blob: 27fd1eb8514b2fa182b016a24c8dfbb05ad5b589 [file] [log] [blame]
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <float.h>
#include "config/aom_config.h"
#include "aom_dsp/txfm_common.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/enums.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/intra_mode_search_utils.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/nonrd_opt.h"
#include "av1/encoder/partition_search.h"
#include "av1/encoder/partition_strategy.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/tokenize.h"
#include "av1/encoder/var_based_part.h"
#include "av1/encoder/av1_ml_partition_models.h"
#if CONFIG_TUNE_VMAF
#include "av1/encoder/tune_vmaf.h"
#endif
#define COLLECT_MOTION_SEARCH_FEATURE_SB 0
#if CONFIG_PARTITION_SEARCH_ORDER
void av1_reset_part_sf(PARTITION_SPEED_FEATURES *part_sf) {
part_sf->partition_search_type = SEARCH_PARTITION;
part_sf->less_rectangular_check_level = 0;
part_sf->use_square_partition_only_threshold = BLOCK_128X128;
part_sf->auto_max_partition_based_on_simple_motion = NOT_IN_USE;
part_sf->default_max_partition_size = BLOCK_LARGEST;
part_sf->default_min_partition_size = BLOCK_4X4;
part_sf->adjust_var_based_rd_partitioning = 0;
part_sf->max_intra_bsize = BLOCK_LARGEST;
// This setting only takes effect when partition_search_type is set
// to FIXED_PARTITION.
part_sf->fixed_partition_size = BLOCK_16X16;
// Recode loop tolerance %.
part_sf->partition_search_breakout_dist_thr = 0;
part_sf->partition_search_breakout_rate_thr = 0;
part_sf->prune_ext_partition_types_search_level = 0;
part_sf->prune_part4_search = 0;
part_sf->ml_prune_partition = 0;
part_sf->ml_early_term_after_part_split_level = 0;
for (int i = 0; i < PARTITION_BLOCK_SIZES; ++i) {
part_sf->ml_partition_search_breakout_thresh[i] =
-1; // -1 means not enabled.
}
part_sf->simple_motion_search_prune_agg = SIMPLE_AGG_LVL0;
part_sf->simple_motion_search_split = 0;
part_sf->simple_motion_search_prune_rect = 0;
part_sf->simple_motion_search_early_term_none = 0;
part_sf->simple_motion_search_reduce_search_steps = 0;
part_sf->intra_cnn_based_part_prune_level = 0;
part_sf->ext_partition_eval_thresh = BLOCK_8X8;
part_sf->rect_partition_eval_thresh = BLOCK_128X128;
part_sf->ext_part_eval_based_on_cur_best = 0;
part_sf->prune_ext_part_using_split_info = 0;
part_sf->prune_rectangular_split_based_on_qidx = 0;
part_sf->early_term_after_none_split = 0;
part_sf->ml_predict_breakout_level = 0;
part_sf->prune_sub_8x8_partition_level = 0;
part_sf->simple_motion_search_rect_split = 0;
part_sf->reuse_prev_rd_results_for_part_ab = 0;
part_sf->reuse_best_prediction_for_part_ab = 0;
part_sf->use_best_rd_for_pruning = 0;
part_sf->skip_non_sq_part_based_on_none = 0;
}
// Reset speed features that works for the baseline encoding, but
// blocks the external partition search.
void av1_reset_sf_for_ext_part(AV1_COMP *const cpi) {
cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions = 0;
}
#endif // CONFIG_PARTITION_SEARCH_ORDER
#if !CONFIG_REALTIME_ONLY
// If input |features| is NULL, write tpl stats to file for each super block.
// Otherwise, store tpl stats to |features|.
// The tpl stats is computed in the unit of tpl_bsize_1d (16x16).
// When writing to text file:
// The first row contains super block position, super block size,
// tpl unit length, number of units in the super block.
// The second row contains the intra prediction cost for each unit.
// The third row contains the inter prediction cost for each unit.
// The forth row contains the motion compensated dependency cost for each unit.
static void collect_tpl_stats_sb(const AV1_COMP *const cpi,
const BLOCK_SIZE bsize, const int mi_row,
const int mi_col,
aom_partition_features_t *features) {
const AV1_COMMON *const cm = &cpi->common;
GF_GROUP *gf_group = &cpi->ppi->gf_group;
if (gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE ||
gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) {
return;
}
TplParams *const tpl_data = &cpi->ppi->tpl_data;
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[cpi->gf_frame_index];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
// If tpl stats is not established, early return
if (!tpl_data->ready || gf_group->max_layer_depth_allowed == 0) {
if (features != NULL) features->sb_features.tpl_features.available = 0;
return;
}
const int tpl_stride = tpl_frame->stride;
const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
const int mi_width =
AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
const int mi_height =
AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
const int col_steps = (mi_width / step) + ((mi_width % step) > 0);
const int row_steps = (mi_height / step) + ((mi_height % step) > 0);
const int num_blocks = col_steps * row_steps;
if (features == NULL) {
char filename[256];
snprintf(filename, sizeof(filename), "%s/tpl_feature_sb%d",
cpi->oxcf.partition_info_path, cpi->sb_counter);
FILE *pfile = fopen(filename, "w");
fprintf(pfile, "%d,%d,%d,%d,%d\n", mi_row, mi_col, bsize,
tpl_data->tpl_bsize_1d, num_blocks);
int count = 0;
for (int row = 0; row < mi_height; row += step) {
for (int col = 0; col < mi_width; col += step) {
TplDepStats *this_stats =
&tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
tpl_data->tpl_stats_block_mis_log2)];
fprintf(pfile, "%.0f", (double)this_stats->intra_cost);
if (count < num_blocks - 1) fprintf(pfile, ",");
++count;
}
}
fprintf(pfile, "\n");
count = 0;
for (int row = 0; row < mi_height; row += step) {
for (int col = 0; col < mi_width; col += step) {
TplDepStats *this_stats =
&tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
tpl_data->tpl_stats_block_mis_log2)];
fprintf(pfile, "%.0f", (double)this_stats->inter_cost);
if (count < num_blocks - 1) fprintf(pfile, ",");
++count;
}
}
fprintf(pfile, "\n");
count = 0;
for (int row = 0; row < mi_height; row += step) {
for (int col = 0; col < mi_width; col += step) {
TplDepStats *this_stats =
&tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
tpl_data->tpl_stats_block_mis_log2)];
const int64_t mc_dep_delta =
RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
this_stats->mc_dep_dist);
fprintf(pfile, "%.0f", (double)mc_dep_delta);
if (count < num_blocks - 1) fprintf(pfile, ",");
++count;
}
}
fclose(pfile);
} else {
features->sb_features.tpl_features.available = 1;
features->sb_features.tpl_features.tpl_unit_length = tpl_data->tpl_bsize_1d;
features->sb_features.tpl_features.num_units = num_blocks;
int count = 0;
for (int row = 0; row < mi_height; row += step) {
for (int col = 0; col < mi_width; col += step) {
TplDepStats *this_stats =
&tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
tpl_data->tpl_stats_block_mis_log2)];
const int64_t mc_dep_delta =
RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
this_stats->mc_dep_dist);
features->sb_features.tpl_features.intra_cost[count] =
this_stats->intra_cost;
features->sb_features.tpl_features.inter_cost[count] =
this_stats->inter_cost;
features->sb_features.tpl_features.mc_dep_cost[count] = mc_dep_delta;
++count;
}
}
}
}
#endif // !CONFIG_REALTIME_ONLY
static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd,
FRAME_COUNTS *counts, TX_SIZE tx_size, int depth,
int blk_row, int blk_col,
uint8_t allow_update_cdf) {
MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->bsize;
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, mbmi->bsize,
tx_size);
const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
assert(tx_size > TX_4X4);
if (depth == MAX_VARTX_DEPTH) {
// Don't add to counts in this case
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
if (tx_size == plane_tx_size) {
#if CONFIG_ENTROPY_STATS
++counts->txfm_partition[ctx][0];
#endif
if (allow_update_cdf)
update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2);
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
#if CONFIG_ENTROPY_STATS
++counts->txfm_partition[ctx][1];
#endif
if (allow_update_cdf)
update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2);
++x->txfm_search_info.txb_split_count;
if (sub_txs == TX_4X4) {
mbmi->inter_tx_size[txb_size_index] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, TX_4X4, tx_size);
return;
}
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
int offsetr = row;
int offsetc = col;
update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr,
blk_col + offsetc, allow_update_cdf);
}
}
}
}
static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE plane_bsize,
FRAME_COUNTS *td_counts,
uint8_t allow_update_cdf) {
MACROBLOCKD *xd = &x->e_mbd;
const int mi_width = mi_size_wide[plane_bsize];
const int mi_height = mi_size_high[plane_bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
xd->above_txfm_context =
cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);
for (int idy = 0; idy < mi_height; idy += bh) {
for (int idx = 0; idx < mi_width; idx += bw) {
update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx,
allow_update_cdf);
}
}
}
static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row,
int blk_col) {
MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->bsize;
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size) {
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
} else {
if (tx_size == TX_8X8) {
mbmi->inter_tx_size[txb_size_index] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, TX_4X4, tx_size);
return;
}
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int row_end =
AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
const int col_end =
AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
for (int row = 0; row < row_end; row += bsh) {
const int offsetr = blk_row + row;
for (int col = 0; col < col_end; col += bsw) {
const int offsetc = blk_col + col;
set_txfm_context(xd, sub_txs, offsetr, offsetc);
}
}
}
}
static void tx_partition_set_contexts(const AV1_COMMON *const cm,
MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) {
const int mi_width = mi_size_wide[plane_bsize];
const int mi_height = mi_size_high[plane_bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
xd->above_txfm_context =
cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);
for (int idy = 0; idy < mi_height; idy += bh) {
for (int idx = 0; idx < mi_width; idx += bw) {
set_txfm_context(xd, max_tx_size, idy, idx);
}
}
}
static void update_zeromv_cnt(const AV1_COMP *const cpi,
const MB_MODE_INFO *const mi, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
if (mi->ref_frame[0] != LAST_FRAME || !is_inter_block(mi) ||
mi->segment_id > CR_SEGMENT_ID_BOOST2) {
return;
}
const AV1_COMMON *const cm = &cpi->common;
const MV mv = mi->mv[0].as_mv;
const int bw = mi_size_wide[bsize] >> 1;
const int bh = mi_size_high[bsize] >> 1;
const int xmis = AOMMIN((cm->mi_params.mi_cols - mi_col) >> 1, bw);
const int ymis = AOMMIN((cm->mi_params.mi_rows - mi_row) >> 1, bh);
const int block_index =
(mi_row >> 1) * (cm->mi_params.mi_cols >> 1) + (mi_col >> 1);
for (int y = 0; y < ymis; y++) {
for (int x = 0; x < xmis; x++) {
// consec_zero_mv is in the scale of 8x8 blocks
const int map_offset = block_index + y * (cm->mi_params.mi_cols >> 1) + x;
if (abs(mv.row) < 10 && abs(mv.col) < 10) {
if (cpi->consec_zero_mv[map_offset] < 255)
cpi->consec_zero_mv[map_offset]++;
} else {
cpi->consec_zero_mv[map_offset] = 0;
}
}
}
}
static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, TokenExtra **t, RUN_TYPE dry_run,
BLOCK_SIZE bsize, int *rate) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO **mi_4x4 = xd->mi;
MB_MODE_INFO *mbmi = mi_4x4[0];
const int seg_skip =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
const int mis = cm->mi_params.mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
const int is_inter = is_inter_block(mbmi);
// Initialize tx_mode and tx_size_search_method
TxfmSearchParams *txfm_params = &x->txfm_search_params;
set_tx_size_search_method(
cm, &cpi->winner_mode_params, txfm_params,
cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch, 1);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (!is_inter) {
xd->cfl.store_y = store_cfl_required(cm, xd);
mbmi->skip_txfm = 1;
for (int plane = 0; plane < num_planes; ++plane) {
av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run,
cpi->optimize_seg_arr[mbmi->segment_id]);
}
// If there is at least one lossless segment, force the skip for intra
// block to be 0, in order to avoid the segment_id to be changed by in
// write_segment_id().
if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map &&
cpi->enc_seg.has_lossless_segment)
mbmi->skip_txfm = 0;
xd->cfl.store_y = 0;
if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) {
if (mbmi->palette_mode_info.palette_size[plane] > 0) {
if (!dry_run) {
av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size,
PALETTE_MAP, tile_data->allow_update_cdf,
td->counts);
} else if (dry_run == DRY_RUN_COSTCOEFFS) {
*rate +=
av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP);
}
}
}
}
av1_update_intra_mb_txb_context(cpi, td, dry_run, bsize,
tile_data->allow_update_cdf);
} else {
int ref;
const int is_compound = has_second_ref(mbmi);
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
for (ref = 0; ref < 1 + is_compound; ++ref) {
const YV12_BUFFER_CONFIG *cfg =
get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]);
assert(IMPLIES(!is_intrabc_block(mbmi), cfg));
av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
xd->block_ref_scale_factors[ref], num_planes);
}
// Predicted sample of inter mode (for Luma plane) cannot be reused if
// nonrd_check_partition_split speed feature is enabled, Since in such cases
// the buffer may not contain the predicted sample of best mode.
const int start_plane =
(x->reuse_inter_pred && (!cpi->sf.rt_sf.nonrd_check_partition_split) &&
cm->seq_params->bit_depth == AOM_BITS_8)
? 1
: 0;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
start_plane, av1_num_planes(cm) - 1);
if (mbmi->motion_mode == OBMC_CAUSAL) {
assert(cpi->oxcf.motion_mode_cfg.enable_obmc);
av1_build_obmc_inter_predictors_sb(cm, xd);
}
#if CONFIG_MISMATCH_DEBUG
if (dry_run == OUTPUT_ENABLED) {
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
int pixel_c, pixel_r;
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
pd->subsampling_x, pd->subsampling_y);
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y))
continue;
mismatch_record_block_pre(pd->dst.buf, pd->dst.stride,
cm->current_frame.order_hint, plane, pixel_c,
pixel_r, pd->width, pd->height,
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
}
}
#else
(void)num_planes;
#endif
av1_encode_sb(cpi, x, bsize, dry_run);
av1_tokenize_sb_vartx(cpi, td, dry_run, bsize, rate,
tile_data->allow_update_cdf);
}
if (!dry_run) {
if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) td->intrabc_used = 1;
if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
!xd->lossless[mbmi->segment_id] && mbmi->bsize > BLOCK_4X4 &&
!(is_inter && (mbmi->skip_txfm || seg_skip))) {
if (is_inter) {
tx_partition_count_update(cm, x, bsize, td->counts,
tile_data->allow_update_cdf);
} else {
if (mbmi->tx_size != max_txsize_rect_lookup[bsize])
++x->txfm_search_info.txb_split_count;
if (block_signals_txsize(bsize)) {
const int tx_size_ctx = get_tx_size_context(xd);
const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
const int depth = tx_size_to_depth(mbmi->tx_size, bsize);
const int max_depths = bsize_to_max_depth(bsize);
if (tile_data->allow_update_cdf)
update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
depth, max_depths + 1);
#if CONFIG_ENTROPY_STATS
++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth];
#endif
}
}
assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi)));
} else {
int i, j;
TX_SIZE intra_tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter) {
if (xd->lossless[mbmi->segment_id]) {
intra_tx_size = TX_4X4;
} else {
intra_tx_size =
tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type);
}
} else {
intra_tx_size = mbmi->tx_size;
}
const int cols = AOMMIN(cm->mi_params.mi_cols - mi_col, mi_width);
const int rows = AOMMIN(cm->mi_params.mi_rows - mi_row, mi_height);
for (j = 0; j < rows; j++) {
for (i = 0; i < cols; i++) mi_4x4[mis * j + i]->tx_size = intra_tx_size;
}
if (intra_tx_size != max_txsize_rect_lookup[bsize])
++x->txfm_search_info.txb_split_count;
}
}
if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
block_signals_txsize(mbmi->bsize) && is_inter &&
!(mbmi->skip_txfm || seg_skip) && !xd->lossless[mbmi->segment_id]) {
if (dry_run) tx_partition_set_contexts(cm, xd, bsize);
} else {
TX_SIZE tx_size = mbmi->tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter) {
if (xd->lossless[mbmi->segment_id]) {
tx_size = TX_4X4;
} else {
tx_size = tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type);
}
} else {
tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4;
}
mbmi->tx_size = tx_size;
set_txfm_ctxs(tx_size, xd->width, xd->height,
(mbmi->skip_txfm || seg_skip) && is_inter_block(mbmi), xd);
}
#if !CONFIG_REALTIME_ONLY
if (is_inter_block(mbmi) && !xd->is_chroma_ref && is_cfl_allowed(xd)) {
cfl_store_block(xd, mbmi->bsize, mbmi->tx_size);
}
#endif
if (!dry_run) {
if (cpi->oxcf.pass == AOM_RC_ONE_PASS && cpi->svc.temporal_layer_id == 0 &&
cpi->sf.rt_sf.use_temporal_noise_estimate &&
(!cpi->ppi->use_svc ||
(cpi->ppi->use_svc &&
!cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame &&
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)))
update_zeromv_cnt(cpi, mbmi, mi_row, mi_col, bsize);
}
}
static void setup_block_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
int mi_row, int mi_col, BLOCK_SIZE bsize,
AQ_MODE aq_mode, MB_MODE_INFO *mbmi) {
x->rdmult = cpi->rd.RDMULT;
if (aq_mode != NO_AQ) {
assert(mbmi != NULL);
if (aq_mode == VARIANCE_AQ) {
if (cpi->vaq_refresh) {
const int energy = bsize <= BLOCK_16X16
? x->mb_energy
: av1_log_block_var(cpi, x, bsize);
mbmi->segment_id = energy;
}
x->rdmult = set_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == COMPLEXITY_AQ) {
x->rdmult = set_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
// If segment is boosted, use rdmult for that segment.
if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
}
}
#if !CONFIG_REALTIME_ONLY
if (cpi->common.delta_q_info.delta_q_present_flag &&
!cpi->sf.rt_sf.use_nonrd_pick_mode) {
x->rdmult = av1_get_cb_rdmult(cpi, x, bsize, mi_row, mi_col);
}
#endif // !CONFIG_REALTIME_ONLY
if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM ||
cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIMULACRA2) {
av1_set_ssim_rdmult(cpi, &x->errorperbit, bsize, mi_row, mi_col,
&x->rdmult);
}
#if CONFIG_SALIENCY_MAP
else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_SALIENCY_MAP) {
av1_set_saliency_map_vmaf_rdmult(cpi, &x->errorperbit,
cpi->common.seq_params->sb_size, mi_row,
mi_col, &x->rdmult);
}
#endif
#if CONFIG_TUNE_VMAF
else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING ||
cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN ||
cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) {
av1_set_vmaf_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
}
#endif
#if CONFIG_TUNE_BUTTERAUGLI
else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) {
av1_set_butteraugli_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
}
#endif
if (cpi->oxcf.mode == ALLINTRA) {
x->rdmult = (int)(((int64_t)x->rdmult * x->intra_sb_rdmult_modifier) >> 7);
}
// Check to make sure that the adjustments above have not caused the
// rd multiplier to be truncated to 0.
x->rdmult = (x->rdmult > 0) ? x->rdmult : 1;
}
void av1_set_offsets_without_segment_id(const AV1_COMP *const cpi,
const TileInfo *const tile,
MACROBLOCK *const x, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
assert(bsize < BLOCK_SIZES_ALL);
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
mi_row, mi_col);
set_entropy_context(xd, mi_row, mi_col, num_planes);
xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
// Set up destination pointers.
av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
num_planes);
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
av1_set_mv_limits(&cm->mi_params, &x->mv_limits, mi_row, mi_col, mi_height,
mi_width, cpi->oxcf.border_in_pixels);
set_plane_n4(xd, mi_width, mi_height, num_planes);
// Set up distance of MB to edge of frame in 1/8th pel units.
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
cm->mi_params.mi_rows, cm->mi_params.mi_cols);
// Set up source buffers.
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
// required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs()
xd->tile = *tile;
}
void av1_set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile,
MACROBLOCK *const x, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
const struct segmentation *const seg = &cm->seg;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
// Setup segment ID.
mbmi = xd->mi[0];
mbmi->segment_id = 0;
if (seg->enabled) {
if (seg->enabled && !cpi->vaq_refresh) {
const uint8_t *const map =
seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
mbmi->segment_id =
map ? get_segment_id(&cm->mi_params, map, bsize, mi_row, mi_col) : 0;
}
av1_init_plane_quantizers(cpi, x, mbmi->segment_id, 0);
}
#ifndef NDEBUG
x->last_set_offsets_loc.mi_row = mi_row;
x->last_set_offsets_loc.mi_col = mi_col;
x->last_set_offsets_loc.bsize = bsize;
#endif // NDEBUG
}
/*!\brief Hybrid intra mode search.
*
* \ingroup intra_mode_search
* \callgraph
* \callergraph
* This is top level function for mode search for intra frames in non-RD
* optimized case. Depending on speed feature and block size it calls
* either non-RD or RD optimized intra mode search.
*
* \param[in] cpi Top-level encoder structure
* \param[in] x Pointer to structure holding all the data for
the current macroblock
* \param[in] rd_cost Struct to keep track of the RD information
* \param[in] bsize Current block size
* \param[in] ctx Structure to hold snapshot of coding context
during the mode picking process
*
* \remark Nothing is returned. Instead, the MB_MODE_INFO struct inside x
* is modified to store information about the best mode computed
* in this function. The rd_cost struct is also updated with the RD stats
* corresponding to the best mode found.
*/
static inline void hybrid_intra_mode_search(AV1_COMP *cpi, MACROBLOCK *const x,
RD_STATS *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
int use_rdopt = 0;
const int hybrid_intra_pickmode = cpi->sf.rt_sf.hybrid_intra_pickmode;
// Use rd pick for intra mode search based on block size and variance.
if (hybrid_intra_pickmode && bsize < BLOCK_16X16) {
unsigned int var_thresh[3] = { 0, 101, 201 };
assert(hybrid_intra_pickmode <= 3);
if (x->source_variance >= var_thresh[hybrid_intra_pickmode - 1])
use_rdopt = 1;
}
if (use_rdopt)
av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
else
av1_nonrd_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
}
// For real time/allintra row-mt enabled multi-threaded encoding with cost
// update frequency set to COST_UPD_TILE/COST_UPD_OFF, tile ctxt is not updated
// at superblock level. Thus, it is not required for the encoding of top-right
// superblock be complete for updating tile ctxt. However, when encoding a block
// whose right edge is also the superblock edge, intra and inter mode evaluation
// (ref mv list population) require the encoding of the top-right superblock to
// be complete. So, here, we delay the waiting of threads until the need for the
// data from the top-right superblock region.
static inline void wait_for_top_right_sb(AV1EncRowMultiThreadInfo *enc_row_mt,
AV1EncRowMultiThreadSync *row_mt_sync,
TileInfo *tile_info,
BLOCK_SIZE sb_size,
int sb_mi_size_log2, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
const int sb_size_in_mi = mi_size_wide[sb_size];
const int bw_in_mi = mi_size_wide[bsize];
const int blk_row_in_sb = mi_row & (sb_size_in_mi - 1);
const int blk_col_in_sb = mi_col & (sb_size_in_mi - 1);
const int top_right_block_in_sb =
(blk_row_in_sb == 0) && (blk_col_in_sb + bw_in_mi >= sb_size_in_mi);
// Don't wait if the block is the not the top-right block in the superblock.
if (!top_right_block_in_sb) return;
// Wait for the top-right superblock to finish encoding.
const int sb_row_in_tile =
(mi_row - tile_info->mi_row_start) >> sb_mi_size_log2;
const int sb_col_in_tile =
(mi_col - tile_info->mi_col_start) >> sb_mi_size_log2;
enc_row_mt->sync_read_ptr(row_mt_sync, sb_row_in_tile, sb_col_in_tile);
}
/*!\brief Interface for AV1 mode search for an individual coding block
*
* \ingroup partition_search
* \callgraph
* \callergraph
* Searches prediction modes, transform, and coefficient coding modes for an
* individual coding block. This function is the top-level interface that
* directs the encoder to the proper mode search function, among these
* implemented for inter/intra + rd/non-rd + non-skip segment/skip segment.
*
* \param[in] cpi Top-level encoder structure
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during
* encoding
* \param[in] x Pointer to structure holding all the data for
* the current macroblock
* \param[in] mi_row Row coordinate of the block in a step size of
* MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step size of
* MI_SIZE
* \param[in] rd_cost Pointer to structure holding rate and distortion
* stats for the current block
* \param[in] partition Partition mode of the parent block
* \param[in] bsize Current block size
* \param[in] ctx Pointer to structure holding coding contexts and
* chosen modes for the current block
* \param[in] best_rd Upper bound of rd cost of a valid partition
*
* \remark Nothing is returned. Instead, the chosen modes and contexts necessary
* for reconstruction are stored in ctx, the rate-distortion stats are stored in
* rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be
* signalled by an INT64_MAX rd_cost->rdcost.
*/
static void pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data,
MACROBLOCK *const x, int mi_row, int mi_col,
RD_STATS *rd_cost, PARTITION_TYPE partition,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
RD_STATS best_rd) {
if (cpi->sf.part_sf.use_best_rd_for_pruning && best_rd.rdcost < 0) {
ctx->rd_stats.rdcost = INT64_MAX;
ctx->rd_stats.skip_txfm = 0;
av1_invalid_rd_stats(rd_cost);
return;
}
av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize);
if (cpi->sf.part_sf.reuse_prev_rd_results_for_part_ab &&
ctx->rd_mode_is_ready) {
assert(ctx->mic.bsize == bsize);
assert(ctx->mic.partition == partition);
rd_cost->rate = ctx->rd_stats.rate;
rd_cost->dist = ctx->rd_stats.dist;
rd_cost->rdcost = ctx->rd_stats.rdcost;
return;
}
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
int i;
// This is only needed for real time/allintra row-mt enabled multi-threaded
// encoding with cost update frequency set to COST_UPD_TILE/COST_UPD_OFF.
wait_for_top_right_sb(&cpi->mt_info.enc_row_mt, &tile_data->row_mt_sync,
&tile_data->tile_info, cm->seq_params->sb_size,
cm->seq_params->mib_size_log2, bsize, mi_row, mi_col);
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, rd_pick_sb_modes_time);
#endif
mbmi = xd->mi[0];
mbmi->bsize = bsize;
mbmi->partition = partition;
#if CONFIG_RD_DEBUG
mbmi->mi_row = mi_row;
mbmi->mi_col = mi_col;
#endif
// Sets up the tx_type_map buffer in MACROBLOCKD.
xd->tx_type_map = txfm_info->tx_type_map_;
xd->tx_type_map_stride = mi_size_wide[bsize];
for (i = 0; i < num_planes; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
p[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
ctx->skippable = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
mbmi->skip_txfm = 0;
// Reset skip mode flag.
mbmi->skip_mode = 0;
x->source_variance = av1_get_perpixel_variance_facade(
cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
// Initialize default mode evaluation params
set_mode_eval_params(cpi, x, DEFAULT_EVAL);
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi);
// Set error per bit for current rdmult
av1_set_error_per_bit(&x->errorperbit, x->rdmult);
av1_rd_cost_update(x->rdmult, &best_rd);
// If set best_rd.rdcost to INT64_MAX, the encoder will not use any previous
// rdcost information for the following mode search.
// Disabling the feature could get some coding gain, with encoder slowdown.
if (!cpi->sf.part_sf.use_best_rd_for_pruning) {
av1_invalid_rd_stats(&best_rd);
}
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (frame_is_intra_only(cm)) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_rd_pick_intra_mode_sb_time);
#endif
av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd.rdcost);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_rd_pick_intra_mode_sb_time);
#endif
} else {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_rd_pick_inter_mode_sb_time);
#endif
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col,
rd_cost, bsize, ctx, best_rd.rdcost);
} else {
av1_rd_pick_inter_mode(cpi, tile_data, x, rd_cost, bsize, ctx,
best_rd.rdcost);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_rd_pick_inter_mode_sb_time);
#endif
}
// Examine the resulting rate and for AQ mode 2 make a segment choice.
if (rd_cost->rate != INT_MAX && aq_mode == COMPLEXITY_AQ &&
bsize >= BLOCK_16X16) {
av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
}
x->rdmult = orig_rdmult;
// TODO(jingning) The rate-distortion optimization flow needs to be
// refactored to provide proper exit/return handle.
if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
ctx->rd_stats.rate = rd_cost->rate;
ctx->rd_stats.dist = rd_cost->dist;
ctx->rd_stats.rdcost = rd_cost->rdcost;
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, rd_pick_sb_modes_time);
#endif
}
static void update_stats(const AV1_COMMON *const cm, ThreadData *td) {
MACROBLOCK *x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const CurrentFrame *const current_frame = &cm->current_frame;
const BLOCK_SIZE bsize = mbmi->bsize;
FRAME_CONTEXT *fc = xd->tile_ctx;
const int seg_ref_active =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active &&
is_comp_ref_allowed(bsize)) {
const int skip_mode_ctx = av1_get_skip_mode_context(xd);
#if CONFIG_ENTROPY_STATS
td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++;
#endif
update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2);
}
if (!mbmi->skip_mode && !seg_ref_active) {
const int skip_ctx = av1_get_skip_txfm_context(xd);
#if CONFIG_ENTROPY_STATS
td->counts->skip_txfm[skip_ctx][mbmi->skip_txfm]++;
#endif
update_cdf(fc->skip_txfm_cdfs[skip_ctx], mbmi->skip_txfm, 2);
}
#if CONFIG_ENTROPY_STATS
// delta quant applies to both intra and inter
const int super_block_upper_left =
((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag &&
(bsize != cm->seq_params->sb_size || !mbmi->skip_txfm) &&
super_block_upper_left) {
const int dq = (mbmi->current_qindex - xd->current_base_qindex) /
delta_q_info->delta_q_res;
const int absdq = abs(dq);
for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) {
td->counts->delta_q[i][1]++;
}
if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++;
if (delta_q_info->delta_lf_present_flag) {
if (delta_q_info->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
delta_q_info->delta_lf_res;
const int abs_delta_lf = abs(delta_lf);
for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
td->counts->delta_lf_multi[lf_id][i][1]++;
}
if (abs_delta_lf < DELTA_LF_SMALL)
td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++;
}
} else {
const int delta_lf =
(mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
delta_q_info->delta_lf_res;
const int abs_delta_lf = abs(delta_lf);
for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
td->counts->delta_lf[i][1]++;
}
if (abs_delta_lf < DELTA_LF_SMALL)
td->counts->delta_lf[abs_delta_lf][0]++;
}
}
}
#endif
if (!is_inter_block(mbmi)) {
av1_sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi,
frame_is_intra_only(cm));
}
if (av1_allow_intrabc(cm)) {
const int is_intrabc = is_intrabc_block(mbmi);
update_cdf(fc->intrabc_cdf, is_intrabc, 2);
#if CONFIG_ENTROPY_STATS
++td->counts->intrabc[is_intrabc];
#endif // CONFIG_ENTROPY_STATS
if (is_intrabc) {
const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
const int_mv dv_ref = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv;
av1_update_mv_stats(&mbmi->mv[0].as_mv, &dv_ref.as_mv, &fc->ndvc,
MV_SUBPEL_NONE);
}
}
if (frame_is_intra_only(cm) || mbmi->skip_mode) return;
FRAME_COUNTS *const counts = td->counts;
const int inter_block = is_inter_block(mbmi);
if (!seg_ref_active) {
#if CONFIG_ENTROPY_STATS
counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++;
#endif
update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)],
inter_block, 2);
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (inter_block) {
const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
if (current_frame->reference_mode == REFERENCE_MODE_SELECT) {
if (is_comp_ref_allowed(bsize)) {
#if CONFIG_ENTROPY_STATS
counts->comp_inter[av1_get_reference_mode_context(xd)]
[has_second_ref(mbmi)]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi), 2);
}
}
if (has_second_ref(mbmi)) {
const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
? UNIDIR_COMP_REFERENCE
: BIDIR_COMP_REFERENCE;
update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type,
COMP_REFERENCE_TYPES);
#if CONFIG_ENTROPY_STATS
counts->comp_ref_type[av1_get_comp_reference_type_context(xd)]
[comp_ref_type]++;
#endif // CONFIG_ENTROPY_STATS
if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
const int bit = (ref0 == BWDREF_FRAME);
update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2);
#if CONFIG_ENTROPY_STATS
counts
->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0][bit]++;
#endif // CONFIG_ENTROPY_STATS
if (!bit) {
const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME);
update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2);
#if CONFIG_ENTROPY_STATS
counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1]
[bit1]++;
#endif // CONFIG_ENTROPY_STATS
if (bit1) {
update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd),
ref1 == GOLDEN_FRAME, 2);
#if CONFIG_ENTROPY_STATS
counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)][2]
[ref1 == GOLDEN_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
}
} else {
const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME);
update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2);
#if CONFIG_ENTROPY_STATS
counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++;
#endif // CONFIG_ENTROPY_STATS
if (!bit) {
update_cdf(av1_get_pred_cdf_comp_ref_p1(xd), ref0 == LAST2_FRAME,
2);
#if CONFIG_ENTROPY_STATS
counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1]
[ref0 == LAST2_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
} else {
update_cdf(av1_get_pred_cdf_comp_ref_p2(xd), ref0 == GOLDEN_FRAME,
2);
#if CONFIG_ENTROPY_STATS
counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2]
[ref0 == GOLDEN_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd), ref1 == ALTREF_FRAME,
2);
#if CONFIG_ENTROPY_STATS
counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0]
[ref1 == ALTREF_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
if (ref1 != ALTREF_FRAME) {
update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd),
ref1 == ALTREF2_FRAME, 2);
#if CONFIG_ENTROPY_STATS
counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1]
[ref1 == ALTREF2_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
}
} else {
const int bit = (ref0 >= BWDREF_FRAME);
update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++;
#endif // CONFIG_ENTROPY_STATS
if (bit) {
assert(ref0 <= ALTREF_FRAME);
update_cdf(av1_get_pred_cdf_single_ref_p2(xd), ref0 == ALTREF_FRAME,
2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
[ref0 == ALTREF_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
if (ref0 != ALTREF_FRAME) {
update_cdf(av1_get_pred_cdf_single_ref_p6(xd),
ref0 == ALTREF2_FRAME, 2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5]
[ref0 == ALTREF2_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
} else {
const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME);
update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++;
#endif // CONFIG_ENTROPY_STATS
if (!bit1) {
update_cdf(av1_get_pred_cdf_single_ref_p4(xd), ref0 != LAST_FRAME,
2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3]
[ref0 != LAST_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
} else {
update_cdf(av1_get_pred_cdf_single_ref_p5(xd), ref0 != LAST3_FRAME,
2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4]
[ref0 != LAST3_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
}
}
if (cm->seq_params->enable_interintra_compound &&
is_interintra_allowed(mbmi)) {
const int bsize_group = size_group_lookup[bsize];
if (mbmi->ref_frame[1] == INTRA_FRAME) {
#if CONFIG_ENTROPY_STATS
counts->interintra[bsize_group][1]++;
#endif
update_cdf(fc->interintra_cdf[bsize_group], 1, 2);
#if CONFIG_ENTROPY_STATS
counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
#endif
update_cdf(fc->interintra_mode_cdf[bsize_group],
mbmi->interintra_mode, INTERINTRA_MODES);
if (av1_is_wedge_used(bsize)) {
#if CONFIG_ENTROPY_STATS
counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
#endif
update_cdf(fc->wedge_interintra_cdf[bsize],
mbmi->use_wedge_interintra, 2);
if (mbmi->use_wedge_interintra) {
#if CONFIG_ENTROPY_STATS
counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++;
#endif
update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index,
16);
}
}
} else {
#if CONFIG_ENTROPY_STATS
counts->interintra[bsize_group][0]++;
#endif
update_cdf(fc->interintra_cdf[bsize_group], 0, 2);
}
}
const MOTION_MODE motion_allowed =
cm->features.switchable_motion_mode
? motion_mode_allowed(xd->global_motion, xd, mbmi,
cm->features.allow_warped_motion)
: SIMPLE_TRANSLATION;
if (mbmi->ref_frame[1] != INTRA_FRAME) {
if (motion_allowed == WARPED_CAUSAL) {
#if CONFIG_ENTROPY_STATS
counts->motion_mode[bsize][mbmi->motion_mode]++;
#endif
update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode,
MOTION_MODES);
} else if (motion_allowed == OBMC_CAUSAL) {
#if CONFIG_ENTROPY_STATS
counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
#endif
update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2);
}
}
if (has_second_ref(mbmi)) {
assert(current_frame->reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode) &&
mbmi->motion_mode == SIMPLE_TRANSLATION);
const int masked_compound_used = is_any_masked_compound_used(bsize) &&
cm->seq_params->enable_masked_compound;
if (masked_compound_used) {
const int comp_group_idx_ctx = get_comp_group_idx_context(xd);
#if CONFIG_ENTROPY_STATS
++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx];
#endif
update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx],
mbmi->comp_group_idx, 2);
}
if (mbmi->comp_group_idx == 0) {
const int comp_index_ctx = get_comp_index_context(cm, xd);
#if CONFIG_ENTROPY_STATS
++counts->compound_index[comp_index_ctx][mbmi->compound_idx];
#endif
update_cdf(fc->compound_index_cdf[comp_index_ctx], mbmi->compound_idx,
2);
} else {
assert(masked_compound_used);
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->compound_type[bsize][mbmi->interinter_comp.type -
COMPOUND_WEDGE];
#endif
update_cdf(fc->compound_type_cdf[bsize],
mbmi->interinter_comp.type - COMPOUND_WEDGE,
MASKED_COMPOUND_TYPES);
}
}
}
if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
#if CONFIG_ENTROPY_STATS
counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++;
#endif
update_cdf(fc->wedge_idx_cdf[bsize],
mbmi->interinter_comp.wedge_index, 16);
}
}
}
}
if (inter_block && cm->features.interp_filter == SWITCHABLE &&
av1_is_interp_needed(xd)) {
update_filter_type_cdf(xd, mbmi, cm->seq_params->enable_dual_filter);
}
if (inter_block &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
const PREDICTION_MODE mode = mbmi->mode;
const int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
if (has_second_ref(mbmi)) {
#if CONFIG_ENTROPY_STATS
++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
#endif
update_cdf(fc->inter_compound_mode_cdf[mode_ctx],
INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES);
} else {
av1_update_inter_mode_stats(fc, counts, mode, mode_ctx);
}
const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
if (new_mv) {
const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
for (int idx = 0; idx < 2; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
const uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx, 2);
#if CONFIG_ENTROPY_STATS
++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx];
#endif
if (mbmi->ref_mv_idx == idx) break;
}
}
}
if (have_nearmv_in_inter_mode(mbmi->mode)) {
const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
for (int idx = 1; idx < 3; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
const uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx - 1, 2);
#if CONFIG_ENTROPY_STATS
++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1];
#endif
if (mbmi->ref_mv_idx == idx - 1) break;
}
}
}
if (have_newmv_in_inter_mode(mbmi->mode)) {
const int allow_hp = cm->features.cur_frame_force_integer_mv
? MV_SUBPEL_NONE
: cm->features.allow_high_precision_mv;
if (new_mv) {
for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const int_mv ref_mv = av1_get_ref_mv(x, ref);
av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
allow_hp);
}
} else if (mbmi->mode == NEAREST_NEWMV || mbmi->mode == NEAR_NEWMV) {
const int ref = 1;
const int_mv ref_mv = av1_get_ref_mv(x, ref);
av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
allow_hp);
} else if (mbmi->mode == NEW_NEARESTMV || mbmi->mode == NEW_NEARMV) {
const int ref = 0;
const int_mv ref_mv = av1_get_ref_mv(x, ref);
av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
allow_hp);
}
}
}
}
/*!\brief Reconstructs an individual coding block
*
* \ingroup partition_search
* Reconstructs an individual coding block by applying the chosen modes stored
* in ctx, also updates mode counts and entropy models.
*
* \param[in] cpi Top-level encoder structure
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during encoding
* \param[in] td Pointer to thread data
* \param[in] tp Pointer to the starting token
* \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step size of
* MI_SIZE
* \param[in] dry_run A code indicating whether it is part of the final
* pass for reconstructing the superblock
* \param[in] bsize Current block size
* \param[in] partition Partition mode of the parent block
* \param[in] ctx Pointer to structure holding coding contexts and the
* chosen modes for the current block
* \param[in] rate Pointer to the total rate for the current block
*
* \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters)
* will be updated in the pixel buffers in td->mb.e_mbd. Also, the chosen modes
* will be stored in the MB_MODE_INFO buffer td->mb.e_mbd.mi[0].
*/
static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, TokenExtra **tp, int mi_row, int mi_col,
RUN_TYPE dry_run, BLOCK_SIZE bsize,
PARTITION_TYPE partition, PICK_MODE_CONTEXT *const ctx,
int *rate) {
const AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *xd = &x->e_mbd;
const int subsampling_x = cm->seq_params->subsampling_x;
const int subsampling_y = cm->seq_params->subsampling_y;
av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
const int origin_mult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
MB_MODE_INFO *mbmi = xd->mi[0];
mbmi->partition = partition;
av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run);
if (!dry_run) {
set_cb_offsets(x->mbmi_ext_frame->cb_offset, x->cb_offset[PLANE_TYPE_Y],
x->cb_offset[PLANE_TYPE_UV]);
assert(x->cb_offset[PLANE_TYPE_Y] <
(1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]));
assert(x->cb_offset[PLANE_TYPE_UV] <
((1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]) >>
(subsampling_x + subsampling_y)));
}
encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate);
if (!dry_run) {
update_cb_offsets(x, bsize, subsampling_x, subsampling_y);
if (bsize == cpi->common.seq_params->sb_size && mbmi->skip_txfm == 1 &&
cm->delta_q_info.delta_lf_present_flag) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
mbmi->delta_lf_from_base = xd->delta_lf_from_base;
}
if (has_second_ref(mbmi)) {
if (mbmi->compound_idx == 0 ||
mbmi->interinter_comp.type == COMPOUND_AVERAGE)
mbmi->comp_group_idx = 0;
else
mbmi->comp_group_idx = 1;
}
// delta quant applies to both intra and inter
const int super_block_upper_left =
((mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
((mi_col & (cm->seq_params->mib_size - 1)) == 0);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag &&
(bsize != cm->seq_params->sb_size || !mbmi->skip_txfm) &&
super_block_upper_left) {
xd->current_base_qindex = mbmi->current_qindex;
if (delta_q_info->delta_lf_present_flag) {
if (delta_q_info->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
}
} else {
xd->delta_lf_from_base = mbmi->delta_lf_from_base;
}
}
}
RD_COUNTS *rdc = &td->rd_counts;
if (mbmi->skip_mode) {
assert(!frame_is_intra_only(cm));
rdc->skip_mode_used_flag = 1;
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
assert(has_second_ref(mbmi));
rdc->compound_ref_used_flag = 1;
}
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
} else {
const int seg_ref_active =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
if (!seg_ref_active) {
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (is_inter_block(mbmi)) {
av1_collect_neighbors_ref_counts(xd);
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
if (has_second_ref(mbmi)) {
// This flag is also updated for 4x4 blocks
rdc->compound_ref_used_flag = 1;
}
}
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
}
}
}
if (tile_data->allow_update_cdf) update_stats(&cpi->common, td);
// Gather obmc and warped motion count to update the probability.
if ((cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 &&
cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX) ||
(cm->features.allow_warped_motion &&
cpi->sf.inter_sf.prune_warped_prob_thresh > 0)) {
const int inter_block = is_inter_block(mbmi);
const int seg_ref_active =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
if (!seg_ref_active && inter_block) {
const MOTION_MODE motion_allowed =
cm->features.switchable_motion_mode
? motion_mode_allowed(xd->global_motion, xd, mbmi,
cm->features.allow_warped_motion)
: SIMPLE_TRANSLATION;
if (mbmi->ref_frame[1] != INTRA_FRAME) {
if (motion_allowed >= OBMC_CAUSAL) {
td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
}
if (motion_allowed == WARPED_CAUSAL) {
td->rd_counts.warped_used[mbmi->motion_mode == WARPED_CAUSAL]++;
}
}
}
}
}
// TODO(Ravi/Remya): Move this copy function to a better logical place
// This function will copy the best mode information from block
// level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This
// frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during
// bitstream preparation.
av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, &x->mbmi_ext,
av1_ref_frame_type(xd->mi[0]->ref_frame));
x->rdmult = origin_mult;
}
/*!\brief Reconstructs a partition (may contain multiple coding blocks)
*
* \ingroup partition_search
* Reconstructs a sub-partition of the superblock by applying the chosen modes
* and partition trees stored in pc_tree.
*
* \param[in] cpi Top-level encoder structure
* \param[in] td Pointer to thread data
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during encoding
* \param[in] tp Pointer to the starting token
* \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step size of
* MI_SIZE
* \param[in] dry_run A code indicating whether it is part of the final
* pass for reconstructing the superblock
* \param[in] bsize Current block size
* \param[in] pc_tree Pointer to the PC_TREE node storing the picked
* partitions and mode info for the current block
* \param[in] rate Pointer to the total rate for the current block
*
* \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters)
* will be updated in the pixel buffers in td->mb.e_mbd.
*/
static void encode_sb(const AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp, int mi_row,
int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
PC_TREE *pc_tree, int *rate) {
assert(bsize < BLOCK_SIZES_ALL);
const AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
assert(bsize < BLOCK_SIZES_ALL);
const int hbs = mi_size_wide[bsize] / 2;
const int is_partition_root = bsize >= BLOCK_8X8;
const int ctx = is_partition_root
? partition_plane_context(xd, mi_row, mi_col, bsize)
: -1;
const PARTITION_TYPE partition = pc_tree->partitioning;
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
#if !CONFIG_REALTIME_ONLY
int quarter_step = mi_size_wide[bsize] / 4;
int i;
BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
#endif
if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
if (subsize == BLOCK_INVALID) return;
if (!dry_run && ctx >= 0) {
const int has_rows = (mi_row + hbs) < mi_params->mi_rows;
const int has_cols = (mi_col + hbs) < mi_params->mi_cols;
if (has_rows && has_cols) {
#if CONFIG_ENTROPY_STATS
td->counts->partition[ctx][partition]++;
#endif
if (tile_data->allow_update_cdf) {
FRAME_CONTEXT *fc = xd->tile_ctx;
update_cdf(fc->partition_cdf[ctx], partition,
partition_cdf_length(bsize));
}
}
}
switch (partition) {
case PARTITION_NONE:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, pc_tree->none, rate);
break;
case PARTITION_VERT:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, pc_tree->vertical[0], rate);
if (mi_col + hbs < mi_params->mi_cols) {
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
partition, pc_tree->vertical[1], rate);
}
break;
case PARTITION_HORZ:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, pc_tree->horizontal[0], rate);
if (mi_row + hbs < mi_params->mi_rows) {
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
partition, pc_tree->horizontal[1], rate);
}
break;
case PARTITION_SPLIT:
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize,
pc_tree->split[0], rate);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize,
pc_tree->split[1], rate);
encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize,
pc_tree->split[2], rate);
encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run,
subsize, pc_tree->split[3], rate);
break;
#if !CONFIG_REALTIME_ONLY
case PARTITION_HORZ_A:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
partition, pc_tree->horizontala[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
partition, pc_tree->horizontala[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
partition, pc_tree->horizontala[2], rate);
break;
case PARTITION_HORZ_B:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, pc_tree->horizontalb[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
partition, pc_tree->horizontalb[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
bsize2, partition, pc_tree->horizontalb[2], rate);
break;
case PARTITION_VERT_A:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
partition, pc_tree->verticala[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
partition, pc_tree->verticala[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
partition, pc_tree->verticala[2], rate);
break;
case PARTITION_VERT_B:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, pc_tree->verticalb[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
partition, pc_tree->verticalb[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
bsize2, partition, pc_tree->verticalb[2], rate);
break;
case PARTITION_HORZ_4:
for (i = 0; i < SUB_PARTITIONS_PART4; ++i) {
int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize,
partition, pc_tree->horizontal4[i], rate);
}
break;
case PARTITION_VERT_4:
for (i = 0; i < SUB_PARTITIONS_PART4; ++i) {
int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize,
partition, pc_tree->vertical4[i], rate);
}
break;
#endif
default: assert(0 && "Invalid partition type."); break;
}
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}
static inline int is_adjust_var_based_part_enabled(
AV1_COMMON *const cm, const PARTITION_SPEED_FEATURES *const part_sf,
BLOCK_SIZE bsize) {
if (part_sf->partition_search_type != VAR_BASED_PARTITION) return 0;
if (part_sf->adjust_var_based_rd_partitioning == 0 ||
part_sf->adjust_var_based_rd_partitioning > 2)
return 0;
if (bsize <= BLOCK_32X32) return 1;
if (part_sf->adjust_var_based_rd_partitioning == 2) {
const int is_larger_qindex = cm->quant_params.base_qindex > 190;
const int is_360p_or_larger = AOMMIN(cm->width, cm->height) >= 360;
return is_360p_or_larger && is_larger_qindex && bsize == BLOCK_64X64;
}
return 0;
}
/*!\brief AV1 block partition search (partition estimation and partial search).
*
* \ingroup partition_search
* Encode the block by applying pre-calculated partition patterns that are
* represented by coding block sizes stored in the mbmi array. Minor partition
* adjustments are tested and applied if they lead to lower rd costs. The
* partition types are limited to a basic set: none, horz, vert, and split.
*
* \param[in] cpi Top-level encoder structure
* \param[in] td Pointer to thread data
* \param[in] tile_data Pointer to struct holding adaptive
data/contexts/models for the tile during encoding
* \param[in] mib Array representing MB_MODE_INFO pointers for mi
blocks starting from the first pixel of the current
block
* \param[in] tp Pointer to the starting token
* \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step size of
MI_SIZE
* \param[in] bsize Current block size
* \param[in] rate Pointer to the final rate for encoding the current
block
* \param[in] dist Pointer to the final distortion of the current block
* \param[in] do_recon Whether the reconstruction function needs to be run,
either for finalizing a superblock or providing
reference for future sub-partitions
* \param[in] pc_tree Pointer to the PC_TREE node holding the picked
partitions and mode info for the current block
*
* \remark Nothing is returned. The pc_tree struct is modified to store the
* picked partition and modes. The rate and dist are also updated with those
* corresponding to the best partition found.
*/
void av1_rd_use_partition(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data,
MB_MODE_INFO **mib, TokenExtra **tp, int mi_row,
int mi_col, BLOCK_SIZE bsize, int *rate,
int64_t *dist, int do_recon, PC_TREE *pc_tree) {
AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int num_planes = av1_num_planes(cm);
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const ModeCosts *mode_costs = &x->mode_costs;
const int bs = mi_size_wide[bsize];
const int hbs = bs / 2;
const int pl = (bsize >= BLOCK_8X8)
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
const PARTITION_TYPE partition =
(bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize)
: PARTITION_NONE;
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
RD_STATS last_part_rdc, none_rdc, chosen_rdc, invalid_rdc;
BLOCK_SIZE bs_type = mib[0]->bsize;
int use_partition_none = 0;
x->try_merge_partition = 0;
if (pc_tree->none == NULL) {
pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
if (!pc_tree->none)
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
}
PICK_MODE_CONTEXT *ctx_none = pc_tree->none;
if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
// In rt mode, currently the min partition size is BLOCK_8X8.
assert(bsize >= cpi->sf.part_sf.default_min_partition_size);
av1_invalid_rd_stats(&last_part_rdc);
av1_invalid_rd_stats(&none_rdc);
av1_invalid_rd_stats(&chosen_rdc);
av1_invalid_rd_stats(&invalid_rdc);
pc_tree->partitioning = partition;
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
if (bsize == BLOCK_16X16 && cpi->vaq_refresh) {
av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
x->mb_energy = av1_log_block_var(cpi, x, bsize);
}
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
if (partition != PARTITION_NONE &&
is_adjust_var_based_part_enabled(cm, &cpi->sf.part_sf, bsize) &&
(mi_row + hbs < mi_params->mi_rows &&
mi_col + hbs < mi_params->mi_cols)) {
assert(bsize > cpi->sf.part_sf.default_min_partition_size);
mib[0]->bsize = bsize;
pc_tree->partitioning = PARTITION_NONE;
x->try_merge_partition = 1;
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, PARTITION_NONE,
bsize, ctx_none, invalid_rdc);
if (none_rdc.rate < INT_MAX) {
none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
}
// Try to skip split partition evaluation based on none partition
// characteristics.
if (none_rdc.rate < INT_MAX && none_rdc.skip_txfm == 1) {
use_partition_none = 1;
}
av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
mib[0]->bsize = bs_type;
pc_tree->partitioning = partition;
}
for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
if (!pc_tree->split[i])
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PC_TREE");
pc_tree->split[i]->index = i;
}
switch (partition) {
case PARTITION_NONE:
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_NONE, bsize, ctx_none, invalid_rdc);
break;
case PARTITION_HORZ:
if (use_partition_none) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
pc_tree->horizontal[i] =
av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
if (!pc_tree->horizontal[i])
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
}
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_HORZ, subsize, pc_tree->horizontal[0],
invalid_rdc);
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_row + hbs < mi_params->mi_rows) {
RD_STATS tmp_rdc;
const PICK_MODE_CONTEXT *const ctx_h = pc_tree->horizontal[0];
av1_init_rd_stats(&tmp_rdc);
av1_update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
NULL);
pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc,
PARTITION_HORZ, subsize, pc_tree->horizontal[1],
invalid_rdc);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_VERT:
if (use_partition_none) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
pc_tree->vertical[i] =
av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
if (!pc_tree->vertical[i])
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
}
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_VERT, subsize, pc_tree->vertical[0], invalid_rdc);
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_col + hbs < mi_params->mi_cols) {
RD_STATS tmp_rdc;
const PICK_MODE_CONTEXT *const ctx_v = pc_tree->vertical[0];
av1_init_rd_stats(&tmp_rdc);
av1_update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
NULL);
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc,
PARTITION_VERT, subsize,
pc_tree->vertical[bsize > BLOCK_8X8], invalid_rdc);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_SPLIT:
if (use_partition_none) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate = 0;
last_part_rdc.dist = 0;
last_part_rdc.rdcost = 0;
for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
int jj = i >> 1, ii = i & 0x01;
RD_STATS tmp_rdc;
if ((mi_row + y_idx >= mi_params->mi_rows) ||
(mi_col + x_idx >= mi_params->mi_cols))
continue;
av1_init_rd_stats(&tmp_rdc);
av1_rd_use_partition(
cpi, td, tile_data,
mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp,
mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate,
&tmp_rdc.dist, i != (SUB_PARTITIONS_SPLIT - 1), pc_tree->split[i]);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
}
break;
case PARTITION_VERT_A:
case PARTITION_VERT_B:
case PARTITION_HORZ_A:
case PARTITION_HORZ_B:
case PARTITION_HORZ_4:
case PARTITION_VERT_4:
assert(0 && "Cannot handle extended partition types");
default: assert(0); break;
}
if (last_part_rdc.rate < INT_MAX) {
last_part_rdc.rate += mode_costs->partition_cost[pl][partition];
last_part_rdc.rdcost =
RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist);
}
if ((cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION &&
cpi->sf.part_sf.adjust_var_based_rd_partitioning > 2) &&
partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
(mi_row + bs < mi_params->mi_rows ||
mi_row + hbs == mi_params->mi_rows) &&
(mi_col + bs < mi_params->mi_cols ||
mi_col + hbs == mi_params->mi_cols)) {
BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
chosen_rdc.rate = 0;
chosen_rdc.dist = 0;
av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
pc_tree->partitioning = PARTITION_SPLIT;
// Split partition.
for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
RD_STATS tmp_rdc;
if ((mi_row + y_idx >= mi_params->mi_rows) ||
(mi_col + x_idx >= mi_params->mi_cols))
continue;
av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
pc_tree->split[i]->partitioning = PARTITION_NONE;
if (pc_tree->split[i]->none == NULL)
pc_tree->split[i]->none =
av1_alloc_pmc(cpi, split_subsize, &td->shared_coeff_buf);
if (!pc_tree->split[i]->none)
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &tmp_rdc,
PARTITION_SPLIT, split_subsize, pc_tree->split[i]->none,
invalid_rdc);
av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&chosen_rdc);
break;
}
chosen_rdc.rate += tmp_rdc.rate;
chosen_rdc.dist += tmp_rdc.dist;
if (i != SUB_PARTITIONS_SPLIT - 1)
encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx,
OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL);
chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
}
if (chosen_rdc.rate < INT_MAX) {
chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT];
chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist);
}
}
// If last_part is better set the partitioning to that.
if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
mib[0]->bsize = bs_type;
if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
chosen_rdc = last_part_rdc;
}
// If none was better set the partitioning to that.
if (none_rdc.rdcost < INT64_MAX &&
none_rdc.rdcost - (none_rdc.rdcost >> 9) < chosen_rdc.rdcost) {
mib[0]->bsize = bsize;
if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
chosen_rdc = none_rdc;
}
av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if (bsize == cm->seq_params->sb_size)
assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, encode_sb_time);
#endif
if (do_recon) {
if (bsize == cm->seq_params->sb_size) {
// NOTE: To get estimate for rate due to the tokens, use:
// int rate_coeffs = 0;
// encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
// bsize, pc_tree, &rate_coeffs);
set_cb_offsets(x->cb_offset, 0, 0);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
pc_tree, NULL);
} else {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, encode_sb_time);
#endif
*rate = chosen_rdc.rate;
*dist = chosen_rdc.dist;
x->rdmult = orig_rdmult;
}
static void encode_b_nonrd(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, TokenExtra **tp, int mi_row,
int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
PARTITION_TYPE partition,
PICK_MODE_CONTEXT *const ctx, int *rate) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing((AV1_COMP *)cpi, encode_b_nonrd_time);
#endif
const AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *xd = &x->e_mbd;
av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
const int origin_mult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
MB_MODE_INFO *mbmi = xd->mi[0];
mbmi->partition = partition;
av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run);
const int subsampling_x = cpi->common.seq_params->subsampling_x;
const int subsampling_y = cpi->common.seq_params->subsampling_y;
if (!dry_run) {
set_cb_offsets(x->mbmi_ext_frame->cb_offset, x->cb_offset[PLANE_TYPE_Y],
x->cb_offset[PLANE_TYPE_UV]);
assert(x->cb_offset[PLANE_TYPE_Y] <
(1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]));
assert(x->cb_offset[PLANE_TYPE_UV] <
((1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]) >>
(subsampling_x + subsampling_y)));
}
encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate);
if (!dry_run) {
update_cb_offsets(x, bsize, subsampling_x, subsampling_y);
if (has_second_ref(mbmi)) {
if (mbmi->compound_idx == 0 ||
mbmi->interinter_comp.type == COMPOUND_AVERAGE)
mbmi->comp_group_idx = 0;
else
mbmi->comp_group_idx = 1;
mbmi->compound_idx = 1;
}
RD_COUNTS *const rdc = &td->rd_counts;
if (mbmi->skip_mode) {
assert(!frame_is_intra_only(cm));
rdc->skip_mode_used_flag = 1;
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT &&
has_second_ref(mbmi)) {
rdc->compound_ref_used_flag = 1;
}
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
} else {
const int seg_ref_active =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
if (!seg_ref_active) {
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (is_inter_block(mbmi)) {
av1_collect_neighbors_ref_counts(xd);
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT &&
has_second_ref(mbmi)) {
// This flag is also updated for 4x4 blocks
rdc->compound_ref_used_flag = 1;
}
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
}
}
}
if (cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_SELECTIVELY &&
(mbmi->mode == NEWMV || mbmi->mode < INTRA_MODE_END)) {
int32_t blocks = mi_size_high[bsize] * mi_size_wide[bsize];
rdc->newmv_or_intra_blocks += blocks;
}
if (tile_data->allow_update_cdf) update_stats(&cpi->common, td);
}
if ((cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ ||
cpi->active_map.enabled) &&
mbmi->skip_txfm && !cpi->rc.rtc_external_ratectrl && cm->seg.enabled)
av1_cyclic_reset_segment_skip(cpi, x, mi_row, mi_col, bsize, dry_run);
// TODO(Ravi/Remya): Move this copy function to a better logical place
// This function will copy the best mode information from block
// level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This
// frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during
// bitstream preparation.
av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, &x->mbmi_ext,
av1_ref_frame_type(xd->mi[0]->ref_frame));
x->rdmult = origin_mult;
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing((AV1_COMP *)cpi, encode_b_nonrd_time);
#endif
}
static int get_force_zeromv_skip_flag_for_blk(const AV1_COMP *cpi,
const MACROBLOCK *x,
BLOCK_SIZE bsize) {
// Force zero MV skip based on SB level decision
if (x->force_zeromv_skip_for_sb < 2) return x->force_zeromv_skip_for_sb;
// For blocks of size equal to superblock size, the decision would have been
// already done at superblock level. Hence zeromv-skip decision is skipped.
const AV1_COMMON *const cm = &cpi->common;
if (bsize == cm->seq_params->sb_size) return 0;
const int num_planes = av1_num_planes(cm);
const MACROBLOCKD *const xd = &x->e_mbd;
const unsigned int thresh_exit_part_y =
cpi->zeromv_skip_thresh_exit_part[bsize];
const unsigned int thresh_exit_part_uv =
CALC_CHROMA_THRESH_FOR_ZEROMV_SKIP(thresh_exit_part_y);
const unsigned int thresh_exit_part[MAX_MB_PLANE] = { thresh_exit_part_y,
thresh_exit_part_uv,
thresh_exit_part_uv };
const YV12_BUFFER_CONFIG *const yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);
const struct scale_factors *const sf =
get_ref_scale_factors_const(cm, LAST_FRAME);
struct buf_2d yv12_mb[MAX_MB_PLANE];
av1_setup_pred_block(xd, yv12_mb, yv12, sf, sf, num_planes);
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bs =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
const unsigned int plane_sad = cpi->ppi->fn_ptr[bs].sdf(
p->src.buf, p->src.stride, yv12_mb[plane].buf, yv12_mb[plane].stride);
assert(plane < MAX_MB_PLANE);
if (plane_sad >= thresh_exit_part[plane]) return 0;
}
return 1;
}
/*!\brief Top level function to pick block mode for non-RD optimized case
*
* \ingroup partition_search
* \callgraph
* \callergraph
* Searches prediction modes, transform, and coefficient coding modes for an
* individual coding block. This function is the top-level function that is
* used for non-RD optimized mode search (controlled by
* \c cpi->sf.rt_sf.use_nonrd_pick_mode). Depending on frame type it calls
* inter/skip/hybrid-intra mode search functions
*
* \param[in] cpi Top-level encoder structure
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during
* encoding
* \param[in] x Pointer to structure holding all the data for
* the current macroblock
* \param[in] mi_row Row coordinate of the block in a step size of
* MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step size of
* MI_SIZE
* \param[in] rd_cost Pointer to structure holding rate and distortion
* stats for the current block
* \param[in] bsize Current block size
* \param[in] ctx Pointer to structure holding coding contexts and
* chosen modes for the current block
*
* \remark Nothing is returned. Instead, the chosen modes and contexts necessary
* for reconstruction are stored in ctx, the rate-distortion stats are stored in
* rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be
* signalled by an INT64_MAX rd_cost->rdcost.
*/
static void pick_sb_modes_nonrd(AV1_COMP *const cpi, TileDataEnc *tile_data,
MACROBLOCK *const x, int mi_row, int mi_col,
RD_STATS *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
// For nonrd mode, av1_set_offsets is already called at the superblock level
// in encode_nonrd_sb when we determine the partitioning.
if (bsize != cpi->common.seq_params->sb_size ||
cpi->sf.rt_sf.nonrd_check_partition_split == 1) {
av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize);
}
assert(x->last_set_offsets_loc.mi_row == mi_row &&
x->last_set_offsets_loc.mi_col == mi_col &&
x->last_set_offsets_loc.bsize == bsize);
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
int i;
const int seg_skip =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
// This is only needed for real time/allintra row-mt enabled multi-threaded
// encoding with cost update frequency set to COST_UPD_TILE/COST_UPD_OFF.
wait_for_top_right_sb(&cpi->mt_info.enc_row_mt, &tile_data->row_mt_sync,
&tile_data->tile_info, cm->seq_params->sb_size,
cm->seq_params->mib_size_log2, bsize, mi_row, mi_col);
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, pick_sb_modes_nonrd_time);
#endif
// Sets up the tx_type_map buffer in MACROBLOCKD.
xd->tx_type_map = txfm_info->tx_type_map_;
xd->tx_type_map_stride = mi_size_wide[bsize];
for (i = 0; i < num_planes; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
p[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
if (!seg_skip) {
x->force_zeromv_skip_for_blk =
get_force_zeromv_skip_flag_for_blk(cpi, x, bsize);
// Source variance may be already compute at superblock level, so no need
// to recompute, unless bsize < sb_size or source_variance is not yet set.
if (!x->force_zeromv_skip_for_blk &&
(x->source_variance == UINT_MAX || bsize < cm->seq_params->sb_size))
x->source_variance = av1_get_perpixel_variance_facade(
cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
}
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi);
// Set error per bit for current rdmult
av1_set_error_per_bit(&x->errorperbit, x->rdmult);
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (frame_is_intra_only(cm)) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, hybrid_intra_mode_search_time);
#endif
hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, hybrid_intra_mode_search_time);
#endif
} else {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, nonrd_pick_inter_mode_sb_time);
#endif
if (seg_skip) {
x->force_zeromv_skip_for_blk = 1;
// TODO(marpan): Consider adding a function for nonrd:
// av1_nonrd_pick_inter_mode_sb_seg_skip(), instead of setting
// x->force_zeromv_skip flag and entering av1_nonrd_pick_inter_mode_sb().
}
av1_nonrd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, nonrd_pick_inter_mode_sb_time);
#endif
}
if (cpi->sf.rt_sf.skip_cdef_sb) {
// cdef_strength is initialized to 1 which means skip_cdef, and is updated
// here. Check to see is skipping cdef is allowed. Never skip on slide/scene
// change, near a key frame, or when color sensitivity is set. Always allow
// cdef_skip for seg_skip = 1.
const int allow_cdef_skipping =
seg_skip ||
(cpi->rc.frames_since_key > 10 && !cpi->rc.high_source_sad &&
!(x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] ||
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]));
// Find the corresponding 64x64 block. It'll be the 128x128 block if that's
// the block size.
const int mi_row_sb = mi_row - mi_row % MI_SIZE_64X64;
const int mi_col_sb = mi_col - mi_col % MI_SIZE_64X64;
MB_MODE_INFO **mi_sb =
cm->mi_params.mi_grid_base +
get_mi_grid_idx(&cm->mi_params, mi_row_sb, mi_col_sb);
const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
unsigned int thresh_spatial_var =
(cpi->oxcf.speed >= 11 && !is_720p_or_larger &&
cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN)
? 400
: UINT_MAX;
// For skip_cdef_sb = 1: do not skip if allow_cdef_skipping is false or
// intra or new mv is picked, with possible conidition on spatial variance.
// For skip_cdef_sb >= 2: more aggressive mode to always skip unless
// allow_cdef_skipping is false and source_variance is non-zero.
if (cpi->sf.rt_sf.skip_cdef_sb >= 2) {
mi_sb[0]->cdef_strength =
mi_sb[0]->cdef_strength &&
(allow_cdef_skipping || x->source_variance == 0);
} else {
mi_sb[0]->cdef_strength =
mi_sb[0]->cdef_strength && allow_cdef_skipping &&
!(x->source_variance < thresh_spatial_var &&
(mbmi->mode < INTRA_MODES || mbmi->mode == NEWMV));
}
// Store in the pickmode context.
ctx->mic.cdef_strength = mi_sb[0]->cdef_strength;
}
x->rdmult = orig_rdmult;
ctx->rd_stats.rate = rd_cost->rate;
ctx->rd_stats.dist = rd_cost->dist;
ctx->rd_stats.rdcost = rd_cost->rdcost;
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, pick_sb_modes_nonrd_time);
#endif
}
static int try_split_partition(AV1_COMP *const cpi, ThreadData *const td,
TileDataEnc *const tile_data,
TileInfo *const tile_info, TokenExtra **tp,
MACROBLOCK *const x, MACROBLOCKD *const xd,
const CommonModeInfoParams *const mi_params,
const int mi_row, const int mi_col,
const BLOCK_SIZE bsize, const int pl,
PC_TREE *pc_tree) {
AV1_COMMON *const cm = &cpi->common;
const ModeCosts *mode_costs = &x->mode_costs;
const int hbs = mi_size_wide[bsize] / 2;
if (mi_row + mi_size_high[bsize] >= mi_params->mi_rows ||
mi_col + mi_size_wide[bsize] >= mi_params->mi_cols)
return 0;
if (bsize <= BLOCK_8X8 || frame_is_intra_only(cm)) return 0;
if (x->content_state_sb.source_sad_nonrd <= kLowSad) return 0;
// Do not try split partition when the source sad is small, or
// the prediction residual is small.
const YV12_BUFFER_CONFIG *const yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);
const struct scale_factors *const sf =
get_ref_scale_factors_const(cm, LAST_FRAME);
const int num_planes = av1_num_planes(cm);
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, sf, num_planes);
int block_sad = 0;
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bs =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
const unsigned int plane_sad = cpi->ppi->fn_ptr[bs].sdf(
p->src.buf, p->src.stride, pd->pre[0].buf, pd->pre[0].stride);
block_sad += plane_sad;
}
const int blk_pix = block_size_wide[bsize] * block_size_high[bsize];
const int block_avg_sad = block_sad / blk_pix;
// TODO(chengchen): find a proper threshold. It might change according to
// q as well.
const int threshold = 25;
if (block_avg_sad < threshold) return 0;
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
RD_STATS split_rdc, none_rdc;
av1_invalid_rd_stats(&split_rdc);
av1_invalid_rd_stats(&none_rdc);
av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
// Calculate rdcost for none partition
pc_tree->partitioning = PARTITION_NONE;
av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
if (!pc_tree->none) {
pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
if (!pc_tree->none)
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
} else {
av1_reset_pmc(pc_tree->none);
}
pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize,
pc_tree->none);
none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
// Calculate rdcost for split partition
pc_tree->partitioning = PARTITION_SPLIT;
const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
av1_init_rd_stats(&split_rdc);
split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT];
if (subsize >= BLOCK_8X8) {
split_rdc.rate += (mode_costs->partition_cost[pl][PARTITION_NONE] * 4);
}
for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
if (!pc_tree->split[i]) {
pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
if (!pc_tree->split[i])
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PC_TREE");
}
pc_tree->split[i]->index = i;
}
for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
RD_STATS block_rdc;
av1_invalid_rd_stats(&block_rdc);
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
if ((mi_row + y_idx >= mi_params->mi_rows) ||
(mi_col + x_idx >= mi_params->mi_cols))
continue;
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx;
xd->left_txfm_context =
xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK);
if (!pc_tree->split[i]->none) {
pc_tree->split[i]->none =
av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
if (!pc_tree->split[i]->none)
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
} else {
av1_reset_pmc(pc_tree->split[i]->none);
}
pc_tree->split[i]->partitioning = PARTITION_NONE;
pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
&block_rdc, subsize, pc_tree->split[i]->none);
split_rdc.rate += block_rdc.rate;
split_rdc.dist += block_rdc.dist;
av1_rd_cost_update(x->rdmult, &split_rdc);
if (none_rdc.rdcost < split_rdc.rdcost) break;
if (i != SUB_PARTITIONS_SPLIT - 1)
encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 1,
subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL);
}
av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist);
const int split = split_rdc.rdcost < none_rdc.rdcost;
return split;
}
// Returns if SPLIT partitions should be evaluated
static bool calc_do_split_flag(const AV1_COMP *cpi, const MACROBLOCK *x,
const PC_TREE *pc_tree, const RD_STATS *none_rdc,
const CommonModeInfoParams *mi_params,
int mi_row, int mi_col, int hbs,
BLOCK_SIZE bsize, PARTITION_TYPE partition) {
const AV1_COMMON *const cm = &cpi->common;
const int is_larger_qindex = cm->quant_params.base_qindex > 100;
const MACROBLOCKD *const xd = &x->e_mbd;
bool do_split =
(cpi->sf.rt_sf.nonrd_check_partition_merge_mode == 3)
? (bsize <= BLOCK_32X32 || (is_larger_qindex && bsize <= BLOCK_64X64))
: true;
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN ||
cpi->sf.rt_sf.nonrd_check_partition_merge_mode < 2 ||
cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) ||
!none_rdc->skip_txfm)
return do_split;
const int use_model_yrd_large = get_model_rd_flag(cpi, xd, bsize);
// When model based skip is not used (i.e.,use_model_yrd_large = 0), skip_txfm
// would have been populated based on Hadamard transform and skip_txfm flag is
// more reliable. Hence SPLIT evaluation is disabled at all quantizers for 8x8
// and 16x16 blocks.
// When model based skip is used (i.e.,use_model_yrd_large = 1), skip_txfm may
// not be reliable. Hence SPLIT evaluation is disabled only at lower
// quantizers for blocks >= 32x32.
if ((!use_model_yrd_large) || (!is_larger_qindex)) return false;
// Use residual statistics to decide if SPLIT partition should be evaluated
// for 32x32 blocks. The pruning logic is avoided for larger block size to
// avoid the visual artifacts
if (pc_tree->none->mic.mode == NEWMV && bsize == BLOCK_32X32 && do_split) {
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
assert(subsize < BLOCK_SIZES_ALL);
double min_per_pixel_error = DBL_MAX;
double max_per_pixel_error = 0.;
int i;
for (i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
const int x_idx = (i & 1) * hbs;
const int y_idx = (i >> 1) * hbs;
if ((mi_row + y_idx >= mi_params->mi_rows) ||
(mi_col + x_idx >= mi_params->mi_cols)) {
break;
}
// Populate the appropriate buffer pointers.
// Pass scale factors as NULL as the base pointer of the block would have
// been calculated appropriately.
struct buf_2d src_split_buf_2d, pred_split_buf_2d;
const struct buf_2d *src_none_buf_2d = &x->plane[AOM_PLANE_Y].src;
setup_pred_plane(&src_split_buf_2d, subsize, src_none_buf_2d->buf,
src_none_buf_2d->width, src_none_buf_2d->height,
src_none_buf_2d->stride, y_idx, x_idx, NULL, 0, 0);
const struct buf_2d *pred_none_buf_2d = &xd->plane[AOM_PLANE_Y].dst;
setup_pred_plane(&pred_split_buf_2d, subsize, pred_none_buf_2d->buf,
pred_none_buf_2d->width, pred_none_buf_2d->height,
pred_none_buf_2d->stride, y_idx, x_idx, NULL, 0, 0);
unsigned int curr_uint_mse;
const unsigned int curr_uint_var = cpi->ppi->fn_ptr[subsize].vf(
src_split_buf_2d.buf, src_split_buf_2d.stride, pred_split_buf_2d.buf,
pred_split_buf_2d.stride, &curr_uint_mse);
const double curr_per_pixel_error =
sqrt((double)curr_uint_var / block_size_wide[subsize] /
block_size_high[subsize]);
if (curr_per_pixel_error < min_per_pixel_error)
min_per_pixel_error = curr_per_pixel_error;
if (curr_per_pixel_error > max_per_pixel_error)
max_per_pixel_error = curr_per_pixel_error;
}
// Prune based on residual statistics only if all the sub-partitions are
// valid.
if (i == SUB_PARTITIONS_SPLIT) {
if (max_per_pixel_error - min_per_pixel_error <= 1.5) do_split = false;
}
}
return do_split;
}
static void try_merge(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, MB_MODE_INFO **mib,
TokenExtra **tp, const int mi_row, const int mi_col,
const BLOCK_SIZE bsize, PC_TREE *const pc_tree,
const PARTITION_TYPE partition, const BLOCK_SIZE subsize,
const int pl) {
AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const ModeCosts *mode_costs = &x->mode_costs;
const int num_planes = av1_num_planes(cm);
// Only square blocks from 8x8 to 128x128 are supported
assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128);
const int bs = mi_size_wide[bsize];
const int hbs = bs / 2;
bool do_split = false;
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
RD_STATS split_rdc, none_rdc;
av1_invalid_rd_stats(&split_rdc);
av1_invalid_rd_stats(&none_rdc);
av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
pc_tree->partitioning = PARTITION_NONE;
if (!pc_tree->none) {
pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
if (!pc_tree->none)
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
} else {
av1_reset_pmc(pc_tree->none);
}
pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize,
pc_tree->none);
none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode < 2 ||
none_rdc.skip_txfm != 1 || pc_tree->none->mic.mode == NEWMV) {
do_split = calc_do_split_flag(cpi, x, pc_tree, &none_rdc, mi_params, mi_row,
mi_col, hbs, bsize, partition);
if (do_split) {
av1_init_rd_stats(&split_rdc);
split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT];
for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
RD_STATS block_rdc;
av1_invalid_rd_stats(&block_rdc);
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
if ((mi_row + y_idx >= mi_params->mi_rows) ||
(mi_col + x_idx >= mi_params->mi_cols))
continue;
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx;
xd->left_txfm_context =
xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK);
if (!pc_tree->split[i]->none) {
pc_tree->split[i]->none =
av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
if (!pc_tree->split[i]->none)
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
} else {
av1_reset_pmc(pc_tree->split[i]->none);
}
pc_tree->split[i]->partitioning = PARTITION_NONE;
pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
&block_rdc, subsize, pc_tree->split[i]->none);
// TODO(yunqingwang): The rate here did not include the cost of
// signaling PARTITION_NONE token in the sub-blocks.
split_rdc.rate += block_rdc.rate;
split_rdc.dist += block_rdc.dist;
av1_rd_cost_update(x->rdmult, &split_rdc);
if (none_rdc.rdcost < split_rdc.rdcost) {
break;
}
if (i != SUB_PARTITIONS_SPLIT - 1)
encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx,
1, subsize, PARTITION_NONE, pc_tree->split[i]->none,
NULL);
}
av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist);
}
}
if (none_rdc.rdcost < split_rdc.rdcost) {
/* Predicted samples can not be reused for PARTITION_NONE since same
* buffer is being used to store the reconstructed samples of
* PARTITION_SPLIT block. */
if (do_split) x->reuse_inter_pred = false;
mib[0]->bsize = bsize;
pc_tree->partitioning = PARTITION_NONE;
encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition,
pc_tree->none, NULL);
} else {
mib[0]->bsize = subsize;
pc_tree->partitioning = PARTITION_SPLIT;
/* Predicted samples can not be reused for PARTITION_SPLIT since same
* buffer is being used to write the reconstructed samples. */
// TODO(Cherma): Store and reuse predicted samples generated by
// encode_b_nonrd() in DRY_RUN_NORMAL mode.
x->reuse_inter_pred = false;
for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
if ((mi_row + y_idx >= mi_params->mi_rows) ||
(mi_col + x_idx >= mi_params->mi_cols))
continue;
// Note: We don't reset pc_tree->split[i]->none here because it
// could contain results from the additional check. Instead, it is
// reset before we enter the nonrd_check_partition_merge_mode
// condition.
if (!pc_tree->split[i]->none) {
pc_tree->split[i]->none =
av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
if (!pc_tree->split[i]->none)
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
}
encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 0,
subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL);
}
}
}
// Evaluate if the sub-partitions can be merged directly into a large partition
// without calculating the RD cost.
static void direct_partition_merging(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, MB_MODE_INFO **mib,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bs = mi_size_wide[bsize];
const int hbs = bs / 2;
const PARTITION_TYPE partition =
(bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize)
: PARTITION_NONE;
BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
MB_MODE_INFO **b0 = mib;
MB_MODE_INFO **b1 = mib + hbs;
MB_MODE_INFO **b2 = mib + hbs * mi_params->mi_stride;
MB_MODE_INFO **b3 = mib + hbs * mi_params->mi_stride + hbs;
// Check if the following conditions are met. This can be updated
// later with more support added.
const int further_split = b0[0]->bsize < subsize || b1[0]->bsize < subsize ||
b2[0]->bsize < subsize || b3[0]->bsize < subsize;
if (further_split) return;
const int no_skip = !b0[0]->skip_txfm || !b1[0]->skip_txfm ||
!b2[0]->skip_txfm || !b3[0]->skip_txfm;
if (no_skip) return;
const int compound = (b0[0]->ref_frame[1] != b1[0]->ref_frame[1] ||
b0[0]->ref_frame[1] != b2[0]->ref_frame[1] ||
b0[0]->ref_frame[1] != b3[0]->ref_frame[1] ||
b0[0]->ref_frame[1] > NONE_FRAME);
if (compound) return;
// Intra modes aren't considered here.
const int different_ref = (b0[0]->ref_frame[0] != b1[0]->ref_frame[0] ||
b0[0]->ref_frame[0] != b2[0]->ref_frame[0] ||
b0[0]->ref_frame[0] != b3[0]->ref_frame[0] ||
b0[0]->ref_frame[0] <= INTRA_FRAME);
if (different_ref) return;
const int different_mode =
(b0[0]->mode != b1[0]->mode || b0[0]->mode != b2[0]->mode ||
b0[0]->mode != b3[0]->mode);
if (different_mode) return;
const int unsupported_mode =
(b0[0]->mode != NEARESTMV && b0[0]->mode != GLOBALMV);
if (unsupported_mode) return;
const int different_mv = (b0[0]->mv[0].as_int != b1[0]->mv[0].as_int ||
b0[0]->mv[0].as_int != b2[0]->mv[0].as_int ||
b0[0]->mv[0].as_int != b3[0]->mv[0].as_int);
if (different_mv) return;
const int unsupported_motion_mode =
(b0[0]->motion_mode != b1[0]->motion_mode ||
b0[0]->motion_mode != b2[0]->motion_mode ||
b0[0]->motion_mode != b3[0]->motion_mode ||
b0[0]->motion_mode != SIMPLE_TRANSLATION);
if (unsupported_motion_mode) return;
const int diffent_filter =
(b0[0]->interp_filters.as_int != b1[0]->interp_filters.as_int ||
b0[0]->interp_filters.as_int != b2[0]->interp_filters.as_int ||
b0[0]->interp_filters.as_int != b3[0]->interp_filters.as_int);
if (diffent_filter) return;
const int different_seg = (b0[0]->segment_id != b1[0]->segment_id ||
b0[0]->segment_id != b2[0]->segment_id ||
b0[0]->segment_id != b3[0]->segment_id);
if (different_seg) return;
// Evaluate the ref_mv.
MB_MODE_INFO **this_mi = mib;
BLOCK_SIZE orig_bsize = this_mi[0]->bsize;
const PARTITION_TYPE orig_partition = this_mi[0]->partition;
this_mi[0]->bsize = bsize;
this_mi[0]->partition = PARTITION_NONE;
this_mi[0]->skip_txfm = 1;
// TODO(yunqing): functions called below can be optimized by
// removing unrelated operations.
av1_set_offsets_without_segment_id(cpi, &tile_data->tile_info, x, mi_row,
mi_col, bsize);
const MV_REFERENCE_FRAME ref_frame = this_mi[0]->ref_frame[0];
int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES];
struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE];
int force_skip_low_temp_var = 0;
int skip_pred_mv = 0;
bool use_scaled_ref;
for (int i = 0; i < MB_MODE_COUNT; ++i) {
for (int j = 0; j < REF_FRAMES; ++j) {
frame_mv[i][j].as_int = INVALID_MV;
}
}
av1_copy(x->color_sensitivity, x->color_sensitivity_sb);
skip_pred_mv = (x->nonrd_prune_ref_frame_search > 2 &&
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] != 2 &&
x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] != 2);
find_predictors(cpi, x, ref_frame, frame_mv, yv12_mb, bsize,
force_skip_low_temp_var, skip_pred_mv, &use_scaled_ref);
int continue_merging = 1;
if (frame_mv[NEARESTMV][ref_frame].as_mv.row != b0[0]->mv[0].as_mv.row ||
frame_mv[NEARESTMV][ref_frame].as_mv.col != b0[0]->mv[0].as_mv.col)
continue_merging = 0;
if (!continue_merging) {
this_mi[0]->bsize = orig_bsize;
this_mi[0]->partition = orig_partition;
// TODO(yunqing): Store the results and restore here instead of
// calling find_predictors() again.
av1_set_offsets_without_segment_id(cpi, &tile_data->tile_info, x, mi_row,
mi_col, this_mi[0]->bsize);
find_predictors(cpi, x, ref_frame, frame_mv, yv12_mb, this_mi[0]->bsize,
force_skip_low_temp_var, skip_pred_mv, &use_scaled_ref);
} else {
struct scale_factors *sf = get_ref_scale_factors(cm, ref_frame);
const int is_scaled = av1_is_scaled(sf);
const int is_y_subpel_mv = (abs(this_mi[0]->mv[0].as_mv.row) % 8) ||
(abs(this_mi[0]->mv[0].as_mv.col) % 8);
const int is_uv_subpel_mv = (abs(this_mi[0]->mv[0].as_mv.row) % 16) ||
(abs(this_mi[0]->mv[0].as_mv.col) % 16);
if (cpi->ppi->use_svc || is_scaled || is_y_subpel_mv || is_uv_subpel_mv) {
const int num_planes = av1_num_planes(cm);
set_ref_ptrs(cm, xd, ref_frame, this_mi[0]->ref_frame[1]);
const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);
av1_setup_pre_planes(xd, 0, cfg, mi_row, mi_col,
xd->block_ref_scale_factors[0], num_planes);
if (!cpi->ppi->use_svc && !is_scaled && !is_y_subpel_mv) {
assert(is_uv_subpel_mv == 1);
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 1,
num_planes - 1);
} else {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
num_planes - 1);
}
}
// Copy out mbmi_ext information.
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame = x->mbmi_ext_frame;
av1_copy_mbmi_ext_to_mbmi_ext_frame(
mbmi_ext_frame, mbmi_ext, av1_ref_frame_type(this_mi[0]->ref_frame));
const BLOCK_SIZE this_subsize =
get_partition_subsize(bsize, this_mi[0]->partition);
// Update partition contexts.
update_ext_partition_context(xd, mi_row, mi_col, this_subsize, bsize,
this_mi[0]->partition);
const int num_planes = av1_num_planes(cm);
av1_reset_entropy_context(xd, bsize, num_planes);
// Note: use x->txfm_search_params.tx_mode_search_type instead of
// cm->features.tx_mode here.
TX_SIZE tx_size =
tx_size_from_tx_mode(bsize, x->txfm_search_params.tx_mode_search_type);
if (xd->lossless[this_mi[0]->segment_id]) tx_size = TX_4X4;
this_mi[0]->tx_size = tx_size;
memset(this_mi[0]->inter_tx_size, this_mi[0]->tx_size,
sizeof(this_mi[0]->inter_tx_size));
// Update txfm contexts.
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
set_txfm_ctxs(this_mi[0]->tx_size, xd->width, xd->height,
this_mi[0]->skip_txfm && is_inter_block(this_mi[0]), xd);
// Update mi for this partition block.
for (int y = 0; y < bs; y++) {
for (int x_idx = 0; x_idx < bs; x_idx++) {
this_mi[x_idx + y * mi_params->mi_stride] = this_mi[0];
}
}
}
}
/*!\brief AV1 block partition application (minimal RD search).
*
* \ingroup partition_search
* \callgraph
* \callergraph
* Encode the block by applying pre-calculated partition patterns that are
* represented by coding block sizes stored in the mbmi array. The only
* partition adjustment allowed is merging leaf split nodes if it leads to a
* lower rd cost. The partition types are limited to a basic set: none, horz,
* vert, and split. This function is only used in the real-time mode.
*
* \param[in] cpi Top-level encoder structure
* \param[in] td Pointer to thread data
* \param[in] tile_data Pointer to struct holding adaptive
data/contexts/models for the tile during encoding
* \param[in] mib Array representing MB_MODE_INFO pointers for mi
blocks starting from the first pixel of the current
block
* \param[in] tp Pointer to the starting token
* \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step size of
MI_SIZE
* \param[in] bsize Current block size
* \param[in] pc_tree Pointer to the PC_TREE node holding the picked
partitions and mode info for the current block
*
* \remark Nothing is returned. The pc_tree struct is modified to store the
* picked partition and modes.
*/
void av1_nonrd_use_partition(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, MB_MODE_INFO **mib,
TokenExtra **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, PC_TREE *pc_tree) {
AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const ModeCosts *mode_costs = &x->mode_costs;
// Only square blocks from 8x8 to 128x128 are supported
assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128);
const int bs = mi_size_wide[bsize];
const int hbs = bs / 2;
PARTITION_TYPE partition = (bsize >= BLOCK_8X8)
? get_partition(cm, mi_row, mi_col, bsize)
: PARTITION_NONE;
BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
assert(subsize <= BLOCK_LARGEST);
const int pl = (bsize >= BLOCK_8X8)
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
RD_STATS dummy_cost;
av1_invalid_rd_stats(&dummy_cost);
if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
// Initialize default mode evaluation params
set_mode_eval_params(cpi, x, DEFAULT_EVAL);
x->reuse_inter_pred = cpi->sf.rt_sf.reuse_inter_pred_nonrd;
int change_none_to_split = 0;
if (partition == PARTITION_NONE &&
cpi->sf.rt_sf.nonrd_check_partition_split == 1) {
change_none_to_split =
try_split_partition(cpi, td, tile_data, tile_info, tp, x, xd, mi_params,
mi_row, mi_col, bsize, pl, pc_tree);
if (change_none_to_split) {
partition = PARTITION_SPLIT;
subsize = get_partition_subsize(bsize, partition);
assert(subsize <= BLOCK_LARGEST);
}
}
pc_tree->partitioning = partition;
switch (partition) {
case PARTITION_NONE:
if (!pc_tree->none) {
pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
if (!pc_tree->none)
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
} else {
av1_reset_pmc(pc_tree->none);
}
pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, bsize,
pc_tree->none);
encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize,
partition, pc_tree->none, NULL);
break;
case PARTITION_VERT:
for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
if (!pc_tree->vertical[i]) {
pc_tree->vertical[i] =
av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
if (!pc_tree->vertical[i])
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
} else {
av1_reset_pmc(pc_tree->vertical[i]);
}
}
pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost,
subsize, pc_tree->vertical[0]);
encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize,
PARTITION_VERT, pc_tree->vertical[0], NULL);
if (mi_col + hbs < mi_params->mi_cols && bsize > BLOCK_8X8) {
pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col + hbs,
&dummy_cost, subsize, pc_tree->vertical[1]);
encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col + hbs, 0, subsize,
PARTITION_VERT, pc_tree->vertical[1], NULL);
}
break;
case PARTITION_HORZ:
for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
if (!pc_tree->horizontal[i]) {
pc_tree->horizontal[i] =
av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
if (!pc_tree->horizontal[i])
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
} else {
av1_reset_pmc(pc_tree->horizontal[i]);
}
}
pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost,
subsize, pc_tree->horizontal[0]);
encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize,
PARTITION_HORZ, pc_tree->horizontal[0], NULL);
if (mi_row + hbs < mi_params->mi_rows && bsize > BLOCK_8X8) {
pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + hbs, mi_col,
&dummy_cost, subsize, pc_tree->horizontal[1]);
encode_b_nonrd(cpi, tile_data, td, tp, mi_row + hbs, mi_col, 0, subsize,
PARTITION_HORZ, pc_tree->horizontal[1], NULL);
}
break;
case PARTITION_SPLIT:
for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
if (!pc_tree->split[i]) {
pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
if (!pc_tree->split[i])
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PC_TREE");
}
pc_tree->split[i]->index = i;
}
if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode &&
av1_is_leaf_split_partition(cm, mi_row, mi_col, bsize) &&
!frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
try_merge(cpi, td, tile_data, mib, tp, mi_row, mi_col, bsize, pc_tree,
partition, subsize, pl);
} else {
for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
int jj = i >> 1, ii = i & 0x01;
if ((mi_row + y_idx >= mi_params->mi_rows) ||
(mi_col + x_idx >= mi_params->mi_cols))
continue;
av1_nonrd_use_partition(
cpi, td, tile_data,
mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp,
mi_row + y_idx, mi_col + x_idx, subsize, pc_tree->split[i]);
}
if (!change_none_to_split) {
// Note: Palette, cfl are not supported.
if (!frame_is_intra_only(cm) && !tile_data->allow_update_cdf &&
cpi->sf.rt_sf.partition_direct_merging &&
mode_costs->partition_cost[pl][PARTITION_NONE] <
mode_costs->partition_cost[pl][PARTITION_SPLIT] &&
(mi_row + bs <= mi_params->mi_rows) &&
(mi_col + bs <= mi_params->mi_cols)) {
direct_partition_merging(cpi, td, tile_data, mib, mi_row, mi_col,
bsize);
}
}
}
break;
case PARTITION_VERT_A:
case PARTITION_VERT_B:
case PARTITION_HORZ_A:
case PARTITION_HORZ_B:
case PARTITION_HORZ_4:
case PARTITION_VERT_4:
assert(0 && "Cannot handle extended partition types");
default: assert(0); break;
}
}
#if !CONFIG_REALTIME_ONLY
// Try searching for an encoding for the given subblock. Returns zero if the
// rdcost is already too high (to tell the caller not to bother searching for
// encodings of further subblocks).
static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp, int is_last,
int mi_row, int mi_col, BLOCK_SIZE subsize,
RD_STATS best_rdcost, RD_STATS *sum_rdc,
PARTITION_TYPE partition,
PICK_MODE_CONTEXT *this_ctx) {
MACROBLOCK *const x = &td->mb;
const int orig_mult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, subsize, NO_AQ, NULL);
av1_rd_cost_update(x->rdmult, &best_rdcost);
RD_STATS rdcost_remaining;
av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining);
RD_STATS this_rdc;
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, partition,
subsize, this_ctx, rdcost_remaining);
if (this_rdc.rate == INT_MAX) {
sum_rdc->rdcost = INT64_MAX;
} else {
sum_rdc->rate += this_rdc.rate;
sum_rdc->dist += this_rdc.dist;
av1_rd_cost_update(x->rdmult, sum_rdc);
}
if (sum_rdc->rdcost >= best_rdcost.rdcost) {
x->rdmult = orig_mult;
return 0;
}
if (!is_last) {
av1_update_state(cpi, td, this_ctx, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL);
}
x->rdmult = orig_mult;
return 1;
}
// Tests an AB partition, and updates the encoder status, the pick mode
// contexts, the best rdcost, and the best partition.
static bool rd_test_partition3(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp,
PC_TREE *pc_tree, RD_STATS *best_rdc,
int64_t *this_rdcost,
PICK_MODE_CONTEXT *ctxs[SUB_PARTITIONS_AB],
int mi_row, int mi_col, BLOCK_SIZE bsize,
PARTITION_TYPE partition,
const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB],
const int ab_mi_pos[SUB_PARTITIONS_AB][2],
const MB_MODE_INFO **mode_cache) {
MACROBLOCK *const x = &td->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
RD_STATS sum_rdc;
av1_init_rd_stats(&sum_rdc);
sum_rdc.rate = x->mode_costs.partition_cost[pl][partition];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
// Loop over sub-partitions in AB partition type.
for (int i = 0; i < SUB_PARTITIONS_AB; i++) {
if (mode_cache && mode_cache[i]) {
x->use_mb_mode_cache = 1;
x->mb_mode_cache = mode_cache[i];
}
const int mode_search_success =
rd_try_subblock(cpi, td, tile_data, tp, i == SUB_PARTITIONS_AB - 1,
ab_mi_pos[i][0], ab_mi_pos[i][1], ab_subsize[i],
*best_rdc, &sum_rdc, partition, ctxs[i]);
x->use_mb_mode_cache = 0;
x->mb_mode_cache = NULL;
if (!mode_search_success) {
return false;
}
}
av1_rd_cost_update(x->rdmult, &sum_rdc);
*this_rdcost = sum_rdc.rdcost;
if (sum_rdc.rdcost >= best_rdc->rdcost) return false;
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
*this_rdcost = sum_rdc.rdcost;
if (sum_rdc.rdcost >= best_rdc->rdcost) return false;
*best_rdc = sum_rdc;
pc_tree->partitioning = partition;
return true;
}
#if CONFIG_COLLECT_PARTITION_STATS
static void init_partition_block_timing_stats(
PartitionTimingStats *part_timing_stats) {
av1_zero(*part_timing_stats);
}
static inline void start_partition_block_timer(
PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type) {
assert(!part_timing_stats->timer_is_on);
part_timing_stats->partition_attempts[partition_type] += 1;
aom_usec_timer_start(&part_timing_stats->timer);
part_timing_stats->timer_is_on = 1;
}
static inline void end_partition_block_timer(
PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type,
int64_t rdcost) {
if (part_timing_stats->timer_is_on) {
aom_usec_timer_mark(&part_timing_stats->timer);
const int64_t time = aom_usec_timer_elapsed(&part_timing_stats->timer);
part_timing_stats->partition_times[partition_type] += time;
part_timing_stats->partition_rdcost[partition_type] = rdcost;
part_timing_stats->timer_is_on = 0;
}
}
static inline void print_partition_timing_stats_with_rdcost(
const PartitionTimingStats *part_timing_stats, int mi_row, int mi_col,
BLOCK_SIZE bsize, FRAME_UPDATE_TYPE frame_update_type, int frame_number,
const RD_STATS *best_rdc, const char *filename) {
FILE *f = fopen(filename, "a");
fprintf(f, "%d,%d,%d,%d,%d,%d,%" PRId64 ",%" PRId64 ",", bsize, frame_number,
frame_update_type, mi_row, mi_col, best_rdc->rate, best_rdc->dist,
best_rdc->rdcost);
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]);
}
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]);
}
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
fprintf(f, "%" PRId64 ",", part_timing_stats->partition_times[idx]);
}
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
if (part_timing_stats->partition_rdcost[idx] == INT64_MAX) {
fprintf(f, "%d,", -1);
} else {
fprintf(f, "%" PRId64 ",", part_timing_stats->partition_rdcost[idx]);
}
}
fprintf(f, "\n");
fclose(f);
}
static inline void print_partition_timing_stats(
const PartitionTimingStats *part_timing_stats, int intra_only,
int show_frame, const BLOCK_SIZE bsize, const char *filename) {
FILE *f = fopen(filename, "a");
fprintf(f, "%d,%d,%d,", bsize, show_frame, intra_only);
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]);
}
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]);
}
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
fprintf(f, "%" PRId64 ",", part_timing_stats->partition_times[idx]);
}
fprintf(f, "\n");
fclose(f);
}
static inline void accumulate_partition_timing_stats(
FramePartitionTimingStats *fr_part_timing_stats,
const PartitionTimingStats *part_timing_stats, BLOCK_SIZE bsize) {
const int bsize_idx = av1_get_bsize_idx_for_part_stats(bsize);
int *agg_attempts = fr_part_timing_stats->partition_attempts[bsize_idx];
int *agg_decisions = fr_part_timing_stats->partition_decisions[bsize_idx];
int64_t *agg_times = fr_part_timing_stats->partition_times[bsize_idx];
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
agg_attempts[idx] += part_timing_stats->partition_attempts[idx];
agg_decisions[idx] += part_timing_stats->partition_decisions[idx];
agg_times[idx] += part_timing_stats->partition_times[idx];
}
}
#endif // CONFIG_COLLECT_PARTITION_STATS
// Initialize state variables of partition search used in
// av1_rd_pick_partition().
static void init_partition_search_state_params(
MACROBLOCK *x, AV1_COMP *const cpi, PartitionSearchState *part_search_state,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams *blk_params = &part_search_state->part_blk_params;
const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
// Initialization of block size related parameters.
blk_params->mi_step = mi_size_wide[bsize] / 2;
blk_params->mi_row = mi_row;
blk_params->mi_col = mi_col;
blk_params->mi_row_edge = mi_row + blk_params->mi_step;
blk_params->mi_col_edge = mi_col + blk_params->mi_step;
blk_params->width = block_size_wide[bsize];
blk_params->min_partition_size_1d =
block_size_wide[x->sb_enc.min_partition_size];
blk_params->subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
blk_params->split_bsize2 = blk_params->subsize;
blk_params->bsize_at_least_8x8 = (bsize >= BLOCK_8X8);
blk_params->bsize = bsize;
// Check if the partition corresponds to edge block.
blk_params->has_rows = (blk_params->mi_row_edge < mi_params->mi_rows);
blk_params->has_cols = (blk_params->mi_col_edge < mi_params->mi_cols);
// Update intra partitioning related info.
part_search_state->intra_part_info = &x->part_search_info;
// Prepare for segmentation CNN-based partitioning for intra-frame.
if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) {
part_search_state->intra_part_info->quad_tree_idx = 0;
part_search_state->intra_part_info->cnn_output_valid = 0;
}
// Set partition plane context index.
part_search_state->pl_ctx_idx =
blk_params->bsize_at_least_8x8
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
// Partition cost buffer update
ModeCosts *mode_costs = &x->mode_costs;
part_search_state->partition_cost =
mode_costs->partition_cost[part_search_state->pl_ctx_idx];
// Initialize HORZ and VERT win flags as true for all split partitions.
for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
part_search_state->split_part_rect_win[i].rect_part_win[HORZ] = true;
part_search_state->split_part_rect_win[i].rect_part_win[VERT] = true;
}
// Initialize the rd cost.
av1_init_rd_stats(&part_search_state->this_rdc);
// Initialize RD costs for partition types to 0.
part_search_state->none_rd = 0;
av1_zero(part_search_state->split_rd);
av1_zero(part_search_state->rect_part_rd);
// Initialize SPLIT partition to be not ready.
av1_zero(part_search_state->is_split_ctx_is_ready);
// Initialize HORZ and VERT partitions to be not ready.
av1_zero(part_search_state->is_rect_ctx_is_ready);
// Chroma subsampling.
part_search_state->ss_x = x->e_mbd.plane[1].subsampling_x;
part_search_state->ss_y = x->e_mbd.plane[1].subsampling_y;
// Initialize partition search flags to defaults.
part_search_state->terminate_partition_search = 0;
part_search_state->do_square_split = blk_params->bsize_at_least_8x8;
part_search_state->do_rectangular_split =
cpi->oxcf.part_cfg.enable_rect_partitions &&
blk_params->bsize_at_least_8x8;
av1_zero(part_search_state->prune_rect_part);
// Initialize allowed partition types for the partition block.
part_search_state->partition_none_allowed =
av1_blk_has_rows_and_cols(blk_params);
part_search_state->partition_rect_allowed[HORZ] =
part_search_state->do_rectangular_split && blk_params->has_cols &&
get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ),
part_search_state->ss_x,
part_search_state->ss_y) != BLOCK_INVALID;
part_search_state->partition_rect_allowed[VERT] =
part_search_state->do_rectangular_split && blk_params->has_rows &&
get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT),
part_search_state->ss_x,
part_search_state->ss_y) != BLOCK_INVALID;
// Reset the flag indicating whether a partition leading to a rdcost lower
// than the bound best_rdc has been found.
part_search_state->found_best_partition = false;
#if CONFIG_COLLECT_PARTITION_STATS
init_partition_block_timing_stats(&part_search_state->part_timing_stats);
#endif // CONFIG_COLLECT_PARTITION_STATS
}
// Override partition cost buffer for the edge blocks.
static void set_partition_cost_for_edge_blk(
AV1_COMMON const *cm, PartitionSearchState *part_search_state) {
PartitionBlkParams blk_params = part_search_state->part_blk_params;
assert(blk_params.bsize_at_least_8x8 && part_search_state->pl_ctx_idx >= 0);
const aom_cdf_prob *partition_cdf =
cm->fc->partition_cdf[part_search_state->pl_ctx_idx];
const int max_cost = av1_cost_symbol(0);
for (PARTITION_TYPE i = 0; i < PARTITION_TYPES; ++i)
part_search_state->tmp_partition_cost[i] = max_cost;
if (blk_params.has_cols) {
// At the bottom, the two possibilities are HORZ and SPLIT.
aom_cdf_prob bot_cdf[2];
partition_gather_vert_alike(bot_cdf, partition_cdf, blk_params.bsize);
static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT };
av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, bot_cdf,
bot_inv_map);
} else if (blk_params.has_rows) {
// At the right, the two possibilities are VERT and SPLIT.
aom_cdf_prob rhs_cdf[2];
partition_gather_horz_alike(rhs_cdf, partition_cdf, blk_params.bsize);
static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT };
av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, rhs_cdf,
rhs_inv_map);
} else {
// At the bottom right, we always split.
part_search_state->tmp_partition_cost[PARTITION_SPLIT] = 0;
}
// Override the partition cost buffer.
part_search_state->partition_cost = part_search_state->tmp_partition_cost;
}
// Reset the partition search state flags when
// must_find_valid_partition is equal to 1.
static inline void reset_part_limitations(
AV1_COMP *const cpi, PartitionSearchState *part_search_state) {
PartitionBlkParams blk_params = part_search_state->part_blk_params;
const int is_rect_part_allowed =
blk_params.bsize_at_least_8x8 &&
cpi->oxcf.part_cfg.enable_rect_partitions &&
(blk_params.width > blk_params.min_partition_size_1d);
part_search_state->do_square_split =
blk_params.bsize_at_least_8x8 &&
(blk_params.width > blk_params.min_partition_size_1d);
part_search_state->partition_none_allowed =
av1_blk_has_rows_and_cols(&blk_params) &&
(blk_params.width >= blk_params.min_partition_size_1d);
part_search_state->partition_rect_allowed[HORZ] =
blk_params.has_cols && is_rect_part_allowed &&
get_plane_block_size(
get_partition_subsize(blk_params.bsize, PARTITION_HORZ),
part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID;
part_search_state->partition_rect_allowed[VERT] =
blk_params.has_rows && is_rect_part_allowed &&
get_plane_block_size(
get_partition_subsize(blk_params.bsize, PARTITION_VERT),
part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID;
part_search_state->terminate_partition_search = 0;
}
// Rectangular partitions evaluation at sub-block level.
static void rd_pick_rect_partition(AV1_COMP *const cpi, TileDataEnc *tile_data,
MACROBLOCK *x,
PICK_MODE_CONTEXT *cur_partition_ctx,
PartitionSearchState *part_search_state,
RD_STATS *best_rdc, const int idx,
int mi_row, int mi_col, BLOCK_SIZE bsize,
PARTITION_TYPE partition_type) {
// Obtain the remainder from the best rd cost
// for further processing of partition.
RD_STATS best_remain_rdcost;
av1_rd_stats_subtraction(x->rdmult, best_rdc, &part_search_state->sum_rdc,
&best_remain_rdcost);
// Obtain the best mode for the partition sub-block.
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &part_search_state->this_rdc,
partition_type, bsize, cur_partition_ctx, best_remain_rdcost);
av1_rd_cost_update(x->rdmult, &part_search_state->this_rdc);
// Update the partition rd cost with the current sub-block rd.
if (part_search_state->this_rdc.rate == INT_MAX) {
part_search_state->sum_rdc.rdcost = INT64_MAX;
} else {
part_search_state->sum_rdc.rate += part_search_state->this_rdc.rate;
part_search_state->sum_rdc.dist += part_search_state->this_rdc.dist;
av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc);
}
const RECT_PART_TYPE rect_part =
partition_type == PARTITION_HORZ ? HORZ : VERT;
part_search_state->rect_part_rd[rect_part][idx] =
part_search_state->this_rdc.rdcost;
}
typedef int (*active_edge_info)(const AV1_COMP *cpi, int mi_col, int mi_step);
// Checks if HORZ / VERT partition search is allowed.
static inline int is_rect_part_allowed(
const AV1_COMP *cpi, const PartitionSearchState *part_search_state,
const active_edge_info *active_edge, RECT_PART_TYPE rect_part,
const int mi_pos) {
const PartitionBlkParams *blk_params = &part_search_state->part_blk_params;
const int is_part_allowed =
(!part_search_state->terminate_partition_search &&
part_search_state->partition_rect_allowed[rect_part] &&
!part_search_state->prune_rect_part[rect_part] &&
(part_search_state->do_rectangular_split ||
active_edge[rect_part](cpi, mi_pos, blk_params->mi_step)));
return is_part_allowed;
}
static void rectangular_partition_search(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree,
RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
RD_RECT_PART_WIN_INFO *rect_part_win_info, const RECT_PART_TYPE start_type,
const RECT_PART_TYPE end_type) {
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
RD_STATS *sum_rdc = &part_search_state->sum_rdc;
const int rect_partition_type[NUM_RECT_PARTS] = { PARTITION_HORZ,
PARTITION_VERT };
// mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][0]: mi_row postion of
// HORZ and VERT partition types.
// mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][1]: mi_col postion of
// HORZ and VERT partition types.
const int mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][2] = {
{ { blk_params.mi_row, blk_params.mi_col },
{ blk_params.mi_row_edge, blk_params.mi_col } },
{ { blk_params.mi_row, blk_params.mi_col },
{ blk_params.mi_row, blk_params.mi_col_edge } }
};
// Initialize active edge_type function pointer
// for HOZR and VERT partition types.
active_edge_info active_edge_type[NUM_RECT_PARTS] = { av1_active_h_edge,
av1_active_v_edge };
// Indicates edge blocks for HORZ and VERT partition types.
const int is_not_edge_block[NUM_RECT_PARTS] = { blk_params.has_rows,
blk_params.has_cols };
// Initialize pc tree context for HORZ and VERT partition types.
PICK_MODE_CONTEXT **cur_ctx[NUM_RECT_PARTS][SUB_PARTITIONS_RECT] = {
{ &pc_tree->horizontal[0], &pc_tree->horizontal[1] },
{ &pc_tree->vertical[0], &pc_tree->vertical[1] }
};
// Loop over rectangular partition types.
for (RECT_PART_TYPE i = start_type; i <= end_type; i++) {
assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
!part_search_state->partition_rect_allowed[i]));
// Check if the HORZ / VERT partition search is to be performed.
if (!is_rect_part_allowed(cpi, part_search_state, active_edge_type, i,
mi_pos_rect[i][0][i]))
continue;
// Sub-partition idx.
int sub_part_idx = 0;
PARTITION_TYPE partition_type = rect_partition_type[i];
blk_params.subsize =
get_partition_subsize(blk_params.bsize, partition_type);
assert(blk_params.subsize <= BLOCK_LARGEST);
av1_init_rd_stats(sum_rdc);
for (int j = 0; j < SUB_PARTITIONS_RECT; j++) {
if (cur_ctx[i][j][0] == NULL) {
cur_ctx[i][j][0] =
av1_alloc_pmc(cpi, blk_params.subsize, &td->shared_coeff_buf);
if (!cur_ctx[i][j][0])
aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
}
}
sum_rdc->rate = part_search_state->partition_cost[partition_type];
sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, 0);
#if CONFIG_COLLECT_PARTITION_STATS
PartitionTimingStats *part_timing_stats =
&part_search_state->part_timing_stats;
if (best_rdc->rdcost - sum_rdc->rdcost >= 0) {
start_partition_block_timer(part_timing_stats, partition_type);
}
#endif
// First sub-partition evaluation in HORZ / VERT partition type.
rd_pick_rect_partition(
cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state,
best_rdc, 0, mi_pos_rect[i][sub_part_idx][0],
mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type);
// Start of second sub-partition evaluation.
// Evaluate second sub-partition if the first sub-partition cost
// is less than the best cost and if it is not an edge block.
if (sum_rdc->rdcost < best_rdc->rdcost && is_not_edge_block[i]) {
const MB_MODE_INFO *const mbmi = &cur_ctx[i][sub_part_idx][0]->mic;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
// Neither palette mode nor cfl predicted.
if (pmi->palette_size[PLANE_TYPE_Y] == 0 &&
pmi->palette_size[PLANE_TYPE_UV] == 0) {
if (mbmi->uv_mode != UV_CFL_PRED)
part_search_state->is_rect_ctx_is_ready[i] = 1;
}
av1_update_state(cpi, td, cur_ctx[i][sub_part_idx][0], blk_params.mi_row,
blk_params.mi_col, blk_params.subsize, DRY_RUN_NORMAL);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL,
blk_params.subsize, NULL);
// Second sub-partition evaluation in HORZ / VERT partition type.
sub_part_idx = 1;
rd_pick_rect_partition(
cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state,
best_rdc, 1, mi_pos_rect[i][sub_part_idx][0],
mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type);
}
// Update HORZ / VERT best partition.
if (sum_rdc->rdcost < best_rdc->rdcost) {
sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, sum_rdc->dist);
if (sum_rdc->rdcost < best_rdc->rdcost) {
*best_rdc = *sum_rdc;
part_search_state->found_best_partition = true;
pc_tree->partitioning = partition_type;
}
} else {
// Update HORZ / VERT win flag.
if (rect_part_win_info != NULL)
rect_part_win_info->rect_part_win[i] = false;
}
#if CONFIG_COLLECT_PARTITION_STATS
if (part_timing_stats->timer_is_on) {
end_partition_block_timer(part_timing_stats, partition_type,
sum_rdc->rdcost);
}
#endif
av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col,
blk_params.bsize, av1_num_planes(cm));
}
}
// AB partition type evaluation.
static void rd_pick_ab_part(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
PC_TREE *pc_tree, PICK_MODE_CONTEXT *dst_ctxs[SUB_PARTITIONS_AB],
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB],
const int ab_mi_pos[SUB_PARTITIONS_AB][2], const PARTITION_TYPE part_type,
const MB_MODE_INFO **mode_cache) {
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
const int mi_row = blk_params.mi_row;
const int mi_col = blk_params.mi_col;
const BLOCK_SIZE bsize = blk_params.bsize;
int64_t this_rdcost = 0;
#if CONFIG_COLLECT_PARTITION_STATS
PartitionTimingStats *part_timing_stats =
&part_search_state->part_timing_stats;
{
RD_STATS tmp_sum_rdc;
av1_init_rd_stats(&tmp_sum_rdc);
tmp_sum_rdc.rate = part_search_state->partition_cost[part_type];
tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0);
if (best_rdc->rdcost - tmp_sum_rdc.rdcost >= 0) {
start_partition_block_timer(part_timing_stats, part_type);
}
}
#endif
// Test this partition and update the best partition.
const bool find_best_ab_part = rd_test_partition3(
cpi, td, tile_data, tp, pc_tree, best_rdc, &this_rdcost, dst_ctxs, mi_row,
mi_col, bsize, part_type, ab_subsize, ab_mi_pos, mode_cache);
part_search_state->found_best_partition |= find_best_ab_part;
#if CONFIG_COLLECT_PARTITION_STATS
if (part_timing_stats->timer_is_on) {
if (!find_best_ab_part) this_rdcost = INT64_MAX;
end_partition_block_timer(part_timing_stats, part_type, this_rdcost);
}
#endif
av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
}
// Set mode search context.
static inline void set_mode_search_ctx(
PC_TREE *pc_tree, const int is_ctx_ready[NUM_AB_PARTS][2],
PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2]) {
mode_srch_ctx[HORZ_B][0] = &pc_tree->horizontal[0];
mode_srch_ctx[VERT_B][0] = &pc_tree->vertical[0];
if (is_ctx_ready[HORZ_A][0])
mode_srch_ctx[HORZ_A][0] = &pc_tree->split[0]->none;
if (is_ctx_ready[VERT_A][0])
mode_srch_ctx[VERT_A][0] = &pc_tree->split[0]->none;
if (is_ctx_ready[HORZ_A][1])
mode_srch_ctx[HORZ_A][1] = &pc_tree->split[1]->none;
}
static inline void copy_partition_mode_from_mode_context(
const MB_MODE_INFO **dst_mode, const PICK_MODE_CONTEXT *ctx) {
if (ctx && ctx->rd_stats.rate < INT_MAX) {
*dst_mode = &ctx->mic;
} else {
*dst_mode = NULL;
}
}
static inline void copy_partition_mode_from_pc_tree(
const MB_MODE_INFO **dst_mode, const PC_TREE *pc_tree) {
if (pc_tree) {
copy_partition_mode_from_mode_context(dst_mode, pc_tree->none);
} else {
*dst_mode = NULL;
}
}
static inline void set_mode_cache_for_partition_ab(
const MB_MODE_INFO **mode_cache, const PC_TREE *pc_tree,
AB_PART_TYPE ab_part_type) {
switch (ab_part_type) {
case HORZ_A:
copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]);
copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]);
copy_partition_mode_from_mode_context(&mode_cache[2],
pc_tree->horizontal[1]);
break;
case HORZ_B:
copy_partition_mode_from_mode_context(&mode_cache[0],
pc_tree->horizontal[0]);
copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]);
copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]);
break;
case VERT_A:
copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]);
copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]);
copy_partition_mode_from_mode_context(&mode_cache[2],
pc_tree->vertical[1]);
break;
case VERT_B:
copy_partition_mode_from_mode_context(&mode_cache[0],
pc_tree->vertical[0]);
copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]);
copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]);
break;
default: assert(0 && "Invalid ab partition type!\n");
}
}
// AB Partitions type search.
static void ab_partitions_search(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
PC_TREE *pc_tree, PartitionSearchState *part_search_state,
RD_STATS *best_rdc, RD_RECT_PART_WIN_INFO *rect_part_win_info,
int pb_source_variance, int ext_partition_allowed,
const AB_PART_TYPE start_type, const AB_PART_TYPE end_type) {
PartitionBlkParams blk_params = part_search_state->part_blk_params;
const int mi_row = blk_params.mi_row;
const int mi_col = blk_params.mi_col;
const BLOCK_SIZE bsize = blk_params.bsize;
if (part_search_state->terminate_partition_search) {
return;
}
int ab_partitions_allowed[NUM_AB_PARTS];
// Prune AB partitions
av1_prune_ab_partitions(cpi, x, pc_tree, pb_source_variance, best_rdc->rdcost,
rect_part_win_info, ext_partition_allowed,
part_search_state, ab_partitions_allowed);
// Flags to indicate whether the mode search is done.
const int is_ctx_ready[NUM_AB_PARTS][2] = {
{ part_search_state->is_split_ctx_is_ready[0],
part_search_state->is_split_ctx_is_ready[1] },
{ part_search_state->is_rect_ctx_is_ready[HORZ], 0 },
{ part_search_state->is_split_ctx_is_ready[0], 0 },
{ part_search_state->is_rect_ctx_is_ready[VERT], 0 }
};
// Current partition context.
PICK_MODE_CONTEXT **cur_part_ctxs[NUM_AB_PARTS] = { pc_tree->horizontala,
pc_tree->horizontalb,
pc_tree->verticala,
pc_tree->verticalb };
// Context of already evaluted partition types.
PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2];
// Set context of already evaluted partition types.
set_mode_search_ctx(pc_tree, is_ctx_ready, mode_srch_ctx);
// Array of sub-partition size of AB partition types.
const BLOCK_SIZE ab_subsize[NUM_AB_PARTS][SUB_PARTITIONS_AB] = {
{ blk_params.split_bsize2, blk_params.split_bsize2,
get_partition_subsize(bsize, PARTITION_HORZ_A) },
{ get_partition_subsize(bsize, PARTITION_HORZ_B), blk_params.split_bsize2,
blk_params.split_bsize2 },
{ blk_params.split_bsize2, blk_params.split_bsize2,
get_partition_subsize(bsize, PARTITION_VERT_A) },
{ get_partition_subsize(bsize, PARTITION_VERT_B), blk_params.split_bsize2,
blk_params.split_bsize2 }
};
// Array of mi_row, mi_col positions corresponds to each sub-partition in AB
// partition types.
const int ab_mi_pos[NUM_AB_PARTS][SUB_PARTITIONS_AB][2] = {
{ { mi_row, mi_col },
{ mi_row, blk_params.mi_col_edge },
{ blk_params.mi_row_edge, mi_col } },
{ { mi_row, mi_col },
{ blk_params.mi_row_edge, mi_col },
{ blk_params.mi_row_edge, blk_params.mi_col_edge } },
{ { mi_row, mi_col },
{ blk_params.mi_row_edge, mi_col },
{ mi_row, blk_params.mi_col_edge } },
{ { mi_row, mi_col },
{ mi_row, blk_params.mi_col_edge },
{ blk_params.mi_row_edge, blk_params.mi_col_edge } }
};
// Loop over AB partition types.
for (AB_PART_TYPE ab_part_type = start_type; ab_part_type <= end_type;
ab_part_type++) {
const PARTITION_TYPE part_type = ab_part_type + PARTITION_HORZ_A;
// Check if the AB partition search is to be performed.
if (!ab_partitions_allowed[ab_part_type]) {
continue;
}
blk_params.subsize = get_partition_subsize(bsize, part_type);
for (int i = 0; i < SUB_PARTITIONS_AB; i++) {
// Set AB partition context.
cur_part_ctxs[ab_part_type][i] = av1_alloc_pmc(
cpi, ab_subsize[ab_part_type][i], &td->shared_coeff_buf);
if (!cur_part_ctxs[ab_part_type][i])
aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
// Set mode as not ready.
cur_part_ctxs[ab_part_type][i]->rd_mode_is_ready = 0;
}
if (cpi->sf.part_sf.reuse_prev_rd_results_for_part_ab) {
// We can copy directly the mode search results if we have already
// searched the current block and the contexts match.
if (is_ctx_ready[ab_part_type][0]) {
av1_copy_tree_context(cur_part_ctxs[ab_part_type][0],
mode_srch_ctx[ab_part_type][0][0]);
cur_part_ctxs[ab_part_type][0]->mic.partition = part_type;
cur_part_ctxs[ab_part_type][0]->rd_mode_is_ready = 1;
if (is_ctx_ready[ab_part_type][1]) {
av1_copy_tree_context(cur_part_ctxs[ab_part_type][1],
mode_srch_ctx[ab_part_type][1][0]);
cur_part_ctxs[ab_part_type][1]->mic.partition = part_type;
cur_part_ctxs[ab_part_type][1]->rd_mode_is_ready = 1;
}
}
}
// Even if the contexts don't match, we can still speed up by reusing the
// previous prediction mode.
const MB_MODE_INFO *mode_cache[3] = { NULL, NULL, NULL };
if (cpi->sf.part_sf.reuse_best_prediction_for_part_ab) {
set_mode_cache_for_partition_ab(mode_cache, pc_tree, ab_part_type);
}
// Evaluation of AB partition type.
rd_pick_ab_part(cpi, td, tile_data, tp, x, x_ctx, pc_tree,
cur_part_ctxs[ab_part_type], part_search_state, best_rdc,
ab_subsize[ab_part_type], ab_mi_pos[ab_part_type],
part_type, mode_cache);
}
}
// Set mi positions for HORZ4 / VERT4 sub-block partitions.
static void set_mi_pos_partition4(const int inc_step[NUM_PART4_TYPES],
int mi_pos[SUB_PARTITIONS_PART4][2],
const int mi_row, const int mi_col) {
for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; i++) {
mi_pos[i][0] = mi_row + i * inc_step[HORZ4];
mi_pos[i][1] = mi_col + i * inc_step[VERT4];
}
}
// Set context and RD cost for HORZ4 / VERT4 partition types.
static void set_4_part_ctx_and_rdcost(
MACROBLOCK *x, const AV1_COMP *const cpi, ThreadData *td,
PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4],
PartitionSearchState *part_search_state, PARTITION_TYPE partition_type,
BLOCK_SIZE bsize) {
// Initialize sum_rdc RD cost structure.
av1_init_rd_stats(&part_search_state->sum_rdc);
const int subsize = get_partition_subsize(bsize, partition_type);
part_search_state->sum_rdc.rate =
part_search_state->partition_cost[partition_type];
part_search_state->sum_rdc.rdcost =
RDCOST(x->rdmult, part_search_state->sum_rdc.rate, 0);
for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) {
cur_part_ctx[i] = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
if (!cur_part_ctx[i])
aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
}
}
// Partition search of HORZ4 / VERT4 partition types.
static void rd_pick_4partition(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
PC_TREE *pc_tree, PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4],
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
const int inc_step[NUM_PART4_TYPES], PARTITION_TYPE partition_type) {
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
// mi positions needed for HORZ4 and VERT4 partition types.
int mi_pos_check[NUM_PART4_TYPES] = { cm->mi_params.mi_rows,
cm->mi_params.mi_cols };
const PART4_TYPES part4_idx = (partition_type != PARTITION_HORZ_4);
int mi_pos[SUB_PARTITIONS_PART4][2];
blk_params.subsize = get_partition_subsize(blk_params.bsize, partition_type);
// Set partition context and RD cost.
set_4_part_ctx_and_rdcost(x, cpi, td, cur_part_ctx, part_search_state,
partition_type, blk_params.bsize);
// Set mi positions for sub-block sizes.
set_mi_pos_partition4(inc_step, mi_pos, blk_params.mi_row, blk_params.mi_col);
#if CONFIG_COLLECT_PARTITION_STATS
PartitionTimingStats *part_timing_stats =
&part_search_state->part_timing_stats;
if (best_rdc->rdcost - part_search_state->sum_rdc.rdcost >= 0) {
start_partition_block_timer(part_timing_stats, partition_type);
}
#endif
// Loop over sub-block partitions.
for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) {
if (i > 0 && mi_pos[i][part4_idx] >= mi_pos_check[part4_idx]) break;
// Sub-block evaluation of Horz4 / Vert4 partition type.
cur_part_ctx[i]->rd_mode_is_ready = 0;
if (!rd_try_subblock(
cpi, td, tile_data, tp, (i == SUB_PARTITIONS_PART4 - 1),
mi_pos[i][0], mi_pos[i][1], blk_params.subsize, *best_rdc,
&part_search_state->sum_rdc, partition_type, cur_part_ctx[i])) {
av1_invalid_rd_stats(&part_search_state->sum_rdc);
break;
}
}
// Calculate the total cost and update the best partition.
av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc);
if (part_search_state->sum_rdc.rdcost < best_rdc->rdcost) {
*best_rdc = part_search_state->sum_rdc;
part_search_state->found_best_partition = true;
pc_tree->partitioning = partition_type;
}
#if CONFIG_COLLECT_PARTITION_STATS
if (part_timing_stats->timer_is_on) {
end_partition_block_timer(part_timing_stats, partition_type,
part_search_state->sum_rdc.rdcost);
}
#endif
av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col,
blk_params.bsize, av1_num_planes(cm));
}
// Do not evaluate extended partitions if NONE partition is skippable.
static inline int prune_ext_part_none_skippable(
PICK_MODE_CONTEXT *part_none, int must_find_valid_partition,
int skip_non_sq_part_based_on_none, BLOCK_SIZE bsize) {
if ((skip_non_sq_part_based_on_none >= 1) && (part_none != NULL)) {
if (part_none->skippable && !must_find_valid_partition &&
bsize >= BLOCK_16X16) {
return 1;
}
}
return 0;
}
// Allow ab partition search
static int allow_ab_partition_search(PartitionSearchState *part_search_state,
PARTITION_SPEED_FEATURES *part_sf,
PARTITION_TYPE curr_best_part,
int must_find_valid_partition,
int prune_ext_part_state,
int64_t best_rdcost) {
const PartitionBlkParams blk_params = part_search_state->part_blk_params;
const BLOCK_SIZE bsize = blk_params.bsize;
// Do not prune if there is no valid partition
if (best_rdcost == INT64_MAX) return 1;
// Determine bsize threshold to evaluate ab partitions
BLOCK_SIZE ab_bsize_thresh = part_sf->ext_partition_eval_thresh;
if (part_sf->ext_part_eval_based_on_cur_best && !must_find_valid_partition &&
!(curr_best_part == PARTITION_HORZ || curr_best_part == PARTITION_VERT))
ab_bsize_thresh = BLOCK_128X128;
// ab partitions are only allowed for square block sizes BLOCK_16X16 or
// higher, so ab_bsize_thresh must be large enough to exclude BLOCK_4X4 and
// BLOCK_8X8.
assert(ab_bsize_thresh >= BLOCK_8X8);
int ab_partition_allowed =
part_search_state->do_rectangular_split && bsize > ab_bsize_thresh &&
av1_blk_has_rows_and_cols(&blk_params) && !prune_ext_part_state;
return ab_partition_allowed;
}
// Prune 4-way partitions based on the number of horz/vert wins
// in the current block and sub-blocks in PARTITION_SPLIT.
static void prune_4_partition_using_split_info(
AV1_COMP *const cpi, MACROBLOCK *x, PartitionSearchState *part_search_state,
int part4_search_allowed[NUM_PART4_TYPES]) {
PART4_TYPES cur_part[NUM_PART4_TYPES] = { HORZ4, VERT4 };
// Count of child blocks in which HORZ or VERT partition has won
int num_child_rect_win[NUM_RECT_PARTS] = { 0, 0 };
// Prune HORZ4/VERT4 partitions based on number of HORZ/VERT winners of
// split partiitons.
// Conservative pruning for high quantizers.
const int num_win_thresh = AOMMIN(3 * (MAXQ - x->qindex) / MAXQ + 1, 3);
for (RECT_PART_TYPE i = HORZ; i < NUM_RECT_PARTS; i++) {
if (!(cpi->sf.part_sf.prune_ext_part_using_split_info &&
part4_search_allowed[cur_part[i]]))
continue;
// Loop over split partitions.
// Get rectangular partitions winner info of split partitions.
for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; idx++)
num_child_rect_win[i] +=
(part_search_state->split_part_rect_win[idx].rect_part_win[i]) ? 1
: 0;
if (num_child_rect_win[i] < num_win_thresh) {
part4_search_allowed[cur_part[i]] = 0;
}
}
}
// Prune 4-way partition search.
static void prune_4_way_partition_search(
AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree,
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
int pb_source_variance, int prune_ext_part_state,
int part4_search_allowed[NUM_PART4_TYPES]) {
const PartitionBlkParams blk_params = part_search_state->part_blk_params;
const BLOCK_SIZE bsize = blk_params.bsize;
// Do not prune if there is no valid partition
if (best_rdc->rdcost == INT64_MAX) return;
// Determine bsize threshold to evaluate 4-way partitions
BLOCK_SIZE part4_bsize_thresh = cpi->sf.part_sf.ext_partition_eval_thresh;
if (cpi->sf.part_sf.ext_part_eval_based_on_cur_best &&
!x->must_find_valid_partition && pc_tree->partitioning == PARTITION_NONE)
part4_bsize_thresh = BLOCK_128X128;
// 4-way partitions are only allowed for BLOCK_16X16, BLOCK_32X32, and
// BLOCK_64X64, so part4_bsize_thresh must be large enough to exclude
// BLOCK_4X4 and BLOCK_8X8.
assert(part4_bsize_thresh >= BLOCK_8X8);
bool partition4_allowed =
part_search_state->do_rectangular_split && bsize > part4_bsize_thresh &&
av1_blk_has_rows_and_cols(&blk_params) && !prune_ext_part_state;
// Disable 4-way partition search flags for width less than a multiple of the
// minimum partition width.
if (blk_params.width < (blk_params.min_partition_size_1d
<< cpi->sf.part_sf.prune_part4_search)) {
part4_search_allowed[HORZ4] = 0;
part4_search_allowed[VERT4] = 0;
return;
}
PARTITION_TYPE cur_part[NUM_PART4_TYPES] = { PARTITION_HORZ_4,
PARTITION_VERT_4 };
const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
// partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or
// PARTITION_VERT_4 for this block. This is almost the same as
// partition4_allowed, except that we don't allow 128x32 or 32x128
// blocks, so we require that bsize is not BLOCK_128X128.
partition4_allowed &=
part_cfg->enable_1to4_partitions && bsize != BLOCK_128X128;
for (PART4_TYPES i = HORZ4; i < NUM_PART4_TYPES; i++) {
part4_search_allowed[i] =
partition4_allowed && part_search_state->partition_rect_allowed[i] &&
get_plane_block_size(get_partition_subsize(bsize, cur_part[i]),
part_search_state->ss_x,
part_search_state->ss_y) != BLOCK_INVALID;
}
// Pruning: pruning out 4-way partitions based on the current best partition.
if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 2) {
part4_search_allowed[HORZ4] &= (pc_tree->partitioning == PARTITION_HORZ ||
pc_tree->partitioning == PARTITION_HORZ_A ||
pc_tree->partitioning == PARTITION_HORZ_B ||
pc_tree->partitioning == PARTITION_SPLIT ||
pc_tree->partitioning == PARTITION_NONE);
part4_search_allowed[VERT4] &= (pc_tree->partitioning == PARTITION_VERT ||
pc_tree->partitioning == PARTITION_VERT_A ||
pc_tree->partitioning == PARTITION_VERT_B ||
pc_tree->partitioning == PARTITION_SPLIT ||
pc_tree->partitioning == PARTITION_NONE);
}
// Pruning: pruning out some 4-way partitions using a DNN taking rd costs of
// sub-blocks from basic partition types.
if (cpi->sf.part_sf.ml_prune_partition && partition4_allowed &&
part_search_state->partition_rect_allowed[HORZ] &&
part_search_state->partition_rect_allowed[VERT]) {
av1_ml_prune_4_partition(cpi, x, pc_tree->partitioning, best_rdc->rdcost,
part_search_state, part4_search_allowed,
pb_source_variance);
}
// Pruning: pruning out 4-way partitions based on the number of horz/vert wins
// in the current block and sub-blocks in PARTITION_SPLIT.
prune_4_partition_using_split_info(cpi, x, part_search_state,
part4_search_allowed);
}
// Set params needed for PARTITION_NONE search.
static void set_none_partition_params(const AV1_COMP *const cpi, ThreadData *td,
MACROBLOCK *x, PC_TREE *pc_tree,
PartitionSearchState *part_search_state,
RD_STATS *best_remain_rdcost,
RD_STATS *best_rdc, int *pt_cost) {
PartitionBlkParams blk_params = part_search_state->part_blk_params;
RD_STATS partition_rdcost;
// Set PARTITION_NONE context.
if (pc_tree->none == NULL)
pc_tree->none = av1_alloc_pmc(cpi, blk_params.bsize, &td->shared_coeff_buf);
if (!pc_tree->none)
aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
// Set PARTITION_NONE type cost.
if (part_search_state->partition_none_allowed) {
if (blk_params.bsize_at_least_8x8) {
*pt_cost = part_search_state->partition_cost[PARTITION_NONE] < INT_MAX
? part_search_state->partition_cost[PARTITION_NONE]
: 0;
}
// Initialize the RD stats structure.
av1_init_rd_stats(&partition_rdcost);
partition_rdcost.rate = *pt_cost;
av1_rd_cost_update(x->rdmult, &partition_rdcost);
av1_rd_stats_subtraction(x->rdmult, best_rdc, &partition_rdcost,
best_remain_rdcost);
}
}
// Skip other partitions based on PARTITION_NONE rd cost.
static void prune_partitions_after_none(AV1_COMP *const cpi, MACROBLOCK *x,
SIMPLE_MOTION_DATA_TREE *sms_tree,
PICK_MODE_CONTEXT *ctx_none,
PartitionSearchState *part_search_state,
RD_STATS *best_rdc,
unsigned int *pb_source_variance) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const PartitionBlkParams blk_params = part_search_state->part_blk_params;
RD_STATS *this_rdc = &part_search_state->this_rdc;
const BLOCK_SIZE bsize = blk_params.bsize;
assert(bsize < BLOCK_SIZES_ALL);
if (!frame_is_intra_only(cm) &&
(part_search_state->do_square_split ||
part_search_state->do_rectangular_split) &&
!x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) {
const int use_ml_based_breakout =
bsize <= cpi->sf.part_sf.use_square_partition_only_threshold &&
bsize > BLOCK_4X4 && cpi->sf.part_sf.ml_predict_breakout_level >= 1;
if (use_ml_based_breakout) {
av1_ml_predict_breakout(cpi, x, this_rdc, *pb_source_variance, xd->bd,
part_search_state);
}
// Adjust dist breakout threshold according to the partition size.
const int64_t dist_breakout_thr =
cpi->sf.part_sf.partition_search_breakout_dist_thr >>
((2 * (MAX_SB_SIZE_LOG2 - 2)) -
(mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]));
const int rate_breakout_thr =
cpi->sf.part_sf.partition_search_breakout_rate_thr *
num_pels_log2_lookup[bsize];
// If all y, u, v transform blocks in this partition are skippable,
// and the dist & rate are within the thresholds, the partition
// search is terminated for current branch of the partition search
// tree. The dist & rate thresholds are set to 0 at speed 0 to
// disable the early termination at that speed.
if (best_rdc->dist < dist_breakout_thr &&
best_rdc->rate < rate_breakout_thr) {
part_search_state->do_square_split = 0;
part_search_state->do_rectangular_split = 0;
}
}
// Early termination: using simple_motion_search features and the
// rate, distortion, and rdcost of PARTITION_NONE, a DNN will make a
// decision on early terminating at PARTITION_NONE.
if (cpi->sf.part_sf.simple_motion_search_early_term_none && cm->show_frame &&
!frame_is_intra_only(cm) && bsize >= BLOCK_16X16 &&
av1_blk_has_rows_and_cols(&blk_params) && this_rdc->rdcost < INT64_MAX &&
this_rdc->rdcost >= 0 && this_rdc->rate < INT_MAX &&
this_rdc->rate >= 0 &&
(part_search_state->do_square_split ||
part_search_state->do_rectangular_split)) {
av1_simple_motion_search_early_term_none(cpi, x, sms_tree, this_rdc,
part_search_state);
}
}
// Decide early termination and rectangular partition pruning
// based on PARTITION_NONE and PARTITION_SPLIT costs.
static void prune_partitions_after_split(
AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
int64_t part_none_rd, int64_t part_split_rd) {
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
const int mi_row = blk_params.mi_row;
const int mi_col = blk_params.mi_col;
const BLOCK_SIZE bsize = blk_params.bsize;
assert(bsize < BLOCK_SIZES_ALL);
// Early termination: using the rd costs of PARTITION_NONE and subblocks
// from PARTITION_SPLIT to determine an early breakout.
if (cpi->sf.part_sf.ml_early_term_after_part_split_level &&
!frame_is_intra_only(cm) &&
!part_search_state->terminate_partition_search &&
part_search_state->do_rectangular_split &&
(part_search_state->partition_rect_allowed[HORZ] ||
part_search_state->partition_rect_allowed[VERT])) {
av1_ml_early_term_after_split(
cpi, x, sms_tree, best_rdc->rdcost, part_none_rd, part_split_rd,
part_search_state->split_rd, part_search_state);
}
// Use the rd costs of PARTITION_NONE and subblocks from PARTITION_SPLIT
// to prune out rectangular partitions in some directions.
if (!cpi->sf.part_sf.ml_early_term_after_part_split_level &&
cpi->sf.part_sf.ml_prune_partition && !frame_is_intra_only(cm) &&
(part_search_state->partition_rect_allowed[HORZ] ||
part_search_state->partition_rect_allowed[VERT]) &&
!(part_search_state->prune_rect_part[HORZ] ||
part_search_state->prune_rect_part[VERT]) &&
!part_search_state->terminate_partition_search) {
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, av1_num_planes(cm),
bsize);
av1_ml_prune_rect_partition(cpi, x, best_rdc->rdcost,
part_search_state->none_rd,
part_search_state->split_rd, part_search_state);
}
}
// Returns true if either of the left and top neighbor blocks is larger than
// the current block; false otherwise.
static inline bool is_neighbor_blk_larger_than_cur_blk(const MACROBLOCKD *xd,
BLOCK_SIZE bsize) {
const int cur_blk_area = (block_size_high[bsize] * block_size_wide[bsize]);
if (xd->left_available) {
const BLOCK_SIZE left_bsize = xd->left_mbmi->bsize;
if (block_size_high[left_bsize] * block_size_wide[left_bsize] >
cur_blk_area)
return true;
}
if (xd->up_available) {
const BLOCK_SIZE above_bsize = xd->above_mbmi->bsize;
if (block_size_high[above_bsize] * block_size_wide[above_bsize] >
cur_blk_area)
return true;
}
return false;
}
static inline void prune_rect_part_using_none_pred_mode(
const MACROBLOCKD *xd, PartitionSearchState *part_state,
PREDICTION_MODE mode, BLOCK_SIZE bsize) {
if (mode == DC_PRED || mode == SMOOTH_PRED) {
// If the prediction mode of NONE partition is either DC_PRED or
// SMOOTH_PRED, it indicates that the current block has less variation. In
// this case, HORZ and VERT partitions are pruned if at least one of left
// and top neighbor blocks is larger than the current block.
if (is_neighbor_blk_larger_than_cur_blk(xd, bsize)) {
part_state->prune_rect_part[HORZ] = 1;
part_state->prune_rect_part[VERT] = 1;
}
} else if (mode == D67_PRED || mode == V_PRED || mode == D113_PRED) {
// If the prediction mode chosen by NONE partition is close to 90 degrees,
// it implies a dominant vertical pattern, and the chance of choosing a
// vertical rectangular partition is high. Hence, horizontal partition is
// pruned in these cases.
part_state->prune_rect_part[HORZ] = 1;
} else if (mode == D157_PRED || mode == H_PRED || mode == D203_PRED) {
// If the prediction mode chosen by NONE partition is close to 180 degrees,
// it implies a dominant horizontal pattern, and the chance of choosing a
// horizontal rectangular partition is high. Hence, vertical partition is
// pruned in these cases.
part_state->prune_rect_part[VERT] = 1;
}
}
// PARTITION_NONE search.
static void none_partition_search(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, MACROBLOCK *x,
PC_TREE *pc_tree, SIMPLE_MOTION_DATA_TREE *sms_tree,
RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
unsigned int *pb_source_variance, int64_t *none_rd, int64_t *part_none_rd) {
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
RD_STATS *this_rdc = &part_search_state->this_rdc;
const int mi_row = blk_params.mi_row;
const int mi_col = blk_params.mi_col;
const BLOCK_SIZE bsize = blk_params.bsize;
assert(bsize < BLOCK_SIZES_ALL);
if (part_search_state->terminate_partition_search ||
!part_search_state->partition_none_allowed)
return;
int pt_cost = 0;
RD_STATS best_remain_rdcost;
av1_invalid_rd_stats(&best_remain_rdcost);
// Set PARTITION_NONE context and cost.
set_none_partition_params(cpi, td, x, pc_tree, part_search_state,
&best_remain_rdcost, best_rdc, &pt_cost);
#if CONFIG_COLLECT_PARTITION_STATS
// Timer start for partition None.
PartitionTimingStats *part_timing_stats =
&part_search_state->part_timing_stats;
if (best_remain_rdcost.rdcost >= 0) {
start_partition_block_timer(part_timing_stats, PARTITION_NONE);
}
#endif
// PARTITION_NONE evaluation and cost update.
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc, PARTITION_NONE,
bsize, pc_tree->none, best_remain_rdcost);
av1_rd_cost_update(x->rdmult, this_rdc);
#if CONFIG_COLLECT_PARTITION_STATS
// Timer end for partition None.
if (part_timing_stats->timer_is_on) {
RD_STATS tmp_rdc;
av1_init_rd_stats(&tmp_rdc);
if (this_rdc->rate != INT_MAX) {
tmp_rdc.rate = this_rdc->rate;
tmp_rdc.dist = this_rdc->dist;
tmp_rdc.rdcost = this_rdc->rdcost;
if (blk_params.bsize_at_least_8x8) {
tmp_rdc.rate += pt_cost;
tmp_rdc.rdcost = RDCOST(x->rdmult, tmp_rdc.rate, tmp_rdc.dist);
}
}
end_partition_block_timer(part_timing_stats, PARTITION_NONE,
tmp_rdc.rdcost);
}
#endif
*pb_source_variance = x->source_variance;
if (none_rd) *none_rd = this_rdc->rdcost;
part_search_state->none_rd = this_rdc->rdcost;
if (this_rdc->rate != INT_MAX) {
// Record picked ref frame to prune ref frames for other partition types.
if (cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions) {
const int ref_type = av1_ref_frame_type(pc_tree->none->mic.ref_frame);
av1_update_picked_ref_frames_mask(
x, ref_type, bsize, cm->seq_params->mib_size, mi_row, mi_col);
}
// Calculate the total cost and update the best partition.
if (blk_params.bsize_at_least_8x8) {
this_rdc->rate += pt_cost;
this_rdc->rdcost = RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist);
}
*part_none_rd = this_rdc->rdcost;
if (this_rdc->rdcost < best_rdc->rdcost) {
*best_rdc = *this_rdc;
part_search_state->found_best_partition = true;
if (blk_params.bsize_at_least_8x8) {
pc_tree->partitioning = PARTITION_NONE;
}
// Disable split and rectangular partition search
// based on PARTITION_NONE cost.
prune_partitions_after_none(cpi, x, sms_tree, pc_tree->none,
part_search_state, best_rdc,
pb_source_variance);
}
if (cpi->sf.part_sf.prune_rect_part_using_none_pred_mode)
prune_rect_part_using_none_pred_mode(&x->e_mbd, part_search_state,
pc_tree->none->mic.mode, bsize);
}
av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
}
// PARTITION_SPLIT search.
static void split_partition_search(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree,
SIMPLE_MOTION_DATA_TREE *sms_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
SB_MULTI_PASS_MODE multi_pass_mode, int64_t *part_split_rd) {
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int mi_row = blk_params.mi_row;
const int mi_col = blk_params.mi_col;
const BLOCK_SIZE bsize = blk_params.bsize;
assert(bsize < BLOCK_SIZES_ALL);
RD_STATS sum_rdc = part_search_state->sum_rdc;
const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
// Check if partition split is allowed.
if (part_search_state->terminate_partition_search ||
!part_search_state->do_square_split)
return;
for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
if (pc_tree->split[i] == NULL)
pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
if (!pc_tree->split[i])
aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PC_TREE");
pc_tree->split[i]->index = i;
}
// Initialization of this partition RD stats.
av1_init_rd_stats(&sum_rdc);
sum_rdc.rate = part_search_state->partition_cost[PARTITION_SPLIT];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
int idx;
#if CONFIG_COLLECT_PARTITION_STATS
PartitionTimingStats *part_timing_stats =
&part_search_state->part_timing_stats;
if (best_rdc->rdcost - sum_rdc.rdcost >= 0) {
start_partition_block_timer(part_timing_stats, PARTITION_SPLIT);
}
#endif
// Recursive partition search on 4 sub-blocks.
for (idx = 0; idx < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc->rdcost;
++idx) {
const int x_idx = (idx & 1) * blk_params.mi_step;
const int y_idx = (idx >> 1) * blk_params.mi_step;
if (mi_row + y_idx >= mi_params->mi_rows ||
mi_col + x_idx >= mi_params->mi_cols)
continue;
pc_tree->split[idx]->index = idx;
int64_t *p_split_rd = &part_search_state->split_rd[idx];
RD_STATS best_remain_rdcost;
av1_rd_stats_subtraction(x->rdmult, best_rdc, &sum_rdc,
&best_remain_rdcost);
int curr_quad_tree_idx = 0;
if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
curr_quad_tree_idx = part_search_state->intra_part_info->quad_tree_idx;
part_search_state->intra_part_info->quad_tree_idx =
4 * curr_quad_tree_idx + idx + 1;
}
// Split partition evaluation of corresponding idx.
// If the RD cost exceeds the best cost then do not
// evaluate other split sub-partitions.
SIMPLE_MOTION_DATA_TREE *const sms_tree_split =
(sms_tree == NULL) ? NULL : sms_tree->split[idx];
if (!av1_rd_pick_partition(
cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize,
&part_search_state->this_rdc, best_remain_rdcost,
pc_tree->split[idx], sms_tree_split, p_split_rd, multi_pass_mode,
&part_search_state->split_part_rect_win[idx])) {
av1_invalid_rd_stats(&sum_rdc);
break;
}
if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
part_search_state->intra_part_info->quad_tree_idx = curr_quad_tree_idx;
}
sum_rdc.rate += part_search_state->this_rdc.rate;
sum_rdc.dist += part_search_state->this_rdc.dist;
av1_rd_cost_update(x->rdmult, &sum_rdc);
// Set split ctx as ready for use.
if (idx <= 1 && (bsize <= BLOCK_8X8 ||
pc_tree->split[idx]->partitioning == PARTITION_NONE)) {
const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none->mic;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
// Neither palette mode nor cfl predicted.
if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
if (mbmi->uv_mode != UV_CFL_PRED)
part_search_state->is_split_ctx_is_ready[idx] = 1;
}
}
}
#if CONFIG_COLLECT_PARTITION_STATS
if (part_timing_stats->timer_is_on) {
end_partition_block_timer(part_timing_stats, PARTITION_SPLIT,
sum_rdc.rdcost);
}
#endif
const int reached_last_index = (idx == SUB_PARTITIONS_SPLIT);
// Calculate the total cost and update the best partition.
*part_split_rd = sum_rdc.rdcost;
if (reached_last_index && sum_rdc.rdcost < best_rdc->rdcost) {
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc->rdcost) {
*best_rdc = sum_rdc;
part_search_state->found_best_partition = true;
pc_tree->partitioning = PARTITION_SPLIT;
}
} else if (cpi->sf.part_sf.less_rectangular_check_level > 0) {
// Skip rectangular partition test when partition type none gives better
// rd than partition type split.
if (cpi->sf.part_sf.less_rectangular_check_level == 2 || idx <= 2) {
const int partition_none_valid = part_search_state->none_rd > 0;
const int partition_none_better =
part_search_state->none_rd < sum_rdc.rdcost;
part_search_state->do_rectangular_split &=
!(partition_none_valid && partition_none_better);
}
}
// Restore the context for the following cases:
// 1) Current block size not more than maximum partition size as dry run
// encode happens for these cases
// 2) Current block size same as superblock size as the final encode
// happens for this case
if (bsize <= x->sb_enc.max_partition_size || bsize == cm->seq_params->sb_size)
av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
}
// The max number of nodes in the partition tree.
// The number of leaf nodes is (128x128) / (4x4) = 1024.
// The number of All possible parent nodes is 1 + 2 + ... + 512 = 1023.
#define NUM_NODES 2048
static void write_partition_tree(AV1_COMP *const cpi,
const PC_TREE *const pc_tree,
const BLOCK_SIZE bsize, const int mi_row,
const int mi_col) {
(void)mi_row;
(void)mi_col;
const char *path = cpi->oxcf.partition_info_path;
char filename[256];
snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path,
cpi->sb_counter, 0);
FILE *pfile = fopen(filename, "w");
fprintf(pfile, "%d", bsize);
// Write partition type with BFS order.
const PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
int q_idx = 0;
int last_idx = 1;
int num_nodes = 1;
// First traversal to get number of leaf nodes.
tree_node_queue[q_idx] = pc_tree;
while (num_nodes > 0) {
const PC_TREE *node = tree_node_queue[q_idx];
if (node->partitioning == PARTITION_SPLIT) {
for (int i = 0; i < 4; ++i) {
tree_node_queue[last_idx] = node->split[i];
++last_idx;
}
num_nodes += 4;
}
--num_nodes;
++q_idx;
}
const int num_leafs = last_idx;
fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1);
// Write partitions for each node.
q_idx = 0;
last_idx = 1;
num_nodes = 1;
tree_node_queue[q_idx] = pc_tree;
while (num_nodes > 0) {
const PC_TREE *node = tree_node_queue[q_idx];
fprintf(pfile, ",%d", node->partitioning);
if (node->partitioning == PARTITION_SPLIT) {
for (int i = 0; i < 4; ++i) {
tree_node_queue[last_idx] = node->split[i];
++last_idx;
}
num_nodes += 4;
}
--num_nodes;
++q_idx;
}
fprintf(pfile, "\n");
fclose(pfile);
}
#if CONFIG_PARTITION_SEARCH_ORDER
static void verify_write_partition_tree(const AV1_COMP *const cpi,
const PC_TREE *const pc_tree,
const BLOCK_SIZE bsize,
const int config_id, const int mi_row,
const int mi_col) {
(void)mi_row;
(void)mi_col;
const char *path = cpi->oxcf.partition_info_path;
char filename[256];
snprintf(filename, sizeof(filename), "%s/verify_partition_tree_sb%d_c%d",
path, cpi->sb_counter, config_id);
FILE *pfile = fopen(filename, "w");
fprintf(pfile, "%d", bsize);
// Write partition type with BFS order.
const PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
int q_idx = 0;
int last_idx = 1;
int num_nodes = 1;
// First traversal to get number of leaf nodes.
tree_node_queue[q_idx] = pc_tree;
while (num_nodes > 0) {
const PC_TREE *node = tree_node_queue[q_idx];
if (node != NULL && node->partitioning == PARTITION_SPLIT) {
for (int i = 0; i < 4; ++i) {
tree_node_queue[last_idx] = node->split[i];
++last_idx;
}
num_nodes += 4;
}
--num_nodes;
++q_idx;
}
const int num_leafs = last_idx;
fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1);
// Write partitions for each node.
q_idx = 0;
last_idx = 1;
num_nodes = 1;
tree_node_queue[q_idx] = pc_tree;
while (num_nodes > 0) {
const PC_TREE *node = tree_node_queue[q_idx];
if (node != NULL) { // suppress warning
fprintf(pfile, ",%d", node->partitioning);
if (node->partitioning == PARTITION_SPLIT) {
for (int i = 0; i < 4; ++i) {
tree_node_queue[last_idx] = node->split[i];
++last_idx;
}
num_nodes += 4;
}
}
--num_nodes;
++q_idx;
}
fprintf(pfile, "\n");
fclose(pfile);
}
static int read_partition_tree(AV1_COMP *const cpi, PC_TREE *const pc_tree,
struct aom_internal_error_info *error_info,
const int config_id) {
const AV1_COMMON *const cm = &cpi->common;
const char *path = cpi->oxcf.partition_info_path;
char filename[256];
snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path,
cpi->sb_counter, config_id);
FILE *pfile = fopen(filename, "r");
if (pfile == NULL) {
aom_internal_error(cm->error, AOM_CODEC_ERROR, "Can't find input file: %s.",
filename);
}
int read_bsize;
int num_nodes;
int num_configs;
fscanf(pfile, "%d,%d,%d", &read_bsize, &num_nodes, &num_configs);
assert(read_bsize == cpi->common.seq_params->sb_size);
BLOCK_SIZE bsize = (BLOCK_SIZE)read_bsize;
assert(bsize == pc_tree->block_size);
PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
int last_idx = 1;
int q_idx = 0;
tree_node_queue[q_idx] = pc_tree;
while (num_nodes > 0) {
int partitioning;
fscanf(pfile, ",%d", &partitioning);
assert(partitioning >= PARTITION_NONE &&
partitioning < EXT_PARTITION_TYPES);
PC_TREE *node = tree_node_queue[q_idx];
if (node != NULL) {
node->partitioning = partitioning;
bsize = node->block_size;
}
if (partitioning == PARTITION_SPLIT) {
const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
for (int i = 0; i < 4; ++i) {
if (node != NULL) { // Suppress warning
node->split[i] = av1_alloc_pc_tree_node(subsize);
if (!node->split[i])
aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PC_TREE");
node->split[i]->index = i;
tree_node_queue[last_idx] = node->split[i];
++last_idx;
}
}
}
--num_nodes;
++q_idx;
}
fclose(pfile);
return num_configs;
}
static RD_STATS rd_search_for_fixed_partition(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
TokenExtra **tp, SIMPLE_MOTION_DATA_TREE *sms_tree, int mi_row, int mi_col,
const BLOCK_SIZE bsize, PC_TREE *pc_tree) {
const PARTITION_TYPE partition = pc_tree->partitioning;
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
TileInfo *const tile_info = &tile_data->tile_info;
RD_STATS best_rdc;
av1_invalid_rd_stats(&best_rdc);
int sum_subblock_rate = 0;
int64_t sum_subblock_dist = 0;
PartitionSearchState part_search_state;
init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col,
bsize);
// Override partition costs at the edges of the frame in the same
// way as in read_partition (see decodeframe.c).
PartitionBlkParams blk_params = part_search_state.part_blk_params;
if (!av1_blk_has_rows_and_cols(&blk_params))
set_partition_cost_for_edge_blk(cm, &part_search_state);
av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
(void)orig_rdmult;
// Set the context.
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
assert(bsize < BLOCK_SIZES_ALL);
unsigned int pb_source_variance = UINT_MAX;
int64_t part_none_rd = INT64_MAX;
int64_t none_rd = INT64_MAX;
int inc_step[NUM_PART4_TYPES] = { 0 };
if (partition == PARTITION_HORZ_4) inc_step[HORZ4] = mi_size_high[bsize] / 4;
if (partition == PARTITION_VERT_4) inc_step[VERT4] = mi_size_wide[bsize] / 4;
switch (partition) {
case PARTITION_NONE:
none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx,
&part_search_state, &best_rdc, &pb_source_variance,
&none_rd, &part_none_rd);
break;
case PARTITION_HORZ:
rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx,
&part_search_state, &best_rdc, NULL, HORZ,
HORZ);
break;
case PARTITION_VERT:
rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx,
&part_search_state, &best_rdc, NULL, VERT,
VERT);
break;
case PARTITION_HORZ_A:
ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
&part_search_state, &best_rdc, NULL,
pb_source_variance, 1, HORZ_A, HORZ_A);
break;
case PARTITION_HORZ_B:
ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
&part_search_state, &best_rdc, NULL,
pb_source_variance, 1, HORZ_B, HORZ_B);
break;
case PARTITION_VERT_A:
ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
&part_search_state, &best_rdc, NULL,
pb_source_variance, 1, VERT_A, VERT_A);
break;
case PARTITION_VERT_B:
ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
&part_search_state, &best_rdc, NULL,
pb_source_variance, 1, VERT_B, VERT_B);
break;
case PARTITION_HORZ_4:
rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
pc_tree->horizontal4, &part_search_state, &best_rdc,
inc_step, PARTITION_HORZ_4);
break;
case PARTITION_VERT_4:
rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
pc_tree->vertical4, &part_search_state, &best_rdc,
inc_step, PARTITION_VERT_4);
break;
case PARTITION_SPLIT:
for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; ++idx) {
const BLOCK_SIZE subsize =
get_partition_subsize(bsize, PARTITION_SPLIT);
assert(subsize < BLOCK_SIZES_ALL);
const int next_mi_row =
idx < 2 ? mi_row : mi_row + mi_size_high[subsize];
const int next_mi_col =
idx % 2 == 0 ? mi_col : mi_col + mi_size_wide[subsize];
if (next_mi_row >= cm->mi_params.mi_rows ||
next_mi_col >= cm->mi_params.mi_cols) {
continue;
}
const RD_STATS subblock_rdc = rd_search_for_fixed_partition(
cpi, td, tile_data, tp, sms_tree->split[idx], next_mi_row,
next_mi_col, subsize, pc_tree->split[idx]);
sum_subblock_rate += subblock_rdc.rate;
sum_subblock_dist += subblock_rdc.dist;
}
best_rdc.rate = sum_subblock_rate;
best_rdc.rate += part_search_state.partition_cost[PARTITION_SPLIT];
best_rdc.dist = sum_subblock_dist;
best_rdc.rdcost = RDCOST(x->rdmult, best_rdc.rate, best_rdc.dist);
break;
default:
assert(0 && "invalid partition type.");
aom_internal_error(cm->error, AOM_CODEC_ERROR, "Invalid partition type.");
}
// Note: it is necessary to restore context information.
av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
if (bsize != cm->seq_params->sb_size) {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
x->rdmult = orig_rdmult;
return best_rdc;
}
static void prepare_sb_features_before_search(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, int mi_row,
int mi_col, const BLOCK_SIZE bsize, aom_partition_features_t *features) {
av1_collect_motion_search_features_sb(cpi, td, tile_data, mi_row, mi_col,
bsize, features);
collect_tpl_stats_sb(cpi, bsize, mi_row, mi_col, features);
}
static void update_partition_stats(const RD_STATS *const this_rdcost,
aom_partition_stats_t *stats) {
stats->rate = this_rdcost->rate;
stats->dist = this_rdcost->dist;
stats->rdcost = this_rdcost->rdcost;
}
static void build_pc_tree_from_part_decision(
const aom_partition_decision_t *partition_decision,
const BLOCK_SIZE this_bsize, PC_TREE *pc_tree,
struct aom_internal_error_info *error_info) {
BLOCK_SIZE bsize = this_bsize;
int num_nodes = partition_decision->num_nodes;
PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
int last_idx = 1;
int q_idx = 0;
tree_node_queue[q_idx] = pc_tree;
while (num_nodes > 0) {
const int partitioning = partition_decision->partition_decision[q_idx];
assert(partitioning >= PARTITION_NONE &&
partitioning < EXT_PARTITION_TYPES);
PC_TREE *node = tree_node_queue[q_idx];
if (node != NULL) {
node->partitioning = partitioning;
bsize = node->block_size;
}
if (partitioning == PARTITION_SPLIT) {
const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
for (int i = 0; i < 4; ++i) {
if (node != NULL) { // Suppress warning
node->split[i] = av1_alloc_pc_tree_node(subsize);
if (!node->split[i])
aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PC_TREE");
node->split[i]->index = i;
tree_node_queue[last_idx] = node->split[i];
++last_idx;
}
}
}
--num_nodes;
++q_idx;
}
}
// The ML model needs to provide the whole decision tree for the superblock.
static bool ml_partition_search_whole_tree(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data,
TokenExtra **tp,
SIMPLE_MOTION_DATA_TREE *sms_root,
int mi_row, int mi_col,
const BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
struct aom_internal_error_info *error_info = x->e_mbd.error_info;
aom_partition_features_t features;
prepare_sb_features_before_search(cpi, td, tile_data, mi_row, mi_col, bsize,
&features);
features.mi_row = mi_row;
features.mi_col = mi_col;
features.frame_width = cpi->frame_info.frame_width;
features.frame_height = cpi->frame_info.frame_height;
features.block_size = bsize;
av1_ext_part_send_features(ext_part_controller, &features);
// rd mode search (dry run) for a valid partition decision from the ml model.
aom_partition_decision_t partition_decision;
do {
const bool valid_decision = av1_ext_part_get_partition_decision(
ext_part_controller, &partition_decision);
if (!valid_decision) return false;
// First, let's take the easy approach.
// We require that the ml model has to provide partition decisions for the
// whole superblock.
td->pc_root = av1_alloc_pc_tree_node(bsize);
if (!td->pc_root)
aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PC_TREE");
build_pc_tree_from_part_decision(&partition_decision, bsize, td->pc_root,
error_info);
const RD_STATS this_rdcost = rd_search_for_fixed_partition(
cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, td->pc_root);
aom_partition_stats_t stats;
update_partition_stats(&this_rdcost, &stats);
av1_ext_part_send_partition_stats(ext_part_controller, &stats);
if (!partition_decision.is_final_decision) {
av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
cpi->sf.part_sf.partition_search_type);
td->pc_root = NULL;
}
} while (!partition_decision.is_final_decision);
// Encode with the selected mode and partition.
set_cb_offsets(x->cb_offset, 0, 0);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
td->pc_root, NULL);
av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
cpi->sf.part_sf.partition_search_type);
td->pc_root = NULL;
return true;
}
// Use a bitmask to represent the valid partition types for the current
// block. "1" represents the corresponding partition type is vaild.
// The least significant bit represents "PARTITION_NONE", the
// largest significant bit represents "PARTITION_VERT_4", follow
// the enum order for PARTITION_TYPE in "enums.h"
static int get_valid_partition_types(
const AV1_COMP *const cpi,
const PartitionSearchState *const part_search_state,
const BLOCK_SIZE bsize) {
const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
const PartitionBlkParams blk_params = part_search_state->part_blk_params;
int valid_types = 0;
// PARTITION_NONE
valid_types |= (part_search_state->partition_none_allowed << 0);
// PARTITION_HORZ
valid_types |= (part_search_state->partition_rect_allowed[HORZ] << 1);
// PARTITION_VERT
valid_types |= (part_search_state->partition_rect_allowed[VERT] << 2);
// PARTITION_SPLIT
valid_types |= (part_search_state->do_square_split << 3);
// PARTITION_HORZ_A
const int ext_partition_allowed = part_search_state->do_rectangular_split &&
av1_blk_has_rows_and_cols(&blk_params);
const int horzab_partition_allowed =
ext_partition_allowed && part_cfg->enable_ab_partitions &&
part_search_state->partition_rect_allowed[HORZ];
valid_types |= (horzab_partition_allowed << 4);
// PARTITION_HORZ_B
valid_types |= (horzab_partition_allowed << 5);
// PARTITION_VERT_A
const int vertab_partition_allowed =
ext_partition_allowed && part_cfg->enable_ab_partitions &&
part_search_state->partition_rect_allowed[VERT];
valid_types |= (vertab_partition_allowed << 6);
// PARTITION_VERT_B
valid_types |= (vertab_partition_allowed << 7);
// PARTITION_HORZ_4
const int partition4_allowed = part_cfg->enable_1to4_partitions &&
ext_partition_allowed &&
bsize != BLOCK_128X128;
const int horz4_allowed =
partition4_allowed && part_search_state->partition_rect_allowed[HORZ] &&
get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ_4),
part_search_state->ss_x,
part_search_state->ss_y) != BLOCK_INVALID;
valid_types |= (horz4_allowed << 8);
// PARTITION_VERT_4
const int vert4_allowed =
partition4_allowed && part_search_state->partition_rect_allowed[HORZ] &&
get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT_4),
part_search_state->ss_x,
part_search_state->ss_y) != BLOCK_INVALID;
valid_types |= (vert4_allowed << 9);
return valid_types;
}
static void prepare_tpl_stats_block(const AV1_COMP *const cpi,
const BLOCK_SIZE bsize, const int mi_row,
const int mi_col, int64_t *intra_cost,
int64_t *inter_cost, int64_t *mc_dep_cost) {
const AV1_COMMON *const cm = &cpi->common;
GF_GROUP *gf_group = &cpi->ppi->gf_group;
if (gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE ||
gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) {
return;
}
TplParams *const tpl_data = &cpi->ppi->tpl_data;
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[cpi->gf_frame_index];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
// If tpl stats is not established, early return
if (!tpl_data->ready || gf_group->max_layer_depth_allowed == 0) {
return;
}
const int tpl_stride = tpl_frame->stride;
const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
const int mi_width =
AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
const int mi_height =
AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
int64_t sum_intra_cost = 0;
int64_t sum_inter_cost = 0;
int64_t sum_mc_dep_cost = 0;
for (int row = 0; row < mi_height; row += step) {
for (int col = 0; col < mi_width; col += step) {
TplDepStats *this_stats =
&tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride,
tpl_data->tpl_stats_block_mis_log2)];
sum_intra_cost += this_stats->intra_cost;
sum_inter_cost += this_stats->inter_cost;
const int64_t mc_dep_delta =
RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
this_stats->mc_dep_dist);
sum_mc_dep_cost += mc_dep_delta;
}
}
*intra_cost = sum_intra_cost;
*inter_cost = sum_inter_cost;
*mc_dep_cost = sum_mc_dep_cost;
}
static bool recursive_partition(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp,
SIMPLE_MOTION_DATA_TREE *sms_root,
PC_TREE *pc_tree, int mi_row, int mi_col,
const BLOCK_SIZE bsize, RD_STATS *this_rdcost) {
const AV1_COMMON *const cm = &cpi->common;
ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) {
return false;
}
aom_partition_decision_t partition_decision;
do {
PartitionSearchState part_search_state;
// Initialization of state variables used in partition search.
// TODO(chengchen): check if there is hidden conditions that don't allow
// all possible partition types.
init_partition_search_state_params(x, cpi, &part_search_state, mi_row,
mi_col, bsize);
// Override partition costs at the edges of the frame in the same
// way as in read_partition (see decodeframe.c).
PartitionBlkParams blk_params = part_search_state.part_blk_params;
if (!av1_blk_has_rows_and_cols(&blk_params))
set_partition_cost_for_edge_blk(cm, &part_search_state);
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
const int valid_partition_types =
get_valid_partition_types(cpi, &part_search_state, bsize);
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
const int qindex = av1_get_qindex(&cm->seg, xd->mi[0]->segment_id,
cm->quant_params.base_qindex);
// RD multiplier
const int rdmult = x->rdmult;
// pyramid level
const int pyramid_level =
cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index];
x->rdmult = orig_rdmult;
// Neighbor information
const int has_above = !!xd->above_mbmi;
const int has_left = !!xd->left_mbmi;
const BLOCK_SIZE above_bsize =
has_above ? xd->above_mbmi->bsize : BLOCK_INVALID;
const BLOCK_SIZE left_bsize =
has_left ? xd->left_mbmi->bsize : BLOCK_INVALID;
const int above_block_width =
above_bsize == BLOCK_INVALID ? -1 : block_size_wide[above_bsize];
const int above_block_height =
above_bsize == BLOCK_INVALID ? -1 : block_size_high[above_bsize];
const int left_block_width =
left_bsize == BLOCK_INVALID ? -1 : block_size_wide[left_bsize];
const int left_block_height =
left_bsize == BLOCK_INVALID ? -1 : block_size_high[left_bsize];
// Prepare simple motion search stats as features
unsigned int block_sse = -1;
unsigned int block_var = -1;
unsigned int sub_block_sse[4] = { -1, -1, -1, -1 };
unsigned int sub_block_var[4] = { -1, -1, -1, -1 };
unsigned int horz_block_sse[2] = { -1, -1 };
unsigned int horz_block_var[2] = { -1, -1 };
unsigned int vert_block_sse[2] = { -1, -1 };
unsigned int vert_block_var[2] = { -1, -1 };
av1_prepare_motion_search_features_block(
cpi, td, tile_data, mi_row, mi_col, bsize, valid_partition_types,
&block_sse, &block_var, sub_block_sse, sub_block_var, horz_block_sse,
horz_block_var, vert_block_sse, vert_block_var);
// Prepare tpl stats for the current block as features
int64_t tpl_intra_cost = -1;
int64_t tpl_inter_cost = -1;
int64_t tpl_mc_dep_cost = -1;
prepare_tpl_stats_block(cpi, bsize, mi_row, mi_col, &tpl_intra_cost,
&tpl_inter_cost, &tpl_mc_dep_cost);
aom_partition_features_t features;
features.mi_row = mi_row;
features.mi_col = mi_col;
features.frame_width = cpi->frame_info.frame_width;
features.frame_height = cpi->frame_info.frame_height;
features.block_size = bsize;
features.valid_partition_types = valid_partition_types;
features.update_type = update_type;
features.qindex = qindex;
features.rdmult = rdmult;
features.pyramid_level = pyramid_level;
features.has_above_block = has_above;
features.above_block_width = above_block_width;
features.above_block_height = above_block_height;
features.has_left_block = has_left;
features.left_block_width = left_block_width;
features.left_block_height = left_block_height;
features.block_sse = block_sse;
features.block_var = block_var;
for (int i = 0; i < 4; ++i) {
features.sub_block_sse[i] = sub_block_sse[i];
features.sub_block_var[i] = sub_block_var[i];
}
for (int i = 0; i < 2; ++i) {
features.horz_block_sse[i] = horz_block_sse[i];
features.horz_block_var[i] = horz_block_var[i];
features.vert_block_sse[i] = vert_block_sse[i];
features.vert_block_var[i] = vert_block_var[i];
}
features.tpl_intra_cost = tpl_intra_cost;
features.tpl_inter_cost = tpl_inter_cost;
features.tpl_mc_dep_cost = tpl_mc_dep_cost;
av1_ext_part_send_features(ext_part_controller, &features);
const bool valid_decision = av1_ext_part_get_partition_decision(
ext_part_controller, &partition_decision);
if (!valid_decision) return false;
pc_tree->partitioning = partition_decision.current_decision;
av1_init_rd_stats(this_rdcost);
if (partition_decision.current_decision == PARTITION_SPLIT) {
assert(block_size_wide[bsize] >= 8 && block_size_high[bsize] >= 8);
const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
RD_STATS split_rdc[SUB_PARTITIONS_SPLIT];
for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
av1_init_rd_stats(&split_rdc[i]);
if (pc_tree->split[i] == NULL)
pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
if (!pc_tree->split[i])
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PC_TREE");
pc_tree->split[i]->index = i;
}
const int orig_rdmult_tmp = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
// TODO(chengchen): check boundary conditions
// top-left
recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[0],
mi_row, mi_col, subsize, &split_rdc[0]);
// top-right
recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[1],
mi_row, mi_col + mi_size_wide[subsize], subsize,
&split_rdc[1]);
// bottom-left
recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[2],
mi_row + mi_size_high[subsize], mi_col, subsize,
&split_rdc[2]);
// bottom_right
recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[3],
mi_row + mi_size_high[subsize],
mi_col + mi_size_wide[subsize], subsize,
&split_rdc[3]);
this_rdcost->rate += part_search_state.partition_cost[PARTITION_SPLIT];
// problem is here, the rdmult is different from the rdmult in sub block.
for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
this_rdcost->rate += split_rdc[i].rate;
this_rdcost->dist += split_rdc[i].dist;
av1_rd_cost_update(x->rdmult, this_rdcost);
}
x->rdmult = orig_rdmult_tmp;
} else {
*this_rdcost = rd_search_for_fixed_partition(
cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, pc_tree);
}
aom_partition_stats_t stats;
update_partition_stats(this_rdcost, &stats);
av1_ext_part_send_partition_stats(ext_part_controller, &stats);
if (!partition_decision.is_final_decision) {
if (partition_decision.current_decision == PARTITION_SPLIT) {
for (int i = 0; i < 4; ++i) {
if (pc_tree->split[i] != NULL) {
av1_free_pc_tree_recursive(pc_tree->split[i], av1_num_planes(cm), 0,
0,
cpi->sf.part_sf.partition_search_type);
pc_tree->split[i] = NULL;
}
}
}
}
} while (!partition_decision.is_final_decision);
return true;
}
// The ML model only needs to make decisions for the current block each time.
static bool ml_partition_search_partial(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp,
SIMPLE_MOTION_DATA_TREE *sms_root,
int mi_row, int mi_col,
const BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
aom_partition_features_t features;
prepare_sb_features_before_search(cpi, td, tile_data, mi_row, mi_col, bsize,
&features);
features.mi_row = mi_row;
features.mi_col = mi_col;
features.frame_width = cpi->frame_info.frame_width;
features.frame_height = cpi->frame_info.frame_height;
features.block_size = bsize;
av1_ext_part_send_features(ext_part_controller, &features);
td->pc_root = av1_alloc_pc_tree_node(bsize);
if (!td->pc_root)
aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PC_TREE");
RD_STATS rdcost;
const bool valid_partition =
recursive_partition(cpi, td, tile_data, tp, sms_root, td->pc_root, mi_row,
mi_col, bsize, &rdcost);
if (!valid_partition) {
return false;
}
// Encode with the selected mode and partition.
set_cb_offsets(x->cb_offset, 0, 0);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
td->pc_root, NULL);
av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
cpi->sf.part_sf.partition_search_type);
td->pc_root = NULL;
return true;
}
bool av1_rd_partition_search(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp,
SIMPLE_MOTION_DATA_TREE *sms_root, int mi_row,
int mi_col, const BLOCK_SIZE bsize,
RD_STATS *best_rd_cost) {
AV1_COMMON *const cm = &cpi->common;
if (cpi->ext_part_controller.ready) {
bool valid_search = true;
const aom_ext_part_decision_mode_t decision_mode =
av1_get_ext_part_decision_mode(&cpi->ext_part_controller);
if (decision_mode == AOM_EXT_PART_WHOLE_TREE) {
valid_search = ml_partition_search_whole_tree(
cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize);
} else if (decision_mode == AOM_EXT_PART_RECURSIVE) {
valid_search = ml_partition_search_partial(
cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize);
} else {
assert(0 && "Unknown decision mode.");
return false;
}
if (!valid_search) {
aom_internal_error(
cm->error, AOM_CODEC_ERROR,
"Invalid search from ML model, partition search failed");
}
return true;
}
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
int best_idx = 0;
int64_t min_rdcost = INT64_MAX;
int num_configs;
int i = 0;
do {
td->pc_root = av1_alloc_pc_tree_node(bsize);
if (!td->pc_root)
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PC_TREE");
num_configs = read_partition_tree(cpi, td->pc_root, xd->error_info, i);
if (num_configs <= 0) {
av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
cpi->sf.part_sf.partition_search_type);
td->pc_root = NULL;
aom_internal_error(xd->error_info, AOM_CODEC_ERROR, "Invalid configs.");
}
verify_write_partition_tree(cpi, td->pc_root, bsize, i, mi_row, mi_col);
if (i == 0) {
AOM_CHECK_MEM_ERROR(xd->error_info, x->rdcost,
aom_calloc(num_configs, sizeof(*x->rdcost)));
}
// Encode the block with the given partition tree. Get rdcost and encoding
// time.
x->rdcost[i] = rd_search_for_fixed_partition(
cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, td->pc_root);
if (x->rdcost[i].rdcost < min_rdcost) {
min_rdcost = x->rdcost[i].rdcost;
best_idx = i;
*best_rd_cost = x->rdcost[i];
}
av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
cpi->sf.part_sf.partition_search_type);
td->pc_root = NULL;
++i;
} while (i < num_configs);
aom_free(x->rdcost);
x->rdcost = NULL;
// Encode with the partition configuration with the smallest rdcost.
td->pc_root = av1_alloc_pc_tree_node(bsize);
if (!td->pc_root)
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PC_TREE");
read_partition_tree(cpi, td->pc_root, xd->error_info, best_idx);
rd_search_for_fixed_partition(cpi, td, tile_data, tp, sms_root, mi_row,
mi_col, bsize, td->pc_root);
set_cb_offsets(x->cb_offset, 0, 0);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
td->pc_root, NULL);
av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
cpi->sf.part_sf.partition_search_type);
td->pc_root = NULL;
++cpi->sb_counter;
return true;
}
#endif // CONFIG_PARTITION_SEARCH_ORDER
static inline bool should_do_dry_run_encode_for_current_block(
BLOCK_SIZE sb_size, BLOCK_SIZE max_partition_size, int curr_block_index,
BLOCK_SIZE bsize) {
if (bsize > max_partition_size) return false;
// Enable the reconstruction with dry-run for the 4th sub-block only if its
// parent block's reconstruction with dry-run is skipped. If
// max_partition_size is the same as immediate split of superblock, then avoid
// reconstruction of the 4th sub-block, as this data is not consumed.
if (curr_block_index != 3) return true;
const BLOCK_SIZE sub_sb_size =
get_partition_subsize(sb_size, PARTITION_SPLIT);
return bsize == max_partition_size && sub_sb_size != max_partition_size;
}
static void log_sub_block_var(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs,
double *var_min, double *var_max) {
// This functions returns a the minimum and maximum log variances for 4x4
// sub blocks in the current block.
const MACROBLOCKD *const xd = &x->e_mbd;
const int is_hbd = is_cur_buf_hbd(xd);
const int right_overflow =
(xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0;
const int bottom_overflow =
(xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0;
const int bw = MI_SIZE * mi_size_wide[bs] - right_overflow;
const int bh = MI_SIZE * mi_size_high[bs] - bottom_overflow;
// Initialize minimum variance to a large value and maximum variance to 0.
double min_var_4x4 = (double)INT_MAX;
double max_var_4x4 = 0.0;
aom_variance_fn_t vf = cpi->ppi->fn_ptr[BLOCK_4X4].vf;
for (int i = 0; i < bh; i += MI_SIZE) {
for (int j = 0; j < bw; j += MI_SIZE) {
int var;
// Calculate the 4x4 sub-block variance.
var = av1_calc_normalized_variance(
vf, x->plane[0].src.buf + (i * x->plane[0].src.stride) + j,
x->plane[0].src.stride, is_hbd);
// Record min and max for over-arching block
min_var_4x4 = AOMMIN(min_var_4x4, var);
max_var_4x4 = AOMMAX(max_var_4x4, var);
}
}
*var_min = log1p(min_var_4x4 / 16.0);
*var_max = log1p(max_var_4x4 / 16.0);
}
static inline void set_sms_tree_partitioning(SIMPLE_MOTION_DATA_TREE *sms_tree,
PARTITION_TYPE partition) {
if (sms_tree == NULL) return;
sms_tree->partitioning = partition;
}
/*!\brief AV1 block partition search (full search).
*
* \ingroup partition_search
* \callgraph
* Searches for the best partition pattern for a block based on the
* rate-distortion cost, and returns a bool value to indicate whether a valid
* partition pattern is found. The partition can recursively go down to the
* smallest block size.
*
* \param[in] cpi Top-level encoder structure
* \param[in] td Pointer to thread data
* \param[in] tile_data Pointer to struct holding adaptive
data/contexts/models for the tile during
encoding
* \param[in] tp Pointer to the starting token
* \param[in] mi_row Row coordinate of the block in a step size
of MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step
size of MI_SIZE
* \param[in] bsize Current block size
* \param[in] rd_cost Pointer to the final rd cost of the block
* \param[in] best_rdc Upper bound of rd cost of a valid partition
* \param[in] pc_tree Pointer to the PC_TREE node storing the
picked partitions and mode info for the
current block
* \param[in] sms_tree Pointer to struct holding simple motion
search data for the current block
* \param[in] none_rd Pointer to the rd cost in the case of not
splitting the current block
* \param[in] multi_pass_mode SB_SINGLE_PASS/SB_DRY_PASS/SB_WET_PASS
* \param[in] rect_part_win_info Pointer to struct storing whether horz/vert
partition outperforms previously tested
partitions
*
* \return A bool value is returned indicating if a valid partition is found.
* The pc_tree struct is modified to store the picked partition and modes.
* The rd_cost struct is also updated with the RD stats corresponding to the
* best partition found.
*/
bool av1_rd_pick_partition(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp, int mi_row,
int mi_col, BLOCK_SIZE bsize, RD_STATS *rd_cost,
RD_STATS best_rdc, PC_TREE *pc_tree,
SIMPLE_MOTION_DATA_TREE *sms_tree, int64_t *none_rd,
SB_MULTI_PASS_MODE multi_pass_mode,
RD_RECT_PART_WIN_INFO *rect_part_win_info) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
const TokenExtra *const tp_orig = *tp;
PartitionSearchState part_search_state;
// Initialization of state variables used in partition search.
init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col,
bsize);
PartitionBlkParams blk_params = part_search_state.part_blk_params;
set_sms_tree_partitioning(sms_tree, PARTITION_NONE);
if (best_rdc.rdcost < 0) {
av1_invalid_rd_stats(rd_cost);
return part_search_state.found_best_partition;
}
if (bsize == cm->seq_params->sb_size) x->must_find_valid_partition = 0;
// Override skipping rectangular partition operations for edge blocks.
if (none_rd) *none_rd = 0;
(void)*tp_orig;
#if CONFIG_COLLECT_PARTITION_STATS
// Stats at the current quad tree
PartitionTimingStats *part_timing_stats =
&part_search_state.part_timing_stats;
// Stats aggregated at frame level
FramePartitionTimingStats *fr_part_timing_stats = &cpi->partition_stats;
#endif // CONFIG_COLLECT_PARTITION_STATS
// Override partition costs at the edges of the frame in the same
// way as in read_partition (see decodeframe.c).
if (!av1_blk_has_rows_and_cols(&blk_params))
set_partition_cost_for_edge_blk(cm, &part_search_state);
// Disable rectangular partitions for inner blocks when the current block is
// forced to only use square partitions.
if (bsize > cpi->sf.part_sf.use_square_partition_only_threshold) {
part_search_state.partition_rect_allowed[HORZ] &= !blk_params.has_rows;
part_search_state.partition_rect_allowed[VERT] &= !blk_params.has_cols;
}
#ifndef NDEBUG
// Nothing should rely on the default value of this array (which is just
// leftover from encoding the previous block. Setting it to fixed pattern
// when debugging.
// bit 0, 1, 2 are blk_skip of each plane
// bit 4, 5, 6 are initialization checking of each plane
memset(x->txfm_search_info.blk_skip, 0x77,
sizeof(x->txfm_search_info.blk_skip));
#endif // NDEBUG
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
// Set buffers and offsets.
av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
if (cpi->oxcf.mode == ALLINTRA) {
if (bsize == cm->seq_params->sb_size) {
double var_min, var_max;
log_sub_block_var(cpi, x, bsize, &var_min, &var_max);
x->intra_sb_rdmult_modifier = 128;
if ((var_min < 2.0) && (var_max > 4.0)) {
if ((var_max - var_min) > 8.0) {
x->intra_sb_rdmult_modifier -= 48;
} else {
x->intra_sb_rdmult_modifier -= (int)((var_max - var_min) * 6);
}
}
}
}
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
// Apply simple motion search for the entire super block with fixed block
// size, e.g., 16x16, to collect features and write to files for the
// external ML model.
// TODO(chengchen): reduce motion search. This function is similar to
// av1_get_max_min_partition_features().
if (COLLECT_MOTION_SEARCH_FEATURE_SB && !frame_is_intra_only(cm) &&
bsize == cm->seq_params->sb_size) {
av1_collect_motion_search_features_sb(cpi, td, tile_data, mi_row, mi_col,
bsize, /*features=*/NULL);
collect_tpl_stats_sb(cpi, bsize, mi_row, mi_col, /*features=*/NULL);
}
// Update rd cost of the bound using the current multiplier.
av1_rd_cost_update(x->rdmult, &best_rdc);
if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
x->mb_energy = av1_log_block_var(cpi, x, bsize);
// Set the context.
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_prune_partitions_time);
#endif
// Pruning: before searching any partition type, using source and simple
// motion search results to prune out unlikely partitions.
av1_prune_partitions_before_search(cpi, x, sms_tree, &part_search_state);
// Pruning: eliminating partition types leading to coding block sizes outside
// the min and max bsize limitations set from the encoder.
av1_prune_partitions_by_max_min_bsize(&x->sb_enc, &part_search_state);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_prune_partitions_time);
#endif
// Partition search
BEGIN_PARTITION_SEARCH:
// If a valid partition is required, usually when the first round cannot find
// a valid one under the cost limit after pruning, reset the limitations on
// partition types and intra cnn output.
if (x->must_find_valid_partition) {
reset_part_limitations(cpi, &part_search_state);
av1_prune_partitions_by_max_min_bsize(&x->sb_enc, &part_search_state);
// Invalidate intra cnn output for key frames.
if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) {
part_search_state.intra_part_info->quad_tree_idx = 0;
part_search_state.intra_part_info->cnn_output_valid = 0;
}
}
// Partition block source pixel variance.
unsigned int pb_source_variance = UINT_MAX;
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, none_partition_search_time);
#endif
if (cpi->oxcf.mode == ALLINTRA) {
const bool bsize_at_least_16x16 = (bsize >= BLOCK_16X16);
const bool prune_rect_part_using_4x4_var_deviation =
(cpi->sf.part_sf.prune_rect_part_using_4x4_var_deviation &&
!x->must_find_valid_partition);
if (bsize_at_least_16x16 || prune_rect_part_using_4x4_var_deviation) {
double var_min, var_max;
log_sub_block_var(cpi, x, bsize, &var_min, &var_max);
// Further pruning or in some cases reverse pruning when allintra is set.
// This code helps visual and in some cases metrics quality where the
// current block comprises at least one very low variance sub-block and at
// least one where the variance is much higher.
//
// The idea is that in such cases there is danger of ringing and other
// visual artifacts from a high variance feature such as an edge into a
// very low variance region.
//
// The approach taken is to force break down / split to a smaller block
// size to try and separate out the low variance and well predicted blocks
// from the more complex ones and to prevent propagation of ringing over a
// large region.
if (bsize_at_least_16x16 && (var_min < 0.272) &&
((var_max - var_min) > 3.0)) {
part_search_state.partition_none_allowed = 0;
part_search_state.terminate_partition_search = 0;
part_search_state.do_square_split = 1;
} else if (prune_rect_part_using_4x4_var_deviation &&
(var_max - var_min < 3.0)) {
// Prune rectangular partitions if the variance deviation of 4x4
// sub-blocks within the block is less than a threshold (derived
// empirically).
part_search_state.do_rectangular_split = 0;
}
}
}
// PARTITION_NONE search stage.
int64_t part_none_rd = INT64_MAX;
none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx,
&part_search_state, &best_rdc, &pb_source_variance,
none_rd, &part_none_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, none_partition_search_time);
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, split_partition_search_time);
#endif
// PARTITION_SPLIT search stage.
int64_t part_split_rd = INT64_MAX;
split_partition_search(cpi, td, tile_data, tp, x, pc_tree, sms_tree, &x_ctx,
&part_search_state, &best_rdc, multi_pass_mode,
&part_split_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, split_partition_search_time);
#endif
// Terminate partition search for child partition,
// when NONE and SPLIT partition rd_costs are INT64_MAX.
if (cpi->sf.part_sf.early_term_after_none_split &&
part_none_rd == INT64_MAX && part_split_rd == INT64_MAX &&
!x->must_find_valid_partition && (bsize != cm->seq_params->sb_size)) {
part_search_state.terminate_partition_search = 1;
}
// Do not evaluate non-square partitions if NONE partition did not choose a
// newmv mode and is skippable.
if ((cpi->sf.part_sf.skip_non_sq_part_based_on_none >= 2) &&
(pc_tree->none != NULL)) {
if (x->qindex <= 200 && is_inter_mode(pc_tree->none->mic.mode) &&
!have_newmv_in_inter_mode(pc_tree->none->mic.mode) &&
pc_tree->none->skippable && !x->must_find_valid_partition &&
bsize >= BLOCK_16X16)
part_search_state.do_rectangular_split = 0;
}
// Prune partitions based on PARTITION_NONE and PARTITION_SPLIT.
prune_partitions_after_split(cpi, x, sms_tree, &part_search_state, &best_rdc,
part_none_rd, part_split_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, rectangular_partition_search_time);
#endif
// Rectangular partitions search stage.
rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx,
&part_search_state, &best_rdc,
rect_part_win_info, HORZ, VERT);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, rectangular_partition_search_time);
#endif
if (pb_source_variance == UINT_MAX) {
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
pb_source_variance = av1_get_perpixel_variance_facade(
cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
}
assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
!part_search_state.do_rectangular_split));
const int prune_ext_part_state = prune_ext_part_none_skippable(
pc_tree->none, x->must_find_valid_partition,
cpi->sf.part_sf.skip_non_sq_part_based_on_none, bsize);
const int ab_partition_allowed = allow_ab_partition_search(
&part_search_state, &cpi->sf.part_sf, pc_tree->partitioning,
x->must_find_valid_partition, prune_ext_part_state, best_rdc.rdcost);
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, ab_partitions_search_time);
#endif
// AB partitions search stage.
ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
&part_search_state, &best_rdc, rect_part_win_info,
pb_source_variance, ab_partition_allowed, HORZ_A,
VERT_B);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, ab_partitions_search_time);
#endif
// 4-way partitions search stage.
int part4_search_allowed[NUM_PART4_TYPES] = { 1, 1 };
// Prune 4-way partition search.
prune_4_way_partition_search(cpi, x, pc_tree, &part_search_state, &best_rdc,
pb_source_variance, prune_ext_part_state,
part4_search_allowed);
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, rd_pick_4partition_time);
#endif
// PARTITION_HORZ_4
assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
!part4_search_allowed[HORZ4]));
if (!part_search_state.terminate_partition_search &&
part4_search_allowed[HORZ4]) {
const int inc_step[NUM_PART4_TYPES] = { mi_size_high[blk_params.bsize] / 4,
0 };
// Evaluation of Horz4 partition type.
rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
pc_tree->horizontal4, &part_search_state, &best_rdc,
inc_step, PARTITION_HORZ_4);
}
// PARTITION_VERT_4
assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
!part4_search_allowed[VERT4]));
if (!part_search_state.terminate_partition_search &&
part4_search_allowed[VERT4] && blk_params.has_cols) {
const int inc_step[NUM_PART4_TYPES] = { 0, mi_size_wide[blk_params.bsize] /
4 };
// Evaluation of Vert4 partition type.
rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
pc_tree->vertical4, &part_search_state, &best_rdc,
inc_step, PARTITION_VERT_4);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, rd_pick_4partition_time);
#endif
if (bsize == cm->seq_params->sb_size &&
!part_search_state.found_best_partition) {
// Did not find a valid partition, go back and search again, with less
// constraint on which partition types to search.
x->must_find_valid_partition = 1;
#if CONFIG_COLLECT_PARTITION_STATS
fr_part_timing_stats->partition_redo += 1;
#endif // CONFIG_COLLECT_PARTITION_STATS
goto BEGIN_PARTITION_SEARCH;
}
// Store the final rd cost
*rd_cost = best_rdc;
// Also record the best partition in simple motion data tree because it is
// necessary for the related speed features.
set_sms_tree_partitioning(sms_tree, pc_tree->partitioning);
#if CONFIG_COLLECT_PARTITION_STATS
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) {
part_timing_stats->partition_decisions[pc_tree->partitioning] += 1;
}
// If CONFIG_COLLECT_PARTITION_STATS is 1, then print out the stats for each
// prediction block.
print_partition_timing_stats_with_rdcost(
part_timing_stats, mi_row, mi_col, bsize,
cpi->ppi->gf_group.update_type[cpi->gf_frame_index],
cm->current_frame.frame_number, &best_rdc, "part_timing.csv");
const bool print_timing_stats = false;
if (print_timing_stats) {
print_partition_timing_stats(part_timing_stats, cm->show_frame,
frame_is_intra_only(cm), bsize,
"part_timing_data.csv");
}
// If CONFIG_COLLECTION_PARTITION_STATS is 2, then we print out the stats for
// the whole clip. So we need to pass the information upstream to the encoder.
accumulate_partition_timing_stats(fr_part_timing_stats, part_timing_stats,
bsize);
#endif // CONFIG_COLLECT_PARTITION_STATS
// Reset the PC_TREE deallocation flag.
int pc_tree_dealloc = 0;
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, encode_sb_time);
#endif
if (part_search_state.found_best_partition) {
if (bsize == cm->seq_params->sb_size) {
// Encode the superblock.
const int emit_output = multi_pass_mode != SB_DRY_PASS;
const RUN_TYPE run_type = emit_output ? OUTPUT_ENABLED : DRY_RUN_NORMAL;
// Write partition tree to file. Not used by default.
if (COLLECT_MOTION_SEARCH_FEATURE_SB) {
write_partition_tree(cpi, pc_tree, bsize, mi_row, mi_col);
++cpi->sb_counter;
}
set_cb_offsets(x->cb_offset, 0, 0);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, run_type, bsize,
pc_tree, NULL);
assert(pc_tree == td->pc_root);
// Dealloc the whole PC_TREE after a superblock is done.
av1_free_pc_tree_recursive(pc_tree, num_planes, 0, 0,
cpi->sf.part_sf.partition_search_type);
pc_tree = NULL;
td->pc_root = NULL;
pc_tree_dealloc = 1;
} else if (should_do_dry_run_encode_for_current_block(
cm->seq_params->sb_size, x->sb_enc.max_partition_size,
pc_tree->index, bsize)) {
// Encode the smaller blocks in DRY_RUN mode.
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, encode_sb_time);
#endif
// If the tree still exists (non-superblock), dealloc most nodes, only keep
// nodes for the best partition and PARTITION_NONE.
if (pc_tree_dealloc == 0)
av1_free_pc_tree_recursive(pc_tree, num_planes, 1, 1,
cpi->sf.part_sf.partition_search_type);
if (bsize == cm->seq_params->sb_size) {
assert(best_rdc.rate < INT_MAX);
assert(best_rdc.dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
// Restore the rd multiplier.
x->rdmult = orig_rdmult;
return part_search_state.found_best_partition;
}
#endif // !CONFIG_REALTIME_ONLY
#undef COLLECT_MOTION_SEARCH_FEATURE_SB
#if CONFIG_RT_ML_PARTITIONING
#define FEATURES 6
#define LABELS 2
static int ml_predict_var_partitioning(AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const NN_CONFIG *nn_config = NULL;
const float *means = NULL;
const float *vars = NULL;
switch (bsize) {
case BLOCK_64X64:
nn_config = &av1_var_part_nnconfig_64;
means = av1_var_part_means_64;
vars = av1_var_part_vars_64;
break;
case BLOCK_32X32:
nn_config = &av1_var_part_nnconfig_32;
means = av1_var_part_means_32;
vars = av1_var_part_vars_32;
break;
case BLOCK_16X16:
nn_config = &av1_var_part_nnconfig_16;
means = av1_var_part_means_16;
vars = av1_var_part_vars_16;
break;
case BLOCK_8X8:
default: assert(0 && "Unexpected block size."); return -1;
}
if (!nn_config) return -1;
{
const float thresh = cpi->oxcf.speed <= 5 ? 1.25f : 0.0f;
float features[FEATURES] = { 0.0f };
const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0,
cm->seq_params->bit_depth);
int feature_idx = 0;
float score[LABELS];
features[feature_idx] =
(log1pf((float)(dc_q * dc_q) / 256.0f) - means[feature_idx]) /
sqrtf(vars[feature_idx]);
feature_idx++;
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize);
{
const int bs = block_size_wide[bsize];
const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
const int sb_offset_row = 4 * (mi_row & 15);
const int sb_offset_col = 4 * (mi_col & 15);
const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col;
const uint8_t *src = x->plane[0].src.buf;
const int src_stride = x->plane[0].src.stride;
const int pred_stride = 64;
unsigned int sse;
int i;
// Variance of whole block.
const unsigned int var =
cpi->ppi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
features[feature_idx] =
(log1pf((float)var) - means[feature_idx]) / sqrtf(vars[feature_idx]);
feature_idx++;
for (i = 0; i < 4; ++i) {
const int x_idx = (i & 1) * bs / 2;
const int y_idx = (i >> 1) * bs / 2;
const int src_offset = y_idx * src_stride + x_idx;
const int pred_offset = y_idx * pred_stride + x_idx;
// Variance of quarter block.
const unsigned int sub_var =
cpi->ppi->fn_ptr[subsize].vf(src + src_offset, src_stride,
pred + pred_offset, pred_stride, &sse);
const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
features[feature_idx] =
(var_ratio - means[feature_idx]) / sqrtf(vars[feature_idx]);
feature_idx++;
}
}
// for (int i = 0; i<FEATURES; i++)
// printf("F_%d, %f; ", i, features[i]);
assert(feature_idx == FEATURES);
av1_nn_predict(features, nn_config, 1, score);
// printf("Score %f, thr %f ", (float)score[0], thresh);
if (score[0] > thresh) return PARTITION_SPLIT;
if (score[0] < -thresh) return PARTITION_NONE;
return -1;
}
}
#undef FEATURES
#undef LABELS
// Uncomment for collecting data for ML-based partitioning
// #define _COLLECT_GROUND_TRUTH_
#ifdef _COLLECT_GROUND_TRUTH_
static int store_partition_data(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
int mi_row, int mi_col, PARTITION_TYPE part) {
AV1_COMMON *const cm = &cpi->common;
char fname[128];
switch (bsize) {
case BLOCK_64X64: sprintf(fname, "data_64x64.txt"); break;
case BLOCK_32X32: sprintf(fname, "data_32x32.txt"); break;
case BLOCK_16X16: sprintf(fname, "data_16x16.txt"); break;
case BLOCK_8X8: sprintf(fname, "data_8x8.txt"); break;
default: assert(0 && "Unexpected block size."); return -1;
}
float features[6]; // DC_Q, VAR, VAR_RATIO-0..3
FILE *f = fopen(fname, "a");
{
const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0,
cm->seq_params->bit_depth);
int feature_idx = 0;
features[feature_idx++] = log1pf((float)(dc_q * dc_q) / 256.0f);
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize);
{
const int bs = block_size_wide[bsize];
const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
const int sb_offset_row = 4 * (mi_row & 15);
const int sb_offset_col = 4 * (mi_col & 15);
const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col;
const uint8_t *src = x->plane[0].src.buf;
const int src_stride = x->plane[0].src.stride;
const int pred_stride = 64;
unsigned int sse;
int i;
// Variance of whole block.
/*
if (bs == 8)
{
int r, c;
printf("%d %d\n", mi_row, mi_col);
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c) {
printf("%3d ",
src[r * src_stride + c] - pred[64 * r + c]);
}
printf("\n");
}
printf("\n");
}
*/
const unsigned int var =
cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
features[feature_idx++] = log1pf((float)var);
fprintf(f, "%f,%f,", features[0], features[1]);
for (i = 0; i < 4; ++i) {
const int x_idx = (i & 1) * bs / 2;
const int y_idx = (i >> 1) * bs / 2;
const int src_offset = y_idx * src_stride + x_idx;
const int pred_offset = y_idx * pred_stride + x_idx;
// Variance of quarter block.
const unsigned int sub_var =
cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
pred + pred_offset, pred_stride, &sse);
const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
features[feature_idx++] = var_ratio;
fprintf(f, "%f,", var_ratio);
}
fprintf(f, "%d\n", part == PARTITION_NONE ? 0 : 1);
}
fclose(f);
return -1;
}
}
#endif
static void duplicate_mode_info_in_sb(AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const int block_width =
AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
const int block_height =
AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
const int mi_stride = xd->mi_stride;
MB_MODE_INFO *const src_mi = xd->mi[0];
int i, j;
for (j = 0; j < block_height; ++j)
for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi;
}
static inline void copy_mbmi_ext_frame_to_mbmi_ext(
MB_MODE_INFO_EXT *const mbmi_ext,
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_best, uint8_t ref_frame_type) {
memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
sizeof(mbmi_ext->global_mvs));
}
static void fill_mode_info_sb(AV1_COMP *cpi, MACROBLOCK *x, int mi_row,
int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
int hbs = mi_size_wide[bsize] >> 1;
PARTITION_TYPE partition = pc_tree->partitioning;
BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
assert(bsize >= BLOCK_8X8);
if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
return;
switch (partition) {
case PARTITION_NONE:
set_mode_info_offsets(&cm->mi_params, &cpi->mbmi_ext_info, x, xd, mi_row,
mi_col);
*(xd->mi[0]) = pc_tree->none->mic;
copy_mbmi_ext_frame_to_mbmi_ext(
&x->mbmi_ext, &pc_tree->none->mbmi_ext_best, LAST_FRAME);
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
break;
case PARTITION_SPLIT: {
fill_mode_info_sb(cpi, x, mi_row, mi_col, subsize, pc_tree->split[0]);
fill_mode_info_sb(cpi, x, mi_row, mi_col + hbs, subsize,
pc_tree->split[1]);
fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col, subsize,
pc_tree->split[2]);
fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col + hbs, subsize,
pc_tree->split[3]);
break;
}
default: break;
}
}
void av1_nonrd_pick_partition(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp,
int mi_row, int mi_col, BLOCK_SIZE bsize,
RD_STATS *rd_cost, int do_recon, int64_t best_rd,
PC_TREE *pc_tree) {
AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int hbs = mi_size_wide[bsize] >> 1;
TokenExtra *tp_orig = *tp;
const ModeCosts *mode_costs = &x->mode_costs;
RD_STATS this_rdc, best_rdc;
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
int do_split = bsize > BLOCK_8X8;
// Override skipping rectangular partition operations for edge blocks
const int force_horz_split = (mi_row + 2 * hbs > cm->mi_params.mi_rows);
const int force_vert_split = (mi_col + 2 * hbs > cm->mi_params.mi_cols);
int partition_none_allowed = !force_horz_split && !force_vert_split;
assert(mi_size_wide[bsize] == mi_size_high[bsize]); // Square partition only
assert(cm->seq_params->sb_size == BLOCK_64X64); // Small SB so far
(void)*tp_orig;
av1_invalid_rd_stats(&best_rdc);
best_rdc.rdcost = best_rd;
#ifndef _COLLECT_GROUND_TRUTH_
if (partition_none_allowed && do_split) {
const int ml_predicted_partition =
ml_predict_var_partitioning(cpi, x, bsize, mi_row, mi_col);
if (ml_predicted_partition == PARTITION_NONE) do_split = 0;
if (ml_predicted_partition == PARTITION_SPLIT) partition_none_allowed = 0;
}
#endif
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
// PARTITION_NONE
if (partition_none_allowed) {
pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
if (!pc_tree->none)
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
PICK_MODE_CONTEXT *ctx = pc_tree->none;
// Flip for RDO based pick mode
#if 0
RD_STATS dummy;
av1_invalid_rd_stats(&dummy);
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc,
PARTITION_NONE, bsize, ctx, dummy);
#else
pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize,
ctx);
#endif
if (this_rdc.rate != INT_MAX) {
const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
this_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
}
}
}
// PARTITION_SPLIT
if (do_split) {
RD_STATS sum_rdc;
const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
av1_init_rd_stats(&sum_rdc);
for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
if (!pc_tree->split[i])
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate PC_TREE");
pc_tree->split[i]->index = i;
}
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
for (int i = 0;
i < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
const int x_idx = (i & 1) * hbs;
const int y_idx = (i >> 1) * hbs;
if (mi_row + y_idx >= cm->mi_params.mi_rows ||
mi_col + x_idx >= cm->mi_params.mi_cols)
continue;
av1_nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
mi_col + x_idx, subsize, &this_rdc, i < 3,
best_rdc.rdcost - sum_rdc.rdcost,
pc_tree->split[i]);
if (this_rdc.rate == INT_MAX) {
av1_invalid_rd_stats(&sum_rdc);
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_SPLIT;
}
}
#ifdef _COLLECT_GROUND_TRUTH_
store_partition_data(cpi, x, bsize, mi_row, mi_col, pc_tree->partitioning);
#endif
*rd_cost = best_rdc;
av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
if (best_rdc.rate == INT_MAX) {
av1_invalid_rd_stats(rd_cost);
return;
}
// update mode info array
fill_mode_info_sb(cpi, x, mi_row, mi_col, bsize, pc_tree);
if (do_recon) {
if (bsize == cm->seq_params->sb_size) {
// NOTE: To get estimate for rate due to the tokens, use:
// int rate_coeffs = 0;
// encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
// bsize, pc_tree, &rate_coeffs);
set_cb_offsets(x->cb_offset, 0, 0);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
pc_tree, NULL);
} else {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
}
if (bsize == BLOCK_64X64 && do_recon) {
assert(best_rdc.rate < INT_MAX);
assert(best_rdc.dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
}
#endif // CONFIG_RT_ML_PARTITIONING