| /* |
| * Copyright (c) 2017, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AOM_AOM_DSP_MATHUTILS_H_ |
| #define AOM_AOM_DSP_MATHUTILS_H_ |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <string.h> |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| |
| static const double TINY_NEAR_ZERO = 1.0E-16; |
| |
| // Solves Ax = b, where x and b are column vectors of size nx1 and A is nxn |
| static INLINE int linsolve(int n, double *A, int stride, double *b, double *x) { |
| int i, j, k; |
| double c; |
| // Forward elimination |
| for (k = 0; k < n - 1; k++) { |
| // Bring the largest magnitude to the diagonal position |
| for (i = n - 1; i > k; i--) { |
| if (fabs(A[(i - 1) * stride + k]) < fabs(A[i * stride + k])) { |
| for (j = 0; j < n; j++) { |
| c = A[i * stride + j]; |
| A[i * stride + j] = A[(i - 1) * stride + j]; |
| A[(i - 1) * stride + j] = c; |
| } |
| c = b[i]; |
| b[i] = b[i - 1]; |
| b[i - 1] = c; |
| } |
| } |
| for (i = k; i < n - 1; i++) { |
| if (fabs(A[k * stride + k]) < TINY_NEAR_ZERO) return 0; |
| c = A[(i + 1) * stride + k] / A[k * stride + k]; |
| for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j]; |
| b[i + 1] -= c * b[k]; |
| } |
| } |
| // Backward substitution |
| for (i = n - 1; i >= 0; i--) { |
| if (fabs(A[i * stride + i]) < TINY_NEAR_ZERO) return 0; |
| c = 0; |
| for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j]; |
| x[i] = (b[i] - c) / A[i * stride + i]; |
| } |
| |
| return 1; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Least-squares |
| // Solves for n-dim x in a least squares sense to minimize |Ax - b|^2 |
| // The solution is simply x = (A'A)^-1 A'b or simply the solution for |
| // the system: A'A x = A'b |
| // |
| // This process is split into three steps in order to avoid needing to |
| // explicitly allocate the A matrix, which may be very large if there |
| // are many equations to solve. |
| // |
| // The process for using this is (in pseudocode): |
| // |
| // Allocate mat (size n*n), y (size n), a (size n), x (size n) |
| // least_squares_init(mat, y, n) |
| // for each equation a . x = b { |
| // least_squares_accumulate(mat, y, a, b, n) |
| // } |
| // least_squares_solve(mat, y, x, n) |
| // |
| // where: |
| // * mat, y are accumulators for the values A'A and A'b respectively, |
| // * a, b are the coefficients of each individual equation, |
| // * x is the result vector |
| // * and n is the problem size |
| static INLINE void least_squares_init(double *mat, double *y, int n) { |
| memset(mat, 0, n * n * sizeof(double)); |
| memset(y, 0, n * sizeof(double)); |
| } |
| |
| // Round the given positive value to nearest integer |
| static AOM_FORCE_INLINE int iroundpf(float x) { |
| assert(x >= 0.0); |
| return (int)(x + 0.5f); |
| } |
| |
| static INLINE void least_squares_accumulate(double *mat, double *y, |
| const double *a, double b, int n) { |
| for (int i = 0; i < n; i++) { |
| for (int j = 0; j < n; j++) { |
| mat[i * n + j] += a[i] * a[j]; |
| } |
| } |
| for (int i = 0; i < n; i++) { |
| y[i] += a[i] * b; |
| } |
| } |
| |
| static INLINE int least_squares_solve(double *mat, double *y, double *x, |
| int n) { |
| return linsolve(n, mat, n, y, x); |
| } |
| |
| // Matrix multiply |
| static INLINE void multiply_mat(const double *m1, const double *m2, double *res, |
| const int m1_rows, const int inner_dim, |
| const int m2_cols) { |
| double sum; |
| |
| int row, col, inner; |
| for (row = 0; row < m1_rows; ++row) { |
| for (col = 0; col < m2_cols; ++col) { |
| sum = 0; |
| for (inner = 0; inner < inner_dim; ++inner) |
| sum += m1[row * inner_dim + inner] * m2[inner * m2_cols + col]; |
| *(res++) = sum; |
| } |
| } |
| } |
| |
| static AOM_INLINE float approx_exp(float y) { |
| #define A ((1 << 23) / 0.69314718056f) // (1 << 23) / ln(2) |
| #define B \ |
| 127 // Offset for the exponent according to IEEE floating point standard. |
| #define C 60801 // Magic number controls the accuracy of approximation |
| union { |
| float as_float; |
| int32_t as_int32; |
| } container; |
| container.as_int32 = ((int32_t)(y * A)) + ((B << 23) - C); |
| return container.as_float; |
| #undef A |
| #undef B |
| #undef C |
| } |
| #endif // AOM_AOM_DSP_MATHUTILS_H_ |