blob: 3b6d8e41a51d4e58fdb4f83584e46c1110aa4d8e [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include "config/aom_scale_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_dsp/mathutils.h"
#include "aom_dsp/psnr.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/quant_common.h"
#include "av1/common/restoration.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/picklpf.h"
#include "av1/encoder/pickrst.h"
// Number of Wiener iterations
#define NUM_WIENER_ITERS 5
// Penalty factor for use of dual sgr
#define DUAL_SGR_PENALTY_MULT 0.01
// Working precision for Wiener filter coefficients
#define WIENER_TAP_SCALE_FACTOR ((int64_t)1 << 16)
#define SGRPROJ_EP_GRP1_START_IDX 0
#define SGRPROJ_EP_GRP1_END_IDX 9
#define SGRPROJ_EP_GRP1_SEARCH_COUNT 4
#define SGRPROJ_EP_GRP2_3_SEARCH_COUNT 2
static const int sgproj_ep_grp1_seed[SGRPROJ_EP_GRP1_SEARCH_COUNT] = { 0, 3, 6,
9 };
static const int sgproj_ep_grp2_3[SGRPROJ_EP_GRP2_3_SEARCH_COUNT][14] = {
{ 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, -1, -1, -1, -1 },
{ 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15 }
};
#if DEBUG_LR_COSTING
RestorationUnitInfo lr_ref_params[RESTORE_TYPES][MAX_MB_PLANE]
[MAX_LR_UNITS_W * MAX_LR_UNITS_H];
#endif // DEBUG_LR_COSTING
typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b);
typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b,
int hstart, int width, int vstart,
int height);
typedef uint64_t (*var_part_extractor_type)(const YV12_BUFFER_CONFIG *a,
int hstart, int width, int vstart,
int height);
#if CONFIG_AV1_HIGHBITDEPTH
#define NUM_EXTRACTORS (3 * (1 + 1))
#else
#define NUM_EXTRACTORS 3
#endif
static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = {
aom_get_y_sse_part, aom_get_u_sse_part,
aom_get_v_sse_part,
#if CONFIG_AV1_HIGHBITDEPTH
aom_highbd_get_y_sse_part, aom_highbd_get_u_sse_part,
aom_highbd_get_v_sse_part,
#endif
};
static const var_part_extractor_type var_part_extractors[NUM_EXTRACTORS] = {
aom_get_y_var, aom_get_u_var, aom_get_v_var,
#if CONFIG_AV1_HIGHBITDEPTH
aom_highbd_get_y_var, aom_highbd_get_u_var, aom_highbd_get_v_var,
#endif
};
static int64_t sse_restoration_unit(const RestorationTileLimits *limits,
const YV12_BUFFER_CONFIG *src,
const YV12_BUFFER_CONFIG *dst, int plane,
int highbd) {
return sse_part_extractors[3 * highbd + plane](
src, dst, limits->h_start, limits->h_end - limits->h_start,
limits->v_start, limits->v_end - limits->v_start);
}
static uint64_t var_restoration_unit(const RestorationTileLimits *limits,
const YV12_BUFFER_CONFIG *src, int plane,
int highbd) {
return var_part_extractors[3 * highbd + plane](
src, limits->h_start, limits->h_end - limits->h_start, limits->v_start,
limits->v_end - limits->v_start);
}
typedef struct {
const YV12_BUFFER_CONFIG *src;
YV12_BUFFER_CONFIG *dst;
const AV1_COMMON *cm;
const MACROBLOCK *x;
int plane;
int plane_w;
int plane_h;
RestUnitSearchInfo *rusi;
// Speed features
const LOOP_FILTER_SPEED_FEATURES *lpf_sf;
uint8_t *dgd_buffer;
int dgd_stride;
const uint8_t *src_buffer;
int src_stride;
// SSE values for each restoration mode for the current RU
// These are saved by each search function for use in search_switchable()
int64_t sse[RESTORE_SWITCHABLE_TYPES];
// This flag will be set based on the speed feature
// 'prune_sgr_based_on_wiener'. 0 implies no pruning and 1 implies pruning.
uint8_t skip_sgr_eval;
// Total rate and distortion so far for each restoration type
// These are initialised by reset_rsc in search_rest_type
int64_t total_sse[RESTORE_TYPES];
int64_t total_bits[RESTORE_TYPES];
// Reference parameters for delta-coding
//
// For each restoration type, we need to store the latest parameter set which
// has been used, so that we can properly cost up the next parameter set.
// Note that we have two sets of these - one for the single-restoration-mode
// search (ie, frame_restoration_type = RESTORE_WIENER or RESTORE_SGRPROJ)
// and one for the switchable mode. This is because these two cases can lead
// to different sets of parameters being signaled, but we don't know which
// we will pick for sure until the end of the search process.
WienerInfo ref_wiener;
SgrprojInfo ref_sgrproj;
WienerInfo switchable_ref_wiener;
SgrprojInfo switchable_ref_sgrproj;
// Buffers used to hold dgd-avg and src-avg data respectively during SIMD
// call of Wiener filter.
int16_t *dgd_avg;
int16_t *src_avg;
} RestSearchCtxt;
static inline void rsc_on_tile(void *priv) {
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
set_default_wiener(&rsc->ref_wiener);
set_default_sgrproj(&rsc->ref_sgrproj);
set_default_wiener(&rsc->switchable_ref_wiener);
set_default_sgrproj(&rsc->switchable_ref_sgrproj);
}
static inline void reset_rsc(RestSearchCtxt *rsc) {
memset(rsc->total_sse, 0, sizeof(rsc->total_sse));
memset(rsc->total_bits, 0, sizeof(rsc->total_bits));
}
static inline void init_rsc(const YV12_BUFFER_CONFIG *src, const AV1_COMMON *cm,
const MACROBLOCK *x,
const LOOP_FILTER_SPEED_FEATURES *lpf_sf, int plane,
RestUnitSearchInfo *rusi, YV12_BUFFER_CONFIG *dst,
RestSearchCtxt *rsc) {
rsc->src = src;
rsc->dst = dst;
rsc->cm = cm;
rsc->x = x;
rsc->plane = plane;
rsc->rusi = rusi;
rsc->lpf_sf = lpf_sf;
const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf;
const int is_uv = plane != AOM_PLANE_Y;
int plane_w, plane_h;
av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
assert(plane_w == src->crop_widths[is_uv]);
assert(plane_h == src->crop_heights[is_uv]);
assert(src->crop_widths[is_uv] == dgd->crop_widths[is_uv]);
assert(src->crop_heights[is_uv] == dgd->crop_heights[is_uv]);
rsc->plane_w = plane_w;
rsc->plane_h = plane_h;
rsc->src_buffer = src->buffers[plane];
rsc->src_stride = src->strides[is_uv];
rsc->dgd_buffer = dgd->buffers[plane];
rsc->dgd_stride = dgd->strides[is_uv];
}
static int64_t try_restoration_unit(const RestSearchCtxt *rsc,
const RestorationTileLimits *limits,
const RestorationUnitInfo *rui) {
const AV1_COMMON *const cm = rsc->cm;
const int plane = rsc->plane;
const int is_uv = plane > 0;
const RestorationInfo *rsi = &cm->rst_info[plane];
RestorationLineBuffers rlbs;
const int bit_depth = cm->seq_params->bit_depth;
const int highbd = cm->seq_params->use_highbitdepth;
const YV12_BUFFER_CONFIG *fts = &cm->cur_frame->buf;
// TODO(yunqing): For now, only use optimized LR filter in decoder. Can be
// also used in encoder.
const int optimized_lr = 0;
av1_loop_restoration_filter_unit(
limits, rui, &rsi->boundaries, &rlbs, rsc->plane_w, rsc->plane_h,
is_uv && cm->seq_params->subsampling_x,
is_uv && cm->seq_params->subsampling_y, highbd, bit_depth,
fts->buffers[plane], fts->strides[is_uv], rsc->dst->buffers[plane],
rsc->dst->strides[is_uv], cm->rst_tmpbuf, optimized_lr, cm->error);
return sse_restoration_unit(limits, rsc->src, rsc->dst, plane, highbd);
}
int64_t av1_lowbd_pixel_proj_error_c(const uint8_t *src8, int width, int height,
int src_stride, const uint8_t *dat8,
int dat_stride, int32_t *flt0,
int flt0_stride, int32_t *flt1,
int flt1_stride, int xq[2],
const sgr_params_type *params) {
int i, j;
const uint8_t *src = src8;
const uint8_t *dat = dat8;
int64_t err = 0;
if (params->r[0] > 0 && params->r[1] > 0) {
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15));
assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15));
const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS);
int32_t v = u << SGRPROJ_PRJ_BITS;
v += xq[0] * (flt0[j] - u) + xq[1] * (flt1[j] - u);
const int32_t e =
ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j];
err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
flt0 += flt0_stride;
flt1 += flt1_stride;
}
} else if (params->r[0] > 0) {
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15));
const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS);
int32_t v = u << SGRPROJ_PRJ_BITS;
v += xq[0] * (flt0[j] - u);
const int32_t e =
ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j];
err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
flt0 += flt0_stride;
}
} else if (params->r[1] > 0) {
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15));
const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS);
int32_t v = u << SGRPROJ_PRJ_BITS;
v += xq[1] * (flt1[j] - u);
const int32_t e =
ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j];
err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
flt1 += flt1_stride;
}
} else {
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int32_t e = (int32_t)(dat[j]) - src[j];
err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
}
}
return err;
}
#if CONFIG_AV1_HIGHBITDEPTH
int64_t av1_highbd_pixel_proj_error_c(const uint8_t *src8, int width,
int height, int src_stride,
const uint8_t *dat8, int dat_stride,
int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int xq[2],
const sgr_params_type *params) {
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
int i, j;
int64_t err = 0;
const int32_t half = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1);
if (params->r[0] > 0 && params->r[1] > 0) {
int xq0 = xq[0];
int xq1 = xq[1];
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int32_t d = dat[j];
const int32_t s = src[j];
const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS);
int32_t v0 = flt0[j] - u;
int32_t v1 = flt1[j] - u;
int32_t v = half;
v += xq0 * v0;
v += xq1 * v1;
const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s;
err += ((int64_t)e * e);
}
dat += dat_stride;
flt0 += flt0_stride;
flt1 += flt1_stride;
src += src_stride;
}
} else if (params->r[0] > 0 || params->r[1] > 0) {
int exq;
int32_t *flt;
int flt_stride;
if (params->r[0] > 0) {
exq = xq[0];
flt = flt0;
flt_stride = flt0_stride;
} else {
exq = xq[1];
flt = flt1;
flt_stride = flt1_stride;
}
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int32_t d = dat[j];
const int32_t s = src[j];
const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS);
int32_t v = half;
v += exq * (flt[j] - u);
const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s;
err += ((int64_t)e * e);
}
dat += dat_stride;
flt += flt_stride;
src += src_stride;
}
} else {
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int32_t d = dat[j];
const int32_t s = src[j];
const int32_t e = d - s;
err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
}
}
return err;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
static int64_t get_pixel_proj_error(const uint8_t *src8, int width, int height,
int src_stride, const uint8_t *dat8,
int dat_stride, int use_highbitdepth,
int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int *xqd,
const sgr_params_type *params) {
int xq[2];
av1_decode_xq(xqd, xq, params);
#if CONFIG_AV1_HIGHBITDEPTH
if (use_highbitdepth) {
return av1_highbd_pixel_proj_error(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, xq, params);
} else {
return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, xq, params);
}
#else
(void)use_highbitdepth;
return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, xq, params);
#endif
}
#define USE_SGRPROJ_REFINEMENT_SEARCH 1
static int64_t finer_search_pixel_proj_error(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt0,
int flt0_stride, int32_t *flt1, int flt1_stride, int start_step, int *xqd,
const sgr_params_type *params) {
int64_t err = get_pixel_proj_error(
src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0,
flt0_stride, flt1, flt1_stride, xqd, params);
(void)start_step;
#if USE_SGRPROJ_REFINEMENT_SEARCH
int64_t err2;
int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 };
int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 };
for (int s = start_step; s >= 1; s >>= 1) {
for (int p = 0; p < 2; ++p) {
if ((params->r[0] == 0 && p == 0) || (params->r[1] == 0 && p == 1)) {
continue;
}
int skip = 0;
do {
if (xqd[p] - s >= tap_min[p]) {
xqd[p] -= s;
err2 =
get_pixel_proj_error(src8, width, height, src_stride, dat8,
dat_stride, use_highbitdepth, flt0,
flt0_stride, flt1, flt1_stride, xqd, params);
if (err2 > err) {
xqd[p] += s;
} else {
err = err2;
skip = 1;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
if (skip) break;
do {
if (xqd[p] + s <= tap_max[p]) {
xqd[p] += s;
err2 =
get_pixel_proj_error(src8, width, height, src_stride, dat8,
dat_stride, use_highbitdepth, flt0,
flt0_stride, flt1, flt1_stride, xqd, params);
if (err2 > err) {
xqd[p] -= s;
} else {
err = err2;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
}
}
#endif // USE_SGRPROJ_REFINEMENT_SEARCH
return err;
}
static int64_t signed_rounded_divide(int64_t dividend, int64_t divisor) {
if (dividend < 0)
return (dividend - divisor / 2) / divisor;
else
return (dividend + divisor / 2) / divisor;
}
static inline void calc_proj_params_r0_r1_c(const uint8_t *src8, int width,
int height, int src_stride,
const uint8_t *dat8, int dat_stride,
int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride,
int64_t H[2][2], int64_t C[2]) {
const int size = width * height;
const uint8_t *src = src8;
const uint8_t *dat = dat8;
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
const int32_t s =
(int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
H[0][0] += (int64_t)f1 * f1;
H[1][1] += (int64_t)f2 * f2;
H[0][1] += (int64_t)f1 * f2;
C[0] += (int64_t)f1 * s;
C[1] += (int64_t)f2 * s;
}
}
H[0][0] /= size;
H[0][1] /= size;
H[1][1] /= size;
H[1][0] = H[0][1];
C[0] /= size;
C[1] /= size;
}
#if CONFIG_AV1_HIGHBITDEPTH
static inline void calc_proj_params_r0_r1_high_bd_c(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
const int size = width * height;
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
const int32_t s =
(int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
H[0][0] += (int64_t)f1 * f1;
H[1][1] += (int64_t)f2 * f2;
H[0][1] += (int64_t)f1 * f2;
C[0] += (int64_t)f1 * s;
C[1] += (int64_t)f2 * s;
}
}
H[0][0] /= size;
H[0][1] /= size;
H[1][1] /= size;
H[1][0] = H[0][1];
C[0] /= size;
C[1] /= size;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
static inline void calc_proj_params_r0_c(const uint8_t *src8, int width,
int height, int src_stride,
const uint8_t *dat8, int dat_stride,
int32_t *flt0, int flt0_stride,
int64_t H[2][2], int64_t C[2]) {
const int size = width * height;
const uint8_t *src = src8;
const uint8_t *dat = dat8;
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
const int32_t s =
(int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
H[0][0] += (int64_t)f1 * f1;
C[0] += (int64_t)f1 * s;
}
}
H[0][0] /= size;
C[0] /= size;
}
#if CONFIG_AV1_HIGHBITDEPTH
static inline void calc_proj_params_r0_high_bd_c(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
int64_t H[2][2], int64_t C[2]) {
const int size = width * height;
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
const int32_t s =
(int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
H[0][0] += (int64_t)f1 * f1;
C[0] += (int64_t)f1 * s;
}
}
H[0][0] /= size;
C[0] /= size;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
static inline void calc_proj_params_r1_c(const uint8_t *src8, int width,
int height, int src_stride,
const uint8_t *dat8, int dat_stride,
int32_t *flt1, int flt1_stride,
int64_t H[2][2], int64_t C[2]) {
const int size = width * height;
const uint8_t *src = src8;
const uint8_t *dat = dat8;
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
const int32_t s =
(int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
H[1][1] += (int64_t)f2 * f2;
C[1] += (int64_t)f2 * s;
}
}
H[1][1] /= size;
C[1] /= size;
}
#if CONFIG_AV1_HIGHBITDEPTH
static inline void calc_proj_params_r1_high_bd_c(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride,
int64_t H[2][2], int64_t C[2]) {
const int size = width * height;
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
const int32_t s =
(int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
H[1][1] += (int64_t)f2 * f2;
C[1] += (int64_t)f2 * s;
}
}
H[1][1] /= size;
C[1] /= size;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
// The function calls 3 subfunctions for the following cases :
// 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements
// of C and H need to be computed.
// 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are
// non-zero and need to be computed.
// 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are
// non-zero and need to be computed.
void av1_calc_proj_params_c(const uint8_t *src8, int width, int height,
int src_stride, const uint8_t *dat8, int dat_stride,
int32_t *flt0, int flt0_stride, int32_t *flt1,
int flt1_stride, int64_t H[2][2], int64_t C[2],
const sgr_params_type *params) {
if ((params->r[0] > 0) && (params->r[1] > 0)) {
calc_proj_params_r0_r1_c(src8, width, height, src_stride, dat8, dat_stride,
flt0, flt0_stride, flt1, flt1_stride, H, C);
} else if (params->r[0] > 0) {
calc_proj_params_r0_c(src8, width, height, src_stride, dat8, dat_stride,
flt0, flt0_stride, H, C);
} else if (params->r[1] > 0) {
calc_proj_params_r1_c(src8, width, height, src_stride, dat8, dat_stride,
flt1, flt1_stride, H, C);
}
}
#if CONFIG_AV1_HIGHBITDEPTH
void av1_calc_proj_params_high_bd_c(const uint8_t *src8, int width, int height,
int src_stride, const uint8_t *dat8,
int dat_stride, int32_t *flt0,
int flt0_stride, int32_t *flt1,
int flt1_stride, int64_t H[2][2],
int64_t C[2],
const sgr_params_type *params) {
if ((params->r[0] > 0) && (params->r[1] > 0)) {
calc_proj_params_r0_r1_high_bd_c(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, H, C);
} else if (params->r[0] > 0) {
calc_proj_params_r0_high_bd_c(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, H, C);
} else if (params->r[1] > 0) {
calc_proj_params_r1_high_bd_c(src8, width, height, src_stride, dat8,
dat_stride, flt1, flt1_stride, H, C);
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
static inline void get_proj_subspace(const uint8_t *src8, int width, int height,
int src_stride, const uint8_t *dat8,
int dat_stride, int use_highbitdepth,
int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int *xq,
const sgr_params_type *params) {
int64_t H[2][2] = { { 0, 0 }, { 0, 0 } };
int64_t C[2] = { 0, 0 };
// Default values to be returned if the problem becomes ill-posed
xq[0] = 0;
xq[1] = 0;
if (!use_highbitdepth) {
if ((width & 0x7) == 0) {
av1_calc_proj_params(src8, width, height, src_stride, dat8, dat_stride,
flt0, flt0_stride, flt1, flt1_stride, H, C, params);
} else {
av1_calc_proj_params_c(src8, width, height, src_stride, dat8, dat_stride,
flt0, flt0_stride, flt1, flt1_stride, H, C,
params);
}
}
#if CONFIG_AV1_HIGHBITDEPTH
else { // NOLINT
if ((width & 0x7) == 0) {
av1_calc_proj_params_high_bd(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, H, C, params);
} else {
av1_calc_proj_params_high_bd_c(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, H, C, params);
}
}
#endif
if (params->r[0] == 0) {
// H matrix is now only the scalar H[1][1]
// C vector is now only the scalar C[1]
const int64_t Det = H[1][1];
if (Det == 0) return; // ill-posed, return default values
xq[0] = 0;
xq[1] = (int)signed_rounded_divide(C[1] * (1 << SGRPROJ_PRJ_BITS), Det);
} else if (params->r[1] == 0) {
// H matrix is now only the scalar H[0][0]
// C vector is now only the scalar C[0]
const int64_t Det = H[0][0];
if (Det == 0) return; // ill-posed, return default values
xq[0] = (int)signed_rounded_divide(C[0] * (1 << SGRPROJ_PRJ_BITS), Det);
xq[1] = 0;
} else {
const int64_t Det = H[0][0] * H[1][1] - H[0][1] * H[1][0];
if (Det == 0) return; // ill-posed, return default values
// If scaling up dividend would overflow, instead scale down the divisor
const int64_t div1 = H[1][1] * C[0] - H[0][1] * C[1];
if ((div1 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div1) ||
(div1 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div1))
xq[0] = (int)signed_rounded_divide(div1, Det / (1 << SGRPROJ_PRJ_BITS));
else
xq[0] = (int)signed_rounded_divide(div1 * (1 << SGRPROJ_PRJ_BITS), Det);
const int64_t div2 = H[0][0] * C[1] - H[1][0] * C[0];
if ((div2 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div2) ||
(div2 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div2))
xq[1] = (int)signed_rounded_divide(div2, Det / (1 << SGRPROJ_PRJ_BITS));
else
xq[1] = (int)signed_rounded_divide(div2 * (1 << SGRPROJ_PRJ_BITS), Det);
}
}
static inline void encode_xq(int *xq, int *xqd, const sgr_params_type *params) {
if (params->r[0] == 0) {
xqd[0] = 0;
xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xq[1], SGRPROJ_PRJ_MIN1,
SGRPROJ_PRJ_MAX1);
} else if (params->r[1] == 0) {
xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0], SGRPROJ_PRJ_MIN1,
SGRPROJ_PRJ_MAX1);
} else {
xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1], SGRPROJ_PRJ_MIN1,
SGRPROJ_PRJ_MAX1);
}
}
// Apply the self-guided filter across an entire restoration unit.
static inline void apply_sgr(int sgr_params_idx, const uint8_t *dat8, int width,
int height, int dat_stride, int use_highbd,
int bit_depth, int pu_width, int pu_height,
int32_t *flt0, int32_t *flt1, int flt_stride,
struct aom_internal_error_info *error_info) {
for (int i = 0; i < height; i += pu_height) {
const int h = AOMMIN(pu_height, height - i);
int32_t *flt0_row = flt0 + i * flt_stride;
int32_t *flt1_row = flt1 + i * flt_stride;
const uint8_t *dat8_row = dat8 + i * dat_stride;
// Iterate over the stripe in blocks of width pu_width
for (int j = 0; j < width; j += pu_width) {
const int w = AOMMIN(pu_width, width - j);
if (av1_selfguided_restoration(
dat8_row + j, w, h, dat_stride, flt0_row + j, flt1_row + j,
flt_stride, sgr_params_idx, bit_depth, use_highbd) != 0) {
aom_internal_error(
error_info, AOM_CODEC_MEM_ERROR,
"Error allocating buffer in av1_selfguided_restoration");
}
}
}
}
static inline void compute_sgrproj_err(
const uint8_t *dat8, const int width, const int height,
const int dat_stride, const uint8_t *src8, const int src_stride,
const int use_highbitdepth, const int bit_depth, const int pu_width,
const int pu_height, const int ep, int32_t *flt0, int32_t *flt1,
const int flt_stride, int *exqd, int64_t *err,
struct aom_internal_error_info *error_info) {
int exq[2];
apply_sgr(ep, dat8, width, height, dat_stride, use_highbitdepth, bit_depth,
pu_width, pu_height, flt0, flt1, flt_stride, error_info);
const sgr_params_type *const params = &av1_sgr_params[ep];
get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride,
use_highbitdepth, flt0, flt_stride, flt1, flt_stride, exq,
params);
encode_xq(exq, exqd, params);
*err = finer_search_pixel_proj_error(
src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0,
flt_stride, flt1, flt_stride, 2, exqd, params);
}
static inline void get_best_error(int64_t *besterr, const int64_t err,
const int *exqd, int *bestxqd, int *bestep,
const int ep) {
if (*besterr == -1 || err < *besterr) {
*bestep = ep;
*besterr = err;
bestxqd[0] = exqd[0];
bestxqd[1] = exqd[1];
}
}
static SgrprojInfo search_selfguided_restoration(
const uint8_t *dat8, int width, int height, int dat_stride,
const uint8_t *src8, int src_stride, int use_highbitdepth, int bit_depth,
int pu_width, int pu_height, int32_t *rstbuf, int enable_sgr_ep_pruning,
struct aom_internal_error_info *error_info) {
int32_t *flt0 = rstbuf;
int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
int ep, idx, bestep = 0;
int64_t besterr = -1;
int exqd[2], bestxqd[2] = { 0, 0 };
int flt_stride = ((width + 7) & ~7) + 8;
assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
pu_width == RESTORATION_PROC_UNIT_SIZE);
assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
pu_height == RESTORATION_PROC_UNIT_SIZE);
if (!enable_sgr_ep_pruning) {
for (ep = 0; ep < SGRPROJ_PARAMS; ep++) {
int64_t err;
compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
use_highbitdepth, bit_depth, pu_width, pu_height, ep,
flt0, flt1, flt_stride, exqd, &err, error_info);
get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
}
} else {
// evaluate first four seed ep in first group
for (idx = 0; idx < SGRPROJ_EP_GRP1_SEARCH_COUNT; idx++) {
ep = sgproj_ep_grp1_seed[idx];
int64_t err;
compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
use_highbitdepth, bit_depth, pu_width, pu_height, ep,
flt0, flt1, flt_stride, exqd, &err, error_info);
get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
}
// evaluate left and right ep of winner in seed ep
int bestep_ref = bestep;
for (ep = bestep_ref - 1; ep < bestep_ref + 2; ep += 2) {
if (ep < SGRPROJ_EP_GRP1_START_IDX || ep > SGRPROJ_EP_GRP1_END_IDX)
continue;
int64_t err;
compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
use_highbitdepth, bit_depth, pu_width, pu_height, ep,
flt0, flt1, flt_stride, exqd, &err, error_info);
get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
}
// evaluate last two group
for (idx = 0; idx < SGRPROJ_EP_GRP2_3_SEARCH_COUNT; idx++) {
ep = sgproj_ep_grp2_3[idx][bestep];
int64_t err;
compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
use_highbitdepth, bit_depth, pu_width, pu_height, ep,
flt0, flt1, flt_stride, exqd, &err, error_info);
get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
}
}
SgrprojInfo ret;
ret.ep = bestep;
ret.xqd[0] = bestxqd[0];
ret.xqd[1] = bestxqd[1];
return ret;
}
static int count_sgrproj_bits(SgrprojInfo *sgrproj_info,
SgrprojInfo *ref_sgrproj_info) {
int bits = SGRPROJ_PARAMS_BITS;
const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
if (params->r[0] > 0)
bits += aom_count_primitive_refsubexpfin(
SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
if (params->r[1] > 0)
bits += aom_count_primitive_refsubexpfin(
SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
return bits;
}
static inline void search_sgrproj(const RestorationTileLimits *limits,
int rest_unit_idx, void *priv,
int32_t *tmpbuf, RestorationLineBuffers *rlbs,
struct aom_internal_error_info *error_info) {
(void)rlbs;
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
const MACROBLOCK *const x = rsc->x;
const AV1_COMMON *const cm = rsc->cm;
const int highbd = cm->seq_params->use_highbitdepth;
const int bit_depth = cm->seq_params->bit_depth;
const int64_t bits_none = x->mode_costs.sgrproj_restore_cost[0];
// Prune evaluation of RESTORE_SGRPROJ if 'skip_sgr_eval' is set
if (rsc->skip_sgr_eval) {
rsc->total_bits[RESTORE_SGRPROJ] += bits_none;
rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[RESTORE_NONE];
rusi->best_rtype[RESTORE_SGRPROJ - 1] = RESTORE_NONE;
rsc->sse[RESTORE_SGRPROJ] = INT64_MAX;
return;
}
uint8_t *dgd_start =
rsc->dgd_buffer + limits->v_start * rsc->dgd_stride + limits->h_start;
const uint8_t *src_start =
rsc->src_buffer + limits->v_start * rsc->src_stride + limits->h_start;
const int is_uv = rsc->plane > 0;
const int ss_x = is_uv && cm->seq_params->subsampling_x;
const int ss_y = is_uv && cm->seq_params->subsampling_y;
const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
const int procunit_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
rusi->sgrproj = search_selfguided_restoration(
dgd_start, limits->h_end - limits->h_start,
limits->v_end - limits->v_start, rsc->dgd_stride, src_start,
rsc->src_stride, highbd, bit_depth, procunit_width, procunit_height,
tmpbuf, rsc->lpf_sf->enable_sgr_ep_pruning, error_info);
RestorationUnitInfo rui;
rui.restoration_type = RESTORE_SGRPROJ;
rui.sgrproj_info = rusi->sgrproj;
rsc->sse[RESTORE_SGRPROJ] = try_restoration_unit(rsc, limits, &rui);
const int64_t bits_sgr =
x->mode_costs.sgrproj_restore_cost[1] +
(count_sgrproj_bits(&rusi->sgrproj, &rsc->ref_sgrproj)
<< AV1_PROB_COST_SHIFT);
double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE], bit_depth);
double cost_sgr = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_sgr >> 4, rsc->sse[RESTORE_SGRPROJ], bit_depth);
if (rusi->sgrproj.ep < 10)
cost_sgr *=
(1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level);
RestorationType rtype =
(cost_sgr < cost_none) ? RESTORE_SGRPROJ : RESTORE_NONE;
rusi->best_rtype[RESTORE_SGRPROJ - 1] = rtype;
#if DEBUG_LR_COSTING
// Store ref params for later checking
lr_ref_params[RESTORE_SGRPROJ][rsc->plane][rest_unit_idx].sgrproj_info =
rsc->ref_sgrproj;
#endif // DEBUG_LR_COSTING
rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[rtype];
rsc->total_bits[RESTORE_SGRPROJ] +=
(cost_sgr < cost_none) ? bits_sgr : bits_none;
if (cost_sgr < cost_none) rsc->ref_sgrproj = rusi->sgrproj;
}
static void acc_stat_one_line(const uint8_t *dgd, const uint8_t *src,
int dgd_stride, int h_start, int h_end,
uint8_t avg, const int wiener_halfwin,
const int wiener_win2, int32_t *M_int32,
int32_t *H_int32, int count) {
int j, k, l;
int16_t Y[WIENER_WIN2];
for (j = h_start; j < h_end; j++) {
const int16_t X = (int16_t)src[j] - (int16_t)avg;
int idx = 0;
for (k = -wiener_halfwin; k <= wiener_halfwin; k++) {
for (l = -wiener_halfwin; l <= wiener_halfwin; l++) {
Y[idx] =
(int16_t)dgd[(count + l) * dgd_stride + (j + k)] - (int16_t)avg;
idx++;
}
}
assert(idx == wiener_win2);
for (k = 0; k < wiener_win2; ++k) {
M_int32[k] += (int32_t)Y[k] * X;
for (l = k; l < wiener_win2; ++l) {
// H is a symmetric matrix, so we only need to fill out the upper
// triangle here. We can copy it down to the lower triangle outside
// the (i, j) loops.
H_int32[k * wiener_win2 + l] += (int32_t)Y[k] * Y[l];
}
}
}
}
void av1_compute_stats_c(int wiener_win, const uint8_t *dgd, const uint8_t *src,
int16_t *dgd_avg, int16_t *src_avg, int h_start,
int h_end, int v_start, int v_end, int dgd_stride,
int src_stride, int64_t *M, int64_t *H,
int use_downsampled_wiener_stats) {
(void)dgd_avg;
(void)src_avg;
int i, k, l;
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
int32_t M_row[WIENER_WIN2] = { 0 };
int32_t H_row[WIENER_WIN2 * WIENER_WIN2] = { 0 };
int downsample_factor =
use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
memset(M, 0, sizeof(*M) * wiener_win2);
memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);
for (i = v_start; i < v_end; i = i + downsample_factor) {
if (use_downsampled_wiener_stats &&
(v_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
downsample_factor = v_end - i;
}
memset(M_row, 0, sizeof(int32_t) * WIENER_WIN2);
memset(H_row, 0, sizeof(int32_t) * WIENER_WIN2 * WIENER_WIN2);
acc_stat_one_line(dgd, src + i * src_stride, dgd_stride, h_start, h_end,
avg, wiener_halfwin, wiener_win2, M_row, H_row, i);
for (k = 0; k < wiener_win2; ++k) {
// Scale M matrix based on the downsampling factor
M[k] += ((int64_t)M_row[k] * downsample_factor);
for (l = k; l < wiener_win2; ++l) {
// H is a symmetric matrix, so we only need to fill out the upper
// triangle here. We can copy it down to the lower triangle outside
// the (i, j) loops.
// Scale H Matrix based on the downsampling factor
H[k * wiener_win2 + l] +=
((int64_t)H_row[k * wiener_win2 + l] * downsample_factor);
}
}
}
for (k = 0; k < wiener_win2; ++k) {
for (l = k + 1; l < wiener_win2; ++l) {
H[l * wiener_win2 + k] = H[k * wiener_win2 + l];
}
}
}
#if CONFIG_AV1_HIGHBITDEPTH
void av1_compute_stats_highbd_c(int wiener_win, const uint8_t *dgd8,
const uint8_t *src8, int16_t *dgd_avg,
int16_t *src_avg, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
int src_stride, int64_t *M, int64_t *H,
aom_bit_depth_t bit_depth) {
(void)dgd_avg;
(void)src_avg;
int i, j, k, l;
int32_t Y[WIENER_WIN2];
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
uint16_t avg =
find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
uint8_t bit_depth_divider = 1;
if (bit_depth == AOM_BITS_12)
bit_depth_divider = 16;
else if (bit_depth == AOM_BITS_10)
bit_depth_divider = 4;
memset(M, 0, sizeof(*M) * wiener_win2);
memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);
for (i = v_start; i < v_end; i++) {
for (j = h_start; j < h_end; j++) {
const int32_t X = (int32_t)src[i * src_stride + j] - (int32_t)avg;
int idx = 0;
for (k = -wiener_halfwin; k <= wiener_halfwin; k++) {
for (l = -wiener_halfwin; l <= wiener_halfwin; l++) {
Y[idx] = (int32_t)dgd[(i + l) * dgd_stride + (j + k)] - (int32_t)avg;
idx++;
}
}
assert(idx == wiener_win2);
for (k = 0; k < wiener_win2; ++k) {
M[k] += (int64_t)Y[k] * X;
for (l = k; l < wiener_win2; ++l) {
// H is a symmetric matrix, so we only need to fill out the upper
// triangle here. We can copy it down to the lower triangle outside
// the (i, j) loops.
H[k * wiener_win2 + l] += (int64_t)Y[k] * Y[l];
}
}
}
}
for (k = 0; k < wiener_win2; ++k) {
M[k] /= bit_depth_divider;
H[k * wiener_win2 + k] /= bit_depth_divider;
for (l = k + 1; l < wiener_win2; ++l) {
H[k * wiener_win2 + l] /= bit_depth_divider;
H[l * wiener_win2 + k] = H[k * wiener_win2 + l];
}
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
static inline int wrap_index(int i, int wiener_win) {
const int wiener_halfwin1 = (wiener_win >> 1) + 1;
return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i);
}
// Splits each w[i] into smaller components w1[i] and w2[i] such that
// w[i] = w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i].
static inline void split_wiener_filter_coefficients(int wiener_win,
const int32_t *w,
int32_t *w1, int32_t *w2) {
for (int i = 0; i < wiener_win; i++) {
w1[i] = w[i] / WIENER_TAP_SCALE_FACTOR;
w2[i] = w[i] - w1[i] * WIENER_TAP_SCALE_FACTOR;
assert(w[i] == w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i]);
}
}
// Calculates x * w / WIENER_TAP_SCALE_FACTOR, where
// w = w1 * WIENER_TAP_SCALE_FACTOR + w2.
//
// The multiplication x * w may overflow, so we multiply x by the components of
// w (w1 and w2) and combine the multiplication with the division.
static inline int64_t multiply_and_scale(int64_t x, int32_t w1, int32_t w2) {
// Let y = x * w / WIENER_TAP_SCALE_FACTOR
// = x * (w1 * WIENER_TAP_SCALE_FACTOR + w2) / WIENER_TAP_SCALE_FACTOR
const int64_t y = x * w1 + x * w2 / WIENER_TAP_SCALE_FACTOR;
return y;
}
// Solve linear equations to find Wiener filter tap values
// Taps are output scaled by WIENER_FILT_STEP
static int linsolve_wiener(int n, int64_t *A, int stride, int64_t *b,
int64_t *x) {
for (int k = 0; k < n - 1; k++) {
// Partial pivoting: bring the row with the largest pivot to the top
for (int i = n - 1; i > k; i--) {
// If row i has a better (bigger) pivot than row (i-1), swap them
if (llabs(A[(i - 1) * stride + k]) < llabs(A[i * stride + k])) {
for (int j = 0; j < n; j++) {
const int64_t c = A[i * stride + j];
A[i * stride + j] = A[(i - 1) * stride + j];
A[(i - 1) * stride + j] = c;
}
const int64_t c = b[i];
b[i] = b[i - 1];
b[i - 1] = c;
}
}
// b/278065963: The multiplies
// c / 256 * A[k * stride + j] / cd * 256
// and
// c / 256 * b[k] / cd * 256
// within Gaussian elimination can cause a signed integer overflow. Rework
// the multiplies so that larger scaling is used without significantly
// impacting the overall precision.
//
// Precision guidance:
// scale_threshold: Pick as high as possible.
// For max_abs_akj >= scale_threshold scenario:
// scaler_A: Pick as low as possible. Needed for A[(i + 1) * stride + j].
// scaler_c: Pick as low as possible while maintaining scaler_c >=
// (1 << 7). Needed for A[(i + 1) * stride + j] and b[i + 1].
int64_t max_abs_akj = 0;
for (int j = 0; j < n; j++) {
const int64_t abs_akj = llabs(A[k * stride + j]);
if (abs_akj > max_abs_akj) max_abs_akj = abs_akj;
}
const int scale_threshold = 1 << 22;
const int scaler_A = max_abs_akj < scale_threshold ? 1 : (1 << 6);
const int scaler_c = max_abs_akj < scale_threshold ? 1 : (1 << 7);
const int scaler = scaler_c * scaler_A;
// Forward elimination (convert A to row-echelon form)
for (int i = k; i < n - 1; i++) {
if (A[k * stride + k] == 0) return 0;
const int64_t c = A[(i + 1) * stride + k] / scaler_c;
const int64_t cd = A[k * stride + k];
for (int j = 0; j < n; j++) {
A[(i + 1) * stride + j] -=
A[k * stride + j] / scaler_A * c / cd * scaler;
}
b[i + 1] -= c * b[k] / cd * scaler_c;
}
}
// Back-substitution
for (int i = n - 1; i >= 0; i--) {
if (A[i * stride + i] == 0) return 0;
int64_t c = 0;
for (int j = i + 1; j <= n - 1; j++) {
c += A[i * stride + j] * x[j] / WIENER_TAP_SCALE_FACTOR;
}
// Store filter taps x in scaled form.
x[i] = WIENER_TAP_SCALE_FACTOR * (b[i] - c) / A[i * stride + i];
}
return 1;
}
// Fix vector b, update vector a
static inline void update_a_sep_sym(int wiener_win, int64_t **Mc, int64_t **Hc,
int32_t *a, const int32_t *b) {
int i, j;
int64_t S[WIENER_WIN];
int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
int32_t b1[WIENER_WIN], b2[WIENER_WIN];
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin1 = (wiener_win >> 1) + 1;
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
for (i = 0; i < wiener_win; i++) {
for (j = 0; j < wiener_win; ++j) {
const int jj = wrap_index(j, wiener_win);
A[jj] += Mc[i][j] * b[i] / WIENER_TAP_SCALE_FACTOR;
}
}
split_wiener_filter_coefficients(wiener_win, b, b1, b2);
for (i = 0; i < wiener_win; i++) {
for (j = 0; j < wiener_win; j++) {
int k, l;
for (k = 0; k < wiener_win; ++k) {
const int kk = wrap_index(k, wiener_win);
for (l = 0; l < wiener_win; ++l) {
const int ll = wrap_index(l, wiener_win);
// Calculate
// B[ll * wiener_halfwin1 + kk] +=
// Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] /
// WIENER_TAP_SCALE_FACTOR * b[j] / WIENER_TAP_SCALE_FACTOR;
//
// The last multiplication may overflow, so we combine the last
// multiplication with the last division.
const int64_t x = Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] /
WIENER_TAP_SCALE_FACTOR;
// b[j] = b1[j] * WIENER_TAP_SCALE_FACTOR + b2[j]
B[ll * wiener_halfwin1 + kk] += multiply_and_scale(x, b1[j], b2[j]);
}
}
}
}
// Normalization enforcement in the system of equations itself
for (i = 0; i < wiener_halfwin1 - 1; ++i) {
A[i] -=
A[wiener_halfwin1 - 1] * 2 +
B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
}
for (i = 0; i < wiener_halfwin1 - 1; ++i) {
for (j = 0; j < wiener_halfwin1 - 1; ++j) {
B[i * wiener_halfwin1 + j] -=
2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
(wiener_halfwin1 - 1)]);
}
}
if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR;
for (i = wiener_halfwin1; i < wiener_win; ++i) {
S[i] = S[wiener_win - 1 - i];
S[wiener_halfwin1 - 1] -= 2 * S[i];
}
for (i = 0; i < wiener_win; ++i) {
a[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)),
(1 << (WIENER_FILT_BITS - 1)) - 1);
}
}
}
// Fix vector a, update vector b
static inline void update_b_sep_sym(int wiener_win, int64_t **Mc, int64_t **Hc,
const int32_t *a, int32_t *b) {
int i, j;
int64_t S[WIENER_WIN];
int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
int32_t a1[WIENER_WIN], a2[WIENER_WIN];
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin1 = (wiener_win >> 1) + 1;
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
for (i = 0; i < wiener_win; i++) {
const int ii = wrap_index(i, wiener_win);
for (j = 0; j < wiener_win; j++) {
A[ii] += Mc[i][j] * a[j] / WIENER_TAP_SCALE_FACTOR;
}
}
split_wiener_filter_coefficients(wiener_win, a, a1, a2);
for (i = 0; i < wiener_win; i++) {
const int ii = wrap_index(i, wiener_win);
for (j = 0; j < wiener_win; j++) {
const int jj = wrap_index(j, wiener_win);
int k, l;
for (k = 0; k < wiener_win; ++k) {
for (l = 0; l < wiener_win; ++l) {
// Calculate
// B[jj * wiener_halfwin1 + ii] +=
// Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] /
// WIENER_TAP_SCALE_FACTOR * a[l] / WIENER_TAP_SCALE_FACTOR;
//
// The last multiplication may overflow, so we combine the last
// multiplication with the last division.
const int64_t x = Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] /
WIENER_TAP_SCALE_FACTOR;
// a[l] = a1[l] * WIENER_TAP_SCALE_FACTOR + a2[l]
B[jj * wiener_halfwin1 + ii] += multiply_and_scale(x, a1[l], a2[l]);
}
}
}
}
// Normalization enforcement in the system of equations itself
for (i = 0; i < wiener_halfwin1 - 1; ++i) {
A[i] -=
A[wiener_halfwin1 - 1] * 2 +
B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
}
for (i = 0; i < wiener_halfwin1 - 1; ++i) {
for (j = 0; j < wiener_halfwin1 - 1; ++j) {
B[i * wiener_halfwin1 + j] -=
2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
(wiener_halfwin1 - 1)]);
}
}
if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR;
for (i = wiener_halfwin1; i < wiener_win; ++i) {
S[i] = S[wiener_win - 1 - i];
S[wiener_halfwin1 - 1] -= 2 * S[i];
}
for (i = 0; i < wiener_win; ++i) {
b[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)),
(1 << (WIENER_FILT_BITS - 1)) - 1);
}
}
}
static void wiener_decompose_sep_sym(int wiener_win, int64_t *M, int64_t *H,
int32_t *a, int32_t *b) {
static const int32_t init_filt[WIENER_WIN] = {
WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV,
WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV,
WIENER_FILT_TAP0_MIDV,
};
int64_t *Hc[WIENER_WIN2];
int64_t *Mc[WIENER_WIN];
int i, j, iter;
const int plane_off = (WIENER_WIN - wiener_win) >> 1;
const int wiener_win2 = wiener_win * wiener_win;
for (i = 0; i < wiener_win; i++) {
a[i] = b[i] =
WIENER_TAP_SCALE_FACTOR / WIENER_FILT_STEP * init_filt[i + plane_off];
}
for (i = 0; i < wiener_win; i++) {
Mc[i] = M + i * wiener_win;
for (j = 0; j < wiener_win; j++) {
Hc[i * wiener_win + j] =
H + i * wiener_win * wiener_win2 + j * wiener_win;
}
}
iter = 1;
while (iter < NUM_WIENER_ITERS) {
update_a_sep_sym(wiener_win, Mc, Hc, a, b);
update_b_sep_sym(wiener_win, Mc, Hc, a, b);
iter++;
}
}
// Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares
// against identity filters; Final score is defined as the difference between
// the function values
static int64_t compute_score(int wiener_win, int64_t *M, int64_t *H,
InterpKernel vfilt, InterpKernel hfilt) {
int32_t ab[WIENER_WIN * WIENER_WIN];
int16_t a[WIENER_WIN], b[WIENER_WIN];
int64_t P = 0, Q = 0;
int64_t iP = 0, iQ = 0;
int64_t Score, iScore;
int i, k, l;
const int plane_off = (WIENER_WIN - wiener_win) >> 1;
const int wiener_win2 = wiener_win * wiener_win;
a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = WIENER_FILT_STEP;
for (i = 0; i < WIENER_HALFWIN; ++i) {
a[i] = a[WIENER_WIN - i - 1] = vfilt[i];
b[i] = b[WIENER_WIN - i - 1] = hfilt[i];
a[WIENER_HALFWIN] -= 2 * a[i];
b[WIENER_HALFWIN] -= 2 * b[i];
}
memset(ab, 0, sizeof(ab));
for (k = 0; k < wiener_win; ++k) {
for (l = 0; l < wiener_win; ++l)
ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off];
}
for (k = 0; k < wiener_win2; ++k) {
P += ab[k] * M[k] / WIENER_FILT_STEP / WIENER_FILT_STEP;
for (l = 0; l < wiener_win2; ++l) {
Q += ab[k] * H[k * wiener_win2 + l] * ab[l] / WIENER_FILT_STEP /
WIENER_FILT_STEP / WIENER_FILT_STEP / WIENER_FILT_STEP;
}
}
Score = Q - 2 * P;
iP = M[wiener_win2 >> 1];
iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)];
iScore = iQ - 2 * iP;
return Score - iScore;
}
static inline void finalize_sym_filter(int wiener_win, int32_t *f,
InterpKernel fi) {
int i;
const int wiener_halfwin = (wiener_win >> 1);
for (i = 0; i < wiener_halfwin; ++i) {
const int64_t dividend = (int64_t)f[i] * WIENER_FILT_STEP;
const int64_t divisor = WIENER_TAP_SCALE_FACTOR;
// Perform this division with proper rounding rather than truncation
if (dividend < 0) {
fi[i] = (int16_t)((dividend - (divisor / 2)) / divisor);
} else {
fi[i] = (int16_t)((dividend + (divisor / 2)) / divisor);
}
}
// Specialize for 7-tap filter
if (wiener_win == WIENER_WIN) {
fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV);
fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
} else {
fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
fi[0] = 0;
}
// Satisfy filter constraints
fi[WIENER_WIN - 1] = fi[0];
fi[WIENER_WIN - 2] = fi[1];
fi[WIENER_WIN - 3] = fi[2];
// The central element has an implicit +WIENER_FILT_STEP
fi[3] = -2 * (fi[0] + fi[1] + fi[2]);
}
static int count_wiener_bits(int wiener_win, WienerInfo *wiener_info,
WienerInfo *ref_wiener_info) {
int bits = 0;
if (wiener_win == WIENER_WIN)
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
if (wiener_win == WIENER_WIN)
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
return bits;
}
static int64_t finer_search_wiener(const RestSearchCtxt *rsc,
const RestorationTileLimits *limits,
RestorationUnitInfo *rui, int wiener_win) {
const int plane_off = (WIENER_WIN - wiener_win) >> 1;
int64_t err = try_restoration_unit(rsc, limits, rui);
if (rsc->lpf_sf->disable_wiener_coeff_refine_search) return err;
// Refinement search around the wiener filter coefficients.
int64_t err2;
int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV,
WIENER_FILT_TAP2_MINV };
int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV,
WIENER_FILT_TAP2_MAXV };
WienerInfo *plane_wiener = &rui->wiener_info;
// printf("err pre = %"PRId64"\n", err);
const int start_step = 4;
for (int s = start_step; s >= 1; s >>= 1) {
for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
int skip = 0;
do {
if (plane_wiener->hfilter[p] - s >= tap_min[p]) {
plane_wiener->hfilter[p] -= s;
plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
err2 = try_restoration_unit(rsc, limits, rui);
if (err2 > err) {
plane_wiener->hfilter[p] += s;
plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
} else {
err = err2;
skip = 1;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
if (skip) break;
do {
if (plane_wiener->hfilter[p] + s <= tap_max[p]) {
plane_wiener->hfilter[p] += s;
plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
err2 = try_restoration_unit(rsc, limits, rui);
if (err2 > err) {
plane_wiener->hfilter[p] -= s;
plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
} else {
err = err2;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
}
for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
int skip = 0;
do {
if (plane_wiener->vfilter[p] - s >= tap_min[p]) {
plane_wiener->vfilter[p] -= s;
plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
err2 = try_restoration_unit(rsc, limits, rui);
if (err2 > err) {
plane_wiener->vfilter[p] += s;
plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
} else {
err = err2;
skip = 1;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
if (skip) break;
do {
if (plane_wiener->vfilter[p] + s <= tap_max[p]) {
plane_wiener->vfilter[p] += s;
plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
err2 = try_restoration_unit(rsc, limits, rui);
if (err2 > err) {
plane_wiener->vfilter[p] -= s;
plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
} else {
err = err2;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
}
}
// printf("err post = %"PRId64"\n", err);
return err;
}
static inline void search_wiener(const RestorationTileLimits *limits,
int rest_unit_idx, void *priv, int32_t *tmpbuf,
RestorationLineBuffers *rlbs,
struct aom_internal_error_info *error_info) {
(void)tmpbuf;
(void)rlbs;
(void)error_info;
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
const MACROBLOCK *const x = rsc->x;
const int64_t bits_none = x->mode_costs.wiener_restore_cost[0];
// Skip Wiener search for low variance contents
if (rsc->lpf_sf->prune_wiener_based_on_src_var) {
const int scale[3] = { 0, 1, 2 };
// Obtain the normalized Qscale
const int qs = av1_dc_quant_QTX(rsc->cm->quant_params.base_qindex, 0,
rsc->cm->seq_params->bit_depth) >>
3;
// Derive threshold as sqr(normalized Qscale) * scale / 16,
const uint64_t thresh =
(qs * qs * scale[rsc->lpf_sf->prune_wiener_based_on_src_var]) >> 4;
const int highbd = rsc->cm->seq_params->use_highbitdepth;
const uint64_t src_var =
var_restoration_unit(limits, rsc->src, rsc->plane, highbd);
// Do not perform Wiener search if source variance is lower than threshold
// or if the reconstruction error is zero
int prune_wiener = (src_var < thresh) || (rsc->sse[RESTORE_NONE] == 0);
if (prune_wiener) {
rsc->total_bits[RESTORE_WIENER] += bits_none;
rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE];
rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE;
rsc->sse[RESTORE_WIENER] = INT64_MAX;
if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1;
return;
}
}
const int wiener_win =
(rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;
int reduced_wiener_win = wiener_win;
if (rsc->lpf_sf->reduce_wiener_window_size) {
reduced_wiener_win =
(rsc->plane == AOM_PLANE_Y) ? WIENER_WIN_REDUCED : WIENER_WIN_CHROMA;
}
int64_t M[WIENER_WIN2];
int64_t H[WIENER_WIN2 * WIENER_WIN2];
int32_t vfilter[WIENER_WIN], hfilter[WIENER_WIN];
#if CONFIG_AV1_HIGHBITDEPTH
const AV1_COMMON *const cm = rsc->cm;
if (cm->seq_params->use_highbitdepth) {
// TODO(any) : Add support for use_downsampled_wiener_stats SF in HBD
// functions. Optimize intrinsics of HBD design similar to LBD (i.e.,
// pre-calculate d and s buffers and avoid most of the C operations).
av1_compute_stats_highbd(reduced_wiener_win, rsc->dgd_buffer,
rsc->src_buffer, rsc->dgd_avg, rsc->src_avg,
limits->h_start, limits->h_end, limits->v_start,
limits->v_end, rsc->dgd_stride, rsc->src_stride, M,
H, cm->seq_params->bit_depth);
} else {
av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer,
rsc->dgd_avg, rsc->src_avg, limits->h_start,
limits->h_end, limits->v_start, limits->v_end,
rsc->dgd_stride, rsc->src_stride, M, H,
rsc->lpf_sf->use_downsampled_wiener_stats);
}
#else
av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer,
rsc->dgd_avg, rsc->src_avg, limits->h_start, limits->h_end,
limits->v_start, limits->v_end, rsc->dgd_stride,
rsc->src_stride, M, H,
rsc->lpf_sf->use_downsampled_wiener_stats);
#endif
wiener_decompose_sep_sym(reduced_wiener_win, M, H, vfilter, hfilter);
RestorationUnitInfo rui;
memset(&rui, 0, sizeof(rui));
rui.restoration_type = RESTORE_WIENER;
finalize_sym_filter(reduced_wiener_win, vfilter, rui.wiener_info.vfilter);
finalize_sym_filter(reduced_wiener_win, hfilter, rui.wiener_info.hfilter);
// Filter score computes the value of the function x'*A*x - x'*b for the
// learned filter and compares it against identity filer. If there is no
// reduction in the function, the filter is reverted back to identity
if (compute_score(reduced_wiener_win, M, H, rui.wiener_info.vfilter,
rui.wiener_info.hfilter) > 0) {
rsc->total_bits[RESTORE_WIENER] += bits_none;
rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE];
rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE;
rsc->sse[RESTORE_WIENER] = INT64_MAX;
if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1;
return;
}
rsc->sse[RESTORE_WIENER] =
finer_search_wiener(rsc, limits, &rui, reduced_wiener_win);
rusi->wiener = rui.wiener_info;
if (reduced_wiener_win != WIENER_WIN) {
assert(rui.wiener_info.vfilter[0] == 0 &&
rui.wiener_info.vfilter[WIENER_WIN - 1] == 0);
assert(rui.wiener_info.hfilter[0] == 0 &&
rui.wiener_info.hfilter[WIENER_WIN - 1] == 0);
}
const int64_t bits_wiener =
x->mode_costs.wiener_restore_cost[1] +
(count_wiener_bits(wiener_win, &rusi->wiener, &rsc->ref_wiener)
<< AV1_PROB_COST_SHIFT);
double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE],
rsc->cm->seq_params->bit_depth);
double cost_wiener = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_wiener >> 4, rsc->sse[RESTORE_WIENER],
rsc->cm->seq_params->bit_depth);
RestorationType rtype =
(cost_wiener < cost_none) ? RESTORE_WIENER : RESTORE_NONE;
rusi->best_rtype[RESTORE_WIENER - 1] = rtype;
// Set 'skip_sgr_eval' based on rdcost ratio of RESTORE_WIENER and
// RESTORE_NONE or based on best_rtype
if (rsc->lpf_sf->prune_sgr_based_on_wiener == 1) {
rsc->skip_sgr_eval = cost_wiener > (1.01 * cost_none);
} else if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) {
rsc->skip_sgr_eval = rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_NONE;
}
#if DEBUG_LR_COSTING
// Store ref params for later checking
lr_ref_params[RESTORE_WIENER][rsc->plane][rest_unit_idx].wiener_info =
rsc->ref_wiener;
#endif // DEBUG_LR_COSTING
rsc->total_sse[RESTORE_WIENER] += rsc->sse[rtype];
rsc->total_bits[RESTORE_WIENER] +=
(cost_wiener < cost_none) ? bits_wiener : bits_none;
if (cost_wiener < cost_none) rsc->ref_wiener = rusi->wiener;
}
static inline void search_norestore(
const RestorationTileLimits *limits, int rest_unit_idx, void *priv,
int32_t *tmpbuf, RestorationLineBuffers *rlbs,
struct aom_internal_error_info *error_info) {
(void)rest_unit_idx;
(void)tmpbuf;
(void)rlbs;
(void)error_info;
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
const int highbd = rsc->cm->seq_params->use_highbitdepth;
rsc->sse[RESTORE_NONE] = sse_restoration_unit(
limits, rsc->src, &rsc->cm->cur_frame->buf, rsc->plane, highbd);
rsc->total_sse[RESTORE_NONE] += rsc->sse[RESTORE_NONE];
}
static inline void search_switchable(
const RestorationTileLimits *limits, int rest_unit_idx, void *priv,
int32_t *tmpbuf, RestorationLineBuffers *rlbs,
struct aom_internal_error_info *error_info) {
(void)limits;
(void)tmpbuf;
(void)rlbs;
(void)error_info;
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
const MACROBLOCK *const x = rsc->x;
const int wiener_win =
(rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;
double best_cost = 0;
int64_t best_bits = 0;
RestorationType best_rtype = RESTORE_NONE;
for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) {
// If this restoration mode was skipped, or could not find a solution
// that was better than RESTORE_NONE, then we can't select it here either.
//
// Note: It is possible for the restoration search functions to find a
// filter which is better than RESTORE_NONE when looking purely at SSE, but
// for it to be rejected overall due to its rate cost. In this case, there
// is a chance that it may be have a lower rate cost when looking at
// RESTORE_SWITCHABLE, and so it might be acceptable here.
//
// Therefore we prune based on SSE, rather than on whether or not the
// previous search function selected this mode.
if (r > RESTORE_NONE) {
if (rsc->sse[r] > rsc->sse[RESTORE_NONE]) continue;
}
const int64_t sse = rsc->sse[r];
int64_t coeff_pcost = 0;
switch (r) {
case RESTORE_NONE: coeff_pcost = 0; break;
case RESTORE_WIENER:
coeff_pcost = count_wiener_bits(wiener_win, &rusi->wiener,
&rsc->switchable_ref_wiener);
break;
case RESTORE_SGRPROJ:
coeff_pcost =
count_sgrproj_bits(&rusi->sgrproj, &rsc->switchable_ref_sgrproj);
break;
default: assert(0); break;
}
const int64_t coeff_bits = coeff_pcost << AV1_PROB_COST_SHIFT;
const int64_t bits = x->mode_costs.switchable_restore_cost[r] + coeff_bits;
double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits >> 4, sse, rsc->cm->seq_params->bit_depth);
if (r == RESTORE_SGRPROJ && rusi->sgrproj.ep < 10)
cost *= (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level);
if (r == 0 || cost < best_cost) {
best_cost = cost;
best_bits = bits;
best_rtype = r;
}
}
rusi->best_rtype[RESTORE_SWITCHABLE - 1] = best_rtype;
#if DEBUG_LR_COSTING
// Store ref params for later checking
lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].wiener_info =
rsc->switchable_ref_wiener;
lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].sgrproj_info =
rsc->switchable_ref_sgrproj;
#endif // DEBUG_LR_COSTING
rsc->total_sse[RESTORE_SWITCHABLE] += rsc->sse[best_rtype];
rsc->total_bits[RESTORE_SWITCHABLE] += best_bits;
if (best_rtype == RESTORE_WIENER) rsc->switchable_ref_wiener = rusi->wiener;
if (best_rtype == RESTORE_SGRPROJ)
rsc->switchable_ref_sgrproj = rusi->sgrproj;
}
static inline void copy_unit_info(RestorationType frame_rtype,
const RestUnitSearchInfo *rusi,
RestorationUnitInfo *rui) {
assert(frame_rtype > 0);
rui->restoration_type = rusi->best_rtype[frame_rtype - 1];
if (rui->restoration_type == RESTORE_WIENER)
rui->wiener_info = rusi->wiener;
else
rui->sgrproj_info = rusi->sgrproj;
}
static void restoration_search(AV1_COMMON *cm, int plane, RestSearchCtxt *rsc,
bool *disable_lr_filter) {
const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
const int mib_size_log2 = cm->seq_params->mib_size_log2;
const CommonTileParams *tiles = &cm->tiles;
const int is_uv = plane > 0;
const int ss_y = is_uv && cm->seq_params->subsampling_y;
RestorationInfo *rsi = &cm->rst_info[plane];
const int ru_size = rsi->restoration_unit_size;
const int ext_size = ru_size * 3 / 2;
int plane_w, plane_h;
av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
static const rest_unit_visitor_t funs[RESTORE_TYPES] = {
search_norestore, search_wiener, search_sgrproj, search_switchable
};
const int plane_num_units = rsi->num_rest_units;
const RestorationType num_rtypes =
(plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES;
reset_rsc(rsc);
// Iterate over restoration units in encoding order, so that each RU gets
// the correct reference parameters when we cost it up. This is effectively
// a nested iteration over:
// * Each tile, order does not matter
// * Each superblock within that tile, in raster order
// * Each LR unit which is coded within that superblock, in raster order
for (int tile_row = 0; tile_row < tiles->rows; tile_row++) {
int sb_row_start = tiles->row_start_sb[tile_row];
int sb_row_end = tiles->row_start_sb[tile_row + 1];
for (int tile_col = 0; tile_col < tiles->cols; tile_col++) {
int sb_col_start = tiles->col_start_sb[tile_col];
int sb_col_end = tiles->col_start_sb[tile_col + 1];
// Reset reference parameters for delta-coding at the start of each tile
rsc_on_tile(rsc);
for (int sb_row = sb_row_start; sb_row < sb_row_end; sb_row++) {
int mi_row = sb_row << mib_size_log2;
for (int sb_col = sb_col_start; sb_col < sb_col_end; sb_col++) {
int mi_col = sb_col << mib_size_log2;
int rcol0, rcol1, rrow0, rrow1;
int has_lr_info = av1_loop_restoration_corners_in_sb(
cm, plane, mi_row, mi_col, sb_size, &rcol0, &rcol1, &rrow0,
&rrow1);
if (!has_lr_info) continue;
RestorationTileLimits limits;
for (int rrow = rrow0; rrow < rrow1; rrow++) {
int y0 = rrow * ru_size;
int remaining_h = plane_h - y0;
int h = (remaining_h < ext_size) ? remaining_h : ru_size;
limits.v_start = y0;
limits.v_end = y0 + h;
assert(limits.v_end <= plane_h);
// Offset upwards to align with the restoration processing stripe
const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
limits.v_start = AOMMAX(0, limits.v_start - voffset);
if (limits.v_end < plane_h) limits.v_end -= voffset;
for (int rcol = rcol0; rcol < rcol1; rcol++) {
int x0 = rcol * ru_size;
int remaining_w = plane_w - x0;
int w = (remaining_w < ext_size) ? remaining_w : ru_size;
limits.h_start = x0;
limits.h_end = x0 + w;
assert(limits.h_end <= plane_w);
const int unit_idx = rrow * rsi->horz_units + rcol;
rsc->skip_sgr_eval = 0;
for (RestorationType r = RESTORE_NONE; r < num_rtypes; r++) {
if (disable_lr_filter[r]) continue;
funs[r](&limits, unit_idx, rsc, rsc->cm->rst_tmpbuf, NULL,
cm->error);
}
}
}
}
}
}
}
}
static inline void av1_derive_flags_for_lr_processing(
const LOOP_FILTER_SPEED_FEATURES *lpf_sf, bool *disable_lr_filter) {
const bool is_wiener_disabled = lpf_sf->disable_wiener_filter;
const bool is_sgr_disabled = lpf_sf->disable_sgr_filter;
// Enable None Loop restoration filter if either of Wiener or Self-guided is
// enabled.
disable_lr_filter[RESTORE_NONE] = (is_wiener_disabled && is_sgr_disabled);
disable_lr_filter[RESTORE_WIENER] = is_wiener_disabled;
disable_lr_filter[RESTORE_SGRPROJ] = is_sgr_disabled;
// Enable Swicthable Loop restoration filter if both of the Wiener and
// Self-guided are enabled.
disable_lr_filter[RESTORE_SWITCHABLE] =
(is_wiener_disabled || is_sgr_disabled);
}
#define COUPLED_CHROMA_FROM_LUMA_RESTORATION 0
// Allocate both decoder-side and encoder-side info structs for a single plane.
// The unit size passed in should be the minimum size which we are going to
// search; before each search, set_restoration_unit_size() must be called to
// configure the actual size.
static RestUnitSearchInfo *allocate_search_structs(AV1_COMMON *cm,
RestorationInfo *rsi,
int is_uv,
int min_luma_unit_size) {
#if COUPLED_CHROMA_FROM_LUMA_RESTORATION
int sx = cm->seq_params.subsampling_x;
int sy = cm->seq_params.subsampling_y;
int s = (p > 0) ? AOMMIN(sx, sy) : 0;
#else
int s = 0;
#endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION
int min_unit_size = min_luma_unit_size >> s;
int plane_w, plane_h;
av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
const int max_horz_units = av1_lr_count_units(min_unit_size, plane_w);
const int max_vert_units = av1_lr_count_units(min_unit_size, plane_h);
const int max_num_units = max_horz_units * max_vert_units;
aom_free(rsi->unit_info);
CHECK_MEM_ERROR(cm, rsi->unit_info,
(RestorationUnitInfo *)aom_memalign(
16, sizeof(*rsi->unit_info) * max_num_units));
RestUnitSearchInfo *rusi;
CHECK_MEM_ERROR(
cm, rusi,
(RestUnitSearchInfo *)aom_memalign(16, sizeof(*rusi) * max_num_units));
// If the restoration unit dimensions are not multiples of
// rsi->restoration_unit_size then some elements of the rusi array may be
// left uninitialised when we reach copy_unit_info(...). This is not a
// problem, as these elements are ignored later, but in order to quiet
// Valgrind's warnings we initialise the array below.
memset(rusi, 0, sizeof(*rusi) * max_num_units);
return rusi;
}
static void set_restoration_unit_size(AV1_COMMON *cm, RestorationInfo *rsi,
int is_uv, int luma_unit_size) {
#if COUPLED_CHROMA_FROM_LUMA_RESTORATION
int sx = cm->seq_params.subsampling_x;
int sy = cm->seq_params.subsampling_y;
int s = (p > 0) ? AOMMIN(sx, sy) : 0;
#else
int s = 0;
#endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION
int unit_size = luma_unit_size >> s;
int plane_w, plane_h;
av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
const int horz_units = av1_lr_count_units(unit_size, plane_w);
const int vert_units = av1_lr_count_units(unit_size, plane_h);
rsi->restoration_unit_size = unit_size;
rsi->num_rest_units = horz_units * vert_units;
rsi->horz_units = horz_units;
rsi->vert_units = vert_units;
}
void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
const SequenceHeader *const seq_params = cm->seq_params;
const LOOP_FILTER_SPEED_FEATURES *lpf_sf = &cpi->sf.lpf_sf;
const int num_planes = av1_num_planes(cm);
const int highbd = cm->seq_params->use_highbitdepth;
assert(!cm->features.all_lossless);
av1_fill_lr_rates(&x->mode_costs, x->e_mbd.tile_ctx);
// Select unit size based on speed feature settings, and allocate
// rui structs based on this size
int min_lr_unit_size = cpi->sf.lpf_sf.min_lr_unit_size;
int max_lr_unit_size = cpi->sf.lpf_sf.max_lr_unit_size;
// The minimum allowed unit size at a syntax level is 1 superblock.
// Apply this constraint here so that the speed features code which sets
// cpi->sf.lpf_sf.min_lr_unit_size does not need to know the superblock size
min_lr_unit_size =
AOMMAX(min_lr_unit_size, block_size_wide[cm->seq_params->sb_size]);
for (int plane = 0; plane < num_planes; ++plane) {
cpi->pick_lr_ctxt.rusi[plane] = allocate_search_structs(
cm, &cm->rst_info[plane], plane > 0, min_lr_unit_size);
}
x->rdmult = cpi->rd.RDMULT;
// Allocate the frame buffer trial_frame_rst, which is used to temporarily
// store the loop restored frame.
if (aom_realloc_frame_buffer(
&cpi->trial_frame_rst, cm->superres_upscaled_width,
cm->superres_upscaled_height, seq_params->subsampling_x,
seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
cm->features.byte_alignment, NULL, NULL, NULL, false, 0))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate trial restored frame buffer");
RestSearchCtxt rsc;
// The buffers 'src_avg' and 'dgd_avg' are used to compute H and M buffers.
// These buffers are only required for the AVX2 and NEON implementations of
// av1_compute_stats. The buffer size required is calculated based on maximum
// width and height of the LRU (i.e., from foreach_rest_unit_in_plane() 1.5
// times the RESTORATION_UNITSIZE_MAX) allowed for Wiener filtering. The width
// and height aligned to multiple of 16 is considered for intrinsic purpose.
rsc.dgd_avg = NULL;
rsc.src_avg = NULL;
#if HAVE_AVX2 || HAVE_NEON || HAVE_SVE
// The buffers allocated below are used during Wiener filter processing.
// Hence, allocate the same when Wiener filter is enabled. Make sure to
// allocate these buffers only for the SIMD extensions that make use of them
// (i.e. AVX2 for low bitdepth and NEON and SVE for low and high bitdepth).
#if HAVE_AVX2
bool allocate_buffers = !cpi->sf.lpf_sf.disable_wiener_filter && !highbd;
#elif HAVE_NEON || HAVE_SVE
bool allocate_buffers = !cpi->sf.lpf_sf.disable_wiener_filter;
#endif
if (allocate_buffers) {
const int buf_size = sizeof(*cpi->pick_lr_ctxt.dgd_avg) * 6 *
RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX;
CHECK_MEM_ERROR(cm, cpi->pick_lr_ctxt.dgd_avg,
(int16_t *)aom_memalign(32, buf_size));
rsc.dgd_avg = cpi->pick_lr_ctxt.dgd_avg;
// When LRU width isn't multiple of 16, the 256 bits load instruction used
// in AVX2 intrinsic can read data beyond valid LRU. Hence, in order to
// silence Valgrind warning this buffer is initialized with zero. Overhead
// due to this initialization is negligible since it is done at frame level.
memset(rsc.dgd_avg, 0, buf_size);
rsc.src_avg =
rsc.dgd_avg + 3 * RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX;
// Asserts the starting address of src_avg is always 32-bytes aligned.
assert(!((intptr_t)rsc.src_avg % 32));
}
#endif
// Initialize all planes, so that any planes we skip searching will still have
// valid data
for (int plane = 0; plane < num_planes; plane++) {
cm->rst_info[plane].frame_restoration_type = RESTORE_NONE;
}
// Decide which planes to search
int plane_start, plane_end;
if (lpf_sf->disable_loop_restoration_luma) {
plane_start = AOM_PLANE_U;
} else {
plane_start = AOM_PLANE_Y;
}
if (num_planes == 1 || lpf_sf->disable_loop_restoration_chroma) {
plane_end = AOM_PLANE_Y;
} else {
plane_end = AOM_PLANE_V;
}
// Derive the flags to enable/disable Loop restoration filters based on the
// speed features 'disable_wiener_filter' and 'disable_sgr_filter'.
bool disable_lr_filter[RESTORE_TYPES] = { false };
av1_derive_flags_for_lr_processing(lpf_sf, disable_lr_filter);
for (int plane = plane_start; plane <= plane_end; plane++) {
const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf;
const int is_uv = plane != AOM_PLANE_Y;
int plane_w, plane_h;
av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
av1_extend_frame(dgd->buffers[plane], plane_w, plane_h, dgd->strides[is_uv],
RESTORATION_BORDER, RESTORATION_BORDER, highbd);
}
double best_cost = DBL_MAX;
int best_luma_unit_size = max_lr_unit_size;
for (int luma_unit_size = max_lr_unit_size;
luma_unit_size >= min_lr_unit_size; luma_unit_size >>= 1) {
int64_t bits_this_size = 0;
int64_t sse_this_size = 0;
RestorationType best_rtype[MAX_MB_PLANE] = { RESTORE_NONE, RESTORE_NONE,
RESTORE_NONE };
for (int plane = plane_start; plane <= plane_end; ++plane) {
set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0,
luma_unit_size);
init_rsc(src, &cpi->common, x, lpf_sf, plane,
cpi->pick_lr_ctxt.rusi[plane], &cpi->trial_frame_rst, &rsc);
restoration_search(cm, plane, &rsc, disable_lr_filter);
const int plane_num_units = cm->rst_info[plane].num_rest_units;
const RestorationType num_rtypes =
(plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES;
double best_cost_this_plane = DBL_MAX;
for (RestorationType r = 0; r < num_rtypes; ++r) {
// Disable Loop restoration filter based on the flags set using speed
// feature 'disable_wiener_filter' and 'disable_sgr_filter'.
if (disable_lr_filter[r]) continue;
double cost_this_plane = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, rsc.total_bits[r] >> 4, rsc.total_sse[r],
cm->seq_params->bit_depth);
if (cost_this_plane < best_cost_this_plane) {
best_cost_this_plane = cost_this_plane;
best_rtype[plane] = r;
}
}
bits_this_size += rsc.total_bits[best_rtype[plane]];
sse_this_size += rsc.total_sse[best_rtype[plane]];
}
double cost_this_size = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_this_size >> 4, sse_this_size,
cm->seq_params->bit_depth);
if (cost_this_size < best_cost) {
best_cost = cost_this_size;
best_luma_unit_size = luma_unit_size;
// Copy parameters out of rusi struct, before we overwrite it at
// the start of the next iteration
bool all_none = true;
for (int plane = plane_start; plane <= plane_end; ++plane) {
cm->rst_info[plane].frame_restoration_type = best_rtype[plane];
if (best_rtype[plane] != RESTORE_NONE) {
all_none = false;
const int plane_num_units = cm->rst_info[plane].num_rest_units;
for (int u = 0; u < plane_num_units; ++u) {
copy_unit_info(best_rtype[plane], &cpi->pick_lr_ctxt.rusi[plane][u],
&cm->rst_info[plane].unit_info[u]);
}
}
}
// Heuristic: If all best_rtype entries are RESTORE_NONE, this means we
// couldn't find any good filters at this size. So we likely won't find
// any good filters at a smaller size either, so skip
if (all_none) {
break;
}
} else {
// Heuristic: If this size is worse than the previous (larger) size, then
// the next size down will likely be even worse, so skip
break;
}
}
// Final fixup to set the correct unit size
// We set this for all planes, even ones we have skipped searching,
// so that other code does not need to care which planes were and weren't
// searched
for (int plane = 0; plane < num_planes; ++plane) {
set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0,
best_luma_unit_size);
}
#if HAVE_AVX2 || HAVE_NEON || HAVE_SVE
#if HAVE_AVX2
bool free_buffers = !cpi->sf.lpf_sf.disable_wiener_filter && !highbd;
#elif HAVE_NEON || HAVE_SVE
bool free_buffers = !cpi->sf.lpf_sf.disable_wiener_filter;
#endif
if (free_buffers) {
aom_free(cpi->pick_lr_ctxt.dgd_avg);
cpi->pick_lr_ctxt.dgd_avg = NULL;
}
#endif
for (int plane = 0; plane < num_planes; plane++) {
aom_free(cpi->pick_lr_ctxt.rusi[plane]);
cpi->pick_lr_ctxt.rusi[plane] = NULL;
}
}