blob: f905d19cc0afdcc627c693907c2b03497b5406c0 [file] [log] [blame]
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <string.h>
#include "aom/aomcx.h"
#include "av1/common/av1_common_int.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encoder_alloc.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/encoder_utils.h"
#include "av1/encoder/grain_test_vectors.h"
#include "av1/encoder/mv_prec.h"
#include "av1/encoder/rc_utils.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/superres_scale.h"
#include "av1/encoder/tpl_model.h"
#include "av1/encoder/var_based_part.h"
#if CONFIG_TUNE_VMAF
#include "av1/encoder/tune_vmaf.h"
#endif
#define MIN_BOOST_COMBINE_FACTOR 4.0
#define MAX_BOOST_COMBINE_FACTOR 12.0
const int default_tx_type_probs[FRAME_UPDATE_TYPES][TX_SIZES_ALL][TX_TYPES] = {
{ { 221, 189, 214, 292, 0, 0, 0, 0, 0, 2, 38, 68, 0, 0, 0, 0 },
{ 262, 203, 216, 239, 0, 0, 0, 0, 0, 1, 37, 66, 0, 0, 0, 0 },
{ 315, 231, 239, 226, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 222, 188, 214, 287, 0, 0, 0, 0, 0, 2, 50, 61, 0, 0, 0, 0 },
{ 256, 182, 205, 282, 0, 0, 0, 0, 0, 2, 21, 76, 0, 0, 0, 0 },
{ 281, 214, 217, 222, 0, 0, 0, 0, 0, 1, 48, 41, 0, 0, 0, 0 },
{ 263, 194, 225, 225, 0, 0, 0, 0, 0, 2, 15, 100, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 170, 192, 242, 293, 0, 0, 0, 0, 0, 1, 68, 58, 0, 0, 0, 0 },
{ 199, 210, 213, 291, 0, 0, 0, 0, 0, 1, 14, 96, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
{ { 106, 69, 107, 278, 9, 15, 20, 45, 49, 23, 23, 88, 36, 74, 25, 57 },
{ 105, 72, 81, 98, 45, 49, 47, 50, 56, 72, 30, 81, 33, 95, 27, 83 },
{ 211, 105, 109, 120, 57, 62, 43, 49, 52, 58, 42, 116, 0, 0, 0, 0 },
{ 1008, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 131, 57, 98, 172, 19, 40, 37, 64, 69, 22, 41, 52, 51, 77, 35, 59 },
{ 176, 83, 93, 202, 22, 24, 28, 47, 50, 16, 12, 93, 26, 76, 17, 59 },
{ 136, 72, 89, 95, 46, 59, 47, 56, 61, 68, 35, 51, 32, 82, 26, 69 },
{ 122, 80, 87, 105, 49, 47, 46, 46, 57, 52, 13, 90, 19, 103, 15, 93 },
{ 1009, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0 },
{ 1011, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 202, 20, 84, 114, 14, 60, 41, 79, 99, 21, 41, 15, 50, 84, 34, 66 },
{ 196, 44, 23, 72, 30, 22, 28, 57, 67, 13, 4, 165, 15, 148, 9, 131 },
{ 882, 0, 0, 0, 0, 0, 0, 0, 0, 142, 0, 0, 0, 0, 0, 0 },
{ 840, 0, 0, 0, 0, 0, 0, 0, 0, 184, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
{ { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 } },
{ { 213, 110, 141, 269, 12, 16, 15, 19, 21, 11, 38, 68, 22, 29, 16, 24 },
{ 216, 119, 128, 143, 38, 41, 26, 30, 31, 30, 42, 70, 23, 36, 19, 32 },
{ 367, 149, 154, 154, 38, 35, 17, 21, 21, 10, 22, 36, 0, 0, 0, 0 },
{ 1022, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 219, 96, 127, 191, 21, 40, 25, 32, 34, 18, 45, 45, 33, 39, 26, 33 },
{ 296, 99, 122, 198, 23, 21, 19, 24, 25, 13, 20, 64, 23, 32, 18, 27 },
{ 275, 128, 142, 143, 35, 48, 23, 30, 29, 18, 42, 36, 18, 23, 14, 20 },
{ 239, 132, 166, 175, 36, 27, 19, 21, 24, 14, 13, 85, 9, 31, 8, 25 },
{ 1022, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0 },
{ 1022, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 309, 25, 79, 59, 25, 80, 34, 53, 61, 25, 49, 23, 43, 64, 36, 59 },
{ 270, 57, 40, 54, 50, 42, 41, 53, 56, 28, 17, 81, 45, 86, 34, 70 },
{ 1005, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0 },
{ 992, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
{ { 133, 63, 55, 83, 57, 87, 58, 72, 68, 16, 24, 35, 29, 105, 25, 114 },
{ 131, 75, 74, 60, 71, 77, 65, 66, 73, 33, 21, 79, 20, 83, 18, 78 },
{ 276, 95, 82, 58, 86, 93, 63, 60, 64, 17, 38, 92, 0, 0, 0, 0 },
{ 1006, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 147, 49, 75, 78, 50, 97, 60, 67, 76, 17, 42, 35, 31, 93, 27, 80 },
{ 157, 49, 58, 75, 61, 52, 56, 67, 69, 12, 15, 79, 24, 119, 11, 120 },
{ 178, 69, 83, 77, 69, 85, 72, 77, 77, 20, 35, 40, 25, 48, 23, 46 },
{ 174, 55, 64, 57, 73, 68, 62, 61, 75, 15, 12, 90, 17, 99, 16, 86 },
{ 1008, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0 },
{ 1018, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 266, 31, 63, 64, 21, 52, 39, 54, 63, 30, 52, 31, 48, 89, 46, 75 },
{ 272, 26, 32, 44, 29, 31, 32, 53, 51, 13, 13, 88, 22, 153, 16, 149 },
{ 923, 0, 0, 0, 0, 0, 0, 0, 0, 101, 0, 0, 0, 0, 0, 0 },
{ 969, 0, 0, 0, 0, 0, 0, 0, 0, 55, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
{ { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 },
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 } },
{ { 158, 92, 125, 298, 12, 15, 20, 29, 31, 12, 29, 67, 34, 44, 23, 35 },
{ 147, 94, 103, 123, 45, 48, 38, 41, 46, 48, 37, 78, 33, 63, 27, 53 },
{ 268, 126, 125, 136, 54, 53, 31, 38, 38, 33, 35, 87, 0, 0, 0, 0 },
{ 1018, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 159, 72, 103, 194, 20, 35, 37, 50, 56, 21, 39, 40, 51, 61, 38, 48 },
{ 259, 86, 95, 188, 32, 20, 25, 34, 37, 13, 12, 85, 25, 53, 17, 43 },
{ 189, 99, 113, 123, 45, 59, 37, 46, 48, 44, 39, 41, 31, 47, 26, 37 },
{ 175, 110, 113, 128, 58, 38, 33, 33, 43, 29, 13, 100, 14, 68, 12, 57 },
{ 1017, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0 },
{ 1019, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 208, 22, 84, 101, 21, 59, 44, 70, 90, 25, 59, 13, 64, 67, 49, 48 },
{ 277, 52, 32, 63, 43, 26, 33, 48, 54, 11, 6, 130, 18, 119, 11, 101 },
{ 963, 0, 0, 0, 0, 0, 0, 0, 0, 61, 0, 0, 0, 0, 0, 0 },
{ 979, 0, 0, 0, 0, 0, 0, 0, 0, 45, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }
};
const int default_obmc_probs[FRAME_UPDATE_TYPES][BLOCK_SIZES_ALL] = {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 106, 90, 90, 97, 67, 59, 70, 28,
30, 38, 16, 16, 16, 0, 0, 44, 50, 26, 25 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 98, 93, 97, 68, 82, 85, 33, 30,
33, 16, 16, 16, 16, 0, 0, 43, 37, 26, 16 },
{ 0, 0, 0, 91, 80, 76, 78, 55, 49, 24, 16,
16, 16, 16, 16, 16, 0, 0, 29, 45, 16, 38 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 103, 89, 89, 89, 62, 63, 76, 34,
35, 32, 19, 16, 16, 0, 0, 49, 55, 29, 19 }
};
const int default_warped_probs[FRAME_UPDATE_TYPES] = { 64, 64, 64, 64,
64, 64, 64 };
// TODO(yunqing): the default probs can be trained later from better
// performance.
const int default_switchable_interp_probs[FRAME_UPDATE_TYPES]
[SWITCHABLE_FILTER_CONTEXTS]
[SWITCHABLE_FILTERS] = {
{ { 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 } },
{ { 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 } },
{ { 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 } },
{ { 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 } },
{ { 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 } },
{ { 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 } },
{ { 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 },
{ 512, 512, 512 } }
};
static void configure_static_seg_features(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
struct segmentation *const seg = &cm->seg;
double avg_q;
#if CONFIG_FPMT_TEST
avg_q = ((cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) &&
(cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE))
? cpi->ppi->p_rc.temp_avg_q
: cpi->ppi->p_rc.avg_q;
#else
avg_q = cpi->ppi->p_rc.avg_q;
#endif
int high_q = (int)(avg_q > 48.0);
int qi_delta;
// Disable and clear down for KF
if (cm->current_frame.frame_type == KEY_FRAME) {
// Clear down the global segmentation map
memset(cpi->enc_seg.map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols);
seg->update_map = 0;
seg->update_data = 0;
// Disable segmentation
av1_disable_segmentation(seg);
// Clear down the segment features.
av1_clearall_segfeatures(seg);
} else if (cpi->refresh_frame.alt_ref_frame) {
// If this is an alt ref frame
// Clear down the global segmentation map
memset(cpi->enc_seg.map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols);
seg->update_map = 0;
seg->update_data = 0;
// Disable segmentation and individual segment features by default
av1_disable_segmentation(seg);
av1_clearall_segfeatures(seg);
// If segmentation was enabled set those features needed for the
// arf itself.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
qi_delta = av1_compute_qdelta(rc, avg_q, avg_q * 0.875,
cm->seq_params->bit_depth);
av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_H, -2);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_V, -2);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_U, -2);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_V, -2);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_H);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_V);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_U);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_V);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
}
} else if (seg->enabled) {
// All other frames if segmentation has been enabled
// First normal frame in a valid gf or alt ref group
if (rc->frames_since_golden == 0) {
// Set up segment features for normal frames in an arf group
// Disable segmentation and clear down features if alt ref
// is not active for this group
av1_disable_segmentation(seg);
memset(cpi->enc_seg.map, 0,
cm->mi_params.mi_rows * cm->mi_params.mi_cols);
seg->update_map = 0;
seg->update_data = 0;
av1_clearall_segfeatures(seg);
} else if (rc->is_src_frame_alt_ref) {
// Special case where we are coding over the top of a previous
// alt ref frame.
// Segment coding disabled for compred testing
// Enable ref frame features for segment 0 as well
av1_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
// All mbs should use ALTREF_FRAME
av1_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
av1_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
av1_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
// Skip all MBs if high Q (0,0 mv and skip coeffs)
if (high_q) {
av1_enable_segfeature(seg, 0, SEG_LVL_SKIP);
av1_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
// Enable data update
seg->update_data = 1;
} else {
// All other frames.
// No updates.. leave things as they are.
seg->update_map = 0;
seg->update_data = 0;
}
}
}
void av1_apply_active_map(AV1_COMP *cpi) {
struct segmentation *const seg = &cpi->common.seg;
unsigned char *const seg_map = cpi->enc_seg.map;
const unsigned char *const active_map = cpi->active_map.map;
assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE);
// Disable the active_maps on intra_only frames or if the
// input map for the current frame has no inactive blocks.
if (frame_is_intra_only(&cpi->common) ||
cpi->rc.percent_blocks_inactive == 0) {
cpi->active_map.enabled = 0;
cpi->active_map.update = 1;
}
if (cpi->active_map.update) {
if (cpi->active_map.enabled) {
const int num_mis =
cpi->common.mi_params.mi_rows * cpi->common.mi_params.mi_cols;
memcpy(seg_map, active_map, sizeof(active_map[0]) * num_mis);
av1_enable_segmentation(seg);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V);
av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H,
-MAX_LOOP_FILTER);
av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V,
-MAX_LOOP_FILTER);
av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U,
-MAX_LOOP_FILTER);
av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V,
-MAX_LOOP_FILTER);
} else {
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H);
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V);
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U);
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V);
if (seg->enabled) {
seg->update_data = 1;
seg->update_map = 1;
}
}
cpi->active_map.update = 0;
}
}
#if !CONFIG_REALTIME_ONLY
static void process_tpl_stats_frame(AV1_COMP *cpi) {
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
AV1_COMMON *const cm = &cpi->common;
assert(IMPLIES(gf_group->size > 0, cpi->gf_frame_index < gf_group->size));
const int tpl_idx = cpi->gf_frame_index;
TplParams *const tpl_data = &cpi->ppi->tpl_data;
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
if (tpl_frame->is_valid) {
int tpl_stride = tpl_frame->stride;
double intra_cost_base = 0;
double mc_dep_cost_base = 0;
double cbcmp_base = 1;
const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
const int row_step = step;
const int col_step_sr =
coded_to_superres_mi(step, cm->superres_scale_denominator);
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
for (int row = 0; row < cm->mi_params.mi_rows; row += row_step) {
for (int col = 0; col < mi_cols_sr; col += col_step_sr) {
TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
double cbcmp = (double)(this_stats->srcrf_dist);
int64_t mc_dep_delta =
RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
this_stats->mc_dep_dist);
double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
intra_cost_base += log(dist_scaled) * cbcmp;
mc_dep_cost_base += log(dist_scaled + mc_dep_delta) * cbcmp;
cbcmp_base += cbcmp;
}
}
if (mc_dep_cost_base == 0) {
tpl_frame->is_valid = 0;
} else {
cpi->rd.r0 = exp((intra_cost_base - mc_dep_cost_base) / cbcmp_base);
if (is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) {
if (cpi->ppi->lap_enabled) {
double min_boost_factor = sqrt(cpi->ppi->p_rc.baseline_gf_interval);
const int gfu_boost = get_gfu_boost_from_r0_lap(
min_boost_factor, MAX_GFUBOOST_FACTOR, cpi->rd.r0,
cpi->ppi->p_rc.num_stats_required_for_gfu_boost);
// printf("old boost %d new boost %d\n", cpi->rc.gfu_boost,
// gfu_boost);
cpi->ppi->p_rc.gfu_boost = combine_prior_with_tpl_boost(
min_boost_factor, MAX_BOOST_COMBINE_FACTOR,
cpi->ppi->p_rc.gfu_boost, gfu_boost,
cpi->ppi->p_rc.num_stats_used_for_gfu_boost);
} else {
// TPL may only look at a subset of frame in the gf group when the
// speed feature 'reduce_num_frames' is on, which affects the r0
// calcuation. Thus, to compensate for TPL not using all frames a
// factor to adjust r0 is used.
const int gfu_boost =
(int)(200.0 * cpi->ppi->tpl_data.r0_adjust_factor / cpi->rd.r0);
cpi->ppi->p_rc.gfu_boost = combine_prior_with_tpl_boost(
MIN_BOOST_COMBINE_FACTOR, MAX_BOOST_COMBINE_FACTOR,
cpi->ppi->p_rc.gfu_boost, gfu_boost, cpi->rc.frames_to_key);
}
}
}
}
}
#endif // !CONFIG_REALTIME_ONLY
void av1_set_size_dependent_vars(AV1_COMP *cpi, int *q, int *bottom_index,
int *top_index) {
AV1_COMMON *const cm = &cpi->common;
// Setup variables that depend on the dimensions of the frame.
av1_set_speed_features_framesize_dependent(cpi, cpi->speed);
#if !CONFIG_REALTIME_ONLY
GF_GROUP *gf_group = &cpi->ppi->gf_group;
if (cpi->oxcf.algo_cfg.enable_tpl_model &&
av1_tpl_stats_ready(&cpi->ppi->tpl_data, cpi->gf_frame_index)) {
process_tpl_stats_frame(cpi);
av1_tpl_rdmult_setup(cpi);
}
#endif
// Decide q and q bounds.
*q = av1_rc_pick_q_and_bounds(cpi, cm->width, cm->height, cpi->gf_frame_index,
bottom_index, top_index);
if (cpi->oxcf.rc_cfg.mode == AOM_CBR && cpi->rc.force_max_q) {
*q = cpi->rc.worst_quality;
cpi->rc.force_max_q = 0;
}
#if !CONFIG_REALTIME_ONLY
if (cpi->oxcf.rc_cfg.mode == AOM_Q &&
cpi->ppi->tpl_data.tpl_frame[cpi->gf_frame_index].is_valid &&
!is_lossless_requested(&cpi->oxcf.rc_cfg)) {
const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg;
const int tpl_q = av1_tpl_get_q_index(
&cpi->ppi->tpl_data, cpi->gf_frame_index, cpi->rc.active_worst_quality,
cm->seq_params->bit_depth);
*q = clamp(tpl_q, rc_cfg->best_allowed_q, rc_cfg->worst_allowed_q);
*top_index = *bottom_index = *q;
if (gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE)
cpi->ppi->p_rc.arf_q = *q;
}
if (cpi->oxcf.q_cfg.use_fixed_qp_offsets && cpi->oxcf.rc_cfg.mode == AOM_Q) {
if (is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) {
const double qratio_grad =
cpi->ppi->p_rc.baseline_gf_interval > 20 ? 0.2 : 0.3;
const double qstep_ratio =
0.2 +
(1.0 - (double)cpi->rc.active_worst_quality / MAXQ) * qratio_grad;
*q = av1_get_q_index_from_qstep_ratio(
cpi->rc.active_worst_quality, qstep_ratio, cm->seq_params->bit_depth);
*top_index = *bottom_index = *q;
if (gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE ||
gf_group->update_type[cpi->gf_frame_index] == KF_UPDATE ||
gf_group->update_type[cpi->gf_frame_index] == GF_UPDATE)
cpi->ppi->p_rc.arf_q = *q;
} else if (gf_group->layer_depth[cpi->gf_frame_index] <
gf_group->max_layer_depth) {
int this_height = gf_group->layer_depth[cpi->gf_frame_index];
int arf_q = cpi->ppi->p_rc.arf_q;
while (this_height > 1) {
arf_q = (arf_q + cpi->oxcf.rc_cfg.cq_level + 1) / 2;
--this_height;
}
*top_index = *bottom_index = *q = arf_q;
}
}
#endif
// Configure experimental use of segmentation for enhanced coding of
// static regions if indicated.
// Only allowed in the second pass of a two pass encode, as it requires
// lagged coding, and if the relevant speed feature flag is set.
if (is_stat_consumption_stage_twopass(cpi) &&
cpi->sf.hl_sf.static_segmentation)
configure_static_seg_features(cpi);
}
#if !CONFIG_REALTIME_ONLY
static void reset_film_grain_chroma_params(aom_film_grain_t *pars) {
pars->num_cr_points = 0;
pars->cr_mult = 0;
pars->cr_luma_mult = 0;
memset(pars->scaling_points_cr, 0, sizeof(pars->scaling_points_cr));
memset(pars->ar_coeffs_cr, 0, sizeof(pars->ar_coeffs_cr));
pars->num_cb_points = 0;
pars->cb_mult = 0;
pars->cb_luma_mult = 0;
pars->chroma_scaling_from_luma = 0;
memset(pars->scaling_points_cb, 0, sizeof(pars->scaling_points_cb));
memset(pars->ar_coeffs_cb, 0, sizeof(pars->ar_coeffs_cb));
}
void av1_update_film_grain_parameters_seq(struct AV1_PRIMARY *ppi,
const AV1EncoderConfig *oxcf) {
SequenceHeader *const seq_params = &ppi->seq_params;
const TuneCfg *const tune_cfg = &oxcf->tune_cfg;
if (tune_cfg->film_grain_test_vector || tune_cfg->film_grain_table_filename ||
tune_cfg->content == AOM_CONTENT_FILM) {
seq_params->film_grain_params_present = 1;
} else {
#if CONFIG_DENOISE
seq_params->film_grain_params_present = (oxcf->noise_level > 0);
#else
seq_params->film_grain_params_present = 0;
#endif
}
}
void av1_update_film_grain_parameters(struct AV1_COMP *cpi,
const AV1EncoderConfig *oxcf) {
AV1_COMMON *const cm = &cpi->common;
const TuneCfg *const tune_cfg = &oxcf->tune_cfg;
if (cpi->film_grain_table) {
aom_film_grain_table_free(cpi->film_grain_table);
aom_free(cpi->film_grain_table);
cpi->film_grain_table = NULL;
}
if (tune_cfg->film_grain_test_vector) {
if (cm->current_frame.frame_type == KEY_FRAME) {
memcpy(&cm->film_grain_params,
film_grain_test_vectors + tune_cfg->film_grain_test_vector - 1,
sizeof(cm->film_grain_params));
if (oxcf->tool_cfg.enable_monochrome)
reset_film_grain_chroma_params(&cm->film_grain_params);
cm->film_grain_params.bit_depth = cm->seq_params->bit_depth;
if (cm->seq_params->color_range == AOM_CR_FULL_RANGE) {
cm->film_grain_params.clip_to_restricted_range = 0;
}
}
} else if (tune_cfg->film_grain_table_filename) {
CHECK_MEM_ERROR(cm, cpi->film_grain_table,
aom_calloc(1, sizeof(*cpi->film_grain_table)));
aom_film_grain_table_read(cpi->film_grain_table,
tune_cfg->film_grain_table_filename, cm->error);
} else if (tune_cfg->content == AOM_CONTENT_FILM) {
cm->film_grain_params.bit_depth = cm->seq_params->bit_depth;
if (oxcf->tool_cfg.enable_monochrome)
reset_film_grain_chroma_params(&cm->film_grain_params);
if (cm->seq_params->color_range == AOM_CR_FULL_RANGE)
cm->film_grain_params.clip_to_restricted_range = 0;
} else {
memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params));
}
}
#endif // !CONFIG_REALTIME_ONLY
void av1_scale_references(AV1_COMP *cpi, const InterpFilter filter,
const int phase, const int use_optimized_scaler) {
AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
// Need to convert from AOM_REFFRAME to index into ref_mask (subtract 1).
if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) {
BufferPool *const pool = cm->buffer_pool;
const YV12_BUFFER_CONFIG *const ref =
get_ref_frame_yv12_buf(cm, ref_frame);
if (ref == NULL) {
cpi->scaled_ref_buf[ref_frame - 1] = NULL;
continue;
}
// For RTC-SVC: if force_zero_mode_spatial_ref is enabled, check if the
// motion search can be skipped for the references: last, golden, altref.
// If so, we can skip scaling that reference.
if (cpi->ppi->use_svc && cpi->svc.force_zero_mode_spatial_ref &&
cpi->ppi->rtc_ref.set_ref_frame_config) {
if (ref_frame == LAST_FRAME && cpi->svc.skip_mvsearch_last) continue;
if (ref_frame == GOLDEN_FRAME && cpi->svc.skip_mvsearch_gf) continue;
if (ref_frame == ALTREF_FRAME && cpi->svc.skip_mvsearch_altref)
continue;
}
// For RTC with superres on: golden reference only needs to be scaled
// if it was refreshed in previous frame.
if (is_one_pass_rt_params(cpi) &&
cpi->oxcf.superres_cfg.enable_superres && ref_frame == GOLDEN_FRAME &&
cpi->rc.frame_num_last_gf_refresh <
(int)cm->current_frame.frame_number - 1) {
continue;
}
if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
// Replace the reference buffer with a copy having a thicker border,
// if the reference buffer is higher resolution than the current
// frame, and the border is thin.
if ((ref->y_crop_width > cm->width ||
ref->y_crop_height > cm->height) &&
ref->border < AOM_BORDER_IN_PIXELS) {
RefCntBuffer *ref_fb = get_ref_frame_buf(cm, ref_frame);
if (aom_yv12_realloc_with_new_border(
&ref_fb->buf, AOM_BORDER_IN_PIXELS,
cm->features.byte_alignment, cpi->alloc_pyramid,
num_planes) != 0) {
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
}
int force_scaling = 0;
RefCntBuffer *new_fb = cpi->scaled_ref_buf[ref_frame - 1];
if (new_fb == NULL) {
const int new_fb_idx = get_free_fb(cm);
if (new_fb_idx == INVALID_IDX) {
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Unable to find free frame buffer");
}
force_scaling = 1;
new_fb = &pool->frame_bufs[new_fb_idx];
}
if (force_scaling || new_fb->buf.y_crop_width != cm->width ||
new_fb->buf.y_crop_height != cm->height) {
if (aom_realloc_frame_buffer(
&new_fb->buf, cm->width, cm->height,
cm->seq_params->subsampling_x, cm->seq_params->subsampling_y,
cm->seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->features.byte_alignment, NULL, NULL, NULL, false, 0)) {
if (force_scaling) {
// Release the reference acquired in the get_free_fb() call above.
--new_fb->ref_count;
}
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
bool has_optimized_scaler = av1_has_optimized_scaler(
ref->y_crop_width, ref->y_crop_height, new_fb->buf.y_crop_width,
new_fb->buf.y_crop_height);
if (num_planes > 1) {
has_optimized_scaler =
has_optimized_scaler &&
av1_has_optimized_scaler(
ref->uv_crop_width, ref->uv_crop_height,
new_fb->buf.uv_crop_width, new_fb->buf.uv_crop_height);
}
#if CONFIG_AV1_HIGHBITDEPTH
if (use_optimized_scaler && has_optimized_scaler &&
cm->seq_params->bit_depth == AOM_BITS_8) {
av1_resize_and_extend_frame(ref, &new_fb->buf, filter, phase,
num_planes);
} else if (!av1_resize_and_extend_frame_nonnormative(
ref, &new_fb->buf, (int)cm->seq_params->bit_depth,
num_planes)) {
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate buffer during resize");
}
#else
if (use_optimized_scaler && has_optimized_scaler) {
av1_resize_and_extend_frame(ref, &new_fb->buf, filter, phase,
num_planes);
} else if (!av1_resize_and_extend_frame_nonnormative(
ref, &new_fb->buf, (int)cm->seq_params->bit_depth,
num_planes)) {
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate buffer during resize");
}
#endif
cpi->scaled_ref_buf[ref_frame - 1] = new_fb;
alloc_frame_mvs(cm, new_fb);
}
} else {
RefCntBuffer *buf = get_ref_frame_buf(cm, ref_frame);
buf->buf.y_crop_width = ref->y_crop_width;
buf->buf.y_crop_height = ref->y_crop_height;
cpi->scaled_ref_buf[ref_frame - 1] = buf;
++buf->ref_count;
}
} else {
if (!has_no_stats_stage(cpi)) cpi->scaled_ref_buf[ref_frame - 1] = NULL;
}
}
}
BLOCK_SIZE av1_select_sb_size(const AV1EncoderConfig *const oxcf, int width,
int height, int number_spatial_layers) {
if (oxcf->tool_cfg.superblock_size == AOM_SUPERBLOCK_SIZE_64X64) {
return BLOCK_64X64;
}
if (oxcf->tool_cfg.superblock_size == AOM_SUPERBLOCK_SIZE_128X128) {
return BLOCK_128X128;
}
#if CONFIG_TFLITE
if (oxcf->q_cfg.deltaq_mode == DELTA_Q_USER_RATING_BASED) return BLOCK_64X64;
#endif
// Force 64x64 superblock size to increase resolution in perceptual
// AQ and user rating based modes.
if (oxcf->mode == ALLINTRA &&
(oxcf->q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL_AI ||
oxcf->q_cfg.deltaq_mode == DELTA_Q_USER_RATING_BASED)) {
return BLOCK_64X64;
}
// Variance Boost only supports 64x64 superblocks.
if (oxcf->q_cfg.deltaq_mode == DELTA_Q_VARIANCE_BOOST) {
return BLOCK_64X64;
}
assert(oxcf->tool_cfg.superblock_size == AOM_SUPERBLOCK_SIZE_DYNAMIC);
if (number_spatial_layers > 1 ||
oxcf->resize_cfg.resize_mode != RESIZE_NONE) {
// Use the configured size (top resolution) for spatial layers or
// on resize.
return AOMMIN(oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height) > 720
? BLOCK_128X128
: BLOCK_64X64;
} else if (oxcf->mode == REALTIME) {
if (oxcf->tune_cfg.content == AOM_CONTENT_SCREEN) {
const TileConfig *const tile_cfg = &oxcf->tile_cfg;
const int num_tiles =
(1 << tile_cfg->tile_columns) * (1 << tile_cfg->tile_rows);
// For multi-thread encode: if the number of (128x128) superblocks
// per tile is low use 64X64 superblock.
if (oxcf->row_mt == 1 && oxcf->max_threads >= 4 &&
oxcf->max_threads >= num_tiles && AOMMIN(width, height) >= 720 &&
(width * height) / (128 * 128 * num_tiles) < 40)
return BLOCK_64X64;
else
return AOMMIN(width, height) >= 720 ? BLOCK_128X128 : BLOCK_64X64;
} else {
return AOMMIN(width, height) > 720 ? BLOCK_128X128 : BLOCK_64X64;
}
}
// TODO(any): Possibly could improve this with a heuristic.
// When superres / resize is on, 'cm->width / height' can change between
// calls, so we don't apply this heuristic there.
// Things break if superblock size changes between the first pass and second
// pass encoding, which is why this heuristic is not configured as a
// speed-feature.
if (oxcf->superres_cfg.superres_mode == AOM_SUPERRES_NONE &&
oxcf->resize_cfg.resize_mode == RESIZE_NONE) {
int is_480p_or_lesser = AOMMIN(width, height) <= 480;
if (oxcf->speed >= 1 && is_480p_or_lesser) return BLOCK_64X64;
// For 1080p and lower resolutions, choose SB size adaptively based on
// resolution and speed level for multi-thread encode.
int is_1080p_or_lesser = AOMMIN(width, height) <= 1080;
if (!is_480p_or_lesser && is_1080p_or_lesser && oxcf->mode == GOOD &&
oxcf->row_mt == 1 && oxcf->max_threads > 1 && oxcf->speed >= 5)
return BLOCK_64X64;
// For allintra encode, since the maximum partition size is set to 32X32 for
// speed>=6, superblock size is set to 64X64 instead of 128X128. This
// improves the multithread performance due to reduction in top right delay
// and thread sync wastage. Currently, this setting is selectively enabled
// only for speed>=9 and resolutions less than 4k since cost update
// frequency is set to INTERNAL_COST_UPD_OFF in these cases.
const int is_4k_or_larger = AOMMIN(width, height) >= 2160;
if (oxcf->mode == ALLINTRA && oxcf->speed >= 9 && !is_4k_or_larger)
return BLOCK_64X64;
}
return BLOCK_128X128;
}
void av1_setup_frame(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
// Set up entropy context depending on frame type. The decoder mandates
// the use of the default context, index 0, for keyframes and inter
// frames where the error_resilient_mode or intra_only flag is set. For
// other inter-frames the encoder currently uses only two contexts;
// context 1 for ALTREF frames and context 0 for the others.
if (frame_is_intra_only(cm) || cm->features.error_resilient_mode ||
cpi->ext_flags.use_primary_ref_none) {
av1_setup_past_independence(cm);
}
if ((cm->current_frame.frame_type == KEY_FRAME && cm->show_frame) ||
frame_is_sframe(cm)) {
if (!cpi->ppi->seq_params_locked) {
set_sb_size(cm->seq_params,
av1_select_sb_size(&cpi->oxcf, cm->width, cm->height,
cpi->ppi->number_spatial_layers));
}
} else {
const RefCntBuffer *const primary_ref_buf = get_primary_ref_frame_buf(cm);
if (primary_ref_buf == NULL) {
av1_setup_past_independence(cm);
cm->seg.update_map = 1;
cm->seg.update_data = 1;
} else {
*cm->fc = primary_ref_buf->frame_context;
}
}
av1_zero(cm->cur_frame->interp_filter_selected);
cm->prev_frame = get_primary_ref_frame_buf(cm);
cpi->vaq_refresh = 0;
}
#if !CONFIG_REALTIME_ONLY
static int get_interp_filter_selected(const AV1_COMMON *const cm,
MV_REFERENCE_FRAME ref,
InterpFilter ifilter) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref);
if (buf == NULL) return 0;
return buf->interp_filter_selected[ifilter];
}
uint16_t av1_setup_interp_filter_search_mask(AV1_COMP *cpi) {
const AV1_COMMON *const cm = &cpi->common;
int ref_total[REF_FRAMES] = { 0 };
uint16_t mask = ALLOW_ALL_INTERP_FILT_MASK;
if (cpi->last_frame_type == KEY_FRAME || cpi->refresh_frame.alt_ref_frame)
return mask;
for (MV_REFERENCE_FRAME ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) {
for (InterpFilter ifilter = EIGHTTAP_REGULAR; ifilter <= MULTITAP_SHARP;
++ifilter) {
ref_total[ref] += get_interp_filter_selected(cm, ref, ifilter);
}
}
int ref_total_total = (ref_total[LAST2_FRAME] + ref_total[LAST3_FRAME] +
ref_total[GOLDEN_FRAME] + ref_total[BWDREF_FRAME] +
ref_total[ALTREF2_FRAME] + ref_total[ALTREF_FRAME]);
for (InterpFilter ifilter = EIGHTTAP_REGULAR; ifilter <= MULTITAP_SHARP;
++ifilter) {
int last_score = get_interp_filter_selected(cm, LAST_FRAME, ifilter) * 30;
if (ref_total[LAST_FRAME] && last_score <= ref_total[LAST_FRAME]) {
int filter_score =
get_interp_filter_selected(cm, LAST2_FRAME, ifilter) * 20 +
get_interp_filter_selected(cm, LAST3_FRAME, ifilter) * 20 +
get_interp_filter_selected(cm, GOLDEN_FRAME, ifilter) * 20 +
get_interp_filter_selected(cm, BWDREF_FRAME, ifilter) * 10 +
get_interp_filter_selected(cm, ALTREF2_FRAME, ifilter) * 10 +
get_interp_filter_selected(cm, ALTREF_FRAME, ifilter) * 10;
if (filter_score < ref_total_total) {
DUAL_FILTER_TYPE filt_type = ifilter + SWITCHABLE_FILTERS * ifilter;
reset_interp_filter_allowed_mask(&mask, filt_type);
}
}
}
return mask;
}
#define STRICT_PSNR_DIFF_THRESH 0.9
// Encode key frame with/without screen content tools to determine whether
// screen content tools should be enabled for this key frame group or not.
// The first encoding is without screen content tools.
// The second encoding is with screen content tools.
// We compare the psnr and frame size to make the decision.
static void screen_content_tools_determination(
AV1_COMP *cpi, const int allow_screen_content_tools_orig_decision,
const int allow_intrabc_orig_decision,
const int use_screen_content_tools_orig_decision,
const int is_screen_content_type_orig_decision, const int pass,
int *projected_size_pass, PSNR_STATS *psnr) {
AV1_COMMON *const cm = &cpi->common;
FeatureFlags *const features = &cm->features;
#if CONFIG_FPMT_TEST
projected_size_pass[pass] =
((cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) &&
(cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE))
? cpi->ppi->p_rc.temp_projected_frame_size
: cpi->rc.projected_frame_size;
#else
projected_size_pass[pass] = cpi->rc.projected_frame_size;
#endif
#if CONFIG_AV1_HIGHBITDEPTH
const uint32_t in_bit_depth = cpi->oxcf.input_cfg.input_bit_depth;
const uint32_t bit_depth = cpi->td.mb.e_mbd.bd;
aom_calc_highbd_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr[pass],
bit_depth, in_bit_depth);
#else
aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr[pass]);
#endif
if (pass != 1) return;
const double psnr_diff = psnr[1].psnr[0] - psnr[0].psnr[0];
// Calculate % of palette mode to be chosen in a frame from mode decision.
const double palette_ratio =
(double)cpi->palette_pixel_num / (double)(cm->height * cm->width);
const int psnr_diff_is_large = (psnr_diff > STRICT_PSNR_DIFF_THRESH);
const int ratio_is_large =
((palette_ratio >= 0.0001) && ((psnr_diff / palette_ratio) > 4));
const int is_sc_encoding_much_better = (psnr_diff_is_large || ratio_is_large);
if (is_sc_encoding_much_better) {
// Use screen content tools, if we get coding gain.
features->allow_screen_content_tools = 1;
features->allow_intrabc = cpi->intrabc_used;
cpi->use_screen_content_tools = 1;
cpi->is_screen_content_type = 1;
} else {
// Use original screen content decision.
features->allow_screen_content_tools =
allow_screen_content_tools_orig_decision;
features->allow_intrabc = allow_intrabc_orig_decision;
cpi->use_screen_content_tools = use_screen_content_tools_orig_decision;
cpi->is_screen_content_type = is_screen_content_type_orig_decision;
}
}
// Set some encoding parameters to make the encoding process fast.
// A fixed block partition size, and a large q is used.
static void set_encoding_params_for_screen_content(AV1_COMP *cpi,
const int pass) {
AV1_COMMON *const cm = &cpi->common;
if (pass == 0) {
// In the first pass, encode without screen content tools.
// Use a high q, and a fixed block size for fast encoding.
cm->features.allow_screen_content_tools = 0;
cm->features.allow_intrabc = 0;
cpi->use_screen_content_tools = 0;
cpi->sf.part_sf.partition_search_type = FIXED_PARTITION;
cpi->sf.part_sf.fixed_partition_size = BLOCK_32X32;
return;
}
assert(pass == 1);
// In the second pass, encode with screen content tools.
// Use a high q, and a fixed block size for fast encoding.
cm->features.allow_screen_content_tools = 1;
// TODO(chengchen): turn intrabc on could lead to data race issue.
// cm->allow_intrabc = 1;
cpi->use_screen_content_tools = 1;
cpi->sf.part_sf.partition_search_type = FIXED_PARTITION;
cpi->sf.part_sf.fixed_partition_size = BLOCK_32X32;
}
// Determines whether to use screen content tools for the key frame group.
// This function modifies "cm->features.allow_screen_content_tools",
// "cm->features.allow_intrabc" and "cpi->use_screen_content_tools".
void av1_determine_sc_tools_with_encoding(AV1_COMP *cpi, const int q_orig) {
AV1_COMMON *const cm = &cpi->common;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const QuantizationCfg *const q_cfg = &oxcf->q_cfg;
// Variables to help determine if we should allow screen content tools.
int projected_size_pass[3] = { 0 };
PSNR_STATS psnr[3];
const int is_key_frame = cm->current_frame.frame_type == KEY_FRAME;
const int allow_screen_content_tools_orig_decision =
cm->features.allow_screen_content_tools;
const int allow_intrabc_orig_decision = cm->features.allow_intrabc;
const int use_screen_content_tools_orig_decision =
cpi->use_screen_content_tools;
const int is_screen_content_type_orig_decision = cpi->is_screen_content_type;
// Turn off the encoding trial for forward key frame and superres.
if (cpi->sf.rt_sf.use_nonrd_pick_mode || oxcf->kf_cfg.fwd_kf_enabled ||
cpi->superres_mode != AOM_SUPERRES_NONE || oxcf->mode == REALTIME ||
use_screen_content_tools_orig_decision || !is_key_frame) {
return;
}
// TODO(chengchen): multiple encoding for the lossless mode is time consuming.
// Find a better way to determine whether screen content tools should be used
// for lossless coding.
// Use a high q and a fixed partition to do quick encoding.
const int q_for_screen_content_quick_run =
is_lossless_requested(&oxcf->rc_cfg) ? q_orig : AOMMAX(q_orig, 244);
const int partition_search_type_orig = cpi->sf.part_sf.partition_search_type;
const BLOCK_SIZE fixed_partition_block_size_orig =
cpi->sf.part_sf.fixed_partition_size;
// Setup necessary params for encoding, including frame source, etc.
cpi->source = av1_realloc_and_scale_if_required(
cm, cpi->unscaled_source, &cpi->scaled_source, cm->features.interp_filter,
0, false, false, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid);
if (cpi->unscaled_last_source != NULL) {
cpi->last_source = av1_realloc_and_scale_if_required(
cm, cpi->unscaled_last_source, &cpi->scaled_last_source,
cm->features.interp_filter, 0, false, false, cpi->oxcf.border_in_pixels,
cpi->alloc_pyramid);
}
av1_setup_frame(cpi);
if (cm->seg.enabled) {
if (!cm->seg.update_data && cm->prev_frame) {
segfeatures_copy(&cm->seg, &cm->prev_frame->seg);
cm->seg.enabled = cm->prev_frame->seg.enabled;
} else {
av1_calculate_segdata(&cm->seg);
}
} else {
memset(&cm->seg, 0, sizeof(cm->seg));
}
segfeatures_copy(&cm->cur_frame->seg, &cm->seg);
cm->cur_frame->seg.enabled = cm->seg.enabled;
// The two encoding passes aim to help determine whether to use screen
// content tools, with a high q and fixed partition.
for (int pass = 0; pass < 2; ++pass) {
set_encoding_params_for_screen_content(cpi, pass);
av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel,
q_for_screen_content_quick_run,
q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq,
oxcf->mode == ALLINTRA, oxcf->tune_cfg.tuning);
av1_set_speed_features_qindex_dependent(cpi, oxcf->speed);
av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params,
cm->seq_params->bit_depth);
av1_set_variance_partition_thresholds(cpi, q_for_screen_content_quick_run,
0);
// transform / motion compensation build reconstruction frame
av1_encode_frame(cpi);
// Screen content decision
screen_content_tools_determination(
cpi, allow_screen_content_tools_orig_decision,
allow_intrabc_orig_decision, use_screen_content_tools_orig_decision,
is_screen_content_type_orig_decision, pass, projected_size_pass, psnr);
}
// Set partition speed feature back.
cpi->sf.part_sf.partition_search_type = partition_search_type_orig;
cpi->sf.part_sf.fixed_partition_size = fixed_partition_block_size_orig;
// Free token related info if screen content coding tools are not enabled.
if (!cm->features.allow_screen_content_tools)
free_token_info(&cpi->token_info);
}
#endif // CONFIG_REALTIME_ONLY
static void fix_interp_filter(InterpFilter *const interp_filter,
const FRAME_COUNTS *const counts) {
if (*interp_filter == SWITCHABLE) {
// Check to see if only one of the filters is actually used
int count[SWITCHABLE_FILTERS] = { 0 };
int num_filters_used = 0;
for (int i = 0; i < SWITCHABLE_FILTERS; ++i) {
for (int j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
count[i] += counts->switchable_interp[j][i];
num_filters_used += (count[i] > 0);
}
if (num_filters_used == 1) {
// Only one filter is used. So set the filter at frame level
for (int i = 0; i < SWITCHABLE_FILTERS; ++i) {
if (count[i]) {
*interp_filter = i;
break;
}
}
}
}
}
void av1_finalize_encoded_frame(AV1_COMP *const cpi) {
AV1_COMMON *const cm = &cpi->common;
CurrentFrame *const current_frame = &cm->current_frame;
if (!cm->seq_params->reduced_still_picture_hdr &&
encode_show_existing_frame(cm)) {
RefCntBuffer *const frame_to_show =
cm->ref_frame_map[cpi->existing_fb_idx_to_show];
if (frame_to_show == NULL) {
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Buffer does not contain a reconstructed frame");
}
assert(frame_to_show->ref_count > 0);
assign_frame_buffer_p(&cm->cur_frame, frame_to_show);
}
if (!encode_show_existing_frame(cm) &&
cm->seq_params->film_grain_params_present &&
(cm->show_frame || cm->showable_frame)) {
// Copy the current frame's film grain params to the its corresponding
// RefCntBuffer slot.
cm->cur_frame->film_grain_params = cm->film_grain_params;
// We must update the parameters if this is not an INTER_FRAME
if (current_frame->frame_type != INTER_FRAME)
cm->cur_frame->film_grain_params.update_parameters = 1;
// Iterate the random seed for the next frame.
cm->film_grain_params.random_seed += 3381;
if (cm->film_grain_params.random_seed == 0)
cm->film_grain_params.random_seed = 7391;
}
// Initialise all tiles' contexts from the global frame context
for (int tile_col = 0; tile_col < cm->tiles.cols; tile_col++) {
for (int tile_row = 0; tile_row < cm->tiles.rows; tile_row++) {
const int tile_idx = tile_row * cm->tiles.cols + tile_col;
cpi->tile_data[tile_idx].tctx = *cm->fc;
}
}
if (!frame_is_intra_only(cm))
fix_interp_filter(&cm->features.interp_filter, cpi->td.counts);
}
int av1_is_integer_mv(const YV12_BUFFER_CONFIG *cur_picture,
const YV12_BUFFER_CONFIG *last_picture,
ForceIntegerMVInfo *const force_intpel_info) {
// check use hash ME
int k;
const int block_size = FORCE_INT_MV_DECISION_BLOCK_SIZE;
const double threshold_current = 0.8;
const double threshold_average = 0.95;
const int max_history_size = 32;
int T = 0; // total block
int C = 0; // match with collocated block
int S = 0; // smooth region but not match with collocated block
const int pic_width = cur_picture->y_width;
const int pic_height = cur_picture->y_height;
for (int i = 0; i + block_size <= pic_height; i += block_size) {
for (int j = 0; j + block_size <= pic_width; j += block_size) {
const int x_pos = j;
const int y_pos = i;
int match = 1;
T++;
// check whether collocated block match with current
uint8_t *p_cur = cur_picture->y_buffer;
uint8_t *p_ref = last_picture->y_buffer;
int stride_cur = cur_picture->y_stride;
int stride_ref = last_picture->y_stride;
p_cur += (y_pos * stride_cur + x_pos);
p_ref += (y_pos * stride_ref + x_pos);
if (cur_picture->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *p16_cur = CONVERT_TO_SHORTPTR(p_cur);
uint16_t *p16_ref = CONVERT_TO_SHORTPTR(p_ref);
for (int tmpY = 0; tmpY < block_size && match; tmpY++) {
for (int tmpX = 0; tmpX < block_size && match; tmpX++) {
if (p16_cur[tmpX] != p16_ref[tmpX]) {
match = 0;
}
}
p16_cur += stride_cur;
p16_ref += stride_ref;
}
} else {
for (int tmpY = 0; tmpY < block_size && match; tmpY++) {
for (int tmpX = 0; tmpX < block_size && match; tmpX++) {
if (p_cur[tmpX] != p_ref[tmpX]) {
match = 0;
}
}
p_cur += stride_cur;
p_ref += stride_ref;
}
}
if (match) {
C++;
continue;
}
if (av1_hash_is_horizontal_perfect(cur_picture, block_size, x_pos,
y_pos) ||
av1_hash_is_vertical_perfect(cur_picture, block_size, x_pos, y_pos)) {
S++;
continue;
}
}
}
assert(T > 0);
double cs_rate = ((double)(C + S)) / ((double)(T));
force_intpel_info->cs_rate_array[force_intpel_info->rate_index] = cs_rate;
force_intpel_info->rate_index =
(force_intpel_info->rate_index + 1) % max_history_size;
force_intpel_info->rate_size++;
force_intpel_info->rate_size =
AOMMIN(force_intpel_info->rate_size, max_history_size);
if (cs_rate < threshold_current) {
return 0;
}
if (C == T) {
return 1;
}
double cs_average = 0.0;
for (k = 0; k < force_intpel_info->rate_size; k++) {
cs_average += force_intpel_info->cs_rate_array[k];
}
cs_average /= force_intpel_info->rate_size;
if (cs_average < threshold_average) {
return 0;
}
if ((T - C - S) < 0) {
return 1;
}
if (cs_average > 1.01) {
return 1;
}
return 0;
}
void av1_set_mb_ssim_rdmult_scaling(AV1_COMP *cpi) {
const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
const MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
uint8_t *y_buffer = cpi->source->y_buffer;
const int y_stride = cpi->source->y_stride;
const int block_size = BLOCK_16X16;
const int num_mi_w = mi_size_wide[block_size];
const int num_mi_h = mi_size_high[block_size];
const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h;
double log_sum = 0.0;
// Loop through each 16x16 block.
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
double var = 0.0, num_of_var = 0.0;
const int index = row * num_cols + col;
// Loop through each 8x8 block.
for (int mi_row = row * num_mi_h;
mi_row < mi_params->mi_rows && mi_row < (row + 1) * num_mi_h;
mi_row += 2) {
for (int mi_col = col * num_mi_w;
mi_col < mi_params->mi_cols && mi_col < (col + 1) * num_mi_w;
mi_col += 2) {
struct buf_2d buf;
const int row_offset_y = mi_row << 2;
const int col_offset_y = mi_col << 2;
buf.buf = y_buffer + row_offset_y * y_stride + col_offset_y;
buf.stride = y_stride;
var += av1_get_perpixel_variance_facade(cpi, xd, &buf, BLOCK_8X8,
AOM_PLANE_Y);
num_of_var += 1.0;
}
}
var = var / num_of_var;
// Curve fitting with an exponential model on all 16x16 blocks from the
// midres dataset.
var = 67.035434 * (1 - exp(-0.0021489 * var)) + 17.492222;
// As per the above computation, var will be in the range of
// [17.492222, 84.527656], assuming the data type is of infinite
// precision. The following assert conservatively checks if var is in the
// range of [17.0, 85.0] to avoid any issues due to the precision of the
// relevant data type.
assert(var > 17.0 && var < 85.0);
cpi->ssim_rdmult_scaling_factors[index] = var;
log_sum += log(var);
}
}
// As log_sum holds the geometric mean, it will be in the range
// [17.492222, 84.527656]. Hence, in the below loop, the value of
// cpi->ssim_rdmult_scaling_factors[index] would be in the range
// [0.2069, 4.8323].
log_sum = exp(log_sum / (double)(num_rows * num_cols));
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int index = row * num_cols + col;
cpi->ssim_rdmult_scaling_factors[index] /= log_sum;
}
}
}
// Coding context that only needs to be saved when recode loop includes
// filtering (deblocking, CDEF, superres post-encode upscale and/or loop
// restoraton).
static void save_extra_coding_context(AV1_COMP *cpi) {
CODING_CONTEXT *const cc = &cpi->coding_context;
AV1_COMMON *cm = &cpi->common;
cc->lf = cm->lf;
cc->cdef_info = cm->cdef_info;
cc->rc = cpi->rc;
cc->mv_stats = cpi->ppi->mv_stats;
}
void av1_save_all_coding_context(AV1_COMP *cpi) {
save_extra_coding_context(cpi);
if (!frame_is_intra_only(&cpi->common)) release_scaled_references(cpi);
}
#if DUMP_RECON_FRAMES == 1
// NOTE(zoeliu): For debug - Output the filtered reconstructed video.
void av1_dump_filtered_recon_frames(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const CurrentFrame *const current_frame = &cm->current_frame;
const YV12_BUFFER_CONFIG *recon_buf = &cm->cur_frame->buf;
if (recon_buf == NULL) {
printf("Frame %d is not ready.\n", current_frame->frame_number);
return;
}
static const int flag_list[REF_FRAMES] = { 0,
AOM_LAST_FLAG,
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
AOM_GOLD_FLAG,
AOM_BWD_FLAG,
AOM_ALT2_FLAG,
AOM_ALT_FLAG };
printf(
"\n***Frame=%d (frame_offset=%d, show_frame=%d, "
"show_existing_frame=%d) "
"[LAST LAST2 LAST3 GOLDEN BWD ALT2 ALT]=[",
current_frame->frame_number, current_frame->order_hint, cm->show_frame,
cm->show_existing_frame);
for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
const int ref_offset = buf != NULL ? (int)buf->order_hint : -1;
printf(" %d(%c)", ref_offset,
(cpi->ref_frame_flags & flag_list[ref_frame]) ? 'Y' : 'N');
}
printf(" ]\n");
if (!cm->show_frame) {
printf("Frame %d is a no show frame, so no image dump.\n",
current_frame->frame_number);
return;
}
int h;
char file_name[256] = "/tmp/enc_filtered_recon.yuv";
FILE *f_recon = NULL;
if (current_frame->frame_number == 0) {
if ((f_recon = fopen(file_name, "wb")) == NULL) {
printf("Unable to open file %s to write.\n", file_name);
return;
}
} else {
if ((f_recon = fopen(file_name, "ab")) == NULL) {
printf("Unable to open file %s to append.\n", file_name);
return;
}
}
printf(
"\nFrame=%5d, encode_update_type[%5d]=%1d, frame_offset=%d, "
"show_frame=%d, show_existing_frame=%d, source_alt_ref_active=%d, "
"refresh_alt_ref_frame=%d, "
"y_stride=%4d, uv_stride=%4d, cm->width=%4d, cm->height=%4d\n\n",
current_frame->frame_number, cpi->gf_frame_index,
cpi->ppi->gf_group.update_type[cpi->gf_frame_index],
current_frame->order_hint, cm->show_frame, cm->show_existing_frame,
cpi->rc.source_alt_ref_active, cpi->refresh_frame.alt_ref_frame,
recon_buf->y_stride, recon_buf->uv_stride, cm->width, cm->height);
#if 0
int ref_frame;
printf("get_ref_frame_map_idx: [");
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame)
printf(" %d", get_ref_frame_map_idx(cm, ref_frame));
printf(" ]\n");
#endif // 0
// --- Y ---
for (h = 0; h < cm->height; ++h) {
fwrite(&recon_buf->y_buffer[h * recon_buf->y_stride], 1, cm->width,
f_recon);
}
// --- U ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&recon_buf->u_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1),
f_recon);
}
// --- V ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&recon_buf->v_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1),
f_recon);
}
fclose(f_recon);
}
#endif // DUMP_RECON_FRAMES