
| vert_rd[1] = this_rdc.rdcost; |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| } |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_VERT] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| found_best_partition = true; |
| pc_tree->partitioning = PARTITION_VERT; |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| if (pb_source_variance == UINT_MAX) { |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); |
| if (is_cur_buf_hbd(xd)) { |
| pb_source_variance = av1_high_get_sby_perpixel_variance( |
| cpi, &x->plane[0].src, bsize, xd->bd); |
| } else { |
| pb_source_variance = |
| av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); |
| } |
| } |
| |
| if (use_pb_simple_motion_pred_sse(cpi) && |
| pb_simple_motion_pred_sse == UINT_MAX) { |
| const MV ref_mv_full = { .row = 0, .col = 0 }; |
| unsigned int var = 0; |
| |
| av1_simple_motion_sse_var(cpi, x, mi_row, mi_col, bsize, ref_mv_full, 0, |
| &pb_simple_motion_pred_sse, &var); |
| } |
| |
| assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !do_rectangular_split)); |
| |
| const int ext_partition_allowed = |
| do_rectangular_split && bsize > BLOCK_8X8 && partition_none_allowed; |
| |
| // The standard AB partitions are allowed whenever ext-partition-types are |
| // allowed |
| int horzab_partition_allowed = |
| ext_partition_allowed & cpi->oxcf.enable_ab_partitions; |
| int vertab_partition_allowed = |
| ext_partition_allowed & cpi->oxcf.enable_ab_partitions; |
| |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8) { |
| if (block_size_high[bsize] <= 8 || block_size_wide[bsize] <= 8) { |
| horzab_partition_allowed = 0; |
| vertab_partition_allowed = 0; |
| } |
| } |
| #endif |
| |
| if (cpi->sf.prune_ext_partition_types_search_level) { |
| if (cpi->sf.prune_ext_partition_types_search_level == 1) { |
| // TODO(debargha,huisu@google.com): may need to tune the threshold for |
| // pb_source_variance. |
| horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || |
| (pc_tree->partitioning == PARTITION_NONE && |
| pb_source_variance < 32) || |
| pc_tree->partitioning == PARTITION_SPLIT); |
| vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || |
| (pc_tree->partitioning == PARTITION_NONE && |
| pb_source_variance < 32) || |
| pc_tree->partitioning == PARTITION_SPLIT); |
| } else { |
| horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || |
| pc_tree->partitioning == PARTITION_SPLIT); |
| vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || |
| pc_tree->partitioning == PARTITION_SPLIT); |
| } |
| horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0); |
| horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0); |
| vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0); |
| vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0); |
| split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0); |
| split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0); |
| split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0); |
| split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0); |
| } |
| int horza_partition_allowed = horzab_partition_allowed; |
| int horzb_partition_allowed = horzab_partition_allowed; |
| if (cpi->sf.prune_ext_partition_types_search_level) { |
| const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1]; |
| const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3]; |
| switch (cpi->sf.prune_ext_partition_types_search_level) { |
| case 1: |
| horza_partition_allowed &= (horz_a_rd / 16 * 14 < best_rdc.rdcost); |
| horzb_partition_allowed &= (horz_b_rd / 16 * 14 < best_rdc.rdcost); |
| break; |
| case 2: |
| default: |
| horza_partition_allowed &= (horz_a_rd / 16 * 15 < best_rdc.rdcost); |
| horzb_partition_allowed &= (horz_b_rd / 16 * 15 < best_rdc.rdcost); |
| break; |
| } |
| } |
| |
| int verta_partition_allowed = vertab_partition_allowed; |
| int vertb_partition_allowed = vertab_partition_allowed; |
| if (cpi->sf.prune_ext_partition_types_search_level) { |
| const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2]; |
| const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3]; |
| switch (cpi->sf.prune_ext_partition_types_search_level) { |
| case 1: |
| verta_partition_allowed &= (vert_a_rd / 16 * 14 < best_rdc.rdcost); |
| vertb_partition_allowed &= (vert_b_rd / 16 * 14 < best_rdc.rdcost); |
| break; |
| case 2: |
| default: |
| verta_partition_allowed &= (vert_a_rd / 16 * 15 < best_rdc.rdcost); |
| vertb_partition_allowed &= (vert_b_rd / 16 * 15 < best_rdc.rdcost); |
| break; |
| } |
| } |
| |
| if (cpi->sf.ml_prune_ab_partition && ext_partition_allowed && |
| partition_horz_allowed && partition_vert_allowed) { |
| // TODO(huisu@google.com): x->source_variance may not be the current |
| // block's variance. The correct one to use is pb_source_variance. Need to |
| // re-train the model to fix it. |
| av1_ml_prune_ab_partition( |
| bsize, pc_tree->partitioning, get_unsigned_bits(x->source_variance), |
| best_rdc.rdcost, horz_rd, vert_rd, split_rd, &horza_partition_allowed, |
| &horzb_partition_allowed, &verta_partition_allowed, |
| &vertb_partition_allowed); |
| } |
| |
| horza_partition_allowed &= cpi->oxcf.enable_ab_partitions; |
| horzb_partition_allowed &= cpi->oxcf.enable_ab_partitions; |
| verta_partition_allowed &= cpi->oxcf.enable_ab_partitions; |
| vertb_partition_allowed &= cpi->oxcf.enable_ab_partitions; |
| |
| // PARTITION_HORZ_A |
| if (!terminate_partition_search && partition_horz_allowed && |
| horza_partition_allowed && !is_gt_max_sq_part) { |
| subsize = get_partition_subsize(bsize, PARTITION_HORZ_A); |
| pc_tree->horizontala[0].rd_mode_is_ready = 0; |
| pc_tree->horizontala[1].rd_mode_is_ready = 0; |
| pc_tree->horizontala[2].rd_mode_is_ready = 0; |
| if (split_ctx_is_ready[0]) { |
| av1_copy_tree_context(&pc_tree->horizontala[0], &pc_tree->split[0]->none); |
| pc_tree->horizontala[0].mic.partition = PARTITION_HORZ_A; |
| pc_tree->horizontala[0].rd_mode_is_ready = 1; |
| if (split_ctx_is_ready[1]) { |
| av1_copy_tree_context(&pc_tree->horizontala[1], |
| &pc_tree->split[1]->none); |
| pc_tree->horizontala[1].mic.partition = PARTITION_HORZ_A; |
| pc_tree->horizontala[1].rd_mode_is_ready = 1; |
| } |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| { |
| RD_STATS tmp_sum_rdc; |
| av1_init_rd_stats(&tmp_sum_rdc); |
| tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_HORZ_A]; |
| tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0); |
| if (best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_HORZ_A] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| } |
| #endif |
| found_best_partition |= rd_test_partition3( |
| cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontala, |
| ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_A, mi_row, mi_col, |
| bsize2, mi_row, mi_col + mi_step, bsize2, mi_row + mi_step, mi_col, |
| subsize); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_HORZ_A] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| // PARTITION_HORZ_B |
| if (!terminate_partition_search && partition_horz_allowed && |
| horzb_partition_allowed && !is_gt_max_sq_part) { |
| subsize = get_partition_subsize(bsize, PARTITION_HORZ_B); |
| pc_tree->horizontalb[0].rd_mode_is_ready = 0; |
| pc_tree->horizontalb[1].rd_mode_is_ready = 0; |
| pc_tree->horizontalb[2].rd_mode_is_ready = 0; |
| if (horz_ctx_is_ready) { |
| av1_copy_tree_context(&pc_tree->horizontalb[0], &pc_tree->horizontal[0]); |
| pc_tree->horizontalb[0].mic.partition = PARTITION_HORZ_B; |
| pc_tree->horizontalb[0].rd_mode_is_ready = 1; |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| { |
| RD_STATS tmp_sum_rdc; |
| av1_init_rd_stats(&tmp_sum_rdc); |
| tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_HORZ_B]; |
| tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0); |
| if (best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_HORZ_B] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| } |
| #endif |
| found_best_partition |= rd_test_partition3( |
| cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontalb, |
| ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_B, mi_row, mi_col, |
| subsize, mi_row + mi_step, mi_col, bsize2, mi_row + mi_step, |
| mi_col + mi_step, bsize2); |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_HORZ_B] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // PARTITION_VERT_A |
| if (!terminate_partition_search && partition_vert_allowed && |
| verta_partition_allowed && !is_gt_max_sq_part) { |
| subsize = get_partition_subsize(bsize, PARTITION_VERT_A); |
| pc_tree->verticala[0].rd_mode_is_ready = 0; |
| pc_tree->verticala[1].rd_mode_is_ready = 0; |
| pc_tree->verticala[2].rd_mode_is_ready = 0; |
| if (split_ctx_is_ready[0]) { |
| av1_copy_tree_context(&pc_tree->verticala[0], &pc_tree->split[0]->none); |
| pc_tree->verticala[0].mic.partition = PARTITION_VERT_A; |
| pc_tree->verticala[0].rd_mode_is_ready = 1; |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| { |
| RD_STATS tmp_sum_rdc; |
| av1_init_rd_stats(&tmp_sum_rdc); |
| tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_VERT_A]; |
| tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0); |
| if (best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_VERT_A] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| } |
| #endif |
| found_best_partition |= rd_test_partition3( |
| cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticala, |
| ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_A, mi_row, mi_col, |
| bsize2, mi_row + mi_step, mi_col, bsize2, mi_row, mi_col + mi_step, |
| subsize); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_VERT_A] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| // PARTITION_VERT_B |
| if (!terminate_partition_search && partition_vert_allowed && |
| vertb_partition_allowed && !is_gt_max_sq_part) { |
| subsize = get_partition_subsize(bsize, PARTITION_VERT_B); |
| pc_tree->verticalb[0].rd_mode_is_ready = 0; |
| pc_tree->verticalb[1].rd_mode_is_ready = 0; |
| pc_tree->verticalb[2].rd_mode_is_ready = 0; |
| if (vert_ctx_is_ready) { |
| av1_copy_tree_context(&pc_tree->verticalb[0], &pc_tree->vertical[0]); |
| pc_tree->verticalb[0].mic.partition = PARTITION_VERT_B; |
| pc_tree->verticalb[0].rd_mode_is_ready = 1; |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| { |
| RD_STATS tmp_sum_rdc; |
| av1_init_rd_stats(&tmp_sum_rdc); |
| tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_VERT_B]; |
| tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0); |
| if (!frame_is_intra_only(cm) && |
| best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_VERT_B] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| } |
| #endif |
| found_best_partition |= rd_test_partition3( |
| cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticalb, |
| ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_B, mi_row, mi_col, |
| subsize, mi_row, mi_col + mi_step, bsize2, mi_row + mi_step, |
| mi_col + mi_step, bsize2); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_VERT_B] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or |
| // PARTITION_VERT_4 for this block. This is almost the same as |
| // ext_partition_allowed, except that we don't allow 128x32 or 32x128 |
| // blocks, so we require that bsize is not BLOCK_128X128. |
| const int partition4_allowed = cpi->oxcf.enable_1to4_partitions && |
| ext_partition_allowed && |
| bsize != BLOCK_128X128; |
| |
| int partition_horz4_allowed = partition4_allowed && partition_horz_allowed; |
| int partition_vert4_allowed = partition4_allowed && partition_vert_allowed; |
| if (cpi->sf.prune_ext_partition_types_search_level == 2) { |
| partition_horz4_allowed &= (pc_tree->partitioning == PARTITION_HORZ || |
| pc_tree->partitioning == PARTITION_HORZ_A || |
| pc_tree->partitioning == PARTITION_HORZ_B || |
| pc_tree->partitioning == PARTITION_SPLIT || |
| pc_tree->partitioning == PARTITION_NONE); |
| partition_vert4_allowed &= (pc_tree->partitioning == PARTITION_VERT || |
| pc_tree->partitioning == PARTITION_VERT_A || |
| pc_tree->partitioning == PARTITION_VERT_B || |
| pc_tree->partitioning == PARTITION_SPLIT || |
| pc_tree->partitioning == PARTITION_NONE); |
| } |
| if (cpi->sf.ml_prune_4_partition && partition4_allowed && |
| partition_horz_allowed && partition_vert_allowed) { |
| av1_ml_prune_4_partition(cpi, x, bsize, pc_tree->partitioning, |
| best_rdc.rdcost, horz_rd, vert_rd, split_rd, |
| &partition_horz4_allowed, &partition_vert4_allowed, |
| pb_source_variance, mi_row, mi_col); |
| } |
| |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8) { |
| if (block_size_high[bsize] <= 16 || block_size_wide[bsize] <= 16) { |
| partition_horz4_allowed = 0; |
| partition_vert4_allowed = 0; |
| } |
| } |
| #endif |
| |
| if (blksize < (min_partition_size << 2)) { |
| partition_horz4_allowed = 0; |
| partition_vert4_allowed = 0; |
| } |
| |
| // PARTITION_HORZ_4 |
| assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_horz4_allowed)); |
| if (!terminate_partition_search && partition_horz4_allowed && has_rows && |
| (do_rectangular_split || active_h_edge(cpi, mi_row, mi_step)) && |
| !is_gt_max_sq_part) { |
| av1_init_rd_stats(&sum_rdc); |
| const int quarter_step = mi_size_high[bsize] / 4; |
| PICK_MODE_CONTEXT *ctx_prev = ctx_none; |
| |
| subsize = get_partition_subsize(bsize, PARTITION_HORZ_4); |
| sum_rdc.rate = partition_cost[PARTITION_HORZ_4]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_rdc.rdcost - sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_HORZ_4] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| #endif |
| for (int i = 0; i < 4; ++i) { |
| const int this_mi_row = mi_row + i * quarter_step; |
| |
| if (i > 0 && this_mi_row >= cm->mi_rows) break; |
| |
| PICK_MODE_CONTEXT *ctx_this = &pc_tree->horizontal4[i]; |
| |
| ctx_this->rd_mode_is_ready = 0; |
| if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), this_mi_row, |
| mi_col, subsize, best_rdc, &sum_rdc, |
| PARTITION_HORZ_4, ctx_prev, ctx_this)) { |
| av1_invalid_rd_stats(&sum_rdc); |
| break; |
| } |
| |
| ctx_prev = ctx_this; |
| } |
| |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| found_best_partition = true; |
| pc_tree->partitioning = PARTITION_HORZ_4; |
| } |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_HORZ_4] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // PARTITION_VERT_4 |
| assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_vert4_allowed)); |
| if (!terminate_partition_search && partition_vert4_allowed && has_cols && |
| (do_rectangular_split || active_v_edge(cpi, mi_row, mi_step)) && |
| !is_gt_max_sq_part) { |
| av1_init_rd_stats(&sum_rdc); |
| const int quarter_step = mi_size_wide[bsize] / 4; |
| PICK_MODE_CONTEXT *ctx_prev = ctx_none; |
| |
| subsize = get_partition_subsize(bsize, PARTITION_VERT_4); |
| sum_rdc.rate = partition_cost[PARTITION_VERT_4]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_rdc.rdcost - sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_VERT_4] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| #endif |
| for (int i = 0; i < 4; ++i) { |
| const int this_mi_col = mi_col + i * quarter_step; |
| |
| if (i > 0 && this_mi_col >= cm->mi_cols) break; |
| |
| PICK_MODE_CONTEXT *ctx_this = &pc_tree->vertical4[i]; |
| |
| ctx_this->rd_mode_is_ready = 0; |
| if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), mi_row, |
| this_mi_col, subsize, best_rdc, &sum_rdc, |
| PARTITION_VERT_4, ctx_prev, ctx_this)) { |
| av1_invalid_rd_stats(&sum_rdc); |
| break; |
| } |
| |
| ctx_prev = ctx_this; |
| } |
| |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| found_best_partition = true; |
| pc_tree->partitioning = PARTITION_VERT_4; |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_VERT_4] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| if (bsize == cm->seq_params.sb_size && !found_best_partition) { |
| // Did not find a valid partition, go back and search again, with less |
| // constraint on which partition types to search. |
| x->must_find_valid_partition = 1; |
| #if CONFIG_COLLECT_PARTITION_STATS == 2 |
| part_stats->partition_redo += 1; |
| #endif |
| goto BEGIN_PARTITION_SEARCH; |
| } |
| |
| *rd_cost = best_rdc; |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) { |
| partition_decisions[pc_tree->partitioning] += 1; |
| } |
| #endif |
| |
| #if CONFIG_COLLECT_PARTITION_STATS == 1 |
| // If CONFIG_COLLECT_PARTITION_STATS is 1, then print out the stats for each |
| // prediction block |
| FILE *f = fopen("data.csv", "a"); |
| fprintf(f, "%d,%d,%d,", bsize, cm->show_frame, frame_is_intra_only(cm)); |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| fprintf(f, "%d,", partition_decisions[idx]); |
| } |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| fprintf(f, "%d,", partition_attempts[idx]); |
| } |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| fprintf(f, "%ld,", partition_times[idx]); |
| } |
| fprintf(f, "\n"); |
| fclose(f); |
| #endif |
| |
| #if CONFIG_COLLECT_PARTITION_STATS == 2 |
| // If CONFIG_COLLECTION_PARTITION_STATS is 2, then we print out the stats for |
| // the whole clip. So we need to pass the information upstream to the encoder |
| const int bsize_idx = av1_get_bsize_idx_for_part_stats(bsize); |
| int *agg_attempts = part_stats->partition_attempts[bsize_idx]; |
| int *agg_decisions = part_stats->partition_decisions[bsize_idx]; |
| int64_t *agg_times = part_stats->partition_times[bsize_idx]; |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| agg_attempts[idx] += partition_attempts[idx]; |
| agg_decisions[idx] += partition_decisions[idx]; |
| agg_times[idx] += partition_times[idx]; |
| } |
| #endif |
| |
| if (found_best_partition && pc_tree->index != 3) { |
| if (bsize == cm->seq_params.sb_size) { |
| x->cb_offset = 0; |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, |
| pc_tree, NULL); |
| } else { |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| } |
| |
| if (bsize == cm->seq_params.sb_size) { |
| assert(best_rdc.rate < INT_MAX); |
| assert(best_rdc.dist < INT64_MAX); |
| } else { |
| assert(tp_orig == *tp); |
| } |
| |
| x->rdmult = orig_rdmult; |
| return found_best_partition; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| #undef NUM_SIMPLE_MOTION_FEATURES |
| |
| #if !CONFIG_REALTIME_ONLY |
| static int get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int analysis_type, |
| int mi_row, int mi_col, int orig_rdmult) { |
| assert(IMPLIES(cpi->gf_group.size > 0, |
| cpi->gf_group.index < cpi->gf_group.size)); |
| const int tpl_idx = cpi->gf_group.frame_disp_idx[cpi->gf_group.index]; |
| TplDepFrame *tpl_frame = &cpi->tpl_stats[tpl_idx]; |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| int tpl_stride = tpl_frame->stride; |
| int64_t intra_cost = 0; |
| int64_t mc_dep_cost = 0; |
| int mi_wide = mi_size_wide[bsize]; |
| int mi_high = mi_size_high[bsize]; |
| int row, col; |
| |
| if (tpl_frame->is_valid == 0) return orig_rdmult; |
| |
| if (!is_frame_tpl_eligible(cpi)) return orig_rdmult; |
| |
| if (cpi->gf_group.index >= MAX_LAG_BUFFERS) return orig_rdmult; |
| |
| int64_t mc_count = 0, mc_saved = 0; |
| int mi_count = 0; |
| for (row = mi_row; row < mi_row + mi_high; ++row) { |
| for (col = mi_col; col < mi_col + mi_wide; ++col) { |
| TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col]; |
| |
| if (row >= cpi->common.mi_rows || col >= cpi->common.mi_cols) continue; |
| |
| intra_cost += this_stats->intra_cost; |
| mc_dep_cost += this_stats->intra_cost + this_stats->mc_flow; |
| mc_count += this_stats->mc_count; |
| mc_saved += this_stats->mc_saved; |
| mi_count++; |
| } |
| } |
| |
| aom_clear_system_state(); |
| |
| double beta = 1.0; |
| if (analysis_type == 0) { |
| if (mc_dep_cost > 0 && intra_cost > 0) { |
| const double r0 = cpi->rd.r0; |
| const double rk = (double)intra_cost / mc_dep_cost; |
| beta = (r0 / rk); |
| } |
| } else if (analysis_type == 1) { |
| const double mc_count_base = (mi_count * cpi->rd.mc_count_base); |
| beta = (mc_count + 1.0) / (mc_count_base + 1.0); |
| beta = pow(beta, 0.5); |
| } else if (analysis_type == 2) { |
| const double mc_saved_base = (mi_count * cpi->rd.mc_saved_base); |
| beta = (mc_saved + 1.0) / (mc_saved_base + 1.0); |
| beta = pow(beta, 0.5); |
| } |
| |
| int rdmult = av1_get_adaptive_rdmult(cpi, beta); |
| |
| aom_clear_system_state(); |
| |
| rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2); |
| rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2); |
| |
| rdmult = AOMMAX(1, rdmult); |
| |
| return rdmult; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| // analysis_type 0: Use mc_dep_cost and intra_cost |
| // analysis_type 1: Use count of best inter predictor chosen |
| // analysis_type 2: Use cost reduction from intra to inter for best inter |
| // predictor chosen |
| static int get_q_for_deltaq_objective(AV1_COMP *const cpi, BLOCK_SIZE bsize, |
| int analysis_type, int mi_row, |
| int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| assert(IMPLIES(cpi->gf_group.size > 0, |
| cpi->gf_group.index < cpi->gf_group.size)); |
| const int tpl_idx = cpi->gf_group.frame_disp_idx[cpi->gf_group.index]; |
| TplDepFrame *tpl_frame = &cpi->tpl_stats[tpl_idx]; |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| int tpl_stride = tpl_frame->stride; |
| int64_t intra_cost = 0; |
| int64_t mc_dep_cost = 0; |
| int mi_wide = mi_size_wide[bsize]; |
| int mi_high = mi_size_high[bsize]; |
| int row, col; |
| |
| if (cpi->tpl_model_pass == 1) { |
| assert(cpi->oxcf.enable_tpl_model == 2); |
| return cm->base_qindex; |
| } |
| |
| if (tpl_frame->is_valid == 0) return cm->base_qindex; |
| |
| if (!is_frame_tpl_eligible(cpi)) return cm->base_qindex; |
| |
| if (cpi->gf_group.index >= MAX_LAG_BUFFERS) return cm->base_qindex; |
| |
| int64_t mc_count = 0, mc_saved = 0; |
| int mi_count = 0; |
| for (row = mi_row; row < mi_row + mi_high; ++row) { |
| for (col = mi_col; col < mi_col + mi_wide; ++col) { |
| TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col]; |
| if (row >= cm->mi_rows || col >= cm->mi_cols) continue; |
| intra_cost += this_stats->intra_cost; |
| mc_dep_cost += this_stats->intra_cost + this_stats->mc_flow; |
| mc_count += this_stats->mc_count; |
| mc_saved += this_stats->mc_saved; |
| mi_count++; |
| } |
| } |
| |
| aom_clear_system_state(); |
| |
| int offset = 0; |
| double beta = 1.0; |
| if (analysis_type == 0) { |
| if (mc_dep_cost > 0 && intra_cost > 0) { |
| const double r0 = cpi->rd.r0; |
| const double rk = (double)intra_cost / mc_dep_cost; |
| beta = (r0 / rk); |
| assert(beta > 0.0); |
| } |
| } else if (analysis_type == 1) { |
| const double mc_count_base = (mi_count * cpi->rd.mc_count_base); |
| beta = (mc_count + 1.0) / (mc_count_base + 1.0); |
| beta = pow(beta, 0.5); |
| } else if (analysis_type == 2) { |
| const double mc_saved_base = (mi_count * cpi->rd.mc_saved_base); |
| beta = (mc_saved + 1.0) / (mc_saved_base + 1.0); |
| beta = pow(beta, 0.5); |
| } |
| offset = (7 * av1_get_deltaq_offset(cpi, cm->base_qindex, beta)) / 8; |
| // printf("[%d/%d]: beta %g offset %d\n", pyr_lev_from_top, |
| // cpi->gf_group.pyramid_height, beta, offset); |
| |
| aom_clear_system_state(); |
| |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1); |
| offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1); |
| int qindex = cm->base_qindex + offset; |
| qindex = AOMMIN(qindex, MAXQ); |
| qindex = AOMMAX(qindex, MINQ); |
| |
| return qindex; |
| } |
| |
| static void setup_delta_q(AV1_COMP *const cpi, ThreadData *td, |
| MACROBLOCK *const x, const TileInfo *const tile_info, |
| int mi_row, int mi_col, int num_planes) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| const BLOCK_SIZE sb_size = cm->seq_params.sb_size; |
| const int mib_size = cm->seq_params.mib_size; |
| |
| // Delta-q modulation based on variance |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size); |
| |
| int current_qindex = cm->base_qindex; |
| if (cm->delta_q_info.delta_q_present_flag) { |
| if (cpi->oxcf.deltaq_mode == DELTA_Q_PERCEPTUAL) { |
| if (DELTA_Q_PERCEPTUAL_MODULATION == 1) { |
| const int block_wavelet_energy_level = |
| av1_block_wavelet_energy_level(cpi, x, sb_size); |
| x->sb_energy_level = block_wavelet_energy_level; |
| current_qindex = av1_compute_q_from_energy_level_deltaq_mode( |
| cpi, block_wavelet_energy_level); |
| } else { |
| const int block_var_level = av1_log_block_var(cpi, x, sb_size); |
| x->sb_energy_level = block_var_level; |
| current_qindex = |
| av1_compute_q_from_energy_level_deltaq_mode(cpi, block_var_level); |
| } |
| } else if (cpi->oxcf.deltaq_mode == DELTA_Q_OBJECTIVE) { |
| assert(cpi->oxcf.enable_tpl_model); |
| // Setup deltaq based on tpl stats |
| current_qindex = |
| get_q_for_deltaq_objective(cpi, sb_size, 0, mi_row, mi_col); |
| } |
| } |
| |
| const int qmask = ~(delta_q_info->delta_q_res - 1); |
| current_qindex = clamp(current_qindex, delta_q_info->delta_q_res, |
| 256 - delta_q_info->delta_q_res); |
| |
| const int sign_deltaq_index = |
| current_qindex - xd->current_qindex >= 0 ? 1 : -1; |
| |
| const int deltaq_deadzone = delta_q_info->delta_q_res / 4; |
| int abs_deltaq_index = abs(current_qindex - xd->current_qindex); |
| abs_deltaq_index = (abs_deltaq_index + deltaq_deadzone) & qmask; |
| current_qindex = xd->current_qindex + sign_deltaq_index * abs_deltaq_index; |
| current_qindex = AOMMAX(current_qindex, MINQ + 1); |
| assert(current_qindex > 0); |
| |
| xd->delta_qindex = current_qindex - cm->base_qindex; |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| xd->mi[0]->current_qindex = current_qindex; |
| x->rdmult = set_deltaq_rdmult(cpi, xd); |
| av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id); |
| |
| // keep track of any non-zero delta-q used |
| td->deltaq_used |= (xd->delta_qindex != 0); |
| |
| if (cm->delta_q_info.delta_q_present_flag && cpi->oxcf.deltalf_mode) { |
| const int lfmask = ~(delta_q_info->delta_lf_res - 1); |
| const int delta_lf_from_base = |
| ((xd->delta_qindex / 2 + delta_q_info->delta_lf_res / 2) & lfmask); |
| |
| // pre-set the delta lf for loop filter. Note that this value is set |
| // before mi is assigned for each block in current superblock |
| for (int j = 0; j < AOMMIN(mib_size, cm->mi_rows - mi_row); j++) { |
| for (int k = 0; k < AOMMIN(mib_size, cm->mi_cols - mi_col); k++) { |
| cm->mi[(mi_row + j) * cm->mi_stride + (mi_col + k)].delta_lf_from_base = |
| (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, |
| MAX_LOOP_FILTER); |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| cm->mi[(mi_row + j) * cm->mi_stride + (mi_col + k)].delta_lf[lf_id] = |
| (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, |
| MAX_LOOP_FILTER); |
| } |
| } |
| } |
| } |
| } |
| |
| #define AVG_CDF_WEIGHT_LEFT 3 |
| #define AVG_CDF_WEIGHT_TOP_RIGHT 1 |
| |
| static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr, |
| int num_cdfs, int cdf_stride, int nsymbs, |
| int wt_left, int wt_tr) { |
| for (int i = 0; i < num_cdfs; i++) { |
| for (int j = 0; j <= nsymbs; j++) { |
| cdf_ptr_left[i * cdf_stride + j] = |
| (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left + |
| (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr + |
| ((wt_left + wt_tr) / 2)) / |
| (wt_left + wt_tr)); |
| assert(cdf_ptr_left[i * cdf_stride + j] >= 0 && |
| cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP); |
| } |
| } |
| } |
| |
| #define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \ |
| AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs)) |
| |
| #define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride) \ |
| do { \ |
| aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left; \ |
| aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr; \ |
| int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob); \ |
| int num_cdfs = array_size / cdf_stride; \ |
| avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \ |
| wt_left, wt_tr); \ |
| } while (0) |
| |
| static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left, |
| int wt_tr) { |
| AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4); |
| for (int i = 0; i < 2; i++) { |
| AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf, |
| MV_CLASSES); |
| AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf, |
| nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE); |
| AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE); |
| AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2); |
| AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf, |
| nmv_tr->comps[i].class0_hp_cdf, 2); |
| AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2); |
| AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf, |
| CLASS0_SIZE); |
| AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2); |
| } |
| } |
| |
| // In case of row-based multi-threading of encoder, since we always |
| // keep a top - right sync, we can average the top - right SB's CDFs and |
| // the left SB's CDFs and use the same for current SB's encoding to |
| // improve the performance. This function facilitates the averaging |
| // of CDF and used only when row-mt is enabled in encoder. |
| static void avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr, |
| int wt_left, int wt_tr) { |
| AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2); |
| AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2); |
| AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11); |
| AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3); |
| AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4); |
| AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE); |
| AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2); |
| AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2); |
| AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2); |
| AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2); |
| AVERAGE_CDF(ctx_left->inter_compound_mode_cdf, |
| ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES); |
| AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf, |
| MASKED_COMPOUND_TYPES); |
| AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16); |
| AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2); |
| AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2); |
| AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf, |
| INTERINTRA_MODES); |
| AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES); |
| AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2); |
| AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf, |
| PALETTE_SIZES); |
| AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf, |
| PALETTE_SIZES); |
| for (int j = 0; j < PALETTE_SIZES; j++) { |
| int nsymbs = j + PALETTE_MIN_SIZE; |
| AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j], |
| ctx_tr->palette_y_color_index_cdf[j], nsymbs, |
| CDF_SIZE(PALETTE_COLORS)); |
| AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j], |
| ctx_tr->palette_uv_color_index_cdf[j], nsymbs, |
| CDF_SIZE(PALETTE_COLORS)); |
| } |
| AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2); |
| AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2); |
| AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2); |
| AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2); |
| AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2); |
| AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2); |
| AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2); |
| AVERAGE_CDF(ctx_left->skip_cdfs, ctx_tr->skip_cdfs, 2); |
| AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2); |
| avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr); |
| avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr); |
| AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2); |
| AVERAGE_CDF(ctx_left->seg.tree_cdf, ctx_tr->seg.tree_cdf, MAX_SEGMENTS); |
| AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2); |
| AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf, |
| ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS); |
| AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2); |
| AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf, |
| FILTER_INTRA_MODES); |
| AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf, |
| RESTORE_SWITCHABLE_TYPES); |
| AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2); |
| AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2); |
| AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES); |
| AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0], |
| UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES)); |
| AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES); |
| for (int i = 0; i < PARTITION_CONTEXTS; i++) { |
| if (i < 4) { |
| AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4, |
| CDF_SIZE(10)); |
| } else if (i < 16) { |
| AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10); |
| } else { |
| AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8, |
| CDF_SIZE(10)); |
| } |
| } |
| AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf, |
| SWITCHABLE_FILTERS); |
| AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES); |
| AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf, |
| 2 * MAX_ANGLE_DELTA + 1); |
| AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH, |
| CDF_SIZE(MAX_TX_DEPTH + 1)); |
| AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1], |
| MAX_TX_DEPTH + 1); |
| AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2], |
| MAX_TX_DEPTH + 1); |
| AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3], |
| MAX_TX_DEPTH + 1); |
| AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1); |
| AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1); |
| for (int i = 0; i < FRAME_LF_COUNT; i++) { |
| AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i], |
| DELTA_LF_PROBS + 1); |
| } |
| AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7, |
| CDF_SIZE(TX_TYPES)); |
| AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5, |
| CDF_SIZE(TX_TYPES)); |
| AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16, |
| CDF_SIZE(TX_TYPES)); |
| AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12, |
| CDF_SIZE(TX_TYPES)); |
| AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2, |
| CDF_SIZE(TX_TYPES)); |
| AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS); |
| AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf, |
| CFL_ALPHABET_SIZE); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void adjust_rdmult_tpl_model(AV1_COMP *cpi, MACROBLOCK *x, int mi_row, |
| int mi_col) { |
| const BLOCK_SIZE sb_size = cpi->common.seq_params.sb_size; |
| const int orig_rdmult = cpi->rd.RDMULT; |
| |
| if (cpi->tpl_model_pass == 1) { |
| assert(cpi->oxcf.enable_tpl_model == 2); |
| x->rdmult = orig_rdmult; |
| return; |
| } |
| |
| assert(IMPLIES(cpi->gf_group.size > 0, |
| cpi->gf_group.index < cpi->gf_group.size)); |
| const int gf_group_index = cpi->gf_group.index; |
| if (cpi->oxcf.enable_tpl_model && cpi->oxcf.aq_mode == NO_AQ && |
| cpi->oxcf.deltaq_mode == NO_DELTA_Q && gf_group_index > 0 && |
| cpi->gf_group.update_type[gf_group_index] == ARF_UPDATE) { |
| const int dr = |
| get_rdmult_delta(cpi, sb_size, 0, mi_row, mi_col, orig_rdmult); |
| x->rdmult = dr; |
| } |
| } |
| #endif |
| |
| static void encode_sb_row(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, |
| int mi_row, TOKENEXTRA **tp, int use_nonrd_mode) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_data->tile_info); |
| const BLOCK_SIZE sb_size = cm->seq_params.sb_size; |
| const int mib_size = cm->seq_params.mib_size; |
| const int mib_size_log2 = cm->seq_params.mib_size_log2; |
| const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, encode_sb_time); |
| #endif |
| |
| // Initialize the left context for the new SB row |
| av1_zero_left_context(xd); |
| |
| // Reset delta for every tile |
| if (mi_row == tile_info->mi_row_start || cpi->row_mt) { |
| if (cm->delta_q_info.delta_q_present_flag) |
| xd->current_qindex = cm->base_qindex; |
| if (cm->delta_q_info.delta_lf_present_flag) { |
| av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); |
| } |
| } |
| |
| // Code each SB in the row |
| for (int mi_col = tile_info->mi_col_start, sb_col_in_tile = 0; |
| mi_col < tile_info->mi_col_end; mi_col += mib_size, sb_col_in_tile++) { |
| (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row, |
| sb_col_in_tile); |
| if (tile_data->allow_update_cdf && (cpi->row_mt == 1) && |
| (tile_info->mi_row_start != mi_row)) { |
| if ((tile_info->mi_col_start == mi_col)) { |
| // restore frame context of 1st column sb |
| memcpy(xd->tile_ctx, x->row_ctx, sizeof(*xd->tile_ctx)); |
| } else { |
| int wt_left = AVG_CDF_WEIGHT_LEFT; |
| int wt_tr = AVG_CDF_WEIGHT_TOP_RIGHT; |
| if (tile_info->mi_col_end > (mi_col + mib_size)) |
| avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile, wt_left, |
| wt_tr); |
| else |
| avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile - 1, |
| wt_left, wt_tr); |
| } |
| } |
| |
| switch (cpi->oxcf.coeff_cost_upd_freq) { |
| case COST_UPD_TILE: // Tile level |
| if (mi_row != tile_info->mi_row_start) break; |
| AOM_FALLTHROUGH_INTENDED; |
| case COST_UPD_SBROW: // SB row level in tile |
| if (mi_col != tile_info->mi_col_start) break; |
| AOM_FALLTHROUGH_INTENDED; |
| case COST_UPD_SB: // SB level |
| av1_fill_coeff_costs(&td->mb, xd->tile_ctx, num_planes); |
| break; |
| default: assert(0); |
| } |
| |
| switch (cpi->oxcf.mode_cost_upd_freq) { |
| case COST_UPD_TILE: // Tile level |
| if (mi_row != tile_info->mi_row_start) break; |
| AOM_FALLTHROUGH_INTENDED; |
| case COST_UPD_SBROW: // SB row level in tile |
| if (mi_col != tile_info->mi_col_start) break; |
| AOM_FALLTHROUGH_INTENDED; |
| case COST_UPD_SB: // SB level |
| av1_fill_mode_rates(cm, x, xd->tile_ctx); |
| break; |
| default: assert(0); |
| } |
| |
| x->mb_rd_record.num = x->mb_rd_record.index_start = 0; |
| |
| if (!use_nonrd_mode) { |
| av1_zero(x->txb_rd_record_8X8); |
| av1_zero(x->txb_rd_record_16X16); |
| av1_zero(x->txb_rd_record_32X32); |
| av1_zero(x->txb_rd_record_64X64); |
| av1_zero(x->txb_rd_record_intra); |
| |
| av1_zero(x->picked_ref_frames_mask); |
| |
| av1_zero(x->pred_mv); |
| } |
| PC_TREE *const pc_root = td->pc_root[mib_size_log2 - MIN_MIB_SIZE_LOG2]; |
| pc_root->index = 0; |
| |
| if ((sf->simple_motion_search_split || |
| sf->simple_motion_search_prune_rect || |
| sf->simple_motion_search_early_term_none) && |
| !frame_is_intra_only(cm) && !use_nonrd_mode) { |
| init_simple_motion_search_mvs(pc_root); |
| } |
| #if !CONFIG_REALTIME_ONLY |
| td->mb.cnn_output_valid = 0; |
| #endif |
| |
| xd->cur_frame_force_integer_mv = cm->cur_frame_force_integer_mv; |
| |
| x->sb_energy_level = 0; |
| if (cm->delta_q_info.delta_q_present_flag) |
| setup_delta_q(cpi, td, x, tile_info, mi_row, mi_col, num_planes); |
| |
| td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col); |
| |
| const int idx_str = cm->mi_stride * mi_row + mi_col; |
| MB_MODE_INFO **mi = cm->mi_grid_visible + idx_str; |
| x->source_variance = UINT_MAX; |
| x->simple_motion_pred_sse = UINT_MAX; |
| const struct segmentation *const seg = &cm->seg; |
| int seg_skip = 0; |
| if (seg->enabled) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| const int segment_id = |
| map ? get_segment_id(cm, map, sb_size, mi_row, mi_col) : 0; |
| seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); |
| } |
| // Realtime non-rd path. |
| if (!(sf->partition_search_type == FIXED_PARTITION || seg_skip) && |
| !cpi->partition_search_skippable_frame && |
| sf->partition_search_type == VAR_BASED_PARTITION && use_nonrd_mode) { |
| set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, |
| sb_size); |
| av1_choose_var_based_partitioning(cpi, tile_info, x, mi_row, mi_col); |
| td->mb.cb_offset = 0; |
| nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, |
| pc_root); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| int dummy_rate; |
| int64_t dummy_dist; |
| RD_STATS dummy_rdc; |
| av1_invalid_rd_stats(&dummy_rdc); |
| if (sf->partition_search_type == FIXED_PARTITION || seg_skip) { |
| adjust_rdmult_tpl_model(cpi, x, mi_row, mi_col); |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| const BLOCK_SIZE bsize = seg_skip ? sb_size : sf->always_this_block_size; |
| set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, |
| &dummy_rate, &dummy_dist, 1, pc_root); |
| } else if (cpi->partition_search_skippable_frame) { |
| adjust_rdmult_tpl_model(cpi, x, mi_row, mi_col); |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| const BLOCK_SIZE bsize = |
| get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col); |
| set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, |
| &dummy_rate, &dummy_dist, 1, pc_root); |
| } else if (!(sf->partition_search_type == VAR_BASED_PARTITION && |
| use_nonrd_mode)) { |
| adjust_rdmult_tpl_model(cpi, x, mi_row, mi_col); |
| reset_partition(pc_root, sb_size); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, rd_pick_partition_time); |
| #endif |
| BLOCK_SIZE max_sq_size = BLOCK_128X128; |
| switch (cpi->oxcf.max_partition_size) { |
| case 4: max_sq_size = BLOCK_4X4; break; |
| case 8: max_sq_size = BLOCK_8X8; break; |
| case 16: max_sq_size = BLOCK_16X16; break; |
| case 32: max_sq_size = BLOCK_32X32; break; |
| case 64: max_sq_size = BLOCK_64X64; break; |
| case 128: max_sq_size = BLOCK_128X128; break; |
| default: assert(0); break; |
| } |
| max_sq_size = AOMMIN(max_sq_size, sb_size); |
| |
| BLOCK_SIZE min_sq_size = BLOCK_4X4; |
| switch (cpi->oxcf.min_partition_size) { |
| case 4: min_sq_size = BLOCK_4X4; break; |
| case 8: min_sq_size = BLOCK_8X8; break; |
| case 16: min_sq_size = BLOCK_16X16; break; |
| case 32: min_sq_size = BLOCK_32X32; break; |
| case 64: min_sq_size = BLOCK_64X64; break; |
| case 128: min_sq_size = BLOCK_128X128; break; |
| default: assert(0); break; |
| } |
| |
| if (use_auto_max_partition(cpi, sb_size, mi_row, mi_col)) { |
| float features[FEATURE_SIZE_MAX_MIN_PART_PRED] = { 0.0f }; |
| |
| av1_get_max_min_partition_features(cpi, x, mi_row, mi_col, features); |
| max_sq_size = |
| AOMMIN(av1_predict_max_partition(cpi, x, features), max_sq_size); |
| } |
| |
| min_sq_size = AOMMIN(min_sq_size, max_sq_size); |
| |
| rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, |
| max_sq_size, min_sq_size, &dummy_rdc, dummy_rdc, |
| pc_root, NULL); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, rd_pick_partition_time); |
| #endif |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| // TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile. |
| if (cpi->sf.inter_mode_rd_model_estimation == 1 && cm->tile_cols == 1 && |
| cm->tile_rows == 1) { |
| av1_inter_mode_data_fit(tile_data, x->rdmult); |
| } |
| if (tile_data->allow_update_cdf && (cpi->row_mt == 1) && |
| (tile_info->mi_row_end > (mi_row + mib_size))) { |
| if (sb_cols_in_tile == 1) |
| memcpy(x->row_ctx, xd->tile_ctx, sizeof(*xd->tile_ctx)); |
| else if (sb_col_in_tile >= 1) |
| memcpy(x->row_ctx + sb_col_in_tile - 1, xd->tile_ctx, |
| sizeof(*xd->tile_ctx)); |
| } |
| (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row, |
| sb_col_in_tile, sb_cols_in_tile); |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, encode_sb_time); |
| #endif |
| } |
| |
| static void init_encode_frame_mb_context(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| // Copy data over into macro block data structures. |
| av1_setup_src_planes(x, cpi->source, 0, 0, num_planes, |
| cm->seq_params.sb_size); |
| |
| av1_setup_block_planes(xd, cm->seq_params.subsampling_x, |
| cm->seq_params.subsampling_y, num_planes); |
| } |
| |
| static MV_REFERENCE_FRAME get_frame_type(const AV1_COMP *cpi) { |
| if (frame_is_intra_only(&cpi->common)) { |
| return INTRA_FRAME; |
| } else if ((cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) || |
| cpi->rc.is_src_frame_internal_arf) { |
| // We will not update the golden frame with an internal overlay frame |
| return ALTREF_FRAME; |
| } else if (cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame || |
| cpi->refresh_alt_ref_frame) { |
| return GOLDEN_FRAME; |
| } else { |
| return LAST_FRAME; |
| } |
| } |
| |
| static TX_MODE select_tx_mode(const AV1_COMP *cpi) { |
| if (cpi->common.coded_lossless) return ONLY_4X4; |
| if (cpi->sf.tx_size_search_method == USE_LARGESTALL) |
| return TX_MODE_LARGEST; |
| else if (cpi->sf.tx_size_search_method == USE_FULL_RD || |
| cpi->sf.tx_size_search_method == USE_FAST_RD) |
| return TX_MODE_SELECT; |
| else |
| return cpi->common.tx_mode; |
| } |
| |
| void av1_alloc_tile_data(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int tile_cols = cm->tile_cols; |
| const int tile_rows = cm->tile_rows; |
| int tile_col, tile_row; |
| |
| if (cpi->tile_data != NULL) aom_free(cpi->tile_data); |
| CHECK_MEM_ERROR( |
| cm, cpi->tile_data, |
| aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data))); |
| cpi->allocated_tiles = tile_cols * tile_rows; |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *const tile_data = |
| &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| int i, j; |
| for (i = 0; i < BLOCK_SIZES_ALL; ++i) { |
| for (j = 0; j < MAX_MODES; ++j) { |
| tile_data->thresh_freq_fact[i][j] = 32; |
| } |
| } |
| } |
| } |
| |
| void av1_init_tile_data(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const int tile_cols = cm->tile_cols; |
| const int tile_rows = cm->tile_rows; |
| int tile_col, tile_row; |
| TOKENEXTRA *pre_tok = cpi->tile_tok[0][0]; |
| TOKENLIST *tplist = cpi->tplist[0][0]; |
| unsigned int tile_tok = 0; |
| int tplist_count = 0; |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) { |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *const tile_data = |
| &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| av1_tile_init(tile_info, cm, tile_row, tile_col); |
| |
| cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; |
| pre_tok = cpi->tile_tok[tile_row][tile_col]; |
| tile_tok = allocated_tokens( |
| *tile_info, cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes); |
| cpi->tplist[tile_row][tile_col] = tplist + tplist_count; |
| tplist = cpi->tplist[tile_row][tile_col]; |
| tplist_count = av1_get_sb_rows_in_tile(cm, tile_data->tile_info); |
| tile_data->allow_update_cdf = !cm->large_scale_tile; |
| tile_data->allow_update_cdf = |
| tile_data->allow_update_cdf && !cm->disable_cdf_update; |
| tile_data->tctx = *cm->fc; |
| } |
| } |
| } |
| |
| void av1_encode_sb_row(AV1_COMP *cpi, ThreadData *td, int tile_row, |
| int tile_col, int mi_row) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const int tile_cols = cm->tile_cols; |
| TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| const TileInfo *const tile_info = &this_tile->tile_info; |
| TOKENEXTRA *tok = NULL; |
| const int sb_row_in_tile = |
| (mi_row - tile_info->mi_row_start) >> cm->seq_params.mib_size_log2; |
| const int tile_mb_cols = |
| (tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2; |
| const int num_mb_rows_in_sb = |
| ((1 << (cm->seq_params.mib_size_log2 + MI_SIZE_LOG2)) + 8) >> 4; |
| |
| get_start_tok(cpi, tile_row, tile_col, mi_row, &tok, |
| cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes); |
| cpi->tplist[tile_row][tile_col][sb_row_in_tile].start = tok; |
| |
| encode_sb_row(cpi, td, this_tile, mi_row, &tok, cpi->sf.use_nonrd_pick_mode); |
| |
| cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop = tok; |
| cpi->tplist[tile_row][tile_col][sb_row_in_tile].count = |
| (unsigned int)(cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop - |
| cpi->tplist[tile_row][tile_col][sb_row_in_tile].start); |
| |
| assert( |
| (unsigned int)(tok - |
| cpi->tplist[tile_row][tile_col][sb_row_in_tile].start) <= |
| get_token_alloc(num_mb_rows_in_sb, tile_mb_cols, |
| cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes)); |
| |
| (void)tile_mb_cols; |
| (void)num_mb_rows_in_sb; |
| } |
| |
| void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row, |
| int tile_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| TileDataEnc *const this_tile = |
| &cpi->tile_data[tile_row * cm->tile_cols + tile_col]; |
| const TileInfo *const tile_info = &this_tile->tile_info; |
| int mi_row; |
| |
| av1_inter_mode_data_init(this_tile); |
| |
| av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start, |
| tile_info->mi_col_end, tile_row); |
| av1_init_above_context(cm, &td->mb.e_mbd, tile_row); |
| |
| // Set up pointers to per thread motion search counters. |
| this_tile->m_search_count = 0; // Count of motion search hits. |
| this_tile->ex_search_count = 0; // Exhaustive mesh search hits. |
| td->mb.m_search_count_ptr = &this_tile->m_search_count; |
| td->mb.ex_search_count_ptr = &this_tile->ex_search_count; |
| |
| cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params); |
| |
| av1_crc32c_calculator_init(&td->mb.mb_rd_record.crc_calculator); |
| |
| for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; |
| mi_row += cm->seq_params.mib_size) { |
| av1_encode_sb_row(cpi, td, tile_row, tile_col, mi_row); |
| } |
| } |
| |
| static void encode_tiles(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int tile_cols = cm->tile_cols; |
| const int tile_rows = cm->tile_rows; |
| int tile_col, tile_row; |
| |
| if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) |
| av1_alloc_tile_data(cpi); |
| |
| av1_init_tile_data(cpi); |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) { |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *const this_tile = |
| &cpi->tile_data[tile_row * cm->tile_cols + tile_col]; |
| cpi->td.intrabc_used = 0; |
| cpi->td.deltaq_used = 0; |
| cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; |
| cpi->td.mb.tile_pb_ctx = &this_tile->tctx; |
| av1_encode_tile(cpi, &cpi->td, tile_row, tile_col); |
| cpi->intrabc_used |= cpi->td.intrabc_used; |
| cpi->deltaq_used |= cpi->td.deltaq_used; |
| } |
| } |
| } |
| |
| #define GLOBAL_TRANS_TYPES_ENC 3 // highest motion model to search |
| static int gm_get_params_cost(const WarpedMotionParams *gm, |
| const WarpedMotionParams *ref_gm, int allow_hp) { |
| int params_cost = 0; |
| int trans_bits, trans_prec_diff; |
| switch (gm->wmtype) { |
| case AFFINE: |
| case ROTZOOM: |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS), |
| (gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[3] >> GM_ALPHA_PREC_DIFF), |
| (gm->wmmat[3] >> GM_ALPHA_PREC_DIFF)); |
| if (gm->wmtype >= AFFINE) { |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[4] >> GM_ALPHA_PREC_DIFF), |
| (gm->wmmat[4] >> GM_ALPHA_PREC_DIFF)); |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - |
| (1 << GM_ALPHA_PREC_BITS), |
| (gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); |
| } |
| AOM_FALLTHROUGH_INTENDED; |
| case TRANSLATION: |
| trans_bits = (gm->wmtype == TRANSLATION) |
| ? GM_ABS_TRANS_ONLY_BITS - !allow_hp |
| : GM_ABS_TRANS_BITS; |
| trans_prec_diff = (gm->wmtype == TRANSLATION) |
| ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp |
| : GM_TRANS_PREC_DIFF; |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| (1 << trans_bits) + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[0] >> trans_prec_diff), |
| (gm->wmmat[0] >> trans_prec_diff)); |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| (1 << trans_bits) + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[1] >> trans_prec_diff), |
| (gm->wmmat[1] >> trans_prec_diff)); |
| AOM_FALLTHROUGH_INTENDED; |
| case IDENTITY: break; |
| default: assert(0); |
| } |
| return (params_cost << AV1_PROB_COST_SHIFT); |
| } |
| |
| static int do_gm_search_logic(SPEED_FEATURES *const sf, int num_refs_using_gm, |
| int frame) { |
| (void)num_refs_using_gm; |
| (void)frame; |
| switch (sf->gm_search_type) { |
| case GM_FULL_SEARCH: return 1; |
| case GM_REDUCED_REF_SEARCH_SKIP_L2_L3: |
| return !(frame == LAST2_FRAME || frame == LAST3_FRAME); |
| case GM_REDUCED_REF_SEARCH_SKIP_L2_L3_ARF2: |
| return !(frame == LAST2_FRAME || frame == LAST3_FRAME || |
| (frame == ALTREF2_FRAME)); |
| case GM_DISABLE_SEARCH: return 0; |
| default: assert(0); |
| } |
| return 1; |
| } |
| |
| static int get_max_allowed_ref_frames(const AV1_COMP *cpi) { |
| const unsigned int max_allowed_refs_for_given_speed = |
| (cpi->sf.selective_ref_frame >= 3) ? INTER_REFS_PER_FRAME - 1 |
| : INTER_REFS_PER_FRAME; |
| return AOMMIN(max_allowed_refs_for_given_speed, |
| cpi->oxcf.max_reference_frames); |
| } |
| |
| // Enforce the number of references for each arbitrary frame based on user |
| // options and speed. |
| static void enforce_max_ref_frames(AV1_COMP *cpi) { |
| MV_REFERENCE_FRAME ref_frame; |
| int total_valid_refs = 0; |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { |
| total_valid_refs++; |
| } |
| } |
| |
| const int max_allowed_refs = get_max_allowed_ref_frames(cpi); |
| |
| // When more than 'max_allowed_refs' are available, we reduce the number of |
| // reference frames one at a time based on this order. |
| const MV_REFERENCE_FRAME disable_order[] = { |
| LAST3_FRAME, |
| LAST2_FRAME, |
| ALTREF2_FRAME, |
| GOLDEN_FRAME, |
| }; |
| |
| for (int i = 0; i < 4 && total_valid_refs > max_allowed_refs; ++i) { |
| const MV_REFERENCE_FRAME ref_frame_to_disable = disable_order[i]; |
| |
| if (!(cpi->ref_frame_flags & |
| av1_ref_frame_flag_list[ref_frame_to_disable])) { |
| continue; |
| } |
| |
| switch (ref_frame_to_disable) { |
| case LAST3_FRAME: cpi->ref_frame_flags &= ~AOM_LAST3_FLAG; break; |
| case LAST2_FRAME: cpi->ref_frame_flags &= ~AOM_LAST2_FLAG; break; |
| case ALTREF2_FRAME: cpi->ref_frame_flags &= ~AOM_ALT2_FLAG; break; |
| case GOLDEN_FRAME: cpi->ref_frame_flags &= ~AOM_GOLD_FLAG; break; |
| default: assert(0); |
| } |
| --total_valid_refs; |
| } |
| assert(total_valid_refs <= max_allowed_refs); |
| } |
| |
| static INLINE int av1_refs_are_one_sided(const AV1_COMMON *cm) { |
| assert(!frame_is_intra_only(cm)); |
| |
| int one_sided_refs = 1; |
| for (int ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) { |
| const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref); |
| if (buf == NULL) continue; |
| |
| const int ref_order_hint = buf->order_hint; |
| if (get_relative_dist(&cm->seq_params.order_hint_info, ref_order_hint, |
| (int)cm->current_frame.order_hint) > 0) { |
| one_sided_refs = 0; // bwd reference |
| break; |
| } |
| } |
| return one_sided_refs; |
| } |
| |
| static INLINE void get_skip_mode_ref_offsets(const AV1_COMMON *cm, |
| int ref_order_hint[2]) { |
| const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info; |
| ref_order_hint[0] = ref_order_hint[1] = 0; |
| if (!skip_mode_info->skip_mode_allowed) return; |
| |
| const RefCntBuffer *const buf_0 = |
| get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_0); |
| const RefCntBuffer *const buf_1 = |
| get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_1); |
| assert(buf_0 != NULL && buf_1 != NULL); |
| |
| ref_order_hint[0] = buf_0->order_hint; |
| ref_order_hint[1] = buf_1->order_hint; |
| } |
| |
| static int check_skip_mode_enabled(AV1_COMP *const cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| |
| av1_setup_skip_mode_allowed(cm); |
| if (!cm->current_frame.skip_mode_info.skip_mode_allowed) return 0; |
| |
| // Turn off skip mode if the temporal distances of the reference pair to the |
| // current frame are different by more than 1 frame. |
| const int cur_offset = (int)cm->current_frame.order_hint; |
| int ref_offset[2]; |
| get_skip_mode_ref_offsets(cm, ref_offset); |
| const int cur_to_ref0 = get_relative_dist(&cm->seq_params.order_hint_info, |
| cur_offset, ref_offset[0]); |
| const int cur_to_ref1 = abs(get_relative_dist(&cm->seq_params.order_hint_info, |
| cur_offset, ref_offset[1])); |
| if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0; |
| |
| // High Latency: Turn off skip mode if all refs are fwd. |
| if (cpi->all_one_sided_refs && cpi->oxcf.lag_in_frames > 0) return 0; |
| |
| static const int flag_list[REF_FRAMES] = { 0, |
| AOM_LAST_FLAG, |
| AOM_LAST2_FLAG, |
| AOM_LAST3_FLAG, |
| AOM_GOLD_FLAG, |
| AOM_BWD_FLAG, |
| AOM_ALT2_FLAG, |
| AOM_ALT_FLAG }; |
| const int ref_frame[2] = { |
| cm->current_frame.skip_mode_info.ref_frame_idx_0 + LAST_FRAME, |
| cm->current_frame.skip_mode_info.ref_frame_idx_1 + LAST_FRAME |
| }; |
| if (!(cpi->ref_frame_flags & flag_list[ref_frame[0]]) || |
| !(cpi->ref_frame_flags & flag_list[ref_frame[1]])) |
| return 0; |
| |
| return 1; |
| } |
| |
| // Function to decide if we can skip the global motion parameter computation |
| // for a particular ref frame |
| static INLINE int skip_gm_frame(AV1_COMMON *const cm, int ref_frame) { |
| if ((ref_frame == LAST3_FRAME || ref_frame == LAST2_FRAME) && |
| cm->global_motion[GOLDEN_FRAME].wmtype != IDENTITY) { |
| return get_relative_dist( |
| &cm->seq_params.order_hint_info, |
| cm->cur_frame->ref_order_hints[ref_frame - LAST_FRAME], |
| cm->cur_frame->ref_order_hints[GOLDEN_FRAME - LAST_FRAME]) <= 0; |
| } |
| return 0; |
| } |
| |
| static void set_default_interp_skip_flags(AV1_COMP *cpi) { |
| const int num_planes = av1_num_planes(&cpi->common); |
| cpi->default_interp_skip_flags = (num_planes == 1) |
| ? DEFAULT_LUMA_INTERP_SKIP_FLAG |
| : DEFAULT_INTERP_SKIP_FLAG; |
| } |
| |
| static void encode_frame_internal(AV1_COMP *cpi) { |
| ThreadData *const td = &cpi->td; |
| MACROBLOCK *const x = &td->mb; |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| RD_COUNTS *const rdc = &cpi->td.rd_counts; |
| int i; |
| |
| x->min_partition_size = AOMMIN(x->min_partition_size, cm->seq_params.sb_size); |
| x->max_partition_size = AOMMIN(x->max_partition_size, cm->seq_params.sb_size); |
| #if CONFIG_DIST_8X8 |
| x->using_dist_8x8 = cpi->oxcf.using_dist_8x8; |
| x->tune_metric = cpi->oxcf.tuning; |
| #endif |
| |
| if (!cpi->sf.use_nonrd_pick_mode) { |
| cm->setup_mi(cm); |
| } |
| |
| xd->mi = cm->mi_grid_visible; |
| xd->mi[0] = cm->mi; |
| |
| av1_zero(*td->counts); |
| av1_zero(rdc->comp_pred_diff); |
| |
| // Reset the flag. |
| cpi->intrabc_used = 0; |
| // Need to disable intrabc when superres is selected |
| if (av1_superres_scaled(cm)) { |
| cm->allow_intrabc = 0; |
| } |
| |
| cm->allow_intrabc &= (cpi->oxcf.enable_intrabc); |
| |
| if (cpi->oxcf.pass != 1 && av1_use_hash_me(cm) && |
| !cpi->sf.use_nonrd_pick_mode) { |
| // add to hash table |
| const int pic_width = cpi->source->y_crop_width; |
| const int pic_height = cpi->source->y_crop_height; |
| uint32_t *block_hash_values[2][2]; |
| int8_t *is_block_same[2][3]; |
| int k, j; |
| |
| for (k = 0; k < 2; k++) { |
| for (j = 0; j < 2; j++) { |
| CHECK_MEM_ERROR(cm, block_hash_values[k][j], |
| aom_malloc(sizeof(uint32_t) * pic_width * pic_height)); |
| } |
| |
| for (j = 0; j < 3; j++) { |
| CHECK_MEM_ERROR(cm, is_block_same[k][j], |
| aom_malloc(sizeof(int8_t) * pic_width * pic_height)); |
| } |
| } |
| |
| av1_hash_table_create(&cm->cur_frame->hash_table); |
| av1_generate_block_2x2_hash_value(cpi->source, block_hash_values[0], |
| is_block_same[0], &cpi->td.mb); |
| av1_generate_block_hash_value(cpi->source, 4, block_hash_values[0], |
| block_hash_values[1], is_block_same[0], |
| is_block_same[1], &cpi->td.mb); |
| av1_add_to_hash_map_by_row_with_precal_data( |
| &cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2], |
| pic_width, pic_height, 4); |
| av1_generate_block_hash_value(cpi->source, 8, block_hash_values[1], |
| block_hash_values[0], is_block_same[1], |
| is_block_same[0], &cpi->td.mb); |
| av1_add_to_hash_map_by_row_with_precal_data( |
| &cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2], |
| pic_width, pic_height, 8); |
| av1_generate_block_hash_value(cpi->source, 16, block_hash_values[0], |
| block_hash_values[1], is_block_same[0], |
| is_block_same[1], &cpi->td.mb); |
| av1_add_to_hash_map_by_row_with_precal_data( |
| &cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2], |
| pic_width, pic_height, 16); |
| av1_generate_block_hash_value(cpi->source, 32, block_hash_values[1], |
| block_hash_values[0], is_block_same[1], |
| is_block_same[0], &cpi->td.mb); |
| av1_add_to_hash_map_by_row_with_precal_data( |
| &cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2], |
| pic_width, pic_height, 32); |
| av1_generate_block_hash_value(cpi->source, 64, block_hash_values[0], |
| block_hash_values[1], is_block_same[0], |
| is_block_same[1], &cpi->td.mb); |
| av1_add_to_hash_map_by_row_with_precal_data( |
| &cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2], |
| pic_width, pic_height, 64); |
| |
| av1_generate_block_hash_value(cpi->source, 128, block_hash_values[1], |
| block_hash_values[0], is_block_same[1], |
| is_block_same[0], &cpi->td.mb); |
| av1_add_to_hash_map_by_row_with_precal_data( |
| &cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2], |
| pic_width, pic_height, 128); |
| |
| for (k = 0; k < 2; k++) { |
| for (j = 0; j < 2; j++) { |
| aom_free(block_hash_values[k][j]); |
| } |
| |
| for (j = 0; j < 3; j++) { |
| aom_free(is_block_same[k][j]); |
| } |
| } |
| } |
| |
| for (i = 0; i < MAX_SEGMENTS; ++i) { |
| const int qindex = cm->seg.enabled |
| ? av1_get_qindex(&cm->seg, i, cm->base_qindex) |
| : cm->base_qindex; |
| xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 && |
| cm->u_dc_delta_q == 0 && cm->u_ac_delta_q == 0 && |
| cm->v_dc_delta_q == 0 && cm->v_ac_delta_q == 0; |
| if (xd->lossless[i]) cpi->has_lossless_segment = 1; |
| xd->qindex[i] = qindex; |
| if (xd->lossless[i]) { |
| cpi->optimize_seg_arr[i] = 0; |
| } else { |
| cpi->optimize_seg_arr[i] = cpi->sf.optimize_coefficients; |
| } |
| } |
| cm->coded_lossless = is_coded_lossless(cm, xd); |
| cm->all_lossless = cm->coded_lossless && !av1_superres_scaled(cm); |
| |
| cm->tx_mode = select_tx_mode(cpi); |
| |
| // Fix delta q resolution for the moment |
| cm->delta_q_info.delta_q_res = 0; |
| if (cpi->oxcf.deltaq_mode == DELTA_Q_OBJECTIVE) |
| cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_OBJECTIVE; |
| else if (cpi->oxcf.deltaq_mode == DELTA_Q_PERCEPTUAL) |
| cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; |
| // Set delta_q_present_flag before it is used for the first time |
| cm->delta_q_info.delta_lf_res = DEFAULT_DELTA_LF_RES; |
| cm->delta_q_info.delta_q_present_flag = cpi->oxcf.deltaq_mode != NO_DELTA_Q; |
| |
| // Turn off cm->delta_q_info.delta_q_present_flag if objective delta_q is used |
| // for ineligible frames. That effectively will turn off row_mt usage. |
| // Note objective delta_q and tpl eligible frames are only altref frames |
| // currently. |
| if (cm->delta_q_info.delta_q_present_flag) { |
| if (cpi->oxcf.deltaq_mode == DELTA_Q_OBJECTIVE && |
| !is_frame_tpl_eligible(cpi)) |
| cm->delta_q_info.delta_q_present_flag = 0; |
| } |
| |
| // Reset delta_q_used flag |
| cpi->deltaq_used = 0; |
| |
| cm->delta_q_info.delta_lf_present_flag = |
| cm->delta_q_info.delta_q_present_flag && cpi->oxcf.deltalf_mode; |
| cm->delta_q_info.delta_lf_multi = DEFAULT_DELTA_LF_MULTI; |
| |
| // update delta_q_present_flag and delta_lf_present_flag based on |
| // base_qindex |
| cm->delta_q_info.delta_q_present_flag &= cm->base_qindex > 0; |
| cm->delta_q_info.delta_lf_present_flag &= cm->base_qindex > 0; |
| |
| av1_frame_init_quantizer(cpi); |
| |
| av1_initialize_rd_consts(cpi); |
| // Setup rdmult based on base_qindex at the frame level |
| x->rdmult = cpi->rd.RDMULT; |
| av1_initialize_me_consts(cpi, x, cm->base_qindex); |
| |
| init_encode_frame_mb_context(cpi); |
| set_default_interp_skip_flags(cpi); |
| if (cm->prev_frame) |
| cm->last_frame_seg_map = cm->prev_frame->seg_map; |
| else |
| cm->last_frame_seg_map = NULL; |
| if (cm->allow_intrabc || cm->coded_lossless) { |
| av1_set_default_ref_deltas(cm->lf.ref_deltas); |
| av1_set_default_mode_deltas(cm->lf.mode_deltas); |
| } else if (cm->prev_frame) { |
| memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES); |
| memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); |
| } |
| memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES); |
| memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS); |
| |
| x->txb_split_count = 0; |
| #if CONFIG_SPEED_STATS |
| x->tx_search_count = 0; |
| #endif // CONFIG_SPEED_STATS |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_compute_global_motion_time); |
| #endif |
| av1_zero(rdc->global_motion_used); |
| av1_zero(cpi->gmparams_cost); |
| if (cpi->common.current_frame.frame_type == INTER_FRAME && cpi->source && |
| cpi->oxcf.enable_global_motion && !cpi->global_motion_search_done) { |
| YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES]; |
| int frame; |
| MotionModel params_by_motion[RANSAC_NUM_MOTIONS]; |
| for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) { |
| memset(¶ms_by_motion[m], 0, sizeof(params_by_motion[m])); |
| params_by_motion[m].inliers = |
| aom_malloc(sizeof(*(params_by_motion[m].inliers)) * 2 * MAX_CORNERS); |
| } |
| |
| const double *params_this_motion; |
| int inliers_by_motion[RANSAC_NUM_MOTIONS]; |
| WarpedMotionParams tmp_wm_params; |
| // clang-format off |
| static const double kIdentityParams[MAX_PARAMDIM - 1] = { |
| 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0 |
| }; |
| // clang-format on |
| int num_refs_using_gm = 0; |
| int num_frm_corners = -1; |
| int frm_corners[2 * MAX_CORNERS]; |
| unsigned char *frm_buffer = cpi->source->y_buffer; |
| if (cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) { |
| // The frame buffer is 16-bit, so we need to convert to 8 bits for the |
| // following code. We cache the result until the frame is released. |
| frm_buffer = |
| av1_downconvert_frame(cpi->source, cpi->common.seq_params.bit_depth); |
| } |
| const int segment_map_w = |
| (cpi->source->y_width + WARP_ERROR_BLOCK) >> WARP_ERROR_BLOCK_LOG; |
| const int segment_map_h = |
| (cpi->source->y_height + WARP_ERROR_BLOCK) >> WARP_ERROR_BLOCK_LOG; |
| |
| uint8_t *segment_map = |
| aom_malloc(sizeof(*segment_map) * segment_map_w * segment_map_h); |
| memset(segment_map, 0, |
| sizeof(*segment_map) * segment_map_w * segment_map_h); |
| |
| for (frame = ALTREF_FRAME; frame >= LAST_FRAME; --frame) { |
| ref_buf[frame] = NULL; |
| RefCntBuffer *buf = get_ref_frame_buf(cm, frame); |
| if (buf != NULL) ref_buf[frame] = &buf->buf; |
| int pframe; |
| cm->global_motion[frame] = default_warp_params; |
| const WarpedMotionParams *ref_params = |
| cm->prev_frame ? &cm->prev_frame->global_motion[frame] |
| : &default_warp_params; |
| // check for duplicate buffer |
| for (pframe = ALTREF_FRAME; pframe > frame; --pframe) { |
| if (ref_buf[frame] == ref_buf[pframe]) break; |
| } |
| if (pframe > frame) { |
| memcpy(&cm->global_motion[frame], &cm->global_motion[pframe], |
| sizeof(WarpedMotionParams)); |
| } else if (ref_buf[frame] && |
| ref_buf[frame]->y_crop_width == cpi->source->y_crop_width && |
| ref_buf[frame]->y_crop_height == cpi->source->y_crop_height && |
| do_gm_search_logic(&cpi->sf, num_refs_using_gm, frame) && |
| !(cpi->sf.selective_ref_gm && skip_gm_frame(cm, frame))) { |
| if (num_frm_corners < 0) { |
| // compute interest points using FAST features |
| num_frm_corners = av1_fast_corner_detect( |
| frm_buffer, cpi->source->y_width, cpi->source->y_height, |
| cpi->source->y_stride, frm_corners, MAX_CORNERS); |
| } |
| TransformationType model; |
| |
| aom_clear_system_state(); |
| |
| // TODO(sarahparker, debargha): Explore do_adaptive_gm_estimation = 1 |
| const int do_adaptive_gm_estimation = 0; |
| |
| const int ref_frame_dist = get_relative_dist( |
| &cm->seq_params.order_hint_info, cm->current_frame.order_hint, |
| cm->cur_frame->ref_order_hints[frame - LAST_FRAME]); |
| const GlobalMotionEstimationType gm_estimation_type = |
| cm->seq_params.order_hint_info.enable_order_hint && |
| abs(ref_frame_dist) <= 2 && do_adaptive_gm_estimation |
| ? GLOBAL_MOTION_DISFLOW_BASED |
| : GLOBAL_MOTION_FEATURE_BASED; |
| for (model = ROTZOOM; model < GLOBAL_TRANS_TYPES_ENC; ++model) { |
| int64_t best_warp_error = INT64_MAX; |
| // Initially set all params to identity. |
| for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) { |
| memcpy(params_by_motion[i].params, kIdentityParams, |
| (MAX_PARAMDIM - 1) * sizeof(*(params_by_motion[i].params))); |
| } |
| |
| av1_compute_global_motion( |
| model, frm_buffer, cpi->source->y_width, cpi->source->y_height, |
| cpi->source->y_stride, frm_corners, num_frm_corners, |
| ref_buf[frame], cpi->common.seq_params.bit_depth, |
| gm_estimation_type, inliers_by_motion, params_by_motion, |
| RANSAC_NUM_MOTIONS); |
| |
| for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) { |
| if (inliers_by_motion[i] == 0) continue; |
| |
| params_this_motion = params_by_motion[i].params; |
| av1_convert_model_to_params(params_this_motion, &tmp_wm_params); |
| |
| if (tmp_wm_params.wmtype != IDENTITY) { |
| av1_compute_feature_segmentation_map( |
| segment_map, segment_map_w, segment_map_h, |
| params_by_motion[i].inliers, params_by_motion[i].num_inliers); |
| |
| const int64_t warp_error = av1_refine_integerized_param( |
| &tmp_wm_params, tmp_wm_params.wmtype, is_cur_buf_hbd(xd), |
| xd->bd, ref_buf[frame]->y_buffer, ref_buf[frame]->y_width, |
| ref_buf[frame]->y_height, ref_buf[frame]->y_stride, |
| cpi->source->y_buffer, cpi->source->y_width, |
| cpi->source->y_height, cpi->source->y_stride, 5, |
| best_warp_error, segment_map, segment_map_w); |
| if (warp_error < best_warp_error) { |
| best_warp_error = warp_error; |
| // Save the wm_params modified by |
| // av1_refine_integerized_param() rather than motion index to |
| // avoid rerunning refine() below. |
| memcpy(&(cm->global_motion[frame]), &tmp_wm_params, |
| sizeof(WarpedMotionParams)); |
| } |
| } |
| } |
| if (cm->global_motion[frame].wmtype <= AFFINE) |
| if (!av1_get_shear_params(&cm->global_motion[frame])) |
| cm->global_motion[frame] = default_warp_params; |
| |
| if (cm->global_motion[frame].wmtype == TRANSLATION) { |
| cm->global_motion[frame].wmmat[0] = |
| convert_to_trans_prec(cm->allow_high_precision_mv, |
| cm->global_motion[frame].wmmat[0]) * |
| GM_TRANS_ONLY_DECODE_FACTOR; |
| cm->global_motion[frame].wmmat[1] = |
| convert_to_trans_prec(cm->allow_high_precision_mv, |
| cm->global_motion[frame].wmmat[1]) * |
| GM_TRANS_ONLY_DECODE_FACTOR; |
| } |
| |
| if (cm->global_motion[frame].wmtype == IDENTITY) continue; |
| |
| const int64_t ref_frame_error = av1_segmented_frame_error( |
| is_cur_buf_hbd(xd), xd->bd, ref_buf[frame]->y_buffer, |
| ref_buf[frame]->y_stride, cpi->source->y_buffer, |
| cpi->source->y_width, cpi->source->y_height, |
| cpi->source->y_stride, segment_map, segment_map_w); |
| |
| if (ref_frame_error == 0) continue; |
| |
| // If the best error advantage found doesn't meet the threshold for |
| // this motion type, revert to IDENTITY. |
| if (!av1_is_enough_erroradvantage( |
| (double)best_warp_error / ref_frame_error, |
| gm_get_params_cost(&cm->global_motion[frame], ref_params, |
| cm->allow_high_precision_mv), |
| cpi->sf.gm_erroradv_type)) { |
| cm->global_motion[frame] = default_warp_params; |
| } |
| if (cm->global_motion[frame].wmtype != IDENTITY) break; |
| } |
| aom_clear_system_state(); |
| } |
| if (cm->global_motion[frame].wmtype != IDENTITY) num_refs_using_gm++; |
| cpi->gmparams_cost[frame] = |
| gm_get_params_cost(&cm->global_motion[frame], ref_params, |
| cm->allow_high_precision_mv) + |
| cpi->gmtype_cost[cm->global_motion[frame].wmtype] - |
| cpi->gmtype_cost[IDENTITY]; |
| } |
| aom_free(segment_map); |
| // clear disabled ref_frames |
| for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { |
| const int ref_disabled = |
| !(cpi->ref_frame_flags & av1_ref_frame_flag_list[frame]); |
| if (ref_disabled && cpi->sf.recode_loop != DISALLOW_RECODE) { |
| cpi->gmparams_cost[frame] = 0; |
| cm->global_motion[frame] = default_warp_params; |
| } |
| } |
| cpi->global_motion_search_done = 1; |
| for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) { |
| aom_free(params_by_motion[m].inliers); |
| } |
| } |
| memcpy(cm->cur_frame->global_motion, cm->global_motion, |
| REF_FRAMES * sizeof(WarpedMotionParams)); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_compute_global_motion_time); |
| #endif |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_setup_motion_field_time); |
| #endif |
| if (cm->allow_ref_frame_mvs) av1_setup_motion_field(cm); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_setup_motion_field_time); |
| #endif |
| |
| cpi->all_one_sided_refs = |
| frame_is_intra_only(cm) ? 0 : av1_refs_are_one_sided(cm); |
| |
| cm->current_frame.skip_mode_info.skip_mode_flag = |
| check_skip_mode_enabled(cpi); |
| |
| { |
| cpi->row_mt_sync_read_ptr = av1_row_mt_sync_read_dummy; |
| cpi->row_mt_sync_write_ptr = av1_row_mt_sync_write_dummy; |
| cpi->row_mt = 0; |
| |
| if (cpi->oxcf.row_mt && (cpi->oxcf.max_threads > 1)) { |
| cpi->row_mt = 1; |
| cpi->row_mt_sync_read_ptr = av1_row_mt_sync_read; |
| cpi->row_mt_sync_write_ptr = av1_row_mt_sync_write; |
| av1_encode_tiles_row_mt(cpi); |
| } else { |
| if (AOMMIN(cpi->oxcf.max_threads, cm->tile_cols * cm->tile_rows) > 1) |
| av1_encode_tiles_mt(cpi); |
| else |
| encode_tiles(cpi); |
| } |
| } |
| |
| // If intrabc is allowed but never selected, reset the allow_intrabc flag. |
| if (cm->allow_intrabc && !cpi->intrabc_used) cm->allow_intrabc = 0; |
| if (cm->allow_intrabc) cm->delta_q_info.delta_lf_present_flag = 0; |
| |
| if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) { |
| cm->delta_q_info.delta_q_present_flag = 0; |
| } |
| } |
| |
| #define CHECK_PRECOMPUTED_REF_FRAME_MAP 0 |
| |
| void av1_encode_frame(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| const int num_planes = av1_num_planes(cm); |
| // Indicates whether or not to use a default reduced set for ext-tx |
| // rather than the potential full set of 16 transforms |
| cm->reduced_tx_set_used = cpi->oxcf.reduced_tx_type_set; |
| |
| // Make sure segment_id is no larger than last_active_segid. |
| if (cm->seg.enabled && cm->seg.update_map) { |
| const int mi_rows = cm->mi_rows; |
| const int mi_cols = cm->mi_cols; |
| const int last_active_segid = cm->seg.last_active_segid; |
| uint8_t *map = cpi->segmentation_map; |
| for (int mi_row = 0; mi_row < mi_rows; ++mi_row) { |
| for (int mi_col = 0; mi_col < mi_cols; ++mi_col) { |
| map[mi_col] = AOMMIN(map[mi_col], last_active_segid); |
| } |
| map += mi_cols; |
| } |
| } |
| |
| av1_setup_frame_buf_refs(cm); |
| enforce_max_ref_frames(cpi); |
| av1_setup_frame_sign_bias(cm); |
| |
| #if CHECK_PRECOMPUTED_REF_FRAME_MAP |
| GF_GROUP *gf_group = &cpi->gf_group; |
| // TODO(yuec): The check is disabled on OVERLAY frames for now, because info |
| // in cpi->gf_group has been refreshed for the next GOP when the check is |
| // performed for OVERLAY frames. Since we have not support inter-GOP ref |
| // frame map computation, the precomputed ref map for an OVERLAY frame is all |
| // -1 at this point (although it is meaning before gf_group is refreshed). |
| if (!frame_is_intra_only(cm) && gf_group->index != 0) { |
| const RefCntBuffer *const golden_buf = get_ref_frame_buf(cm, GOLDEN_FRAME); |
| |
| if (golden_buf) { |
| const int golden_order_hint = golden_buf->order_hint; |
| |
| for (int ref = LAST_FRAME; ref < EXTREF_FRAME; ++ref) { |
| const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref); |
| const int ref_disp_idx_precomputed = |
| gf_group->ref_frame_disp_idx[gf_group->index][ref - LAST_FRAME]; |
| |
| (void)ref_disp_idx_precomputed; |
| |
| if (buf != NULL) { |
| const int ref_disp_idx = |
| get_relative_dist(&cm->seq_params.order_hint_info, |
| buf->order_hint, golden_order_hint); |
| |
| if (ref_disp_idx >= 0) |
| assert(ref_disp_idx == ref_disp_idx_precomputed); |
| else |
| assert(ref_disp_idx_precomputed == -1); |
| } else { |
| assert(ref_disp_idx_precomputed == -1); |
| } |
| } |
| } |
| } |
| #endif |
| |
| #if CONFIG_MISMATCH_DEBUG |
| mismatch_reset_frame(num_planes); |
| #else |
| (void)num_planes; |
| #endif |
| |
| if (cpi->sf.frame_parameter_update) { |
| int i; |
| RD_OPT *const rd_opt = &cpi->rd; |
| RD_COUNTS *const rdc = &cpi->td.rd_counts; |
| |
| // This code does a single RD pass over the whole frame assuming |
| // either compound, single or hybrid prediction as per whatever has |
| // worked best for that type of frame in the past. |
| // It also predicts whether another coding mode would have worked |
| // better than this coding mode. If that is the case, it remembers |
| // that for subsequent frames. |
| // It does the same analysis for transform size selection also. |
| // |
| // TODO(zoeliu): To investigate whether a frame_type other than |
| // INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately. |
| const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi); |
| int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type]; |
| const int is_alt_ref = frame_type == ALTREF_FRAME; |
| |
| /* prediction (compound, single or hybrid) mode selection */ |
| // NOTE: "is_alt_ref" is true only for OVERLAY/INTNL_OVERLAY frames |
| if (is_alt_ref || frame_is_intra_only(cm)) |
| current_frame->reference_mode = SINGLE_REFERENCE; |
| else |
| current_frame->reference_mode = REFERENCE_MODE_SELECT; |
| |
| cm->interp_filter = SWITCHABLE; |
| if (cm->large_scale_tile) cm->interp_filter = EIGHTTAP_REGULAR; |
| |
| cm->switchable_motion_mode = 1; |
| |
| rdc->compound_ref_used_flag = 0; |
| rdc->skip_mode_used_flag = 0; |
| |
| encode_frame_internal(cpi); |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) |
| mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2; |
| |
| if (current_frame->reference_mode == REFERENCE_MODE_SELECT) { |
| // Use a flag that includes 4x4 blocks |
| if (rdc->compound_ref_used_flag == 0) { |
| current_frame->reference_mode = SINGLE_REFERENCE; |
| #if CONFIG_ENTROPY_STATS |
| av1_zero(cpi->td.counts->comp_inter); |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| // Re-check on the skip mode status as reference mode may have been |
| // changed. |
| SkipModeInfo *const skip_mode_info = ¤t_frame->skip_mode_info; |
| if (frame_is_intra_only(cm) || |
| current_frame->reference_mode == SINGLE_REFERENCE) { |
| skip_mode_info->skip_mode_allowed = 0; |
| skip_mode_info->skip_mode_flag = 0; |
| } |
| if (skip_mode_info->skip_mode_flag && rdc->skip_mode_used_flag == 0) |
| skip_mode_info->skip_mode_flag = 0; |
| |
| if (!cm->large_scale_tile) { |
| if (cm->tx_mode == TX_MODE_SELECT && cpi->td.mb.txb_split_count == 0) |
| cm->tx_mode = TX_MODE_LARGEST; |
| } |
| } else { |
| encode_frame_internal(cpi); |
| } |
| } |
| |
| static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd, |
| FRAME_COUNTS *counts, TX_SIZE tx_size, int depth, |
| int blk_row, int blk_col, |
| uint8_t allow_update_cdf) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, |
| mbmi->sb_type, tx_size); |
| const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| assert(tx_size > TX_4X4); |
| |
| if (depth == MAX_VARTX_DEPTH) { |
| // Don't add to counts in this case |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| return; |
| } |
| |
| if (tx_size == plane_tx_size) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->txfm_partition[ctx][0]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2); |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->txfm_partition[ctx][1]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2); |
| ++x->txb_split_count; |
| |
| if (sub_txs == TX_4X4) { |
| mbmi->inter_tx_size[txb_size_index] = TX_4X4; |
| mbmi->tx_size = TX_4X4; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, TX_4X4, tx_size); |
| return; |
| } |
| |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| int offsetr = row; |
| int offsetc = col; |
| |
| update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr, |
| blk_col + offsetc, allow_update_cdf); |
| } |
| } |
| } |
| } |
| |
| static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x, |
| BLOCK_SIZE plane_bsize, int mi_row, |
| int mi_col, FRAME_COUNTS *td_counts, |
| uint8_t allow_update_cdf) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| int idx, idy; |
| |
| xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| for (idy = 0; idy < mi_height; idy += bh) |
| for (idx = 0; idx < mi_width; idx += bw) |
| update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx, |
| allow_update_cdf); |
| } |
| |
| static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row, |
| int blk_col) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| if (tx_size == plane_tx_size) { |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| |
| } else { |
| if (tx_size == TX_8X8) { |
| mbmi->inter_tx_size[txb_size_index] = TX_4X4; |
| mbmi->tx_size = TX_4X4; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, TX_4X4, tx_size); |
| return; |
| } |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| const int offsetr = blk_row + row; |
| const int offsetc = blk_col + col; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| set_txfm_context(xd, sub_txs, offsetr, offsetc); |
| } |
| } |
| } |
| } |
| |
| static void tx_partition_set_contexts(const AV1_COMMON *const cm, |
| MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, |
| int mi_row, int mi_col) { |
| const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| int idx, idy; |
| |
| xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| for (idy = 0; idy < mi_height; idy += bh) |
| for (idx = 0; idx < mi_width; idx += bw) |
| set_txfm_context(xd, max_tx_size, idy, idx); |
| } |
| |
| static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data, |
| ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| int *rate) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO **mi_4x4 = xd->mi; |
| MB_MODE_INFO *mbmi = mi_4x4[0]; |
| const int seg_skip = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); |
| const int mis = cm->mi_stride; |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| const int is_inter = is_inter_block(mbmi); |
| |
| if (!is_inter) { |
| xd->cfl.is_chroma_reference = |
| is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x, |
| cm->seq_params.subsampling_y); |
| xd->cfl.store_y = store_cfl_required(cm, xd); |
| mbmi->skip = 1; |
| for (int plane = 0; plane < num_planes; ++plane) { |
| av1_encode_intra_block_plane(cpi, x, bsize, plane, |
| cpi->optimize_seg_arr[mbmi->segment_id], |
| mi_row, mi_col); |
| } |
| |
| // If there is at least one lossless segment, force the skip for intra |
| // block to be 0, in order to avoid the segment_id to be changed by in |
| // write_segment_id(). |
| if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map && |
| cpi->has_lossless_segment) |
| mbmi->skip = 0; |
| |
| xd->cfl.store_y = 0; |
| if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) { |
| for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) { |
| if (mbmi->palette_mode_info.palette_size[plane] > 0) { |
| if (!dry_run) { |
| av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size, |
| PALETTE_MAP, tile_data->allow_update_cdf, |
| td->counts); |
| } else if (dry_run == DRY_RUN_COSTCOEFFS) { |
| rate += |
| av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP); |
| } |
| } |
| } |
| } |
| |
| av1_update_txb_context(cpi, td, dry_run, bsize, rate, mi_row, mi_col, |
| tile_data->allow_update_cdf); |
| } else { |
| int ref; |
| const int is_compound = has_second_ref(mbmi); |
| |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const YV12_BUFFER_CONFIG *cfg = |
| get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]); |
| assert(IMPLIES(!is_intrabc_block(mbmi), cfg)); |
| av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, |
| xd->block_ref_scale_factors[ref], num_planes); |
| } |
| |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, |
| av1_num_planes(cm) - 1); |
| if (mbmi->motion_mode == OBMC_CAUSAL) { |
| assert(cpi->oxcf.enable_obmc == 1); |
| av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); |
| } |
| |
| #if CONFIG_MISMATCH_DEBUG |
| if (dry_run == OUTPUT_ENABLED) { |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| int pixel_c, pixel_r; |
| mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, |
| pd->subsampling_x, pd->subsampling_y); |
| if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, |
| pd->subsampling_y)) |
| continue; |
| mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, |
| cm->current_frame.order_hint, plane, pixel_c, |
| pixel_r, pd->width, pd->height, |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); |
| } |
| } |
| #else |
| (void)num_planes; |
| #endif |
| |
| av1_encode_sb(cpi, x, bsize, mi_row, mi_col, dry_run); |
| av1_tokenize_sb_vartx(cpi, td, t, dry_run, mi_row, mi_col, bsize, rate, |
| tile_data->allow_update_cdf); |
| } |
| |
| if (!dry_run) { |
| if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) td->intrabc_used = 1; |
| if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id] && |
| mbmi->sb_type > BLOCK_4X4 && !(is_inter && (mbmi->skip || seg_skip))) { |
| if (is_inter) { |
| tx_partition_count_update(cm, x, bsize, mi_row, mi_col, td->counts, |
| tile_data->allow_update_cdf); |
| } else { |
| if (mbmi->tx_size != max_txsize_rect_lookup[bsize]) |
| ++x->txb_split_count; |
| if (block_signals_txsize(bsize)) { |
| const int tx_size_ctx = get_tx_size_context(xd); |
| const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); |
| const int depth = tx_size_to_depth(mbmi->tx_size, bsize); |
| const int max_depths = bsize_to_max_depth(bsize); |
| |
| if (tile_data->allow_update_cdf) |
| update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], |
| depth, max_depths + 1); |
| #if CONFIG_ENTROPY_STATS |
| ++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth]; |
| #endif |
| } |
| } |
| assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi))); |
| } else { |
| int i, j; |
| TX_SIZE intra_tx_size; |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter) { |
| if (xd->lossless[mbmi->segment_id]) { |
| intra_tx_size = TX_4X4; |
| } else { |
| intra_tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); |
| } |
| } else { |
| intra_tx_size = mbmi->tx_size; |
| } |
| |
| for (j = 0; j < mi_height; j++) |
| for (i = 0; i < mi_width; i++) |
| if (mi_col + i < cm->mi_cols && mi_row + j < cm->mi_rows) |
| mi_4x4[mis * j + i]->tx_size = intra_tx_size; |
| |
| if (intra_tx_size != max_txsize_rect_lookup[bsize]) ++x->txb_split_count; |
| } |
| } |
| |
| if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type) && |
| is_inter && !(mbmi->skip || seg_skip) && |
| !xd->lossless[mbmi->segment_id]) { |
| if (dry_run) tx_partition_set_contexts(cm, xd, bsize, mi_row, mi_col); |
| } else { |
| TX_SIZE tx_size = mbmi->tx_size; |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter) { |
| if (xd->lossless[mbmi->segment_id]) { |
| tx_size = TX_4X4; |
| } else { |
| tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); |
| } |
| } else { |
| tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4; |
| } |
| mbmi->tx_size = tx_size; |
| set_txfm_ctxs(tx_size, xd->n4_w, xd->n4_h, |
| (mbmi->skip || seg_skip) && is_inter_block(mbmi), xd); |
| } |
| CFL_CTX *const cfl = &xd->cfl; |
| if (is_inter_block(mbmi) && |
| !is_chroma_reference(mi_row, mi_col, bsize, cfl->subsampling_x, |
| cfl->subsampling_y) && |
| is_cfl_allowed(xd)) { |
| cfl_store_block(xd, mbmi->sb_type, mbmi->tx_size); |
| } |
| } |