blob: dbe9f9e4ef6bb8a62a67f1d68439e6bb44e10e94 [file] [log] [blame]
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include <assert.h>
#include "aom/aom_integer.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_ports/mem.h"
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/av1_temporal_denoiser.h"
// Compute the sum of all pixel differences of this MB.
static inline int horizontal_add_s8x16(const int8x16_t v_sum_diff_total) {
#if AOM_ARCH_AARCH64
return vaddlvq_s8(v_sum_diff_total);
#else
const int16x8_t fe_dc_ba_98_76_54_32_10 = vpaddlq_s8(v_sum_diff_total);
const int32x4_t fedc_ba98_7654_3210 = vpaddlq_s16(fe_dc_ba_98_76_54_32_10);
const int64x2_t fedcba98_76543210 = vpaddlq_s32(fedc_ba98_7654_3210);
const int64x1_t x = vqadd_s64(vget_high_s64(fedcba98_76543210),
vget_low_s64(fedcba98_76543210));
const int sum_diff = vget_lane_s32(vreinterpret_s32_s64(x), 0);
return sum_diff;
#endif
}
// Denoise a 16x1 vector.
static inline int8x16_t denoiser_16x1_neon(
const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y,
const uint8x16_t v_level1_threshold, const uint8x16_t v_level2_threshold,
const uint8x16_t v_level3_threshold, const uint8x16_t v_level1_adjustment,
const uint8x16_t v_delta_level_1_and_2,
const uint8x16_t v_delta_level_2_and_3, int8x16_t v_sum_diff_total) {
const uint8x16_t v_sig = vld1q_u8(sig);
const uint8x16_t v_mc_running_avg_y = vld1q_u8(mc_running_avg_y);
/* Calculate absolute difference and sign masks. */
const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg_y);
const uint8x16_t v_diff_pos_mask = vcltq_u8(v_sig, v_mc_running_avg_y);
const uint8x16_t v_diff_neg_mask = vcgtq_u8(v_sig, v_mc_running_avg_y);
/* Figure out which level that put us in. */
const uint8x16_t v_level1_mask = vcleq_u8(v_level1_threshold, v_abs_diff);
const uint8x16_t v_level2_mask = vcleq_u8(v_level2_threshold, v_abs_diff);
const uint8x16_t v_level3_mask = vcleq_u8(v_level3_threshold, v_abs_diff);
/* Calculate absolute adjustments for level 1, 2 and 3. */
const uint8x16_t v_level2_adjustment =
vandq_u8(v_level2_mask, v_delta_level_1_and_2);
const uint8x16_t v_level3_adjustment =
vandq_u8(v_level3_mask, v_delta_level_2_and_3);
const uint8x16_t v_level1and2_adjustment =
vaddq_u8(v_level1_adjustment, v_level2_adjustment);
const uint8x16_t v_level1and2and3_adjustment =
vaddq_u8(v_level1and2_adjustment, v_level3_adjustment);
/* Figure adjustment absolute value by selecting between the absolute
* difference if in level0 or the value for level 1, 2 and 3.
*/
const uint8x16_t v_abs_adjustment =
vbslq_u8(v_level1_mask, v_level1and2and3_adjustment, v_abs_diff);
/* Calculate positive and negative adjustments. Apply them to the signal
* and accumulate them. Adjustments are less than eight and the maximum
* sum of them (7 * 16) can fit in a signed char.
*/
const uint8x16_t v_pos_adjustment =
vandq_u8(v_diff_pos_mask, v_abs_adjustment);
const uint8x16_t v_neg_adjustment =
vandq_u8(v_diff_neg_mask, v_abs_adjustment);
uint8x16_t v_running_avg_y = vqaddq_u8(v_sig, v_pos_adjustment);
v_running_avg_y = vqsubq_u8(v_running_avg_y, v_neg_adjustment);
/* Store results. */
vst1q_u8(running_avg_y, v_running_avg_y);
/* Sum all the accumulators to have the sum of all pixel differences
* for this macroblock.
*/
{
const int8x16_t v_sum_diff =
vqsubq_s8(vreinterpretq_s8_u8(v_pos_adjustment),
vreinterpretq_s8_u8(v_neg_adjustment));
v_sum_diff_total = vaddq_s8(v_sum_diff_total, v_sum_diff);
}
return v_sum_diff_total;
}
static inline int8x16_t denoiser_adjust_16x1_neon(
const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y,
const uint8x16_t k_delta, int8x16_t v_sum_diff_total) {
uint8x16_t v_running_avg_y = vld1q_u8(running_avg_y);
const uint8x16_t v_sig = vld1q_u8(sig);
const uint8x16_t v_mc_running_avg_y = vld1q_u8(mc_running_avg_y);
/* Calculate absolute difference and sign masks. */
const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg_y);
const uint8x16_t v_diff_pos_mask = vcltq_u8(v_sig, v_mc_running_avg_y);
const uint8x16_t v_diff_neg_mask = vcgtq_u8(v_sig, v_mc_running_avg_y);
// Clamp absolute difference to delta to get the adjustment.
const uint8x16_t v_abs_adjustment = vminq_u8(v_abs_diff, (k_delta));
const uint8x16_t v_pos_adjustment =
vandq_u8(v_diff_pos_mask, v_abs_adjustment);
const uint8x16_t v_neg_adjustment =
vandq_u8(v_diff_neg_mask, v_abs_adjustment);
v_running_avg_y = vqsubq_u8(v_running_avg_y, v_pos_adjustment);
v_running_avg_y = vqaddq_u8(v_running_avg_y, v_neg_adjustment);
/* Store results. */
vst1q_u8(running_avg_y, v_running_avg_y);
{
const int8x16_t v_sum_diff =
vqsubq_s8(vreinterpretq_s8_u8(v_neg_adjustment),
vreinterpretq_s8_u8(v_pos_adjustment));
v_sum_diff_total = vaddq_s8(v_sum_diff_total, v_sum_diff);
}
return v_sum_diff_total;
}
// Denoise 8x8 and 8x16 blocks.
static int av1_denoiser_8xN_neon(const uint8_t *sig, int sig_stride,
const uint8_t *mc_running_avg_y,
int mc_avg_y_stride, uint8_t *running_avg_y,
int avg_y_stride, int increase_denoising,
BLOCK_SIZE bs, int motion_magnitude,
int width) {
int sum_diff_thresh, r, sum_diff = 0;
const int shift_inc =
(increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
? 1
: 0;
uint8_t sig_buffer[8][16], mc_running_buffer[8][16], running_buffer[8][16];
const uint8x16_t v_level1_adjustment = vmovq_n_u8(
(motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 4 + shift_inc : 3);
const uint8x16_t v_delta_level_1_and_2 = vdupq_n_u8(1);
const uint8x16_t v_delta_level_2_and_3 = vdupq_n_u8(2);
const uint8x16_t v_level1_threshold = vdupq_n_u8(4 + shift_inc);
const uint8x16_t v_level2_threshold = vdupq_n_u8(8);
const uint8x16_t v_level3_threshold = vdupq_n_u8(16);
const int b_height = block_size_high[bs] >> 1;
int8x16_t v_sum_diff_total = vdupq_n_s8(0);
for (r = 0; r < b_height; ++r) {
memcpy(sig_buffer[r], sig, width);
memcpy(sig_buffer[r] + width, sig + sig_stride, width);
memcpy(mc_running_buffer[r], mc_running_avg_y, width);
memcpy(mc_running_buffer[r] + width, mc_running_avg_y + mc_avg_y_stride,
width);
memcpy(running_buffer[r], running_avg_y, width);
memcpy(running_buffer[r] + width, running_avg_y + avg_y_stride, width);
v_sum_diff_total = denoiser_16x1_neon(
sig_buffer[r], mc_running_buffer[r], running_buffer[r],
v_level1_threshold, v_level2_threshold, v_level3_threshold,
v_level1_adjustment, v_delta_level_1_and_2, v_delta_level_2_and_3,
v_sum_diff_total);
{
const uint8x16_t v_running_buffer = vld1q_u8(running_buffer[r]);
const uint8x8_t v_running_buffer_high = vget_high_u8(v_running_buffer);
const uint8x8_t v_running_buffer_low = vget_low_u8(v_running_buffer);
vst1_u8(running_avg_y, v_running_buffer_low);
vst1_u8(running_avg_y + avg_y_stride, v_running_buffer_high);
}
// Update pointers for next iteration.
sig += (sig_stride << 1);
mc_running_avg_y += (mc_avg_y_stride << 1);
running_avg_y += (avg_y_stride << 1);
}
{
sum_diff = horizontal_add_s8x16(v_sum_diff_total);
sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
if (abs(sum_diff) > sum_diff_thresh) {
// Before returning to copy the block (i.e., apply no denoising),
// check if we can still apply some (weaker) temporal filtering to
// this block, that would otherwise not be denoised at all. Simplest
// is to apply an additional adjustment to running_avg_y to bring it
// closer to sig. The adjustment is capped by a maximum delta, and
// chosen such that in most cases the resulting sum_diff will be
// within the acceptable range given by sum_diff_thresh.
// The delta is set by the excess of absolute pixel diff over the
// threshold.
const int delta =
((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1;
// Only apply the adjustment for max delta up to 3.
if (delta < 4) {
const uint8x16_t k_delta = vmovq_n_u8(delta);
running_avg_y -= avg_y_stride * (b_height << 1);
for (r = 0; r < b_height; ++r) {
v_sum_diff_total = denoiser_adjust_16x1_neon(
sig_buffer[r], mc_running_buffer[r], running_buffer[r], k_delta,
v_sum_diff_total);
{
const uint8x16_t v_running_buffer = vld1q_u8(running_buffer[r]);
const uint8x8_t v_running_buffer_high =
vget_high_u8(v_running_buffer);
const uint8x8_t v_running_buffer_low =
vget_low_u8(v_running_buffer);
vst1_u8(running_avg_y, v_running_buffer_low);
vst1_u8(running_avg_y + avg_y_stride, v_running_buffer_high);
}
// Update pointers for next iteration.
running_avg_y += (avg_y_stride << 1);
}
sum_diff = horizontal_add_s8x16(v_sum_diff_total);
if (abs(sum_diff) > sum_diff_thresh) {
return COPY_BLOCK;
}
} else {
return COPY_BLOCK;
}
}
}
return FILTER_BLOCK;
}
// Denoise 16x16, to 128x128 blocks.
static int av1_denoiser_NxM_neon(const uint8_t *sig, int sig_stride,
const uint8_t *mc_running_avg_y,
int mc_avg_y_stride, uint8_t *running_avg_y,
int avg_y_stride, int increase_denoising,
BLOCK_SIZE bs, int motion_magnitude) {
const int shift_inc =
(increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
? 1
: 0;
const uint8x16_t v_level1_adjustment = vmovq_n_u8(
(motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 4 + shift_inc : 3);
const uint8x16_t v_delta_level_1_and_2 = vdupq_n_u8(1);
const uint8x16_t v_delta_level_2_and_3 = vdupq_n_u8(2);
const uint8x16_t v_level1_threshold = vmovq_n_u8(4 + shift_inc);
const uint8x16_t v_level2_threshold = vdupq_n_u8(8);
const uint8x16_t v_level3_threshold = vdupq_n_u8(16);
const int b_width = block_size_wide[bs];
const int b_height = block_size_high[bs];
const int b_width_shift4 = b_width >> 4;
int8x16_t v_sum_diff_total[8][8];
int r, c, sum_diff = 0;
for (r = 0; r < 8; ++r) {
for (c = 0; c < b_width_shift4; ++c) {
v_sum_diff_total[c][r] = vdupq_n_s8(0);
}
}
for (r = 0; r < b_height; ++r) {
for (c = 0; c < b_width_shift4; ++c) {
v_sum_diff_total[c][r >> 4] = denoiser_16x1_neon(
sig, mc_running_avg_y, running_avg_y, v_level1_threshold,
v_level2_threshold, v_level3_threshold, v_level1_adjustment,
v_delta_level_1_and_2, v_delta_level_2_and_3,
v_sum_diff_total[c][r >> 4]);
// Update pointers for next iteration.
sig += 16;
mc_running_avg_y += 16;
running_avg_y += 16;
}
if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) {
for (c = 0; c < b_width_shift4; ++c) {
sum_diff += horizontal_add_s8x16(v_sum_diff_total[c][r >> 4]);
}
}
// Update pointers for next iteration.
sig = sig - b_width + sig_stride;
mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride;
running_avg_y = running_avg_y - b_width + avg_y_stride;
}
{
const int sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
if (abs(sum_diff) > sum_diff_thresh) {
const int delta =
((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1;
// Only apply the adjustment for max delta up to 3.
if (delta < 4) {
const uint8x16_t k_delta = vdupq_n_u8(delta);
sig -= sig_stride * b_height;
mc_running_avg_y -= mc_avg_y_stride * b_height;
running_avg_y -= avg_y_stride * b_height;
sum_diff = 0;
for (r = 0; r < b_height; ++r) {
for (c = 0; c < b_width_shift4; ++c) {
v_sum_diff_total[c][r >> 4] =
denoiser_adjust_16x1_neon(sig, mc_running_avg_y, running_avg_y,
k_delta, v_sum_diff_total[c][r >> 4]);
// Update pointers for next iteration.
sig += 16;
mc_running_avg_y += 16;
running_avg_y += 16;
}
if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) {
for (c = 0; c < b_width_shift4; ++c) {
sum_diff += horizontal_add_s8x16(v_sum_diff_total[c][r >> 4]);
}
}
sig = sig - b_width + sig_stride;
mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride;
running_avg_y = running_avg_y - b_width + avg_y_stride;
}
if (abs(sum_diff) > sum_diff_thresh) {
return COPY_BLOCK;
}
} else {
return COPY_BLOCK;
}
}
}
return FILTER_BLOCK;
}
int av1_denoiser_filter_neon(const uint8_t *sig, int sig_stride,
const uint8_t *mc_avg, int mc_avg_stride,
uint8_t *avg, int avg_stride,
int increase_denoising, BLOCK_SIZE bs,
int motion_magnitude) {
// Rank by frequency of the block type to have an early termination.
if (bs == BLOCK_16X16 || bs == BLOCK_32X32 || bs == BLOCK_64X64 ||
bs == BLOCK_128X128 || bs == BLOCK_128X64 || bs == BLOCK_64X128 ||
bs == BLOCK_16X32 || bs == BLOCK_16X8 || bs == BLOCK_32X16 ||
bs == BLOCK_32X64 || bs == BLOCK_64X32) {
return av1_denoiser_NxM_neon(sig, sig_stride, mc_avg, mc_avg_stride, avg,
avg_stride, increase_denoising, bs,
motion_magnitude);
} else if (bs == BLOCK_8X8 || bs == BLOCK_8X16) {
return av1_denoiser_8xN_neon(sig, sig_stride, mc_avg, mc_avg_stride, avg,
avg_stride, increase_denoising, bs,
motion_magnitude, 8);
}
return COPY_BLOCK;
}