| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <tuple> |
| #include <vector> |
| |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_ports/aom_timer.h" |
| #include "av1/common/av1_inv_txfm1d_cfg.h" |
| #include "av1/common/scan.h" |
| #include "test/acm_random.h" |
| #include "test/av1_txfm_test.h" |
| #include "test/util.h" |
| |
| using libaom_test::ACMRandom; |
| using libaom_test::bd; |
| using libaom_test::compute_avg_abs_error; |
| using libaom_test::input_base; |
| using libaom_test::InvTxfm2dFunc; |
| using libaom_test::LbdInvTxfm2dFunc; |
| using libaom_test::tx_type_name; |
| |
| using ::testing::Combine; |
| using ::testing::Range; |
| using ::testing::Values; |
| |
| using std::vector; |
| |
| typedef TX_TYPE TxType; |
| typedef TX_SIZE TxSize; |
| |
| namespace { |
| |
| // AV1InvTxfm2dParam argument list: |
| // tx_type_, tx_size_, max_error_, max_avg_error_ |
| typedef std::tuple<TxType, TxSize, int, double> AV1InvTxfm2dParam; |
| |
| class AV1InvTxfm2d : public ::testing::TestWithParam<AV1InvTxfm2dParam> { |
| public: |
| void SetUp() override { |
| tx_type_ = GET_PARAM(0); |
| tx_size_ = GET_PARAM(1); |
| max_error_ = GET_PARAM(2); |
| max_avg_error_ = GET_PARAM(3); |
| } |
| |
| void RunRoundtripCheck() { |
| int tx_w = tx_size_wide[tx_size_]; |
| int tx_h = tx_size_high[tx_size_]; |
| int txfm2d_size = tx_w * tx_h; |
| const FwdTxfm2dFunc fwd_txfm_func = libaom_test::fwd_txfm_func_ls[tx_size_]; |
| const InvTxfm2dFunc inv_txfm_func = libaom_test::inv_txfm_func_ls[tx_size_]; |
| double avg_abs_error = 0; |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| |
| const int count = 500; |
| |
| for (int ci = 0; ci < count; ci++) { |
| DECLARE_ALIGNED(16, int16_t, input[64 * 64]) = { 0 }; |
| ASSERT_LE(txfm2d_size, NELEMENTS(input)); |
| |
| for (int ni = 0; ni < txfm2d_size; ++ni) { |
| if (ci == 0) { |
| int extreme_input = input_base - 1; |
| input[ni] = extreme_input; // extreme case |
| } else { |
| input[ni] = rnd.Rand16() % input_base; |
| } |
| } |
| |
| DECLARE_ALIGNED(16, uint16_t, expected[64 * 64]) = { 0 }; |
| ASSERT_LE(txfm2d_size, NELEMENTS(expected)); |
| if (TxfmUsesApproximation()) { |
| // Compare reference forward HT + inverse HT vs forward HT + inverse HT. |
| double ref_input[64 * 64]; |
| ASSERT_LE(txfm2d_size, NELEMENTS(ref_input)); |
| for (int ni = 0; ni < txfm2d_size; ++ni) { |
| ref_input[ni] = input[ni]; |
| } |
| double ref_coeffs[64 * 64] = { 0 }; |
| ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs)); |
| ASSERT_EQ(tx_type_, static_cast<TxType>(DCT_DCT)); |
| libaom_test::reference_hybrid_2d(ref_input, ref_coeffs, tx_type_, |
| tx_size_); |
| DECLARE_ALIGNED(16, int32_t, ref_coeffs_int[64 * 64]) = { 0 }; |
| ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs_int)); |
| for (int ni = 0; ni < txfm2d_size; ++ni) { |
| ref_coeffs_int[ni] = (int32_t)round(ref_coeffs[ni]); |
| } |
| inv_txfm_func(ref_coeffs_int, expected, tx_w, tx_type_, bd); |
| } else { |
| // Compare original input vs forward HT + inverse HT. |
| for (int ni = 0; ni < txfm2d_size; ++ni) { |
| expected[ni] = input[ni]; |
| } |
| } |
| |
| DECLARE_ALIGNED(16, int32_t, coeffs[64 * 64]) = { 0 }; |
| ASSERT_LE(txfm2d_size, NELEMENTS(coeffs)); |
| fwd_txfm_func(input, coeffs, tx_w, tx_type_, bd); |
| |
| DECLARE_ALIGNED(16, uint16_t, actual[64 * 64]) = { 0 }; |
| ASSERT_LE(txfm2d_size, NELEMENTS(actual)); |
| inv_txfm_func(coeffs, actual, tx_w, tx_type_, bd); |
| |
| double actual_max_error = 0; |
| for (int ni = 0; ni < txfm2d_size; ++ni) { |
| const double this_error = abs(expected[ni] - actual[ni]); |
| actual_max_error = AOMMAX(actual_max_error, this_error); |
| } |
| EXPECT_GE(max_error_, actual_max_error) |
| << " tx_w: " << tx_w << " tx_h " << tx_h |
| << " tx_type: " << tx_type_name[tx_type_]; |
| if (actual_max_error > max_error_) { // exit early. |
| break; |
| } |
| avg_abs_error += compute_avg_abs_error<uint16_t, uint16_t>( |
| expected, actual, txfm2d_size); |
| } |
| |
| avg_abs_error /= count; |
| EXPECT_GE(max_avg_error_, avg_abs_error) |
| << " tx_w: " << tx_w << " tx_h " << tx_h |
| << " tx_type: " << tx_type_name[tx_type_]; |
| } |
| |
| private: |
| bool TxfmUsesApproximation() { |
| if (tx_size_wide[tx_size_] == 64 || tx_size_high[tx_size_] == 64) { |
| return true; |
| } |
| return false; |
| } |
| |
| int max_error_; |
| double max_avg_error_; |
| TxType tx_type_; |
| TxSize tx_size_; |
| }; |
| |
| static const int max_error_ls[TX_SIZES_ALL] = { |
| 2, // 4x4 transform |
| 2, // 8x8 transform |
| 2, // 16x16 transform |
| 4, // 32x32 transform |
| 3, // 64x64 transform |
| 2, // 4x8 transform |
| 2, // 8x4 transform |
| 2, // 8x16 transform |
| 2, // 16x8 transform |
| 3, // 16x32 transform |
| 3, // 32x16 transform |
| 5, // 32x64 transform |
| 5, // 64x32 transform |
| 2, // 4x16 transform |
| 2, // 16x4 transform |
| 2, // 8x32 transform |
| 2, // 32x8 transform |
| 3, // 16x64 transform |
| 3, // 64x16 transform |
| }; |
| |
| static const double avg_error_ls[TX_SIZES_ALL] = { |
| 0.002, // 4x4 transform |
| 0.05, // 8x8 transform |
| 0.07, // 16x16 transform |
| 0.4, // 32x32 transform |
| 0.3, // 64x64 transform |
| 0.02, // 4x8 transform |
| 0.02, // 8x4 transform |
| 0.04, // 8x16 transform |
| 0.07, // 16x8 transform |
| 0.4, // 16x32 transform |
| 0.5, // 32x16 transform |
| 0.38, // 32x64 transform |
| 0.39, // 64x32 transform |
| 0.2, // 4x16 transform |
| 0.2, // 16x4 transform |
| 0.2, // 8x32 transform |
| 0.2, // 32x8 transform |
| 0.38, // 16x64 transform |
| 0.38, // 64x16 transform |
| }; |
| |
| vector<AV1InvTxfm2dParam> GetInvTxfm2dParamList() { |
| vector<AV1InvTxfm2dParam> param_list; |
| for (int s = 0; s < TX_SIZES; ++s) { |
| const int max_error = max_error_ls[s]; |
| const double avg_error = avg_error_ls[s]; |
| for (int t = 0; t < TX_TYPES; ++t) { |
| const TxType tx_type = static_cast<TxType>(t); |
| const TxSize tx_size = static_cast<TxSize>(s); |
| if (libaom_test::IsTxSizeTypeValid(tx_size, tx_type)) { |
| param_list.push_back( |
| AV1InvTxfm2dParam(tx_type, tx_size, max_error, avg_error)); |
| } |
| } |
| } |
| return param_list; |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(C, AV1InvTxfm2d, |
| ::testing::ValuesIn(GetInvTxfm2dParamList())); |
| |
| TEST_P(AV1InvTxfm2d, RunRoundtripCheck) { RunRoundtripCheck(); } |
| |
| TEST(AV1InvTxfm2d, CfgTest) { |
| for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) { |
| int bd = libaom_test::bd_arr[bd_idx]; |
| int8_t low_range = libaom_test::low_range_arr[bd_idx]; |
| int8_t high_range = libaom_test::high_range_arr[bd_idx]; |
| for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) { |
| for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { |
| if (libaom_test::IsTxSizeTypeValid(static_cast<TxSize>(tx_size), |
| static_cast<TxType>(tx_type)) == |
| false) { |
| continue; |
| } |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_inv_txfm_cfg(static_cast<TxType>(tx_type), |
| static_cast<TxSize>(tx_size), &cfg); |
| int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; |
| int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; |
| av1_gen_inv_stage_range(stage_range_col, stage_range_row, &cfg, |
| static_cast<TxSize>(tx_size), bd); |
| libaom_test::txfm_stage_range_check(stage_range_col, cfg.stage_num_col, |
| cfg.cos_bit_col, low_range, |
| high_range); |
| libaom_test::txfm_stage_range_check(stage_range_row, cfg.stage_num_row, |
| cfg.cos_bit_row, low_range, |
| high_range); |
| } |
| } |
| } |
| } |
| |
| typedef std::tuple<const LbdInvTxfm2dFunc> AV1LbdInvTxfm2dParam; |
| class AV1LbdInvTxfm2d : public ::testing::TestWithParam<AV1LbdInvTxfm2dParam> { |
| public: |
| void SetUp() override { target_func_ = GET_PARAM(0); } |
| void RunAV1InvTxfm2dTest(TxType tx_type, TxSize tx_size, int run_times, |
| int gt_int16 = 0); |
| |
| private: |
| LbdInvTxfm2dFunc target_func_; |
| }; |
| GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1LbdInvTxfm2d); |
| |
| void AV1LbdInvTxfm2d::RunAV1InvTxfm2dTest(TxType tx_type, TxSize tx_size, |
| int run_times, int gt_int16) { |
| FwdTxfm2dFunc fwd_func_ = libaom_test::fwd_txfm_func_ls[tx_size]; |
| InvTxfm2dFunc ref_func_ = libaom_test::inv_txfm_func_ls[tx_size]; |
| if (fwd_func_ == nullptr || ref_func_ == nullptr || target_func_ == nullptr) { |
| return; |
| } |
| const int bd = 8; |
| const int BLK_WIDTH = 64; |
| const int BLK_SIZE = BLK_WIDTH * BLK_WIDTH; |
| DECLARE_ALIGNED(16, int16_t, input[BLK_SIZE]) = { 0 }; |
| DECLARE_ALIGNED(32, int32_t, inv_input[BLK_SIZE]) = { 0 }; |
| DECLARE_ALIGNED(16, uint8_t, output[BLK_SIZE]) = { 0 }; |
| DECLARE_ALIGNED(16, uint16_t, ref_output[BLK_SIZE]) = { 0 }; |
| int stride = BLK_WIDTH; |
| int rows = tx_size_high[tx_size]; |
| int cols = tx_size_wide[tx_size]; |
| const int rows_nonezero = AOMMIN(32, rows); |
| const int cols_nonezero = AOMMIN(32, cols); |
| run_times /= (rows * cols); |
| run_times = AOMMAX(1, run_times); |
| const SCAN_ORDER *scan_order = get_default_scan(tx_size, tx_type); |
| const int16_t *scan = scan_order->scan; |
| const int16_t eobmax = rows_nonezero * cols_nonezero; |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| int randTimes = run_times == 1 ? (eobmax + 500) : 1; |
| |
| for (int cnt = 0; cnt < randTimes; ++cnt) { |
| const int16_t max_in = (1 << (bd)) - 1; |
| for (int r = 0; r < BLK_WIDTH; ++r) { |
| for (int c = 0; c < BLK_WIDTH; ++c) { |
| input[r * cols + c] = (cnt == 0) ? max_in : rnd.Rand8Extremes(); |
| output[r * stride + c] = (cnt == 0) ? 128 : rnd.Rand8(); |
| ref_output[r * stride + c] = output[r * stride + c]; |
| } |
| } |
| fwd_func_(input, inv_input, stride, tx_type, bd); |
| |
| // produce eob input by setting high freq coeffs to zero |
| const int eob = AOMMIN(cnt + 1, eobmax); |
| for (int i = eob; i < eobmax; i++) { |
| inv_input[scan[i]] = 0; |
| } |
| if (gt_int16) { |
| inv_input[scan[eob - 1]] = ((int32_t)INT16_MAX * 100 / 141); |
| } |
| aom_usec_timer timer; |
| aom_usec_timer_start(&timer); |
| for (int i = 0; i < run_times; ++i) { |
| ref_func_(inv_input, ref_output, stride, tx_type, bd); |
| } |
| aom_usec_timer_mark(&timer); |
| const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer)); |
| aom_usec_timer_start(&timer); |
| for (int i = 0; i < run_times; ++i) { |
| target_func_(inv_input, output, stride, tx_type, tx_size, eob); |
| } |
| aom_usec_timer_mark(&timer); |
| const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer)); |
| if (run_times > 10) { |
| printf("txfm[%d] %3dx%-3d:%7.2f/%7.2fns", tx_type, cols, rows, time1, |
| time2); |
| printf("(%3.2f)\n", time1 / time2); |
| } |
| for (int r = 0; r < rows; ++r) { |
| for (int c = 0; c < cols; ++c) { |
| uint8_t ref_value = static_cast<uint8_t>(ref_output[r * stride + c]); |
| if (ref_value != output[r * stride + c]) { |
| printf(" "); |
| } |
| ASSERT_EQ(ref_value, output[r * stride + c]) |
| << "[" << r << "," << c << "] " << cnt << " tx_size: " << cols |
| << "x" << rows << " tx_type: " << tx_type_name[tx_type] << " eob " |
| << eob; |
| } |
| } |
| } |
| } |
| |
| TEST_P(AV1LbdInvTxfm2d, match) { |
| for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) { |
| for (int i = 0; i < (int)TX_TYPES; ++i) { |
| if (libaom_test::IsTxSizeTypeValid(static_cast<TxSize>(j), |
| static_cast<TxType>(i))) { |
| RunAV1InvTxfm2dTest(static_cast<TxType>(i), static_cast<TxSize>(j), 1); |
| } |
| } |
| } |
| } |
| |
| TEST_P(AV1LbdInvTxfm2d, gt_int16) { |
| static const TxType types[] = { DCT_DCT, ADST_DCT, FLIPADST_DCT, IDTX, |
| V_DCT, H_DCT, H_ADST, H_FLIPADST }; |
| for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) { |
| const TxSize sz = static_cast<TxSize>(j); |
| for (uint8_t i = 0; i < sizeof(types) / sizeof(types[0]); ++i) { |
| const TxType tp = types[i]; |
| if (libaom_test::IsTxSizeTypeValid(sz, tp)) { |
| RunAV1InvTxfm2dTest(tp, sz, 1, 1); |
| } |
| } |
| } |
| } |
| |
| TEST_P(AV1LbdInvTxfm2d, DISABLED_Speed) { |
| for (int j = 1; j < (int)(TX_SIZES_ALL); ++j) { |
| for (int i = 0; i < (int)TX_TYPES; ++i) { |
| if (libaom_test::IsTxSizeTypeValid(static_cast<TxSize>(j), |
| static_cast<TxType>(i))) { |
| RunAV1InvTxfm2dTest(static_cast<TxType>(i), static_cast<TxSize>(j), |
| 10000000); |
| } |
| } |
| } |
| } |
| |
| #if HAVE_SSSE3 |
| extern "C" void av1_lowbd_inv_txfm2d_add_ssse3(const int32_t *input, |
| uint8_t *output, int stride, |
| TxType tx_type, TxSize tx_size, |
| int eob); |
| INSTANTIATE_TEST_SUITE_P(SSSE3, AV1LbdInvTxfm2d, |
| ::testing::Values(av1_lowbd_inv_txfm2d_add_ssse3)); |
| #endif // HAVE_SSSE3 |
| |
| #if HAVE_AVX2 |
| extern "C" void av1_lowbd_inv_txfm2d_add_avx2(const int32_t *input, |
| uint8_t *output, int stride, |
| TxType tx_type, TxSize tx_size, |
| int eob); |
| |
| INSTANTIATE_TEST_SUITE_P(AVX2, AV1LbdInvTxfm2d, |
| ::testing::Values(av1_lowbd_inv_txfm2d_add_avx2)); |
| #endif // HAVE_AVX2 |
| |
| #if HAVE_NEON |
| extern "C" void av1_lowbd_inv_txfm2d_add_neon(const int32_t *input, |
| uint8_t *output, int stride, |
| TX_TYPE tx_type, TX_SIZE tx_size, |
| int eob); |
| |
| INSTANTIATE_TEST_SUITE_P(NEON, AV1LbdInvTxfm2d, |
| ::testing::Values(av1_lowbd_inv_txfm2d_add_neon)); |
| #endif // HAVE_NEON |
| |
| } // namespace |