| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "test/av1_convolve_2d_test_util.h" |
| |
| #include "aom_ports/aom_timer.h" |
| #include "av1/common/common_data.h" |
| #include "av1/common/convolve.h" |
| |
| using ::testing::make_tuple; |
| using ::testing::tuple; |
| |
| namespace libaom_test { |
| |
| const int kMaxSize = 128 + 32; // padding |
| namespace AV1Convolve2D { |
| |
| ::testing::internal::ParamGenerator<Convolve2DParam> BuildParams( |
| convolve_2d_func filter, int has_subx, int has_suby) { |
| return ::testing::Combine(::testing::Values(filter), |
| ::testing::Values(has_subx), |
| ::testing::Values(has_suby), |
| ::testing::Range(BLOCK_4X4, BLOCK_SIZES_ALL)); |
| } |
| |
| AV1Convolve2DSrTest::~AV1Convolve2DSrTest() {} |
| void AV1Convolve2DSrTest::SetUp() { |
| rnd_.Reset(ACMRandom::DeterministicSeed()); |
| } |
| |
| void AV1Convolve2DSrTest::TearDown() { libaom_test::ClearSystemState(); } |
| |
| void AV1Convolve2DSrTest::RunCheckOutput(convolve_2d_func test_impl) { |
| const int w = kMaxSize, h = kMaxSize; |
| const int has_subx = GET_PARAM(1); |
| const int has_suby = GET_PARAM(2); |
| const int block_idx = GET_PARAM(3); |
| int hfilter, vfilter, subx, suby; |
| uint8_t input[kMaxSize * kMaxSize]; |
| DECLARE_ALIGNED(32, uint8_t, output[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint8_t, output2[MAX_SB_SQUARE]); |
| |
| for (int i = 0; i < h; ++i) |
| for (int j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); |
| for (int i = 0; i < MAX_SB_SQUARE; ++i) |
| output[i] = output2[i] = static_cast<uint8_t>(rnd_.Rand31()); |
| |
| // Make sure that sizes 2xN and Nx2 are also tested for chroma. |
| const int num_sizes = |
| (block_size_wide[block_idx] == 4 || block_size_high[block_idx] == 4) ? 2 |
| : 1; |
| for (int shift = 0; shift < num_sizes; ++shift) { // luma and chroma |
| const int out_w = block_size_wide[block_idx] >> shift; |
| const int out_h = block_size_high[block_idx] >> shift; |
| for (hfilter = EIGHTTAP_REGULAR; hfilter < INTERP_FILTERS_ALL; ++hfilter) { |
| for (vfilter = EIGHTTAP_REGULAR; vfilter < INTERP_FILTERS_ALL; |
| ++vfilter) { |
| const InterpFilterParams *filter_params_x = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, |
| out_w); |
| const InterpFilterParams *filter_params_y = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, |
| out_h); |
| for (int do_average = 0; do_average < 1; ++do_average) { |
| ConvolveParams conv_params1 = |
| get_conv_params_no_round(do_average, 0, NULL, 0, 0, 8); |
| ConvolveParams conv_params2 = |
| get_conv_params_no_round(do_average, 0, NULL, 0, 0, 8); |
| |
| const int subx_range = has_subx ? 16 : 1; |
| const int suby_range = has_suby ? 16 : 1; |
| for (subx = 0; subx < subx_range; ++subx) { |
| for (suby = 0; suby < suby_range; ++suby) { |
| // Choose random locations within the source block |
| const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); |
| const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); |
| av1_convolve_2d_sr_c(input + offset_r * w + offset_c, w, output, |
| MAX_SB_SIZE, out_w, out_h, filter_params_x, |
| filter_params_y, subx, suby, &conv_params1); |
| test_impl(input + offset_r * w + offset_c, w, output2, |
| MAX_SB_SIZE, out_w, out_h, filter_params_x, |
| filter_params_y, subx, suby, &conv_params2); |
| |
| if (memcmp(output, output2, sizeof(output))) { |
| for (int i = 0; i < MAX_SB_SIZE; ++i) { |
| for (int j = 0; j < MAX_SB_SIZE; ++j) { |
| int idx = i * MAX_SB_SIZE + j; |
| ASSERT_EQ(output[idx], output2[idx]) |
| << out_w << "x" << out_h << " Pixel mismatch at index " |
| << idx << " = (" << i << ", " << j |
| << "), sub pixel offset = (" << suby << ", " << subx |
| << ")"; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void AV1Convolve2DSrTest::RunSpeedTest(convolve_2d_func test_impl) { |
| const int w = kMaxSize, h = kMaxSize; |
| const int has_subx = GET_PARAM(1); |
| const int has_suby = GET_PARAM(2); |
| const int block_idx = GET_PARAM(3); |
| |
| uint8_t input[kMaxSize * kMaxSize]; |
| DECLARE_ALIGNED(32, uint8_t, output[MAX_SB_SQUARE]); |
| |
| for (int i = 0; i < h; ++i) |
| for (int j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); |
| |
| int hfilter = EIGHTTAP_REGULAR, vfilter = EIGHTTAP_REGULAR; |
| int subx = 0, suby = 0; |
| |
| const int do_average = 0; |
| ConvolveParams conv_params2 = |
| get_conv_params_no_round(do_average, 0, NULL, 0, 0, 8); |
| |
| // Make sure that sizes 2xN and Nx2 are also tested for chroma. |
| const int num_sizes = |
| (block_size_wide[block_idx] == 4 || block_size_high[block_idx] == 4) ? 2 |
| : 1; |
| for (int shift = 0; shift < num_sizes; ++shift) { // luma and chroma |
| const int out_w = block_size_wide[block_idx] >> shift; |
| const int out_h = block_size_high[block_idx] >> shift; |
| const int num_loops = 1000000000 / (out_w + out_h); |
| |
| const InterpFilterParams *filter_params_x = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, |
| out_w); |
| const InterpFilterParams *filter_params_y = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, |
| out_h); |
| |
| aom_usec_timer timer; |
| aom_usec_timer_start(&timer); |
| |
| for (int i = 0; i < num_loops; ++i) |
| test_impl(input, w, output, MAX_SB_SIZE, out_w, out_h, filter_params_x, |
| filter_params_y, subx, suby, &conv_params2); |
| |
| aom_usec_timer_mark(&timer); |
| const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer)); |
| printf("%d,%d convolve %3dx%-3d: %7.2f us\n", has_subx, has_suby, out_w, |
| out_h, 1000.0 * elapsed_time / num_loops); |
| } |
| } |
| |
| AV1JntConvolve2DTest::~AV1JntConvolve2DTest() {} |
| void AV1JntConvolve2DTest::SetUp() { |
| rnd_.Reset(ACMRandom::DeterministicSeed()); |
| } |
| |
| void AV1JntConvolve2DTest::TearDown() { libaom_test::ClearSystemState(); } |
| |
| void AV1JntConvolve2DTest::RunCheckOutput(convolve_2d_func test_impl) { |
| const int w = kMaxSize, h = kMaxSize; |
| const int has_subx = GET_PARAM(1); |
| const int has_suby = GET_PARAM(2); |
| const int block_idx = GET_PARAM(3); |
| int hfilter, vfilter, subx, suby; |
| uint8_t input[kMaxSize * kMaxSize]; |
| DECLARE_ALIGNED(32, CONV_BUF_TYPE, output1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, CONV_BUF_TYPE, output2[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, uint8_t, output8_1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, uint8_t, output8_2[MAX_SB_SQUARE]); |
| |
| for (int i = 0; i < h; ++i) |
| for (int j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); |
| for (int i = 0; i < MAX_SB_SQUARE; ++i) { |
| output1[i] = output2[i] = rnd_.Rand16(); |
| output8_1[i] = output8_2[i] = rnd_.Rand8(); |
| } |
| |
| const int out_w = block_size_wide[block_idx]; |
| const int out_h = block_size_high[block_idx]; |
| for (hfilter = EIGHTTAP_REGULAR; hfilter < INTERP_FILTERS_ALL; ++hfilter) { |
| for (vfilter = EIGHTTAP_REGULAR; vfilter < INTERP_FILTERS_ALL; ++vfilter) { |
| const InterpFilterParams *filter_params_x = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, |
| out_w); |
| const InterpFilterParams *filter_params_y = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, |
| out_h); |
| for (int do_average = 0; do_average <= 1; ++do_average) { |
| ConvolveParams conv_params1 = |
| get_conv_params_no_round(do_average, 0, output1, MAX_SB_SIZE, 1, 8); |
| ConvolveParams conv_params2 = |
| get_conv_params_no_round(do_average, 0, output2, MAX_SB_SIZE, 1, 8); |
| |
| // Test special case where dist_wtd_comp_avg is not used |
| conv_params1.use_dist_wtd_comp_avg = 0; |
| conv_params2.use_dist_wtd_comp_avg = 0; |
| |
| const int subx_range = has_subx ? 16 : 1; |
| const int suby_range = has_suby ? 16 : 1; |
| for (subx = 0; subx < subx_range; ++subx) { |
| for (suby = 0; suby < suby_range; ++suby) { |
| // Choose random locations within the source block |
| const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); |
| const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); |
| av1_dist_wtd_convolve_2d_c(input + offset_r * w + offset_c, w, |
| output8_1, MAX_SB_SIZE, out_w, out_h, |
| filter_params_x, filter_params_y, subx, |
| suby, &conv_params1); |
| test_impl(input + offset_r * w + offset_c, w, output8_2, |
| MAX_SB_SIZE, out_w, out_h, filter_params_x, |
| filter_params_y, subx, suby, &conv_params2); |
| |
| for (int i = 0; i < out_h; ++i) { |
| for (int j = 0; j < out_w; ++j) { |
| int idx = i * MAX_SB_SIZE + j; |
| ASSERT_EQ(output1[idx], output2[idx]) |
| << "Mismatch at unit tests for av1_dist_wtd_convolve_2d\n" |
| << out_w << "x" << out_h << " Pixel mismatch at index " |
| << idx << " = (" << i << ", " << j |
| << "), sub pixel offset = (" << suby << ", " << subx << ")"; |
| } |
| } |
| |
| if (memcmp(output8_1, output8_2, sizeof(output8_1))) { |
| for (int i = 0; i < MAX_SB_SIZE; ++i) { |
| for (int j = 0; j < MAX_SB_SIZE; ++j) { |
| int idx = i * MAX_SB_SIZE + j; |
| ASSERT_EQ(output8_1[idx], output8_2[idx]) |
| << out_w << "x" << out_h << " Pixel mismatch at index " |
| << idx << " = (" << i << ", " << j |
| << "), sub pixel offset = (" << suby << ", " << subx |
| << ")"; |
| } |
| } |
| } |
| } |
| } |
| |
| // Test different combination of fwd and bck offset weights |
| for (int k = 0; k < 2; ++k) { |
| for (int l = 0; l < 4; ++l) { |
| conv_params1.use_dist_wtd_comp_avg = 1; |
| conv_params2.use_dist_wtd_comp_avg = 1; |
| conv_params1.fwd_offset = quant_dist_lookup_table[k][l][0]; |
| conv_params1.bck_offset = quant_dist_lookup_table[k][l][1]; |
| conv_params2.fwd_offset = quant_dist_lookup_table[k][l][0]; |
| conv_params2.bck_offset = quant_dist_lookup_table[k][l][1]; |
| |
| for (subx = 0; subx < subx_range; ++subx) { |
| for (suby = 0; suby < suby_range; ++suby) { |
| // Choose random locations within the source block |
| const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); |
| const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); |
| av1_dist_wtd_convolve_2d_c(input + offset_r * w + offset_c, w, |
| output8_1, MAX_SB_SIZE, out_w, out_h, |
| filter_params_x, filter_params_y, |
| subx, suby, &conv_params1); |
| test_impl(input + offset_r * w + offset_c, w, output8_2, |
| MAX_SB_SIZE, out_w, out_h, filter_params_x, |
| filter_params_y, subx, suby, &conv_params2); |
| |
| for (int i = 0; i < out_h; ++i) { |
| for (int j = 0; j < out_w; ++j) { |
| int idx = i * MAX_SB_SIZE + j; |
| ASSERT_EQ(output1[idx], output2[idx]) |
| << "Mismatch at unit tests for " |
| "av1_dist_wtd_convolve_2d\n" |
| << out_w << "x" << out_h << " Pixel mismatch at index " |
| << idx << " = (" << i << ", " << j |
| << "), sub pixel offset = (" << suby << ", " << subx |
| << ")"; |
| } |
| } |
| if (memcmp(output8_1, output8_2, sizeof(output8_1))) { |
| for (int i = 0; i < MAX_SB_SIZE; ++i) { |
| for (int j = 0; j < MAX_SB_SIZE; ++j) { |
| int idx = i * MAX_SB_SIZE + j; |
| ASSERT_EQ(output8_1[idx], output8_2[idx]) |
| << out_w << "x" << out_h |
| << " Pixel mismatch at index " << idx << " = (" << i |
| << ", " << j << "), sub pixel offset = (" << suby |
| << ", " << subx << ")"; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void AV1JntConvolve2DTest::RunSpeedTest(convolve_2d_func test_impl) { |
| const int w = kMaxSize, h = kMaxSize; |
| const int has_subx = GET_PARAM(1); |
| const int has_suby = GET_PARAM(2); |
| const int block_idx = GET_PARAM(3); |
| |
| int subx = 0, suby = 0; |
| uint8_t input[kMaxSize * kMaxSize]; |
| DECLARE_ALIGNED(32, CONV_BUF_TYPE, output[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, uint8_t, output8[MAX_SB_SQUARE]); |
| int hfilter = EIGHTTAP_REGULAR, vfilter = EIGHTTAP_REGULAR; |
| for (int i = 0; i < h; ++i) |
| for (int j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); |
| for (int i = 0; i < MAX_SB_SQUARE; ++i) { |
| output[i] = rnd_.Rand16(); |
| output8[i] = rnd_.Rand8(); |
| } |
| |
| const int out_w = block_size_wide[block_idx]; |
| const int out_h = block_size_high[block_idx]; |
| const int num_loops = 1000000000 / (out_w + out_h); |
| const int do_average = 0; |
| |
| const InterpFilterParams *filter_params_x = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, |
| out_w); |
| const InterpFilterParams *filter_params_y = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, |
| out_h); |
| |
| ConvolveParams conv_params = |
| get_conv_params_no_round(do_average, 0, output, MAX_SB_SIZE, 1, 8); |
| |
| conv_params.use_dist_wtd_comp_avg = 0; |
| |
| // Choose random locations within the source block |
| const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); |
| const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); |
| |
| aom_usec_timer timer; |
| aom_usec_timer_start(&timer); |
| |
| for (int i = 0; i < num_loops; ++i) |
| test_impl(input + offset_r * w + offset_c, w, output8, MAX_SB_SIZE, out_w, |
| out_h, filter_params_x, filter_params_y, subx, suby, |
| &conv_params); |
| |
| aom_usec_timer_mark(&timer); |
| const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer)); |
| printf("%d,%d convolve %3dx%-3d: %7.2f us\n", has_subx, has_suby, out_w, |
| out_h, 1000.0 * elapsed_time / num_loops); |
| } |
| } // namespace AV1Convolve2D |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| namespace AV1HighbdConvolve2D { |
| ::testing::internal::ParamGenerator<HighbdConvolve2DParam> BuildParams( |
| highbd_convolve_2d_func filter, int has_subx, int has_suby) { |
| return ::testing::Combine( |
| ::testing::Range(8, 13, 2), ::testing::Values(filter), |
| ::testing::Values(has_subx), ::testing::Values(has_suby), |
| ::testing::Range(BLOCK_4X4, BLOCK_SIZES_ALL)); |
| } |
| |
| AV1HighbdConvolve2DSrTest::~AV1HighbdConvolve2DSrTest() {} |
| void AV1HighbdConvolve2DSrTest::SetUp() { |
| rnd_.Reset(ACMRandom::DeterministicSeed()); |
| } |
| |
| void AV1HighbdConvolve2DSrTest::TearDown() { libaom_test::ClearSystemState(); } |
| |
| void AV1HighbdConvolve2DSrTest::RunSpeedTest( |
| highbd_convolve_2d_func test_impl) { |
| const int w = kMaxSize, h = kMaxSize; |
| const int bd = GET_PARAM(0); |
| const int has_subx = GET_PARAM(2); |
| const int has_suby = GET_PARAM(3); |
| const int block_idx = GET_PARAM(4); |
| int hfilter, vfilter, subx, suby; |
| uint16_t input[kMaxSize * kMaxSize]; |
| DECLARE_ALIGNED(32, uint16_t, output[MAX_SB_SQUARE]); |
| |
| for (int i = 0; i < h; ++i) |
| for (int j = 0; j < w; ++j) |
| input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); |
| |
| hfilter = EIGHTTAP_REGULAR; |
| vfilter = EIGHTTAP_REGULAR; |
| int do_average = 0; |
| |
| const int offset_r = 3; |
| const int offset_c = 3; |
| subx = 0; |
| suby = 0; |
| |
| ConvolveParams conv_params = |
| get_conv_params_no_round(do_average, 0, NULL, 0, 0, bd); |
| |
| // Make sure that sizes 2xN and Nx2 are also tested for chroma. |
| const int num_sizes = |
| (block_size_wide[block_idx] == 4 || block_size_high[block_idx] == 4) ? 2 |
| : 1; |
| |
| for (int shift = 0; shift < num_sizes; ++shift) { // luma and chroma |
| const int out_w = block_size_wide[block_idx] >> shift; |
| const int out_h = block_size_high[block_idx] >> shift; |
| const int num_loops = 1000000000 / (out_w + out_h); |
| |
| const InterpFilterParams *filter_params_x = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, |
| out_w); |
| const InterpFilterParams *filter_params_y = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, |
| out_h); |
| |
| aom_usec_timer timer; |
| aom_usec_timer_start(&timer); |
| for (int i = 0; i < num_loops; ++i) |
| test_impl(input + offset_r * w + offset_c, w, output, MAX_SB_SIZE, out_w, |
| out_h, filter_params_x, filter_params_y, subx, suby, |
| &conv_params, bd); |
| |
| aom_usec_timer_mark(&timer); |
| const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer)); |
| printf("%d,%d convolve %3dx%-3d: %7.2f us\n", has_subx, has_suby, out_w, |
| out_h, 1000.0 * elapsed_time / num_loops); |
| } |
| } |
| |
| void AV1HighbdConvolve2DSrTest::RunCheckOutput( |
| highbd_convolve_2d_func test_impl) { |
| const int w = kMaxSize, h = kMaxSize; |
| const int bd = GET_PARAM(0); |
| const int has_subx = GET_PARAM(2); |
| const int has_suby = GET_PARAM(3); |
| const int block_idx = GET_PARAM(4); |
| int hfilter, vfilter, subx, suby; |
| uint16_t input[kMaxSize * kMaxSize]; |
| DECLARE_ALIGNED(32, uint16_t, output[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint16_t, output2[MAX_SB_SQUARE]); |
| |
| for (int i = 0; i < h; ++i) |
| for (int j = 0; j < w; ++j) |
| input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); |
| for (int i = 0; i < MAX_SB_SQUARE; ++i) |
| output[i] = output2[i] = static_cast<int16_t>(rnd_.Rand31()); |
| |
| // Make sure that sizes 2xN and Nx2 are also tested for chroma. |
| const int num_sizes = |
| (block_size_wide[block_idx] == 4 || block_size_high[block_idx] == 4) ? 2 |
| : 1; |
| for (int shift = 0; shift < num_sizes; ++shift) { // luma and chroma |
| const int out_w = block_size_wide[block_idx] >> shift; |
| const int out_h = block_size_high[block_idx] >> shift; |
| for (hfilter = EIGHTTAP_REGULAR; hfilter < INTERP_FILTERS_ALL; ++hfilter) { |
| for (vfilter = EIGHTTAP_REGULAR; vfilter < INTERP_FILTERS_ALL; |
| ++vfilter) { |
| const InterpFilterParams *filter_params_x = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, |
| out_w); |
| const InterpFilterParams *filter_params_y = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, |
| out_h); |
| for (int do_average = 0; do_average < 1; ++do_average) { |
| ConvolveParams conv_params1 = |
| get_conv_params_no_round(do_average, 0, NULL, 0, 0, bd); |
| ConvolveParams conv_params2 = |
| get_conv_params_no_round(do_average, 0, NULL, 0, 0, bd); |
| |
| const int subx_range = has_subx ? 16 : 1; |
| const int suby_range = has_suby ? 16 : 1; |
| for (subx = 0; subx < subx_range; ++subx) { |
| for (suby = 0; suby < suby_range; ++suby) { |
| // Choose random locations within the source block |
| const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); |
| const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); |
| av1_highbd_convolve_2d_sr_c(input + offset_r * w + offset_c, w, |
| output, MAX_SB_SIZE, out_w, out_h, |
| filter_params_x, filter_params_y, |
| subx, suby, &conv_params1, bd); |
| test_impl(input + offset_r * w + offset_c, w, output2, |
| MAX_SB_SIZE, out_w, out_h, filter_params_x, |
| filter_params_y, subx, suby, &conv_params2, bd); |
| |
| if (memcmp(output, output2, sizeof(output))) { |
| for (int i = 0; i < MAX_SB_SIZE; ++i) { |
| for (int j = 0; j < MAX_SB_SIZE; ++j) { |
| int idx = i * MAX_SB_SIZE + j; |
| ASSERT_EQ(output[idx], output2[idx]) |
| << out_w << "x" << out_h << " Pixel mismatch at index " |
| << idx << " = (" << i << ", " << j |
| << "), sub pixel offset = (" << suby << ", " << subx |
| << ")"; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| AV1HighbdJntConvolve2DTest::~AV1HighbdJntConvolve2DTest() {} |
| void AV1HighbdJntConvolve2DTest::SetUp() { |
| rnd_.Reset(ACMRandom::DeterministicSeed()); |
| } |
| |
| void AV1HighbdJntConvolve2DTest::TearDown() { libaom_test::ClearSystemState(); } |
| |
| void AV1HighbdJntConvolve2DTest::RunSpeedTest( |
| highbd_convolve_2d_func test_impl) { |
| const int w = kMaxSize, h = kMaxSize; |
| const int bd = GET_PARAM(0); |
| const int block_idx = GET_PARAM(4); |
| int hfilter, vfilter, subx, suby; |
| uint16_t input[kMaxSize * kMaxSize]; |
| DECLARE_ALIGNED(32, CONV_BUF_TYPE, output[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint16_t, output16[MAX_SB_SQUARE]); |
| |
| for (int i = 0; i < h; ++i) |
| for (int j = 0; j < w; ++j) |
| input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); |
| for (int i = 0; i < MAX_SB_SQUARE; ++i) output[i] = rnd_.Rand16(); |
| hfilter = EIGHTTAP_REGULAR; |
| vfilter = EIGHTTAP_REGULAR; |
| int do_average = 0; |
| const int out_w = block_size_wide[block_idx]; |
| const int out_h = block_size_high[block_idx]; |
| |
| const InterpFilterParams *filter_params_x = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, |
| out_w); |
| const InterpFilterParams *filter_params_y = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, |
| out_h); |
| |
| ConvolveParams conv_params = |
| get_conv_params_no_round(do_average, 0, output, MAX_SB_SIZE, 1, bd); |
| |
| // Test special case where dist_wtd_comp_avg is not used |
| conv_params.use_dist_wtd_comp_avg = 0; |
| |
| subx = 0; |
| suby = 0; |
| // Choose random locations within the source block |
| const int offset_r = 3; |
| const int offset_c = 3; |
| |
| const int num_loops = 1000000000 / (out_w + out_h); |
| aom_usec_timer timer; |
| aom_usec_timer_start(&timer); |
| for (int i = 0; i < num_loops; ++i) |
| test_impl(input + offset_r * w + offset_c, w, output16, MAX_SB_SIZE, out_w, |
| out_h, filter_params_x, filter_params_y, subx, suby, &conv_params, |
| bd); |
| |
| aom_usec_timer_mark(&timer); |
| const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer)); |
| printf("convolve %3dx%-3d: %7.2f us\n", out_w, out_h, |
| 1000.0 * elapsed_time / num_loops); |
| } |
| |
| void AV1HighbdJntConvolve2DTest::RunCheckOutput( |
| highbd_convolve_2d_func test_impl) { |
| const int w = kMaxSize, h = kMaxSize; |
| const int bd = GET_PARAM(0); |
| const int has_subx = GET_PARAM(2); |
| const int has_suby = GET_PARAM(3); |
| const int block_idx = GET_PARAM(4); |
| int hfilter, vfilter, subx, suby; |
| uint16_t input[kMaxSize * kMaxSize]; |
| DECLARE_ALIGNED(32, CONV_BUF_TYPE, output1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, CONV_BUF_TYPE, output2[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint16_t, output16_1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint16_t, output16_2[MAX_SB_SQUARE]); |
| |
| for (int i = 0; i < h; ++i) |
| for (int j = 0; j < w; ++j) |
| input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); |
| for (int i = 0; i < MAX_SB_SQUARE; ++i) { |
| output1[i] = output2[i] = rnd_.Rand16(); |
| output16_1[i] = output16_2[i] = rnd_.Rand16(); |
| } |
| |
| const int out_w = block_size_wide[block_idx]; |
| const int out_h = block_size_high[block_idx]; |
| for (hfilter = EIGHTTAP_REGULAR; hfilter < INTERP_FILTERS_ALL; ++hfilter) { |
| for (vfilter = EIGHTTAP_REGULAR; vfilter < INTERP_FILTERS_ALL; ++vfilter) { |
| const InterpFilterParams *filter_params_x = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, |
| out_w); |
| const InterpFilterParams *filter_params_y = |
| av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, |
| out_h); |
| for (int do_average = 0; do_average <= 1; ++do_average) { |
| ConvolveParams conv_params1 = get_conv_params_no_round( |
| do_average, 0, output1, MAX_SB_SIZE, 1, bd); |
| ConvolveParams conv_params2 = get_conv_params_no_round( |
| do_average, 0, output2, MAX_SB_SIZE, 1, bd); |
| |
| // Test special case where dist_wtd_comp_avg is not used |
| conv_params1.use_dist_wtd_comp_avg = 0; |
| conv_params2.use_dist_wtd_comp_avg = 0; |
| |
| const int subx_range = has_subx ? 16 : 1; |
| const int suby_range = has_suby ? 16 : 1; |
| for (subx = 0; subx < subx_range; ++subx) { |
| for (suby = 0; suby < suby_range; ++suby) { |
| // Choose random locations within the source block |
| const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); |
| const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); |
| av1_highbd_dist_wtd_convolve_2d_c( |
| input + offset_r * w + offset_c, w, output16_1, MAX_SB_SIZE, |
| out_w, out_h, filter_params_x, filter_params_y, subx, suby, |
| &conv_params1, bd); |
| test_impl(input + offset_r * w + offset_c, w, output16_2, |
| MAX_SB_SIZE, out_w, out_h, filter_params_x, |
| filter_params_y, subx, suby, &conv_params2, bd); |
| |
| for (int i = 0; i < out_h; ++i) { |
| for (int j = 0; j < out_w; ++j) { |
| int idx = i * MAX_SB_SIZE + j; |
| ASSERT_EQ(output1[idx], output2[idx]) |
| << out_w << "x" << out_h << " Pixel mismatch at index " |
| << idx << " = (" << i << ", " << j |
| << "), sub pixel offset = (" << suby << ", " << subx << ")"; |
| } |
| } |
| |
| if (memcmp(output16_1, output16_2, sizeof(output16_1))) { |
| for (int i = 0; i < MAX_SB_SIZE; ++i) { |
| for (int j = 0; j < MAX_SB_SIZE; ++j) { |
| int idx = i * MAX_SB_SIZE + j; |
| ASSERT_EQ(output16_1[idx], output16_2[idx]) |
| << out_w << "x" << out_h << " Pixel mismatch at index " |
| << idx << " = (" << i << ", " << j |
| << "), sub pixel offset = (" << suby << ", " << subx |
| << ")"; |
| } |
| } |
| } |
| } |
| } |
| |
| // Test different combination of fwd and bck offset weights |
| for (int k = 0; k < 2; ++k) { |
| for (int l = 0; l < 4; ++l) { |
| conv_params1.use_dist_wtd_comp_avg = 1; |
| conv_params2.use_dist_wtd_comp_avg = 1; |
| conv_params1.fwd_offset = quant_dist_lookup_table[k][l][0]; |
| conv_params1.bck_offset = quant_dist_lookup_table[k][l][1]; |
| conv_params2.fwd_offset = quant_dist_lookup_table[k][l][0]; |
| conv_params2.bck_offset = quant_dist_lookup_table[k][l][1]; |
| |
| const int subx_range = has_subx ? 16 : 1; |
| const int suby_range = has_suby ? 16 : 1; |
| for (subx = 0; subx < subx_range; ++subx) { |
| for (suby = 0; suby < suby_range; ++suby) { |
| // Choose random locations within the source block |
| const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); |
| const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); |
| av1_highbd_dist_wtd_convolve_2d_c( |
| input + offset_r * w + offset_c, w, output16_1, MAX_SB_SIZE, |
| out_w, out_h, filter_params_x, filter_params_y, subx, suby, |
| &conv_params1, bd); |
| test_impl(input + offset_r * w + offset_c, w, output16_2, |
| MAX_SB_SIZE, out_w, out_h, filter_params_x, |
| filter_params_y, subx, suby, &conv_params2, bd); |
| |
| for (int i = 0; i < out_h; ++i) { |
| for (int j = 0; j < out_w; ++j) { |
| int idx = i * MAX_SB_SIZE + j; |
| ASSERT_EQ(output1[idx], output2[idx]) |
| << out_w << "x" << out_h << " Pixel mismatch at index " |
| << idx << " = (" << i << ", " << j |
| << "), sub pixel offset = (" << suby << ", " << subx |
| << ")"; |
| } |
| } |
| |
| if (memcmp(output16_1, output16_2, sizeof(output16_1))) { |
| for (int i = 0; i < MAX_SB_SIZE; ++i) { |
| for (int j = 0; j < MAX_SB_SIZE; ++j) { |
| int idx = i * MAX_SB_SIZE + j; |
| ASSERT_EQ(output16_1[idx], output16_2[idx]) |
| << out_w << "x" << out_h |
| << " Pixel mismatch at index " << idx << " = (" << i |
| << ", " << j << "), sub pixel offset = (" << suby |
| << ", " << subx << ")"; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } // namespace AV1HighbdConvolve2D |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| } // namespace libaom_test |