| /* |
| * Copyright (c) 2020, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "aom_dsp/binary_codes_writer.h" |
| |
| #include "aom_dsp/flow_estimation/corner_detect.h" |
| #include "aom_dsp/flow_estimation/flow_estimation.h" |
| #include "aom_dsp/pyramid.h" |
| #include "av1/common/warped_motion.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/ethread.h" |
| #include "av1/encoder/rdopt.h" |
| #include "av1/encoder/global_motion_facade.h" |
| |
| // Range of model types to search |
| #define FIRST_GLOBAL_TRANS_TYPE ROTZOOM |
| #define LAST_GLOBAL_TRANS_TYPE ROTZOOM |
| |
| // Computes the cost for the warp parameters. |
| static int gm_get_params_cost(const WarpedMotionParams *gm, |
| const WarpedMotionParams *ref_gm, int allow_hp) { |
| int params_cost = 0; |
| int trans_bits, trans_prec_diff; |
| switch (gm->wmtype) { |
| case AFFINE: |
| case ROTZOOM: |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS), |
| (gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[3] >> GM_ALPHA_PREC_DIFF), |
| (gm->wmmat[3] >> GM_ALPHA_PREC_DIFF)); |
| if (gm->wmtype >= AFFINE) { |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[4] >> GM_ALPHA_PREC_DIFF), |
| (gm->wmmat[4] >> GM_ALPHA_PREC_DIFF)); |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - |
| (1 << GM_ALPHA_PREC_BITS), |
| (gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); |
| } |
| AOM_FALLTHROUGH_INTENDED; |
| case TRANSLATION: |
| trans_bits = (gm->wmtype == TRANSLATION) |
| ? GM_ABS_TRANS_ONLY_BITS - !allow_hp |
| : GM_ABS_TRANS_BITS; |
| trans_prec_diff = (gm->wmtype == TRANSLATION) |
| ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp |
| : GM_TRANS_PREC_DIFF; |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| (1 << trans_bits) + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[0] >> trans_prec_diff), |
| (gm->wmmat[0] >> trans_prec_diff)); |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| (1 << trans_bits) + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[1] >> trans_prec_diff), |
| (gm->wmmat[1] >> trans_prec_diff)); |
| AOM_FALLTHROUGH_INTENDED; |
| case IDENTITY: break; |
| default: assert(0); |
| } |
| return (params_cost << AV1_PROB_COST_SHIFT); |
| } |
| |
| // For the given reference frame, computes the global motion parameters for |
| // different motion models and finds the best. |
| static inline void compute_global_motion_for_ref_frame( |
| AV1_COMP *cpi, struct aom_internal_error_info *error_info, |
| YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], int frame, |
| MotionModel *motion_models, uint8_t *segment_map, const int segment_map_w, |
| const int segment_map_h, const WarpedMotionParams *ref_params) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| int src_width = cpi->source->y_crop_width; |
| int src_height = cpi->source->y_crop_height; |
| int src_stride = cpi->source->y_stride; |
| assert(ref_buf[frame] != NULL); |
| int bit_depth = cpi->common.seq_params->bit_depth; |
| GlobalMotionMethod global_motion_method = default_global_motion_method; |
| int downsample_level = cpi->sf.gm_sf.downsample_level; |
| int num_refinements = cpi->sf.gm_sf.num_refinement_steps; |
| bool mem_alloc_failed = false; |
| |
| // Select the best model based on fractional error reduction. |
| // By initializing this to erroradv_tr, the same logic which is used to |
| // select the best model will automatically filter out any model which |
| // doesn't meet the required quality threshold |
| double best_erroradv = erroradv_tr; |
| for (TransformationType model = FIRST_GLOBAL_TRANS_TYPE; |
| model <= LAST_GLOBAL_TRANS_TYPE; ++model) { |
| if (!aom_compute_global_motion(model, cpi->source, ref_buf[frame], |
| bit_depth, global_motion_method, |
| downsample_level, motion_models, |
| RANSAC_NUM_MOTIONS, &mem_alloc_failed)) { |
| if (mem_alloc_failed) { |
| aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate global motion buffers"); |
| } |
| continue; |
| } |
| |
| for (int i = 0; i < RANSAC_NUM_MOTIONS; ++i) { |
| if (motion_models[i].num_inliers == 0) continue; |
| |
| WarpedMotionParams tmp_wm_params; |
| av1_convert_model_to_params(motion_models[i].params, &tmp_wm_params); |
| |
| // Check that the generated model is warp-able |
| if (!av1_get_shear_params(&tmp_wm_params)) continue; |
| |
| // Skip models that we won't use (IDENTITY or TRANSLATION) |
| // |
| // For IDENTITY type models, we don't need to evaluate anything because |
| // all the following logic is effectively comparing the estimated model |
| // to an identity model. |
| // |
| // For TRANSLATION type global motion models, gm_get_motion_vector() gives |
| // the wrong motion vector (see comments in that function for details). |
| // As translation-type models do not give much gain, we can avoid this bug |
| // by never choosing a TRANSLATION type model |
| if (tmp_wm_params.wmtype <= TRANSLATION) continue; |
| |
| av1_compute_feature_segmentation_map( |
| segment_map, segment_map_w, segment_map_h, motion_models[i].inliers, |
| motion_models[i].num_inliers); |
| |
| int64_t ref_frame_error = av1_segmented_frame_error( |
| is_cur_buf_hbd(xd), xd->bd, ref_buf[frame]->y_buffer, |
| ref_buf[frame]->y_stride, cpi->source->y_buffer, src_stride, |
| src_width, src_height, segment_map, segment_map_w); |
| |
| if (ref_frame_error == 0) continue; |
| |
| const int64_t warp_error = av1_refine_integerized_param( |
| &tmp_wm_params, tmp_wm_params.wmtype, is_cur_buf_hbd(xd), xd->bd, |
| ref_buf[frame]->y_buffer, ref_buf[frame]->y_crop_width, |
| ref_buf[frame]->y_crop_height, ref_buf[frame]->y_stride, |
| cpi->source->y_buffer, src_width, src_height, src_stride, |
| num_refinements, ref_frame_error, segment_map, segment_map_w); |
| |
| // av1_refine_integerized_param() can return a simpler model type than |
| // its input, so re-check model type here |
| if (tmp_wm_params.wmtype <= TRANSLATION) continue; |
| |
| double erroradvantage = (double)warp_error / ref_frame_error; |
| |
| // Check that the model signaling cost is not too high |
| if (!av1_is_enough_erroradvantage( |
| erroradvantage, |
| gm_get_params_cost(&tmp_wm_params, ref_params, |
| cm->features.allow_high_precision_mv))) { |
| continue; |
| } |
| |
| if (erroradvantage < best_erroradv) { |
| best_erroradv = erroradvantage; |
| // Save the wm_params modified by |
| // av1_refine_integerized_param() rather than motion index to |
| // avoid rerunning refine() below. |
| memcpy(&(cm->global_motion[frame]), &tmp_wm_params, |
| sizeof(WarpedMotionParams)); |
| } |
| } |
| } |
| } |
| |
| // Computes global motion for the given reference frame. |
| void av1_compute_gm_for_valid_ref_frames( |
| AV1_COMP *cpi, struct aom_internal_error_info *error_info, |
| YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], int frame, |
| MotionModel *motion_models, uint8_t *segment_map, int segment_map_w, |
| int segment_map_h) { |
| AV1_COMMON *const cm = &cpi->common; |
| const WarpedMotionParams *ref_params = |
| cm->prev_frame ? &cm->prev_frame->global_motion[frame] |
| : &default_warp_params; |
| |
| compute_global_motion_for_ref_frame(cpi, error_info, ref_buf, frame, |
| motion_models, segment_map, segment_map_w, |
| segment_map_h, ref_params); |
| } |
| |
| // Loops over valid reference frames and computes global motion estimation. |
| static inline void compute_global_motion_for_references( |
| AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], |
| FrameDistPair reference_frame[REF_FRAMES - 1], int num_ref_frames, |
| MotionModel *motion_models, uint8_t *segment_map, const int segment_map_w, |
| const int segment_map_h) { |
| AV1_COMMON *const cm = &cpi->common; |
| struct aom_internal_error_info *const error_info = |
| cpi->td.mb.e_mbd.error_info; |
| // Compute global motion w.r.t. reference frames starting from the nearest ref |
| // frame in a given direction. |
| for (int frame = 0; frame < num_ref_frames; frame++) { |
| int ref_frame = reference_frame[frame].frame; |
| av1_compute_gm_for_valid_ref_frames(cpi, error_info, ref_buf, ref_frame, |
| motion_models, segment_map, |
| segment_map_w, segment_map_h); |
| // If global motion w.r.t. current ref frame is |
| // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t |
| // the remaining ref frames in that direction. |
| if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search && |
| cm->global_motion[ref_frame].wmtype <= TRANSLATION) |
| break; |
| } |
| } |
| |
| // Compares the distance in 'a' and 'b'. Returns 1 if the frame corresponding to |
| // 'a' is farther, -1 if the frame corresponding to 'b' is farther, 0 otherwise. |
| static int compare_distance(const void *a, const void *b) { |
| const int diff = |
| ((FrameDistPair *)a)->distance - ((FrameDistPair *)b)->distance; |
| if (diff > 0) |
| return 1; |
| else if (diff < 0) |
| return -1; |
| return 0; |
| } |
| |
| static int disable_gm_search_based_on_stats(const AV1_COMP *const cpi) { |
| int is_gm_present = 1; |
| |
| // Check number of GM models only in GF groups with ARF frames. GM param |
| // estimation is always done in the case of GF groups with no ARF frames (flat |
| // gops) |
| if (cpi->ppi->gf_group.arf_index > -1) { |
| // valid_gm_model_found is initialized to INT32_MAX in the beginning of |
| // every GF group. |
| // Therefore, GM param estimation is always done for all frames until |
| // at least 1 frame each of ARF_UPDATE, INTNL_ARF_UPDATE and LF_UPDATE are |
| // encoded in a GF group For subsequent frames, GM param estimation is |
| // disabled, if no valid models have been found in all the three update |
| // types. |
| is_gm_present = (cpi->ppi->valid_gm_model_found[ARF_UPDATE] != 0) || |
| (cpi->ppi->valid_gm_model_found[INTNL_ARF_UPDATE] != 0) || |
| (cpi->ppi->valid_gm_model_found[LF_UPDATE] != 0); |
| } |
| return !is_gm_present; |
| } |
| |
| // Prunes reference frames for global motion estimation based on the speed |
| // feature 'gm_search_type'. |
| static int do_gm_search_logic(SPEED_FEATURES *const sf, int frame) { |
| (void)frame; |
| switch (sf->gm_sf.gm_search_type) { |
| case GM_FULL_SEARCH: return 1; |
| case GM_REDUCED_REF_SEARCH_SKIP_L2_L3: |
| return !(frame == LAST2_FRAME || frame == LAST3_FRAME); |
| case GM_REDUCED_REF_SEARCH_SKIP_L2_L3_ARF2: |
| return !(frame == LAST2_FRAME || frame == LAST3_FRAME || |
| (frame == ALTREF2_FRAME)); |
| case GM_SEARCH_CLOSEST_REFS_ONLY: return 1; |
| case GM_DISABLE_SEARCH: return 0; |
| default: assert(0); |
| } |
| return 1; |
| } |
| |
| // Populates valid reference frames in past/future directions in |
| // 'reference_frames' and their count in 'num_ref_frames'. |
| static inline void update_valid_ref_frames_for_gm( |
| AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], |
| FrameDistPair reference_frames[MAX_DIRECTIONS][REF_FRAMES - 1], |
| int *num_ref_frames) { |
| AV1_COMMON *const cm = &cpi->common; |
| int *num_past_ref_frames = &num_ref_frames[0]; |
| int *num_future_ref_frames = &num_ref_frames[1]; |
| const GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| int ref_pruning_enabled = is_frame_eligible_for_ref_pruning( |
| gf_group, cpi->sf.inter_sf.selective_ref_frame, 1, cpi->gf_frame_index); |
| int cur_frame_gm_disabled = 0; |
| int pyr_lvl = cm->cur_frame->pyramid_level; |
| |
| if (cpi->sf.gm_sf.disable_gm_search_based_on_stats) { |
| cur_frame_gm_disabled = disable_gm_search_based_on_stats(cpi); |
| } |
| |
| for (int frame = ALTREF_FRAME; frame >= LAST_FRAME; --frame) { |
| const MV_REFERENCE_FRAME ref_frame[2] = { frame, NONE_FRAME }; |
| RefCntBuffer *buf = get_ref_frame_buf(cm, frame); |
| const int ref_disabled = |
| !(cpi->ref_frame_flags & av1_ref_frame_flag_list[frame]); |
| ref_buf[frame] = NULL; |
| cm->global_motion[frame] = default_warp_params; |
| // Skip global motion estimation for invalid ref frames |
| if (buf == NULL || |
| (ref_disabled && cpi->sf.hl_sf.recode_loop != DISALLOW_RECODE)) { |
| continue; |
| } else { |
| ref_buf[frame] = &buf->buf; |
| } |
| |
| int prune_ref_frames = |
| ref_pruning_enabled && |
| prune_ref_by_selective_ref_frame(cpi, NULL, ref_frame, |
| cm->cur_frame->ref_display_order_hint); |
| int ref_pyr_lvl = buf->pyramid_level; |
| |
| if (ref_buf[frame]->y_crop_width == cpi->source->y_crop_width && |
| ref_buf[frame]->y_crop_height == cpi->source->y_crop_height && |
| do_gm_search_logic(&cpi->sf, frame) && !prune_ref_frames && |
| ref_pyr_lvl <= pyr_lvl && !cur_frame_gm_disabled) { |
| assert(ref_buf[frame] != NULL); |
| const int relative_frame_dist = av1_encoder_get_relative_dist( |
| buf->display_order_hint, cm->cur_frame->display_order_hint); |
| // Populate past and future ref frames. |
| // reference_frames[0][] indicates past direction and |
| // reference_frames[1][] indicates future direction. |
| if (relative_frame_dist == 0) { |
| // Skip global motion estimation for frames at the same nominal instant. |
| // This will generally be either a "real" frame coded against a |
| // temporal filtered version, or a higher spatial layer coded against |
| // a lower spatial layer. In either case, the optimal motion model will |
| // be IDENTITY, so we don't need to search explicitly. |
| } else if (relative_frame_dist < 0) { |
| reference_frames[0][*num_past_ref_frames].distance = |
| abs(relative_frame_dist); |
| reference_frames[0][*num_past_ref_frames].frame = frame; |
| (*num_past_ref_frames)++; |
| } else { |
| reference_frames[1][*num_future_ref_frames].distance = |
| abs(relative_frame_dist); |
| reference_frames[1][*num_future_ref_frames].frame = frame; |
| (*num_future_ref_frames)++; |
| } |
| } |
| } |
| } |
| |
| // Initializes parameters used for computing global motion. |
| static inline void setup_global_motion_info_params(AV1_COMP *cpi) { |
| GlobalMotionInfo *const gm_info = &cpi->gm_info; |
| YV12_BUFFER_CONFIG *source = cpi->source; |
| |
| gm_info->segment_map_w = |
| (source->y_crop_width + WARP_ERROR_BLOCK - 1) >> WARP_ERROR_BLOCK_LOG; |
| gm_info->segment_map_h = |
| (source->y_crop_height + WARP_ERROR_BLOCK - 1) >> WARP_ERROR_BLOCK_LOG; |
| |
| memset(gm_info->reference_frames, -1, |
| sizeof(gm_info->reference_frames[0][0]) * MAX_DIRECTIONS * |
| (REF_FRAMES - 1)); |
| av1_zero(gm_info->num_ref_frames); |
| |
| // Populate ref_buf for valid ref frames in global motion |
| update_valid_ref_frames_for_gm(cpi, gm_info->ref_buf, |
| gm_info->reference_frames, |
| gm_info->num_ref_frames); |
| |
| // Sort the past and future ref frames in the ascending order of their |
| // distance from the current frame. reference_frames[0] => past direction |
| // and reference_frames[1] => future direction. |
| qsort(gm_info->reference_frames[0], gm_info->num_ref_frames[0], |
| sizeof(gm_info->reference_frames[0][0]), compare_distance); |
| qsort(gm_info->reference_frames[1], gm_info->num_ref_frames[1], |
| sizeof(gm_info->reference_frames[1][0]), compare_distance); |
| |
| if (cpi->sf.gm_sf.gm_search_type == GM_SEARCH_CLOSEST_REFS_ONLY) { |
| // Filter down to the nearest two ref frames. |
| // Prefer one past and one future ref over two past refs, even if |
| // the second past ref is closer |
| if (gm_info->num_ref_frames[1] > 0) { |
| gm_info->num_ref_frames[0] = AOMMIN(gm_info->num_ref_frames[0], 1); |
| gm_info->num_ref_frames[1] = AOMMIN(gm_info->num_ref_frames[1], 1); |
| } else { |
| gm_info->num_ref_frames[0] = AOMMIN(gm_info->num_ref_frames[0], 2); |
| } |
| } |
| } |
| |
| // Computes global motion w.r.t. valid reference frames. |
| static inline void global_motion_estimation(AV1_COMP *cpi) { |
| GlobalMotionInfo *const gm_info = &cpi->gm_info; |
| GlobalMotionData *gm_data = &cpi->td.gm_data; |
| |
| // Compute global motion w.r.t. past reference frames and future reference |
| // frames |
| for (int dir = 0; dir < MAX_DIRECTIONS; dir++) { |
| if (gm_info->num_ref_frames[dir] > 0) |
| compute_global_motion_for_references( |
| cpi, gm_info->ref_buf, gm_info->reference_frames[dir], |
| gm_info->num_ref_frames[dir], gm_data->motion_models, |
| gm_data->segment_map, gm_info->segment_map_w, gm_info->segment_map_h); |
| } |
| } |
| |
| // Global motion estimation for the current frame is computed.This computation |
| // happens once per frame and the winner motion model parameters are stored in |
| // cm->cur_frame->global_motion. |
| void av1_compute_global_motion_facade(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| GlobalMotionInfo *const gm_info = &cpi->gm_info; |
| |
| if (cpi->oxcf.tool_cfg.enable_global_motion) { |
| if (cpi->gf_frame_index == 0) { |
| for (int i = 0; i < FRAME_UPDATE_TYPES; i++) { |
| cpi->ppi->valid_gm_model_found[i] = INT32_MAX; |
| #if CONFIG_FPMT_TEST |
| if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) |
| cpi->ppi->temp_valid_gm_model_found[i] = INT32_MAX; |
| #endif |
| } |
| } |
| } |
| |
| if (cpi->common.current_frame.frame_type == INTER_FRAME && cpi->source && |
| cpi->oxcf.tool_cfg.enable_global_motion && !gm_info->search_done && |
| cpi->sf.gm_sf.gm_search_type != GM_DISABLE_SEARCH) { |
| setup_global_motion_info_params(cpi); |
| // Terminate early if the total number of reference frames is zero. |
| if (cpi->gm_info.num_ref_frames[0] || cpi->gm_info.num_ref_frames[1]) { |
| gm_alloc_data(cpi, &cpi->td.gm_data); |
| if (cpi->mt_info.num_workers > 1) |
| av1_global_motion_estimation_mt(cpi); |
| else |
| global_motion_estimation(cpi); |
| gm_dealloc_data(&cpi->td.gm_data); |
| gm_info->search_done = 1; |
| } |
| } |
| memcpy(cm->cur_frame->global_motion, cm->global_motion, |
| sizeof(cm->cur_frame->global_motion)); |
| } |