| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| |
| #include "aom_ports/system_state.h" |
| |
| #include "av1/common/blockd.h" |
| #include "av1/common/onyxc_int.h" |
| |
| PREDICTION_MODE av1_left_block_mode(const MODE_INFO *cur_mi, |
| const MODE_INFO *left_mi, int b) { |
| if (b == 0 || b == 2) { |
| if (!left_mi || is_inter_block(&left_mi->mbmi)) return DC_PRED; |
| |
| return get_y_mode(left_mi, b + 1); |
| } else { |
| assert(b == 1 || b == 3); |
| return cur_mi->bmi[b - 1].as_mode; |
| } |
| } |
| |
| PREDICTION_MODE av1_above_block_mode(const MODE_INFO *cur_mi, |
| const MODE_INFO *above_mi, int b) { |
| if (b == 0 || b == 1) { |
| if (!above_mi || is_inter_block(&above_mi->mbmi)) return DC_PRED; |
| |
| return get_y_mode(above_mi, b + 2); |
| } else { |
| assert(b == 2 || b == 3); |
| return cur_mi->bmi[b - 2].as_mode; |
| } |
| } |
| |
| #if CONFIG_COEF_INTERLEAVE |
| void av1_foreach_transformed_block_interleave( |
| const MACROBLOCKD *const xd, BLOCK_SIZE bsize, |
| foreach_transformed_block_visitor visit, void *arg) { |
| const struct macroblockd_plane *const pd_y = &xd->plane[0]; |
| const struct macroblockd_plane *const pd_c = &xd->plane[1]; |
| const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| |
| const TX_SIZE tx_log2_y = mbmi->tx_size; |
| const TX_SIZE tx_log2_c = get_uv_tx_size(mbmi, pd_c); |
| const int tx_sz_y = (1 << tx_log2_y); |
| const int tx_sz_c = (1 << tx_log2_c); |
| |
| const BLOCK_SIZE plane_bsize_y = get_plane_block_size(bsize, pd_y); |
| const BLOCK_SIZE plane_bsize_c = get_plane_block_size(bsize, pd_c); |
| |
| const int num_4x4_w_y = num_4x4_blocks_wide_lookup[plane_bsize_y]; |
| const int num_4x4_w_c = num_4x4_blocks_wide_lookup[plane_bsize_c]; |
| const int num_4x4_h_y = num_4x4_blocks_high_lookup[plane_bsize_y]; |
| const int num_4x4_h_c = num_4x4_blocks_high_lookup[plane_bsize_c]; |
| |
| const int step_y = 1 << (tx_log2_y << 1); |
| const int step_c = 1 << (tx_log2_c << 1); |
| |
| const int max_4x4_w_y = |
| get_max_4x4_size(num_4x4_w_y, xd->mb_to_right_edge, pd_y->subsampling_x); |
| const int max_4x4_h_y = |
| get_max_4x4_size(num_4x4_h_y, xd->mb_to_bottom_edge, pd_y->subsampling_y); |
| |
| const int extra_step_y = ((num_4x4_w_y - max_4x4_w_y) >> tx_log2_y) * step_y; |
| |
| const int max_4x4_w_c = |
| get_max_4x4_size(num_4x4_w_c, xd->mb_to_right_edge, pd_c->subsampling_x); |
| const int max_4x4_h_c = |
| get_max_4x4_size(num_4x4_h_c, xd->mb_to_bottom_edge, pd_c->subsampling_y); |
| |
| const int extra_step_c = ((num_4x4_w_c - max_4x4_w_c) >> tx_log2_c) * step_c; |
| |
| // The max_4x4_w/h may be smaller than tx_sz under some corner cases, |
| // i.e. when the SB is splitted by tile boundaries. |
| const int tu_num_w_y = (max_4x4_w_y + tx_sz_y - 1) / tx_sz_y; |
| const int tu_num_h_y = (max_4x4_h_y + tx_sz_y - 1) / tx_sz_y; |
| const int tu_num_w_c = (max_4x4_w_c + tx_sz_c - 1) / tx_sz_c; |
| const int tu_num_h_c = (max_4x4_h_c + tx_sz_c - 1) / tx_sz_c; |
| const int tu_num_c = tu_num_w_c * tu_num_h_c; |
| |
| int tu_idx_c = 0; |
| int offset_y, row_y, col_y; |
| int offset_c, row_c, col_c; |
| |
| for (row_y = 0; row_y < tu_num_h_y; row_y++) { |
| for (col_y = 0; col_y < tu_num_w_y; col_y++) { |
| // luma |
| offset_y = (row_y * tu_num_w_y + col_y) * step_y + row_y * extra_step_y; |
| visit(0, offset_y, row_y * tx_sz_y, col_y * tx_sz_y, plane_bsize_y, |
| tx_log2_y, arg); |
| // chroma |
| if (tu_idx_c < tu_num_c) { |
| row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; |
| col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; |
| offset_c = tu_idx_c * step_c + (tu_idx_c / tu_num_w_c) * extra_step_c; |
| visit(1, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg); |
| visit(2, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg); |
| tu_idx_c++; |
| } |
| } |
| } |
| |
| // In 422 case, it's possible that Chroma has more TUs than Luma |
| while (tu_idx_c < tu_num_c) { |
| row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; |
| col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; |
| offset_c = tu_idx_c * step_c + row_c * extra_step_c; |
| visit(1, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg); |
| visit(2, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg); |
| tu_idx_c++; |
| } |
| } |
| #endif |
| |
| void av1_foreach_transformed_block_in_plane( |
| const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane, |
| foreach_transformed_block_visitor visit, void *arg) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") |
| // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 |
| // transform size varies per plane, look it up in a common way. |
| const TX_SIZE tx_size = get_tx_size(plane, xd); |
| #if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2 |
| const BLOCK_SIZE plane_bsize = |
| AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd)); |
| #else |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); |
| #endif |
| const uint8_t txw_unit = tx_size_wide_unit[tx_size]; |
| const uint8_t txh_unit = tx_size_high_unit[tx_size]; |
| const int step = txw_unit * txh_unit; |
| int i = 0, r, c; |
| |
| // If mb_to_right_edge is < 0 we are in a situation in which |
| // the current block size extends into the UMV and we won't |
| // visit the sub blocks that are wholly within the UMV. |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| |
| // Keep track of the row and column of the blocks we use so that we know |
| // if we are in the unrestricted motion border. |
| for (r = 0; r < max_blocks_high; r += txh_unit) { |
| // Skip visiting the sub blocks that are wholly within the UMV. |
| for (c = 0; c < max_blocks_wide; c += txw_unit) { |
| visit(plane, i, r, c, plane_bsize, tx_size, arg); |
| i += step; |
| } |
| } |
| } |
| |
| #if CONFIG_LV_MAP |
| void av1_foreach_transformed_block(const MACROBLOCKD *const xd, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| foreach_transformed_block_visitor visit, |
| void *arg) { |
| int plane; |
| |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| #if CONFIG_CB4X4 |
| if (!is_chroma_reference(mi_row, mi_col, bsize, |
| xd->plane[plane].subsampling_x, |
| xd->plane[plane].subsampling_y)) |
| continue; |
| #else |
| (void)mi_row; |
| (void)mi_col; |
| #endif |
| av1_foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg); |
| } |
| } |
| #endif |
| |
| #if CONFIG_DAALA_DIST |
| void av1_foreach_8x8_transformed_block_in_plane( |
| const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane, |
| foreach_transformed_block_visitor visit, |
| foreach_transformed_block_visitor mi_visit, void *arg) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") |
| // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 |
| // transform size varies per plane, look it up in a common way. |
| const TX_SIZE tx_size = get_tx_size(plane, xd); |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); |
| const uint8_t txw_unit = tx_size_wide_unit[tx_size]; |
| const uint8_t txh_unit = tx_size_high_unit[tx_size]; |
| const int step = txw_unit * txh_unit; |
| int i = 0, r, c; |
| |
| // If mb_to_right_edge is < 0 we are in a situation in which |
| // the current block size extends into the UMV and we won't |
| // visit the sub blocks that are wholly within the UMV. |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| |
| // Keep track of the row and column of the blocks we use so that we know |
| // if we are in the unrestricted motion border. |
| for (r = 0; r < max_blocks_high; r += txh_unit) { |
| // Skip visiting the sub blocks that are wholly within the UMV. |
| for (c = 0; c < max_blocks_wide; c += txw_unit) { |
| visit(plane, i, r, c, plane_bsize, tx_size, arg); |
| // Call whenever each 8x8 block is done |
| if ((r & 1) && (c & 1)) |
| mi_visit(plane, i, r - 1, c - 1, plane_bsize, TX_8X8, arg); |
| i += step; |
| } |
| } |
| } |
| #endif |
| |
| #if !CONFIG_PVQ || CONFIG_VAR_TX |
| void av1_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd, |
| int plane, TX_SIZE tx_size, int has_eob, int aoff, |
| int loff) { |
| ENTROPY_CONTEXT *const a = pd->above_context + aoff; |
| ENTROPY_CONTEXT *const l = pd->left_context + loff; |
| const int txs_wide = tx_size_wide_unit[tx_size]; |
| const int txs_high = tx_size_high_unit[tx_size]; |
| #if CONFIG_CB4X4 |
| const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| #else |
| const BLOCK_SIZE bsize = AOMMAX(xd->mi[0]->mbmi.sb_type, BLOCK_8X8); |
| #endif |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); |
| |
| // above |
| if (has_eob && xd->mb_to_right_edge < 0) { |
| int i; |
| const int blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| int above_contexts = txs_wide; |
| if (above_contexts + aoff > blocks_wide) |
| above_contexts = blocks_wide - aoff; |
| |
| for (i = 0; i < above_contexts; ++i) a[i] = has_eob; |
| for (i = above_contexts; i < txs_wide; ++i) a[i] = 0; |
| } else { |
| memset(a, has_eob, sizeof(ENTROPY_CONTEXT) * txs_wide); |
| } |
| |
| // left |
| if (has_eob && xd->mb_to_bottom_edge < 0) { |
| int i; |
| const int blocks_high = max_block_high(xd, plane_bsize, plane); |
| int left_contexts = txs_high; |
| if (left_contexts + loff > blocks_high) left_contexts = blocks_high - loff; |
| |
| for (i = 0; i < left_contexts; ++i) l[i] = has_eob; |
| for (i = left_contexts; i < txs_high; ++i) l[i] = 0; |
| } else { |
| memset(l, has_eob, sizeof(ENTROPY_CONTEXT) * txs_high); |
| } |
| } |
| #endif |
| |
| void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y) { |
| int i; |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].plane_type = get_plane_type(i); |
| xd->plane[i].subsampling_x = i ? ss_x : 0; |
| xd->plane[i].subsampling_y = i ? ss_y : 0; |
| } |
| } |
| |
| #if CONFIG_EXT_INTRA |
| const int16_t dr_intra_derivative[90] = { |
| 1, 14666, 7330, 4884, 3660, 2926, 2435, 2084, 1821, 1616, 1451, 1317, 1204, |
| 1108, 1026, 955, 892, 837, 787, 743, 703, 666, 633, 603, 574, 548, |
| 524, 502, 481, 461, 443, 426, 409, 394, 379, 365, 352, 339, 327, |
| 316, 305, 294, 284, 274, 265, 256, 247, 238, 230, 222, 214, 207, |
| 200, 192, 185, 179, 172, 166, 159, 153, 147, 141, 136, 130, 124, |
| 119, 113, 108, 103, 98, 93, 88, 83, 78, 73, 68, 63, 59, |
| 54, 49, 45, 40, 35, 31, 26, 22, 17, 13, 8, 4, |
| }; |
| |
| #if CONFIG_INTRA_INTERP |
| int av1_is_intra_filter_switchable(int angle) { |
| assert(angle > 0 && angle < 270); |
| if (angle % 45 == 0) return 0; |
| if (angle > 90 && angle < 180) { |
| return 1; |
| } else { |
| return ((angle < 90 ? dr_intra_derivative[angle] |
| : dr_intra_derivative[270 - angle]) & |
| 0xFF) > 0; |
| } |
| } |
| #endif // CONFIG_INTRA_INTERP |
| #endif // CONFIG_EXT_INTRA |