blob: 7bada8bb18e7249b7af2943499c0ab5b65d31e26 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "aom_ports/system_state.h"
#include "av1/common/blockd.h"
#include "av1/common/onyxc_int.h"
PREDICTION_MODE av1_left_block_mode(const MODE_INFO *cur_mi,
const MODE_INFO *left_mi, int b) {
if (b == 0 || b == 2) {
if (!left_mi || is_inter_block(&left_mi->mbmi)) return DC_PRED;
return get_y_mode(left_mi, b + 1);
} else {
assert(b == 1 || b == 3);
return cur_mi->bmi[b - 1].as_mode;
}
}
PREDICTION_MODE av1_above_block_mode(const MODE_INFO *cur_mi,
const MODE_INFO *above_mi, int b) {
if (b == 0 || b == 1) {
if (!above_mi || is_inter_block(&above_mi->mbmi)) return DC_PRED;
return get_y_mode(above_mi, b + 2);
} else {
assert(b == 2 || b == 3);
return cur_mi->bmi[b - 2].as_mode;
}
}
#if CONFIG_COEF_INTERLEAVE
void av1_foreach_transformed_block_interleave(
const MACROBLOCKD *const xd, BLOCK_SIZE bsize,
foreach_transformed_block_visitor visit, void *arg) {
const struct macroblockd_plane *const pd_y = &xd->plane[0];
const struct macroblockd_plane *const pd_c = &xd->plane[1];
const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const TX_SIZE tx_log2_y = mbmi->tx_size;
const TX_SIZE tx_log2_c = av1_get_uv_tx_size(mbmi, pd_c);
const int tx_sz_y = (1 << tx_log2_y);
const int tx_sz_c = (1 << tx_log2_c);
const BLOCK_SIZE plane_bsize_y = get_plane_block_size(bsize, pd_y);
const BLOCK_SIZE plane_bsize_c = get_plane_block_size(bsize, pd_c);
const int num_4x4_w_y = num_4x4_blocks_wide_lookup[plane_bsize_y];
const int num_4x4_w_c = num_4x4_blocks_wide_lookup[plane_bsize_c];
const int num_4x4_h_y = num_4x4_blocks_high_lookup[plane_bsize_y];
const int num_4x4_h_c = num_4x4_blocks_high_lookup[plane_bsize_c];
const int step_y = 1 << (tx_log2_y << 1);
const int step_c = 1 << (tx_log2_c << 1);
const int max_4x4_w_y =
get_max_4x4_size(num_4x4_w_y, xd->mb_to_right_edge, pd_y->subsampling_x);
const int max_4x4_h_y =
get_max_4x4_size(num_4x4_h_y, xd->mb_to_bottom_edge, pd_y->subsampling_y);
const int extra_step_y = ((num_4x4_w_y - max_4x4_w_y) >> tx_log2_y) * step_y;
const int max_4x4_w_c =
get_max_4x4_size(num_4x4_w_c, xd->mb_to_right_edge, pd_c->subsampling_x);
const int max_4x4_h_c =
get_max_4x4_size(num_4x4_h_c, xd->mb_to_bottom_edge, pd_c->subsampling_y);
const int extra_step_c = ((num_4x4_w_c - max_4x4_w_c) >> tx_log2_c) * step_c;
// The max_4x4_w/h may be smaller than tx_sz under some corner cases,
// i.e. when the SB is splitted by tile boundaries.
const int tu_num_w_y = (max_4x4_w_y + tx_sz_y - 1) / tx_sz_y;
const int tu_num_h_y = (max_4x4_h_y + tx_sz_y - 1) / tx_sz_y;
const int tu_num_w_c = (max_4x4_w_c + tx_sz_c - 1) / tx_sz_c;
const int tu_num_h_c = (max_4x4_h_c + tx_sz_c - 1) / tx_sz_c;
const int tu_num_c = tu_num_w_c * tu_num_h_c;
int tu_idx_c = 0;
int offset_y, row_y, col_y;
int offset_c, row_c, col_c;
for (row_y = 0; row_y < tu_num_h_y; row_y++) {
for (col_y = 0; col_y < tu_num_w_y; col_y++) {
// luma
offset_y = (row_y * tu_num_w_y + col_y) * step_y + row_y * extra_step_y;
visit(0, offset_y, row_y * tx_sz_y, col_y * tx_sz_y, plane_bsize_y,
tx_log2_y, arg);
// chroma
if (tu_idx_c < tu_num_c) {
row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
offset_c = tu_idx_c * step_c + (tu_idx_c / tu_num_w_c) * extra_step_c;
visit(1, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg);
visit(2, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg);
tu_idx_c++;
}
}
}
// In 422 case, it's possible that Chroma has more TUs than Luma
while (tu_idx_c < tu_num_c) {
row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
offset_c = tu_idx_c * step_c + row_c * extra_step_c;
visit(1, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg);
visit(2, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg);
tu_idx_c++;
}
}
#endif
void av1_foreach_transformed_block_in_plane(
const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane,
foreach_transformed_block_visitor visit, void *arg) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
#if CONFIG_CHROMA_SUB8X8
const BLOCK_SIZE plane_bsize =
AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
#else
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
#endif
const uint8_t txw_unit = tx_size_wide_unit[tx_size];
const uint8_t txh_unit = tx_size_high_unit[tx_size];
const int step = txw_unit * txh_unit;
int i = 0, r, c;
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
int blk_row, blk_col;
const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd);
int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0];
int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0];
mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
for (r = 0; r < max_blocks_high; r += mu_blocks_high) {
const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high);
// Skip visiting the sub blocks that are wholly within the UMV.
for (c = 0; c < max_blocks_wide; c += mu_blocks_wide) {
const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide);
for (blk_row = r; blk_row < unit_height; blk_row += txh_unit) {
for (blk_col = c; blk_col < unit_width; blk_col += txw_unit) {
visit(plane, i, blk_row, blk_col, plane_bsize, tx_size, arg);
i += step;
}
}
}
}
}
#if CONFIG_LV_MAP
void av1_foreach_transformed_block(const MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
foreach_transformed_block_visitor visit,
void *arg) {
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
#if CONFIG_CB4X4
if (!is_chroma_reference(mi_row, mi_col, bsize,
xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y))
continue;
#else
(void)mi_row;
(void)mi_col;
#endif
av1_foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg);
}
}
#endif
#if !CONFIG_PVQ || CONFIG_VAR_TX
void av1_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd,
int plane, TX_SIZE tx_size, int has_eob, int aoff,
int loff) {
ENTROPY_CONTEXT *const a = pd->above_context + aoff;
ENTROPY_CONTEXT *const l = pd->left_context + loff;
const int txs_wide = tx_size_wide_unit[tx_size];
const int txs_high = tx_size_high_unit[tx_size];
#if CONFIG_CB4X4
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
#else
const BLOCK_SIZE bsize = AOMMAX(xd->mi[0]->mbmi.sb_type, BLOCK_8X8);
#endif
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
// above
if (has_eob && xd->mb_to_right_edge < 0) {
int i;
const int blocks_wide = max_block_wide(xd, plane_bsize, plane);
int above_contexts = txs_wide;
if (above_contexts + aoff > blocks_wide)
above_contexts = blocks_wide - aoff;
for (i = 0; i < above_contexts; ++i) a[i] = has_eob;
for (i = above_contexts; i < txs_wide; ++i) a[i] = 0;
} else {
memset(a, has_eob, sizeof(ENTROPY_CONTEXT) * txs_wide);
}
// left
if (has_eob && xd->mb_to_bottom_edge < 0) {
int i;
const int blocks_high = max_block_high(xd, plane_bsize, plane);
int left_contexts = txs_high;
if (left_contexts + loff > blocks_high) left_contexts = blocks_high - loff;
for (i = 0; i < left_contexts; ++i) l[i] = has_eob;
for (i = left_contexts; i < txs_high; ++i) l[i] = 0;
} else {
memset(l, has_eob, sizeof(ENTROPY_CONTEXT) * txs_high);
}
}
#endif
void av1_reset_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
int i;
int nplanes;
#if CONFIG_CB4X4
int chroma_ref;
chroma_ref =
is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y);
nplanes = 1 + (MAX_MB_PLANE - 1) * chroma_ref;
#else
(void)mi_row;
(void)mi_col;
nplanes = MAX_MB_PLANE;
#endif
for (i = 0; i < nplanes; i++) {
struct macroblockd_plane *const pd = &xd->plane[i];
#if CONFIG_CHROMA_SUB8X8
const BLOCK_SIZE plane_bsize =
AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
#else
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
#endif
const int txs_wide = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int txs_high = block_size_high[plane_bsize] >> tx_size_high_log2[0];
memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * txs_wide);
memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * txs_high);
}
}
void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].plane_type = get_plane_type(i);
xd->plane[i].subsampling_x = i ? ss_x : 0;
xd->plane[i].subsampling_y = i ? ss_y : 0;
}
}
#if CONFIG_EXT_INTRA
const int16_t dr_intra_derivative[90] = {
1, 14666, 7330, 4884, 3660, 2926, 2435, 2084, 1821, 1616, 1451, 1317, 1204,
1108, 1026, 955, 892, 837, 787, 743, 703, 666, 633, 603, 574, 548,
524, 502, 481, 461, 443, 426, 409, 394, 379, 365, 352, 339, 327,
316, 305, 294, 284, 274, 265, 256, 247, 238, 230, 222, 214, 207,
200, 192, 185, 179, 172, 166, 159, 153, 147, 141, 136, 130, 124,
119, 113, 108, 103, 98, 93, 88, 83, 78, 73, 68, 63, 59,
54, 49, 45, 40, 35, 31, 26, 22, 17, 13, 8, 4,
};
#if CONFIG_INTRA_INTERP
int av1_is_intra_filter_switchable(int angle) {
assert(angle > 0 && angle < 270);
if (angle % 45 == 0) return 0;
if (angle > 90 && angle < 180) {
return 1;
} else {
return ((angle < 90 ? dr_intra_derivative[angle]
: dr_intra_derivative[270 - angle]) &
0xFF) > 0;
}
}
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA