blob: 1299982720d7f086c3f901e4d1b0a81e0fed2f8f [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include "./aom_scale_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_dsp/psnr.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/quant_common.h"
#include "av1/common/restoration.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/mathutils.h"
#include "av1/encoder/picklpf.h"
#include "av1/encoder/pickrst.h"
// When set to RESTORE_WIENER or RESTORE_SGRPROJ only those are allowed.
// When set to RESTORE_TYPES we allow switchable.
static const RestorationType force_restore_type = RESTORE_TYPES;
// Number of Wiener iterations
#define NUM_WIENER_ITERS 5
typedef double (*search_restore_type)(const YV12_BUFFER_CONFIG *src,
AV1_COMP *cpi, int plane,
RestorationInfo *info,
RestorationType *rest_level,
int64_t *best_tile_cost,
YV12_BUFFER_CONFIG *dst_frame);
const int frame_level_restore_bits[RESTORE_TYPES] = { 2, 2, 2, 2 };
typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b);
typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b,
int hstart, int width, int vstart,
int height);
#define NUM_EXTRACTORS (3 * (1 + CONFIG_HIGHBITDEPTH))
static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = {
aom_get_y_sse_part, aom_get_u_sse_part,
aom_get_v_sse_part,
#if CONFIG_HIGHBITDEPTH
aom_highbd_get_y_sse_part, aom_highbd_get_u_sse_part,
aom_highbd_get_v_sse_part,
#endif // CONFIG_HIGHBITDEPTH
};
static const sse_extractor_type sse_extractors[NUM_EXTRACTORS] = {
aom_get_y_sse, aom_get_u_sse, aom_get_v_sse,
#if CONFIG_HIGHBITDEPTH
aom_highbd_get_y_sse, aom_highbd_get_u_sse, aom_highbd_get_v_sse,
#endif // CONFIG_HIGHBITDEPTH
};
static int64_t sse_restoration_tile(const RestorationTileLimits *limits,
const YV12_BUFFER_CONFIG *src,
const YV12_BUFFER_CONFIG *dst, int plane,
int highbd) {
assert(CONFIG_HIGHBITDEPTH || !highbd);
return sse_part_extractors[3 * highbd + plane](
src, dst, limits->h_start, limits->h_end - limits->h_start,
limits->v_start, limits->v_end - limits->v_start);
}
static int64_t sse_restoration_frame(const YV12_BUFFER_CONFIG *src,
const YV12_BUFFER_CONFIG *dst, int plane,
int highbd) {
assert(CONFIG_HIGHBITDEPTH || !highbd);
return sse_extractors[3 * highbd + plane](src, dst);
}
static int64_t try_restoration_tile(const AV1_COMMON *cm,
const YV12_BUFFER_CONFIG *src,
const RestorationTileLimits *limits,
const RestorationUnitInfo *rui,
YV12_BUFFER_CONFIG *dst, int plane) {
const RestorationInfo *prsi = &cm->rst_info[plane];
const int is_uv = plane > 0;
#if CONFIG_STRIPED_LOOP_RESTORATION
RestorationLineBuffers rlbs;
const int ss_y = is_uv && cm->subsampling_y;
#endif
#if CONFIG_HIGHBITDEPTH
const int bit_depth = cm->bit_depth;
const int highbd = cm->use_highbitdepth;
#else
const int bit_depth = 8;
const int highbd = 0;
#endif
const YV12_BUFFER_CONFIG *fts = cm->frame_to_show;
av1_loop_restoration_filter_unit(limits, rui,
#if CONFIG_STRIPED_LOOP_RESTORATION
&prsi->boundaries, &rlbs, ss_y,
#endif
prsi->procunit_width, prsi->procunit_height,
highbd, bit_depth, fts->buffers[plane],
fts->strides[is_uv], dst->buffers[plane],
dst->strides[is_uv], cm->rst_tmpbuf);
return sse_restoration_tile(limits, src, dst, plane, highbd);
}
static int64_t try_restoration_frame(const YV12_BUFFER_CONFIG *src,
AV1_COMMON *cm, RestorationInfo *rsi,
YV12_BUFFER_CONFIG *dst, int plane) {
#if CONFIG_HIGHBITDEPTH
const int highbd = cm->use_highbitdepth;
#else
const int highbd = 0;
#endif // CONFIG_HIGHBITDEPTH
av1_loop_restoration_filter_frame(cm->frame_to_show, cm, rsi, 1 << plane,
dst);
return sse_restoration_frame(src, dst, plane, highbd);
}
static int64_t get_pixel_proj_error(const uint8_t *src8, int width, int height,
int src_stride, const uint8_t *dat8,
int dat_stride, int use_highbitdepth,
int32_t *flt1, int flt1_stride,
int32_t *flt2, int flt2_stride, int *xqd) {
int i, j;
int64_t err = 0;
int xq[2];
decode_xq(xqd, xq);
if (!use_highbitdepth) {
const uint8_t *src = src8;
const uint8_t *dat = dat8;
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int32_t u =
(int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
const int32_t f1 = (int32_t)flt1[i * flt1_stride + j] - u;
const int32_t f2 = (int32_t)flt2[i * flt2_stride + j] - u;
const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS);
const int32_t e =
ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) -
src[i * src_stride + j];
err += e * e;
}
}
} else {
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int32_t u =
(int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
const int32_t f1 = (int32_t)flt1[i * flt1_stride + j] - u;
const int32_t f2 = (int32_t)flt2[i * flt2_stride + j] - u;
const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS);
const int32_t e =
ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) -
src[i * src_stride + j];
err += e * e;
}
}
}
return err;
}
#define USE_SGRPROJ_REFINEMENT_SEARCH 1
static int64_t finer_search_pixel_proj_error(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt1,
int flt1_stride, int32_t *flt2, int flt2_stride, int start_step, int *xqd) {
int64_t err = get_pixel_proj_error(src8, width, height, src_stride, dat8,
dat_stride, use_highbitdepth, flt1,
flt1_stride, flt2, flt2_stride, xqd);
(void)start_step;
#if USE_SGRPROJ_REFINEMENT_SEARCH
int64_t err2;
int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 };
int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 };
for (int s = start_step; s >= 1; s >>= 1) {
for (int p = 0; p < 2; ++p) {
int skip = 0;
do {
if (xqd[p] - s >= tap_min[p]) {
xqd[p] -= s;
err2 = get_pixel_proj_error(src8, width, height, src_stride, dat8,
dat_stride, use_highbitdepth, flt1,
flt1_stride, flt2, flt2_stride, xqd);
if (err2 > err) {
xqd[p] += s;
} else {
err = err2;
skip = 1;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
if (skip) break;
do {
if (xqd[p] + s <= tap_max[p]) {
xqd[p] += s;
err2 = get_pixel_proj_error(src8, width, height, src_stride, dat8,
dat_stride, use_highbitdepth, flt1,
flt1_stride, flt2, flt2_stride, xqd);
if (err2 > err) {
xqd[p] -= s;
} else {
err = err2;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
}
}
#endif // USE_SGRPROJ_REFINEMENT_SEARCH
return err;
}
static void get_proj_subspace(const uint8_t *src8, int width, int height,
int src_stride, uint8_t *dat8, int dat_stride,
int use_highbitdepth, int32_t *flt1,
int flt1_stride, int32_t *flt2, int flt2_stride,
int *xq) {
int i, j;
double H[2][2] = { { 0, 0 }, { 0, 0 } };
double C[2] = { 0, 0 };
double Det;
double x[2];
const int size = width * height;
aom_clear_system_state();
// Default
xq[0] = 0;
xq[1] = 0;
if (!use_highbitdepth) {
const uint8_t *src = src8;
const uint8_t *dat = dat8;
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const double u = (double)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
const double s =
(double)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
const double f1 = (double)flt1[i * flt1_stride + j] - u;
const double f2 = (double)flt2[i * flt2_stride + j] - u;
H[0][0] += f1 * f1;
H[1][1] += f2 * f2;
H[0][1] += f1 * f2;
C[0] += f1 * s;
C[1] += f2 * s;
}
}
} else {
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const double u = (double)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
const double s =
(double)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
const double f1 = (double)flt1[i * flt1_stride + j] - u;
const double f2 = (double)flt2[i * flt2_stride + j] - u;
H[0][0] += f1 * f1;
H[1][1] += f2 * f2;
H[0][1] += f1 * f2;
C[0] += f1 * s;
C[1] += f2 * s;
}
}
}
H[0][0] /= size;
H[0][1] /= size;
H[1][1] /= size;
H[1][0] = H[0][1];
C[0] /= size;
C[1] /= size;
Det = (H[0][0] * H[1][1] - H[0][1] * H[1][0]);
if (Det < 1e-8) return; // ill-posed, return default values
x[0] = (H[1][1] * C[0] - H[0][1] * C[1]) / Det;
x[1] = (H[0][0] * C[1] - H[1][0] * C[0]) / Det;
xq[0] = (int)rint(x[0] * (1 << SGRPROJ_PRJ_BITS));
xq[1] = (int)rint(x[1] * (1 << SGRPROJ_PRJ_BITS));
}
void encode_xq(int *xq, int *xqd) {
xqd[0] = xq[0];
xqd[0] = clamp(xqd[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
xqd[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1];
xqd[1] = clamp(xqd[1], SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1);
}
static void search_selfguided_restoration(uint8_t *dat8, int width, int height,
int dat_stride, const uint8_t *src8,
int src_stride, int use_highbitdepth,
int bit_depth, int pu_width,
int pu_height, int *eps, int *xqd,
int32_t *rstbuf) {
int32_t *flt1 = rstbuf;
int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX;
int ep, bestep = 0;
int64_t err, besterr = -1;
int exqd[2], bestxqd[2] = { 0, 0 };
int flt1_stride = ((width + 7) & ~7) + 8;
int flt2_stride = ((width + 7) & ~7) + 8;
assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
pu_width == RESTORATION_PROC_UNIT_SIZE);
assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
pu_height == RESTORATION_PROC_UNIT_SIZE);
#if !CONFIG_HIGHBITDEPTH
(void)bit_depth;
#endif
for (ep = 0; ep < SGRPROJ_PARAMS; ep++) {
int exq[2];
#if CONFIG_HIGHBITDEPTH
if (use_highbitdepth) {
uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
for (int i = 0; i < height; i += pu_height)
for (int j = 0; j < width; j += pu_width) {
const int w = AOMMIN(pu_width, width - j);
const int h = AOMMIN(pu_height, height - i);
uint16_t *dat_p = dat + i * dat_stride + j;
int32_t *flt1_p = flt1 + i * flt1_stride + j;
int32_t *flt2_p = flt2 + i * flt2_stride + j;
#if USE_HIGHPASS_IN_SGRPROJ
av1_highpass_filter_highbd(dat_p, w, h, dat_stride, flt1_p,
flt1_stride, sgr_params[ep].corner,
sgr_params[ep].edge);
#else
av1_selfguided_restoration_highbd(
dat_p, w, h, dat_stride, flt1_p, flt1_stride, bit_depth,
sgr_params[ep].r1, sgr_params[ep].e1);
#endif // USE_HIGHPASS_IN_SGRPROJ
av1_selfguided_restoration_highbd(
dat_p, w, h, dat_stride, flt2_p, flt2_stride, bit_depth,
sgr_params[ep].r2, sgr_params[ep].e2);
}
} else {
#endif
for (int i = 0; i < height; i += pu_height)
for (int j = 0; j < width; j += pu_width) {
const int w = AOMMIN(pu_width, width - j);
const int h = AOMMIN(pu_height, height - i);
uint8_t *dat_p = dat8 + i * dat_stride + j;
int32_t *flt1_p = flt1 + i * flt1_stride + j;
int32_t *flt2_p = flt2 + i * flt2_stride + j;
#if USE_HIGHPASS_IN_SGRPROJ
av1_highpass_filter(dat_p, w, h, dat_stride, flt1_p, flt1_stride,
sgr_params[ep].corner, sgr_params[ep].edge);
#else
av1_selfguided_restoration(dat_p, w, h, dat_stride, flt1_p, flt1_stride,
sgr_params[ep].r1, sgr_params[ep].e1);
#endif // USE_HIGHPASS_IN_SGRPROJ
av1_selfguided_restoration(dat_p, w, h, dat_stride, flt2_p,
flt2_stride, sgr_params[ep].r2,
sgr_params[ep].e2);
}
#if CONFIG_HIGHBITDEPTH
}
#endif
aom_clear_system_state();
get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride,
use_highbitdepth, flt1, flt1_stride, flt2, flt2_stride,
exq);
aom_clear_system_state();
encode_xq(exq, exqd);
err = finer_search_pixel_proj_error(
src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth,
flt1, flt1_stride, flt2, flt2_stride, 2, exqd);
if (besterr == -1 || err < besterr) {
bestep = ep;
besterr = err;
bestxqd[0] = exqd[0];
bestxqd[1] = exqd[1];
}
}
*eps = bestep;
xqd[0] = bestxqd[0];
xqd[1] = bestxqd[1];
}
static int count_sgrproj_bits(SgrprojInfo *sgrproj_info,
SgrprojInfo *ref_sgrproj_info) {
int bits = SGRPROJ_PARAMS_BITS;
bits += aom_count_primitive_refsubexpfin(
SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
bits += aom_count_primitive_refsubexpfin(
SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
return bits;
}
struct rest_search_ctxt {
const YV12_BUFFER_CONFIG *src;
AV1_COMP *cpi;
uint8_t *dgd_buffer;
const uint8_t *src_buffer;
int dgd_stride;
int src_stride;
RestorationInfo *info;
RestorationType *type;
int64_t *best_tile_cost;
int plane;
int plane_width;
int plane_height;
int nrtiles_x;
int nrtiles_y;
YV12_BUFFER_CONFIG *dst_frame;
};
// Fill in ctxt. Returns the number of restoration tiles for this plane
static INLINE int init_rest_search_ctxt(
const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int plane,
RestorationInfo *info, RestorationType *type, int64_t *best_tile_cost,
YV12_BUFFER_CONFIG *dst_frame, struct rest_search_ctxt *ctxt) {
AV1_COMMON *const cm = &cpi->common;
ctxt->src = src;
ctxt->cpi = cpi;
ctxt->info = info;
ctxt->type = type;
ctxt->best_tile_cost = best_tile_cost;
ctxt->plane = plane;
ctxt->dst_frame = dst_frame;
const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show;
const int is_uv = plane != AOM_PLANE_Y;
ctxt->plane_width = src->crop_widths[is_uv];
ctxt->plane_height = src->crop_heights[is_uv];
ctxt->src_buffer = src->buffers[plane];
ctxt->src_stride = src->strides[is_uv];
ctxt->dgd_buffer = dgd->buffers[plane];
ctxt->dgd_stride = dgd->strides[is_uv];
assert(src->crop_widths[is_uv] == dgd->crop_widths[is_uv]);
assert(src->crop_heights[is_uv] == dgd->crop_heights[is_uv]);
return av1_get_rest_ntiles(ctxt->plane_width, ctxt->plane_height,
cm->rst_info[plane].restoration_tilesize,
&ctxt->nrtiles_x, &ctxt->nrtiles_y);
}
typedef void (*rtile_visitor_t)(const struct rest_search_ctxt *search_ctxt,
int rtile_idx,
const RestorationTileLimits *limits, void *arg);
static void foreach_rtile_in_tile(const struct rest_search_ctxt *ctxt,
int tile_row, int tile_col,
rtile_visitor_t fun, void *arg) {
const AV1_COMMON *const cm = &ctxt->cpi->common;
const RestorationInfo *rsi = ctxt->cpi->rst_search;
TileInfo tile_info;
av1_tile_set_row(&tile_info, cm, tile_row);
av1_tile_set_col(&tile_info, cm, tile_col);
int tile_col_start = tile_info.mi_col_start * MI_SIZE;
int tile_col_end = tile_info.mi_col_end * MI_SIZE;
int tile_row_start = tile_info.mi_row_start * MI_SIZE;
int tile_row_end = tile_info.mi_row_end * MI_SIZE;
if (ctxt->plane > 0) {
tile_col_start = ROUND_POWER_OF_TWO(tile_col_start, cm->subsampling_x);
tile_col_end = ROUND_POWER_OF_TWO(tile_col_end, cm->subsampling_x);
tile_row_start = ROUND_POWER_OF_TWO(tile_row_start, cm->subsampling_y);
tile_row_end = ROUND_POWER_OF_TWO(tile_row_end, cm->subsampling_y);
}
#if CONFIG_FRAME_SUPERRES
// If upscaling is enabled, the tile limits need scaling to match the
// upscaled frame where the restoration tiles live. To do this, scale up the
// top-left and bottom-right of the tile.
if (!av1_superres_unscaled(cm)) {
av1_calculate_unscaled_superres_size(&tile_col_start, &tile_row_start,
cm->superres_scale_denominator);
av1_calculate_unscaled_superres_size(&tile_col_end, &tile_row_end,
cm->superres_scale_denominator);
// Make sure we don't fall off the bottom-right of the frame.
tile_col_end = AOMMIN(tile_col_end, ctxt->plane_width);
tile_row_end = AOMMIN(tile_row_end, ctxt->plane_height);
}
#endif // CONFIG_FRAME_SUPERRES
const int rtile_size = rsi->restoration_tilesize;
const int rtile_col0 = (tile_col_start + rtile_size - 1) / rtile_size;
const int rtile_col1 =
AOMMIN((tile_col_end + rtile_size - 1) / rtile_size, ctxt->nrtiles_x);
const int rtile_row0 = (tile_row_start + rtile_size - 1) / rtile_size;
const int rtile_row1 =
AOMMIN((tile_row_end + rtile_size - 1) / rtile_size, ctxt->nrtiles_y);
const int ss_y = ctxt->plane > 0 && cm->subsampling_y;
for (int rtile_row = rtile_row0; rtile_row < rtile_row1; ++rtile_row) {
for (int rtile_col = rtile_col0; rtile_col < rtile_col1; ++rtile_col) {
const int rtile_idx = rtile_row * ctxt->nrtiles_x + rtile_col;
RestorationTileLimits limits = av1_get_rest_tile_limits(
rtile_idx, ctxt->nrtiles_x, ctxt->nrtiles_y, rtile_size,
ctxt->plane_width, ctxt->plane_height, ss_y);
fun(ctxt, rtile_idx, &limits, arg);
}
}
}
static void search_sgrproj_for_rtile(const struct rest_search_ctxt *ctxt,
int rtile_idx,
const RestorationTileLimits *limits,
void *arg) {
const MACROBLOCK *const x = &ctxt->cpi->td.mb;
const AV1_COMMON *const cm = &ctxt->cpi->common;
RestorationInfo *rsi = ctxt->cpi->rst_search;
SgrprojInfo *ref_sgrproj_info = (SgrprojInfo *)arg;
#if CONFIG_HIGHBITDEPTH
const int highbd = cm->use_highbitdepth;
const int bit_depth = cm->bit_depth;
#else
const int highbd = 0;
const int bit_depth = 8;
#endif // CONFIG_HIGHBITDEPTH
int64_t err = sse_restoration_tile(limits, ctxt->src, cm->frame_to_show,
ctxt->plane, highbd);
// #bits when a tile is not restored
int bits = x->sgrproj_restore_cost[0];
double cost_norestore = RDCOST_DBL(x->rdmult, (bits >> 4), err);
ctxt->best_tile_cost[rtile_idx] = INT64_MAX;
RestorationUnitInfo *plane_rui = &rsi[ctxt->plane].unit_info[rtile_idx];
SgrprojInfo *rtile_sgrproj_info = &plane_rui->sgrproj_info;
uint8_t *dgd_start =
ctxt->dgd_buffer + limits->v_start * ctxt->dgd_stride + limits->h_start;
const uint8_t *src_start =
ctxt->src_buffer + limits->v_start * ctxt->src_stride + limits->h_start;
search_selfguided_restoration(
dgd_start, limits->h_end - limits->h_start,
limits->v_end - limits->v_start, ctxt->dgd_stride, src_start,
ctxt->src_stride, highbd, bit_depth, rsi[ctxt->plane].procunit_width,
rsi[ctxt->plane].procunit_height, &rtile_sgrproj_info->ep,
rtile_sgrproj_info->xqd, cm->rst_tmpbuf);
plane_rui->restoration_type = RESTORE_SGRPROJ;
err = try_restoration_tile(cm, ctxt->src, limits, plane_rui, ctxt->dst_frame,
ctxt->plane);
bits = count_sgrproj_bits(rtile_sgrproj_info, ref_sgrproj_info)
<< AV1_PROB_COST_SHIFT;
bits += x->sgrproj_restore_cost[1];
double cost_sgrproj = RDCOST_DBL(x->rdmult, (bits >> 4), err);
if (cost_sgrproj >= cost_norestore) {
ctxt->type[rtile_idx] = RESTORE_NONE;
} else {
ctxt->type[rtile_idx] = RESTORE_SGRPROJ;
SgrprojInfo *sgrproj_info = &ctxt->info->unit_info[rtile_idx].sgrproj_info;
*ref_sgrproj_info = *sgrproj_info = plane_rui->sgrproj_info;
ctxt->best_tile_cost[rtile_idx] = err;
}
plane_rui->restoration_type = RESTORE_NONE;
}
static double search_sgrproj(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi,
int plane, RestorationInfo *info,
RestorationType *type, int64_t *best_tile_cost,
YV12_BUFFER_CONFIG *dst_frame) {
const MACROBLOCK *const x = &cpi->td.mb;
struct rest_search_ctxt ctxt;
const int nrtiles = init_rest_search_ctxt(src, cpi, plane, info, type,
best_tile_cost, dst_frame, &ctxt);
RestorationInfo *plane_rsi = &cpi->rst_search[plane];
plane_rsi->frame_restoration_type = RESTORE_SGRPROJ;
for (int rtile_idx = 0; rtile_idx < nrtiles; ++rtile_idx) {
plane_rsi->unit_info[rtile_idx].restoration_type = RESTORE_NONE;
}
// Compute best Sgrproj filters for each rtile, one (encoder/decoder)
// tile at a time.
AV1_COMMON *const cm = &cpi->common;
#if CONFIG_HIGHBITDEPTH
const int highbd = cm->use_highbitdepth;
#else
const int highbd = 0;
#endif
extend_frame(ctxt.dgd_buffer, ctxt.plane_width, ctxt.plane_height,
ctxt.dgd_stride, SGRPROJ_BORDER_HORZ, SGRPROJ_BORDER_VERT,
highbd);
for (int tile_row = 0; tile_row < cm->tile_rows; ++tile_row) {
for (int tile_col = 0; tile_col < cm->tile_cols; ++tile_col) {
SgrprojInfo ref_sgrproj_info;
set_default_sgrproj(&ref_sgrproj_info);
foreach_rtile_in_tile(&ctxt, tile_row, tile_col, search_sgrproj_for_rtile,
&ref_sgrproj_info);
}
}
// Cost for Sgrproj filtering
SgrprojInfo ref_sgrproj_info;
set_default_sgrproj(&ref_sgrproj_info);
int bits = frame_level_restore_bits[plane_rsi->frame_restoration_type]
<< AV1_PROB_COST_SHIFT;
for (int rtile_idx = 0; rtile_idx < nrtiles; ++rtile_idx) {
RestorationUnitInfo *plane_rui = &plane_rsi->unit_info[rtile_idx];
RestorationUnitInfo *search_rui = &info->unit_info[rtile_idx];
bits += x->sgrproj_restore_cost[type[rtile_idx] != RESTORE_NONE];
plane_rui->sgrproj_info = search_rui->sgrproj_info;
if (type[rtile_idx] == RESTORE_SGRPROJ) {
bits += count_sgrproj_bits(&plane_rui->sgrproj_info, &ref_sgrproj_info)
<< AV1_PROB_COST_SHIFT;
ref_sgrproj_info = plane_rui->sgrproj_info;
}
plane_rui->restoration_type = type[rtile_idx];
}
int64_t err =
try_restoration_frame(src, cm, cpi->rst_search, dst_frame, plane);
double cost_sgrproj = RDCOST_DBL(cpi->td.mb.rdmult, (bits >> 4), err);
return cost_sgrproj;
}
static double find_average(const uint8_t *src, int h_start, int h_end,
int v_start, int v_end, int stride) {
uint64_t sum = 0;
double avg = 0;
int i, j;
aom_clear_system_state();
for (i = v_start; i < v_end; i++)
for (j = h_start; j < h_end; j++) sum += src[i * stride + j];
avg = (double)sum / ((v_end - v_start) * (h_end - h_start));
return avg;
}
static void compute_stats(int wiener_win, const uint8_t *dgd,
const uint8_t *src, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
int src_stride, double *M, double *H) {
int i, j, k, l;
double Y[WIENER_WIN2];
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
const double avg =
find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
memset(M, 0, sizeof(*M) * wiener_win2);
memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);
for (i = v_start; i < v_end; i++) {
for (j = h_start; j < h_end; j++) {
const double X = (double)src[i * src_stride + j] - avg;
int idx = 0;
for (k = -wiener_halfwin; k <= wiener_halfwin; k++) {
for (l = -wiener_halfwin; l <= wiener_halfwin; l++) {
Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
idx++;
}
}
assert(idx == wiener_win2);
for (k = 0; k < wiener_win2; ++k) {
M[k] += Y[k] * X;
H[k * wiener_win2 + k] += Y[k] * Y[k];
for (l = k + 1; l < wiener_win2; ++l) {
// H is a symmetric matrix, so we only need to fill out the upper
// triangle here. We can copy it down to the lower triangle outside
// the (i, j) loops.
H[k * wiener_win2 + l] += Y[k] * Y[l];
}
}
}
}
for (k = 0; k < wiener_win2; ++k) {
for (l = k + 1; l < wiener_win2; ++l) {
H[l * wiener_win2 + k] = H[k * wiener_win2 + l];
}
}
}
#if CONFIG_HIGHBITDEPTH
static double find_average_highbd(const uint16_t *src, int h_start, int h_end,
int v_start, int v_end, int stride) {
uint64_t sum = 0;
double avg = 0;
int i, j;
aom_clear_system_state();
for (i = v_start; i < v_end; i++)
for (j = h_start; j < h_end; j++) sum += src[i * stride + j];
avg = (double)sum / ((v_end - v_start) * (h_end - h_start));
return avg;
}
static void compute_stats_highbd(int wiener_win, const uint8_t *dgd8,
const uint8_t *src8, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
int src_stride, double *M, double *H) {
int i, j, k, l;
double Y[WIENER_WIN2];
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
const double avg =
find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
memset(M, 0, sizeof(*M) * wiener_win2);
memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);
for (i = v_start; i < v_end; i++) {
for (j = h_start; j < h_end; j++) {
const double X = (double)src[i * src_stride + j] - avg;
int idx = 0;
for (k = -wiener_halfwin; k <= wiener_halfwin; k++) {
for (l = -wiener_halfwin; l <= wiener_halfwin; l++) {
Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
idx++;
}
}
assert(idx == wiener_win2);
for (k = 0; k < wiener_win2; ++k) {
M[k] += Y[k] * X;
H[k * wiener_win2 + k] += Y[k] * Y[k];
for (l = k + 1; l < wiener_win2; ++l) {
// H is a symmetric matrix, so we only need to fill out the upper
// triangle here. We can copy it down to the lower triangle outside
// the (i, j) loops.
H[k * wiener_win2 + l] += Y[k] * Y[l];
}
}
}
}
for (k = 0; k < wiener_win2; ++k) {
for (l = k + 1; l < wiener_win2; ++l) {
H[l * wiener_win2 + k] = H[k * wiener_win2 + l];
}
}
}
#endif // CONFIG_HIGHBITDEPTH
static INLINE int wrap_index(int i, int wiener_win) {
const int wiener_halfwin1 = (wiener_win >> 1) + 1;
return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i);
}
// Fix vector b, update vector a
static void update_a_sep_sym(int wiener_win, double **Mc, double **Hc,
double *a, double *b) {
int i, j;
double S[WIENER_WIN];
double A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin1 = (wiener_win >> 1) + 1;
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
for (i = 0; i < wiener_win; i++) {
for (j = 0; j < wiener_win; ++j) {
const int jj = wrap_index(j, wiener_win);
A[jj] += Mc[i][j] * b[i];
}
}
for (i = 0; i < wiener_win; i++) {
for (j = 0; j < wiener_win; j++) {
int k, l;
for (k = 0; k < wiener_win; ++k)
for (l = 0; l < wiener_win; ++l) {
const int kk = wrap_index(k, wiener_win);
const int ll = wrap_index(l, wiener_win);
B[ll * wiener_halfwin1 + kk] +=
Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] * b[j];
}
}
}
// Normalization enforcement in the system of equations itself
for (i = 0; i < wiener_halfwin1 - 1; ++i)
A[i] -=
A[wiener_halfwin1 - 1] * 2 +
B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
for (i = 0; i < wiener_halfwin1 - 1; ++i)
for (j = 0; j < wiener_halfwin1 - 1; ++j)
B[i * wiener_halfwin1 + j] -=
2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
(wiener_halfwin1 - 1)]);
if (linsolve(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
S[wiener_halfwin1 - 1] = 1.0;
for (i = wiener_halfwin1; i < wiener_win; ++i) {
S[i] = S[wiener_win - 1 - i];
S[wiener_halfwin1 - 1] -= 2 * S[i];
}
memcpy(a, S, wiener_win * sizeof(*a));
}
}
// Fix vector a, update vector b
static void update_b_sep_sym(int wiener_win, double **Mc, double **Hc,
double *a, double *b) {
int i, j;
double S[WIENER_WIN];
double A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin1 = (wiener_win >> 1) + 1;
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
for (i = 0; i < wiener_win; i++) {
const int ii = wrap_index(i, wiener_win);
for (j = 0; j < wiener_win; j++) A[ii] += Mc[i][j] * a[j];
}
for (i = 0; i < wiener_win; i++) {
for (j = 0; j < wiener_win; j++) {
const int ii = wrap_index(i, wiener_win);
const int jj = wrap_index(j, wiener_win);
int k, l;
for (k = 0; k < wiener_win; ++k)
for (l = 0; l < wiener_win; ++l)
B[jj * wiener_halfwin1 + ii] +=
Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] * a[l];
}
}
// Normalization enforcement in the system of equations itself
for (i = 0; i < wiener_halfwin1 - 1; ++i)
A[i] -=
A[wiener_halfwin1 - 1] * 2 +
B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
for (i = 0; i < wiener_halfwin1 - 1; ++i)
for (j = 0; j < wiener_halfwin1 - 1; ++j)
B[i * wiener_halfwin1 + j] -=
2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
(wiener_halfwin1 - 1)]);
if (linsolve(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
S[wiener_halfwin1 - 1] = 1.0;
for (i = wiener_halfwin1; i < wiener_win; ++i) {
S[i] = S[wiener_win - 1 - i];
S[wiener_halfwin1 - 1] -= 2 * S[i];
}
memcpy(b, S, wiener_win * sizeof(*b));
}
}
static int wiener_decompose_sep_sym(int wiener_win, double *M, double *H,
double *a, double *b) {
static const int init_filt[WIENER_WIN] = {
WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV,
WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV,
WIENER_FILT_TAP0_MIDV,
};
double *Hc[WIENER_WIN2];
double *Mc[WIENER_WIN];
int i, j, iter;
const int plane_off = (WIENER_WIN - wiener_win) >> 1;
const int wiener_win2 = wiener_win * wiener_win;
for (i = 0; i < wiener_win; i++) {
a[i] = b[i] = (double)init_filt[i + plane_off] / WIENER_FILT_STEP;
}
for (i = 0; i < wiener_win; i++) {
Mc[i] = M + i * wiener_win;
for (j = 0; j < wiener_win; j++) {
Hc[i * wiener_win + j] =
H + i * wiener_win * wiener_win2 + j * wiener_win;
}
}
iter = 1;
while (iter < NUM_WIENER_ITERS) {
update_a_sep_sym(wiener_win, Mc, Hc, a, b);
update_b_sep_sym(wiener_win, Mc, Hc, a, b);
iter++;
}
return 1;
}
// Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares
// against identity filters; Final score is defined as the difference between
// the function values
static double compute_score(int wiener_win, double *M, double *H,
InterpKernel vfilt, InterpKernel hfilt) {
double ab[WIENER_WIN * WIENER_WIN];
int i, k, l;
double P = 0, Q = 0;
double iP = 0, iQ = 0;
double Score, iScore;
double a[WIENER_WIN], b[WIENER_WIN];
const int plane_off = (WIENER_WIN - wiener_win) >> 1;
const int wiener_win2 = wiener_win * wiener_win;
aom_clear_system_state();
a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = 1.0;
for (i = 0; i < WIENER_HALFWIN; ++i) {
a[i] = a[WIENER_WIN - i - 1] = (double)vfilt[i] / WIENER_FILT_STEP;
b[i] = b[WIENER_WIN - i - 1] = (double)hfilt[i] / WIENER_FILT_STEP;
a[WIENER_HALFWIN] -= 2 * a[i];
b[WIENER_HALFWIN] -= 2 * b[i];
}
memset(ab, 0, sizeof(ab));
for (k = 0; k < wiener_win; ++k) {
for (l = 0; l < wiener_win; ++l)
ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off];
}
for (k = 0; k < wiener_win2; ++k) {
P += ab[k] * M[k];
for (l = 0; l < wiener_win2; ++l)
Q += ab[k] * H[k * wiener_win2 + l] * ab[l];
}
Score = Q - 2 * P;
iP = M[wiener_win2 >> 1];
iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)];
iScore = iQ - 2 * iP;
return Score - iScore;
}
static void quantize_sym_filter(int wiener_win, double *f, InterpKernel fi) {
int i;
const int wiener_halfwin = (wiener_win >> 1);
for (i = 0; i < wiener_halfwin; ++i) {
fi[i] = RINT(f[i] * WIENER_FILT_STEP);
}
// Specialize for 7-tap filter
if (wiener_win == WIENER_WIN) {
fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV);
fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
} else {
fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
fi[0] = 0;
}
// Satisfy filter constraints
fi[WIENER_WIN - 1] = fi[0];
fi[WIENER_WIN - 2] = fi[1];
fi[WIENER_WIN - 3] = fi[2];
// The central element has an implicit +WIENER_FILT_STEP
fi[3] = -2 * (fi[0] + fi[1] + fi[2]);
}
static int count_wiener_bits(int wiener_win, WienerInfo *wiener_info,
WienerInfo *ref_wiener_info) {
int bits = 0;
if (wiener_win == WIENER_WIN)
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
if (wiener_win == WIENER_WIN)
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
return bits;
}
#define USE_WIENER_REFINEMENT_SEARCH 1
static int64_t finer_tile_search_wiener(
const AV1_COMMON *cm, const YV12_BUFFER_CONFIG *src,
const RestorationTileLimits *limits, RestorationUnitInfo *rui,
int start_step, int plane, int wiener_win, YV12_BUFFER_CONFIG *dst_frame) {
const int plane_off = (WIENER_WIN - wiener_win) >> 1;
int64_t err = try_restoration_tile(cm, src, limits, rui, dst_frame, plane);
(void)start_step;
#if USE_WIENER_REFINEMENT_SEARCH
int64_t err2;
int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV,
WIENER_FILT_TAP2_MINV };
int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV,
WIENER_FILT_TAP2_MAXV };
WienerInfo *plane_wiener = &rui->wiener_info;
// printf("err pre = %"PRId64"\n", err);
for (int s = start_step; s >= 1; s >>= 1) {
for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
int skip = 0;
do {
if (plane_wiener->hfilter[p] - s >= tap_min[p]) {
plane_wiener->hfilter[p] -= s;
plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
err2 = try_restoration_tile(cm, src, limits, rui, dst_frame, plane);
if (err2 > err) {
plane_wiener->hfilter[p] += s;
plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
} else {
err = err2;
skip = 1;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
if (skip) break;
do {
if (plane_wiener->hfilter[p] + s <= tap_max[p]) {
plane_wiener->hfilter[p] += s;
plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
err2 = try_restoration_tile(cm, src, limits, rui, dst_frame, plane);
if (err2 > err) {
plane_wiener->hfilter[p] -= s;
plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
} else {
err = err2;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
}
for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
int skip = 0;
do {
if (plane_wiener->vfilter[p] - s >= tap_min[p]) {
plane_wiener->vfilter[p] -= s;
plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
err2 = try_restoration_tile(cm, src, limits, rui, dst_frame, plane);
if (err2 > err) {
plane_wiener->vfilter[p] += s;
plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
} else {
err = err2;
skip = 1;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
if (skip) break;
do {
if (plane_wiener->vfilter[p] + s <= tap_max[p]) {
plane_wiener->vfilter[p] += s;
plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
err2 = try_restoration_tile(cm, src, limits, rui, dst_frame, plane);
if (err2 > err) {
plane_wiener->vfilter[p] -= s;
plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
} else {
err = err2;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
}
}
// printf("err post = %"PRId64"\n", err);
#endif // USE_WIENER_REFINEMENT_SEARCH
return err;
}
static void search_wiener_for_rtile(const struct rest_search_ctxt *ctxt,
int rtile_idx,
const RestorationTileLimits *limits,
void *arg) {
const MACROBLOCK *const x = &ctxt->cpi->td.mb;
const AV1_COMMON *const cm = &ctxt->cpi->common;
RestorationInfo *rsi = ctxt->cpi->rst_search;
const int wiener_win =
(ctxt->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;
double M[WIENER_WIN2];
double H[WIENER_WIN2 * WIENER_WIN2];
double vfilterd[WIENER_WIN], hfilterd[WIENER_WIN];
WienerInfo *ref_wiener_info = (WienerInfo *)arg;
#if CONFIG_HIGHBITDEPTH
const int highbd = cm->use_highbitdepth;
#else
const int highbd = 0;
#endif // CONFIG_HIGHBITDEPTH
int64_t err = sse_restoration_tile(limits, ctxt->src, cm->frame_to_show,
ctxt->plane, highbd);
// #bits when a tile is not restored
int bits = x->wiener_restore_cost[0];
double cost_norestore = RDCOST_DBL(x->rdmult, (bits >> 4), err);
ctxt->best_tile_cost[rtile_idx] = INT64_MAX;
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
compute_stats_highbd(wiener_win, ctxt->dgd_buffer, ctxt->src_buffer,
limits->h_start, limits->h_end, limits->v_start,
limits->v_end, ctxt->dgd_stride, ctxt->src_stride, M,
H);
else
#endif // CONFIG_HIGHBITDEPTH
compute_stats(wiener_win, ctxt->dgd_buffer, ctxt->src_buffer,
limits->h_start, limits->h_end, limits->v_start,
limits->v_end, ctxt->dgd_stride, ctxt->src_stride, M, H);
ctxt->type[rtile_idx] = RESTORE_WIENER;
if (!wiener_decompose_sep_sym(wiener_win, M, H, vfilterd, hfilterd)) {
ctxt->type[rtile_idx] = RESTORE_NONE;
return;
}
RestorationUnitInfo *plane_rui = &rsi[ctxt->plane].unit_info[rtile_idx];
WienerInfo *rtile_wiener_info = &plane_rui->wiener_info;
quantize_sym_filter(wiener_win, vfilterd, rtile_wiener_info->vfilter);
quantize_sym_filter(wiener_win, hfilterd, rtile_wiener_info->hfilter);
// Filter score computes the value of the function x'*A*x - x'*b for the
// learned filter and compares it against identity filer. If there is no
// reduction in the function, the filter is reverted back to identity
double score = compute_score(wiener_win, M, H, rtile_wiener_info->vfilter,
rtile_wiener_info->hfilter);
if (score > 0.0) {
ctxt->type[rtile_idx] = RESTORE_NONE;
return;
}
aom_clear_system_state();
plane_rui->restoration_type = RESTORE_WIENER;
err =
finer_tile_search_wiener(&ctxt->cpi->common, ctxt->src, limits, plane_rui,
4, ctxt->plane, wiener_win, ctxt->dst_frame);
if (wiener_win != WIENER_WIN) {
assert(rtile_wiener_info->vfilter[0] == 0 &&
rtile_wiener_info->vfilter[WIENER_WIN - 1] == 0);
assert(rtile_wiener_info->hfilter[0] == 0 &&
rtile_wiener_info->hfilter[WIENER_WIN - 1] == 0);
}
bits = count_wiener_bits(wiener_win, rtile_wiener_info, ref_wiener_info)
<< AV1_PROB_COST_SHIFT;
bits += x->wiener_restore_cost[1];
double cost_wiener = RDCOST_DBL(x->rdmult, (bits >> 4), err);
if (cost_wiener >= cost_norestore) {
ctxt->type[rtile_idx] = RESTORE_NONE;
} else {
ctxt->type[rtile_idx] = RESTORE_WIENER;
*ref_wiener_info = ctxt->info->unit_info[rtile_idx].wiener_info =
*rtile_wiener_info;
ctxt->best_tile_cost[rtile_idx] = err;
}
plane_rui->restoration_type = RESTORE_NONE;
}
static double search_wiener(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi,
int plane, RestorationInfo *info,
RestorationType *type, int64_t *best_tile_cost,
YV12_BUFFER_CONFIG *dst_frame) {
const MACROBLOCK *const x = &cpi->td.mb;
struct rest_search_ctxt ctxt;
const int nrtiles = init_rest_search_ctxt(src, cpi, plane, info, type,
best_tile_cost, dst_frame, &ctxt);
RestorationInfo *plane_rsi = &cpi->rst_search[plane];
plane_rsi->frame_restoration_type = RESTORE_WIENER;
for (int tile_idx = 0; tile_idx < nrtiles; ++tile_idx) {
plane_rsi->unit_info[tile_idx].restoration_type = RESTORE_NONE;
}
AV1_COMMON *const cm = &cpi->common;
// Construct a (WIENER_HALFWIN)-pixel border around the frame
// Note use this border to gather stats even though the actual filter
// may use less border on the top/bottom of a processing unit.
#if CONFIG_HIGHBITDEPTH
const int highbd = cm->use_highbitdepth;
#else
const int highbd = 0;
#endif
extend_frame(ctxt.dgd_buffer, ctxt.plane_width, ctxt.plane_height,
ctxt.dgd_stride, WIENER_HALFWIN, WIENER_HALFWIN, highbd);
// Compute best Wiener filters for each rtile, one (encoder/decoder)
// tile at a time.
for (int tile_row = 0; tile_row < cm->tile_rows; ++tile_row) {
for (int tile_col = 0; tile_col < cm->tile_cols; ++tile_col) {
WienerInfo ref_wiener_info;
set_default_wiener(&ref_wiener_info);
foreach_rtile_in_tile(&ctxt, tile_row, tile_col, search_wiener_for_rtile,
&ref_wiener_info);
}
}
// cost for Wiener filtering
WienerInfo ref_wiener_info;
set_default_wiener(&ref_wiener_info);
int bits = frame_level_restore_bits[plane_rsi->frame_restoration_type]
<< AV1_PROB_COST_SHIFT;
const int wiener_win =
(plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;
for (int tile_idx = 0; tile_idx < nrtiles; ++tile_idx) {
bits += x->wiener_restore_cost[type[tile_idx] != RESTORE_NONE];
RestorationUnitInfo *plane_rui = &plane_rsi->unit_info[tile_idx];
plane_rui->wiener_info = info->unit_info[tile_idx].wiener_info;
if (type[tile_idx] == RESTORE_WIENER) {
bits += count_wiener_bits(wiener_win, &plane_rui->wiener_info,
&ref_wiener_info)
<< AV1_PROB_COST_SHIFT;
ref_wiener_info = plane_rui->wiener_info;
}
plane_rui->restoration_type = type[tile_idx];
}
int64_t err =
try_restoration_frame(src, cm, cpi->rst_search, dst_frame, plane);
double cost_wiener = RDCOST_DBL(cpi->td.mb.rdmult, (bits >> 4), err);
return cost_wiener;
}
static double search_norestore(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi,
int plane, RestorationInfo *info,
RestorationType *type, int64_t *best_tile_cost,
YV12_BUFFER_CONFIG *dst_frame) {
int64_t err;
double cost_norestore;
int bits;
MACROBLOCK *x = &cpi->td.mb;
AV1_COMMON *const cm = &cpi->common;
int tile_idx, nhtiles, nvtiles;
#if CONFIG_HIGHBITDEPTH
const int highbd = cm->use_highbitdepth;
#else
const int highbd = 0;
#endif // CONFIG_HIGHBITDEPTH
const int is_uv = plane > 0;
const int ss_y = plane > 0 && cm->subsampling_y;
const int width = src->crop_widths[is_uv];
const int height = src->crop_heights[is_uv];
const int rtile_size = cm->rst_info[plane].restoration_tilesize;
const int ntiles =
av1_get_rest_ntiles(width, height, rtile_size, &nhtiles, &nvtiles);
(void)dst_frame;
info->frame_restoration_type = RESTORE_NONE;
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
RestorationTileLimits limits = av1_get_rest_tile_limits(
tile_idx, nhtiles, nvtiles, rtile_size, width, height, ss_y);
err = sse_restoration_tile(&limits, src, cm->frame_to_show, plane, highbd);
type[tile_idx] = RESTORE_NONE;
best_tile_cost[tile_idx] = err;
}
// RD cost associated with no restoration
err = sse_restoration_frame(src, cm->frame_to_show, plane, highbd);
bits = frame_level_restore_bits[RESTORE_NONE] << AV1_PROB_COST_SHIFT;
cost_norestore = RDCOST_DBL(x->rdmult, (bits >> 4), err);
return cost_norestore;
}
struct switchable_rest_search_ctxt {
SgrprojInfo sgrproj_info;
WienerInfo wiener_info;
RestorationType *const *restore_types;
int64_t *const *tile_cost;
double cost_switchable;
};
static void search_switchable_for_rtile(const struct rest_search_ctxt *ctxt,
int rtile_idx,
const RestorationTileLimits *limits,
void *arg) {
const MACROBLOCK *x = &ctxt->cpi->td.mb;
RestorationUnitInfo *rui =
&ctxt->cpi->common.rst_info[ctxt->plane].unit_info[rtile_idx];
struct switchable_rest_search_ctxt *swctxt =
(struct switchable_rest_search_ctxt *)arg;
(void)limits;
double best_cost =
RDCOST_DBL(x->rdmult, (x->switchable_restore_cost[RESTORE_NONE] >> 4),
swctxt->tile_cost[RESTORE_NONE][rtile_idx]);
rui->restoration_type = RESTORE_NONE;
for (RestorationType r = 1; r < RESTORE_SWITCHABLE_TYPES; r++) {
if (force_restore_type != RESTORE_TYPES)
if (r != force_restore_type) continue;
int tilebits = 0;
if (swctxt->restore_types[r][rtile_idx] != r) continue;
if (r == RESTORE_WIENER)
tilebits += count_wiener_bits(
(ctxt->plane == AOM_PLANE_Y ? WIENER_WIN : WIENER_WIN - 2),
&rui->wiener_info, &swctxt->wiener_info);
else if (r == RESTORE_SGRPROJ)
tilebits += count_sgrproj_bits(&rui->sgrproj_info, &swctxt->sgrproj_info);
tilebits <<= AV1_PROB_COST_SHIFT;
tilebits += x->switchable_restore_cost[r];
double cost =
RDCOST_DBL(x->rdmult, tilebits >> 4, swctxt->tile_cost[r][rtile_idx]);
if (cost < best_cost) {
rui->restoration_type = r;
best_cost = cost;
}
}
if (rui->restoration_type == RESTORE_WIENER)
swctxt->wiener_info = rui->wiener_info;
else if (rui->restoration_type == RESTORE_SGRPROJ)
swctxt->sgrproj_info = rui->sgrproj_info;
if (force_restore_type != RESTORE_TYPES)
assert(rui->restoration_type == force_restore_type ||
rui->restoration_type == RESTORE_NONE);
swctxt->cost_switchable += best_cost;
}
static double search_switchable_restoration(
const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int plane,
RestorationType *const restore_types[RESTORE_SWITCHABLE_TYPES],
int64_t *const tile_cost[RESTORE_SWITCHABLE_TYPES], RestorationInfo *rsi) {
const AV1_COMMON *const cm = &cpi->common;
struct rest_search_ctxt ctxt;
init_rest_search_ctxt(src, cpi, plane, NULL, NULL, NULL, NULL, &ctxt);
struct switchable_rest_search_ctxt swctxt;
swctxt.restore_types = restore_types;
swctxt.tile_cost = tile_cost;
rsi->frame_restoration_type = RESTORE_SWITCHABLE;
int bits = frame_level_restore_bits[rsi->frame_restoration_type]
<< AV1_PROB_COST_SHIFT;
swctxt.cost_switchable = RDCOST_DBL(cpi->td.mb.rdmult, bits >> 4, 0);
for (int tile_row = 0; tile_row < cm->tile_rows; ++tile_row) {
for (int tile_col = 0; tile_col < cm->tile_cols; ++tile_col) {
set_default_sgrproj(&swctxt.sgrproj_info);
set_default_wiener(&swctxt.wiener_info);
foreach_rtile_in_tile(&ctxt, tile_row, tile_col,
search_switchable_for_rtile, &swctxt);
}
}
return swctxt.cost_switchable;
}
void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) {
static search_restore_type search_restore_fun[RESTORE_SWITCHABLE_TYPES] = {
search_norestore, search_wiener, search_sgrproj,
};
AV1_COMMON *const cm = &cpi->common;
double cost_restore[RESTORE_TYPES];
int64_t *tile_cost[RESTORE_SWITCHABLE_TYPES];
RestorationType *restore_types[RESTORE_SWITCHABLE_TYPES];
double best_cost_restore;
RestorationType r, best_restore;
const int ywidth = src->y_crop_width;
const int yheight = src->y_crop_height;
const int uvwidth = src->uv_crop_width;
const int uvheight = src->uv_crop_height;
const int ntiles_y = av1_get_rest_ntiles(
ywidth, yheight, cm->rst_info[0].restoration_tilesize, NULL, NULL);
const int ntiles_uv = av1_get_rest_ntiles(
uvwidth, uvheight, cm->rst_info[1].restoration_tilesize, NULL, NULL);
// Assume ntiles_uv is never larger that ntiles_y and so the same arrays work.
assert(ntiles_uv <= ntiles_y);
for (r = 0; r < RESTORE_SWITCHABLE_TYPES; r++) {
tile_cost[r] = (int64_t *)aom_malloc(sizeof(*tile_cost[0]) * ntiles_y);
restore_types[r] =
(RestorationType *)aom_malloc(sizeof(*restore_types[0]) * ntiles_y);
}
for (int plane = AOM_PLANE_Y; plane <= AOM_PLANE_V; ++plane) {
const int ntiles = (plane == AOM_PLANE_Y ? ntiles_y : ntiles_uv);
for (r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) {
cost_restore[r] = DBL_MAX;
if (force_restore_type != RESTORE_TYPES)
if (r != RESTORE_NONE && r != force_restore_type) continue;
cost_restore[r] = search_restore_fun[r](
src, cpi, plane, &cm->rst_info[plane], restore_types[r], tile_cost[r],
&cpi->trial_frame_rst);
}
if (ntiles > 1)
cost_restore[RESTORE_SWITCHABLE] = search_switchable_restoration(
src, cpi, plane, restore_types, tile_cost, &cm->rst_info[plane]);
else
cost_restore[RESTORE_SWITCHABLE] = DBL_MAX;
best_cost_restore = DBL_MAX;
best_restore = 0;
for (r = 0; r < RESTORE_TYPES; ++r) {
if (force_restore_type != RESTORE_TYPES)
if (r != RESTORE_NONE && r != force_restore_type) continue;
if (cost_restore[r] < best_cost_restore) {
best_restore = r;
best_cost_restore = cost_restore[r];
}
}
cm->rst_info[plane].frame_restoration_type = best_restore;
if (force_restore_type != RESTORE_TYPES)
assert(best_restore == force_restore_type ||
best_restore == RESTORE_NONE);
if (best_restore != RESTORE_SWITCHABLE) {
for (int u = 0; u < ntiles; ++u) {
cm->rst_info[plane].unit_info[u].restoration_type =
restore_types[best_restore][u];
}
}
}
/*
printf("Frame %d/%d restore types: %d %d %d\n", cm->current_video_frame,
cm->show_frame, cm->rst_info[0].frame_restoration_type,
cm->rst_info[1].frame_restoration_type,
cm->rst_info[2].frame_restoration_type);
printf("Frame %d/%d frame_restore_type %d : %f %f %f %f\n",
cm->current_video_frame, cm->show_frame,
cm->rst_info[0].frame_restoration_type, cost_restore[0],
cost_restore[1], cost_restore[2], cost_restore[3]);
*/
for (r = 0; r < RESTORE_SWITCHABLE_TYPES; r++) {
aom_free(tile_cost[r]);
aom_free(restore_types[r]);
}
}