blob: 1011799e6c92dee9d3690d103abf5e2cff610847 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdlib.h>
#include "config/aom_config.h"
#include "aom_scale/yv12config.h"
#include "av1/common/common.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/lookahead.h"
/* Return the buffer at the given absolute index and increment the index */
static struct lookahead_entry *pop(struct lookahead_ctx *ctx, int *idx) {
int index = *idx;
struct lookahead_entry *buf = ctx->buf + index;
assert(index < ctx->max_sz);
if (++index >= ctx->max_sz) index -= ctx->max_sz;
*idx = index;
return buf;
}
void av1_lookahead_destroy(struct lookahead_ctx *ctx) {
if (ctx) {
if (ctx->buf) {
int i;
for (i = 0; i < ctx->max_sz; i++) aom_free_frame_buffer(&ctx->buf[i].img);
free(ctx->buf);
}
free(ctx);
}
}
struct lookahead_ctx *av1_lookahead_init(
unsigned int width, unsigned int height, unsigned int subsampling_x,
unsigned int subsampling_y, int use_highbitdepth, unsigned int depth,
const int border_in_pixels, int byte_alignment, int num_lap_buffers,
bool is_all_intra, bool alloc_pyramid) {
int lag_in_frames = AOMMAX(1, depth);
// For all-intra frame encoding, previous source frames are not required.
// Hence max_pre_frames is set to 0 in this case. As previous source frames
// are accessed using a negative index to av1_lookahead_peek(), setting
// max_pre_frames to 0 will cause av1_lookahead_peek() to return NULL for a
// negative index.
const uint8_t max_pre_frames = is_all_intra ? 0 : MAX_PRE_FRAMES;
// Add the lags to depth and clamp
depth += num_lap_buffers;
depth = clamp(depth, 1, MAX_TOTAL_BUFFERS);
// Allocate memory to keep previous source frames available.
depth += max_pre_frames;
// Allocate the lookahead structures
struct lookahead_ctx *ctx = calloc(1, sizeof(*ctx));
if (ctx) {
unsigned int i;
ctx->max_sz = depth;
ctx->push_frame_count = 0;
ctx->max_pre_frames = max_pre_frames;
ctx->read_ctxs[ENCODE_STAGE].pop_sz = ctx->max_sz - ctx->max_pre_frames;
ctx->read_ctxs[ENCODE_STAGE].valid = 1;
if (num_lap_buffers) {
ctx->read_ctxs[LAP_STAGE].pop_sz = lag_in_frames;
ctx->read_ctxs[LAP_STAGE].valid = 1;
}
ctx->buf = calloc(depth, sizeof(*ctx->buf));
if (!ctx->buf) goto fail;
for (i = 0; i < depth; i++) {
if (aom_realloc_frame_buffer(
&ctx->buf[i].img, width, height, subsampling_x, subsampling_y,
use_highbitdepth, border_in_pixels, byte_alignment, NULL, NULL,
NULL, alloc_pyramid, 0)) {
goto fail;
}
}
}
return ctx;
fail:
av1_lookahead_destroy(ctx);
return NULL;
}
int av1_lookahead_full(const struct lookahead_ctx *ctx) {
// TODO(angiebird): Test this function.
return ctx->read_ctxs[ENCODE_STAGE].sz >= ctx->read_ctxs[ENCODE_STAGE].pop_sz;
}
int av1_lookahead_push(struct lookahead_ctx *ctx, const YV12_BUFFER_CONFIG *src,
int64_t ts_start, int64_t ts_end, int use_highbitdepth,
bool alloc_pyramid, aom_enc_frame_flags_t flags) {
int width = src->y_crop_width;
int height = src->y_crop_height;
int uv_width = src->uv_crop_width;
int uv_height = src->uv_crop_height;
int subsampling_x = src->subsampling_x;
int subsampling_y = src->subsampling_y;
int larger_dimensions, new_dimensions;
assert(ctx->read_ctxs[ENCODE_STAGE].valid == 1);
if (ctx->read_ctxs[ENCODE_STAGE].sz + ctx->max_pre_frames > ctx->max_sz)
return 1;
ctx->read_ctxs[ENCODE_STAGE].sz++;
if (ctx->read_ctxs[LAP_STAGE].valid) {
ctx->read_ctxs[LAP_STAGE].sz++;
}
struct lookahead_entry *buf = pop(ctx, &ctx->write_idx);
new_dimensions = width != buf->img.y_crop_width ||
height != buf->img.y_crop_height ||
uv_width != buf->img.uv_crop_width ||
uv_height != buf->img.uv_crop_height;
larger_dimensions =
width > buf->img.y_crop_width || height > buf->img.y_crop_height ||
uv_width > buf->img.uv_crop_width || uv_height > buf->img.uv_crop_height;
assert(!larger_dimensions || new_dimensions);
if (larger_dimensions) {
YV12_BUFFER_CONFIG new_img;
memset(&new_img, 0, sizeof(new_img));
if (aom_alloc_frame_buffer(&new_img, width, height, subsampling_x,
subsampling_y, use_highbitdepth,
AOM_BORDER_IN_PIXELS, 0, alloc_pyramid, 0))
return 1;
aom_free_frame_buffer(&buf->img);
buf->img = new_img;
} else if (new_dimensions) {
buf->img.y_width = src->y_width;
buf->img.y_height = src->y_height;
buf->img.uv_width = src->uv_width;
buf->img.uv_height = src->uv_height;
buf->img.y_crop_width = src->y_crop_width;
buf->img.y_crop_height = src->y_crop_height;
buf->img.uv_crop_width = src->uv_crop_width;
buf->img.uv_crop_height = src->uv_crop_height;
buf->img.subsampling_x = src->subsampling_x;
buf->img.subsampling_y = src->subsampling_y;
}
av1_copy_and_extend_frame(src, &buf->img);
buf->ts_start = ts_start;
buf->ts_end = ts_end;
buf->display_idx = ctx->push_frame_count;
buf->flags = flags;
++ctx->push_frame_count;
aom_remove_metadata_from_frame_buffer(&buf->img);
if (src->metadata &&
aom_copy_metadata_to_frame_buffer(&buf->img, src->metadata)) {
return 1;
}
return 0;
}
struct lookahead_entry *av1_lookahead_pop(struct lookahead_ctx *ctx, int drain,
COMPRESSOR_STAGE stage) {
struct lookahead_entry *buf = NULL;
if (ctx) {
struct read_ctx *read_ctx = &ctx->read_ctxs[stage];
assert(read_ctx->valid == 1);
if (read_ctx->sz && (drain || read_ctx->sz == read_ctx->pop_sz)) {
buf = pop(ctx, &read_ctx->read_idx);
read_ctx->sz--;
}
}
return buf;
}
struct lookahead_entry *av1_lookahead_peek(struct lookahead_ctx *ctx, int index,
COMPRESSOR_STAGE stage) {
struct lookahead_entry *buf = NULL;
if (ctx == NULL) {
return buf;
}
struct read_ctx *read_ctx = &ctx->read_ctxs[stage];
assert(read_ctx->valid == 1);
if (index >= 0) {
// Forward peek
if (index < read_ctx->sz) {
index += read_ctx->read_idx;
if (index >= ctx->max_sz) index -= ctx->max_sz;
buf = ctx->buf + index;
}
} else if (index < 0) {
// Backward peek
if (-index <= ctx->max_pre_frames) {
index += (int)(read_ctx->read_idx);
if (index < 0) index += (int)(ctx->max_sz);
buf = ctx->buf + index;
}
}
return buf;
}
unsigned int av1_lookahead_depth(struct lookahead_ctx *ctx,
COMPRESSOR_STAGE stage) {
assert(ctx != NULL);
struct read_ctx *read_ctx = &ctx->read_ctxs[stage];
assert(read_ctx->valid == 1);
return read_ctx->sz;
}
int av1_lookahead_pop_sz(struct lookahead_ctx *ctx, COMPRESSOR_STAGE stage) {
assert(ctx != NULL);
struct read_ctx *read_ctx = &ctx->read_ctxs[stage];
assert(read_ctx->valid == 1);
return read_ctx->pop_sz;
}