blob: 1f62dafbc491eb55b8815c5e8b53cc497c99a931 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <tuple>
#include <vector>
#include "config/av1_rtcd.h"
#include "aom_ports/aom_timer.h"
#include "av1/common/av1_inv_txfm1d_cfg.h"
#include "av1/common/scan.h"
#include "test/acm_random.h"
#include "test/av1_txfm_test.h"
#include "test/util.h"
using libaom_test::ACMRandom;
using libaom_test::bd;
using libaom_test::compute_avg_abs_error;
using libaom_test::input_base;
using libaom_test::InvTxfm2dFunc;
using libaom_test::LbdInvTxfm2dFunc;
using libaom_test::tx_type_name;
using ::testing::Combine;
using ::testing::Range;
using ::testing::Values;
using std::vector;
typedef TX_TYPE TxType;
typedef TX_SIZE TxSize;
namespace {
// AV1InvTxfm2dParam argument list:
// tx_type_, tx_size_, max_error_, max_avg_error_
typedef std::tuple<TxType, TxSize, int, double> AV1InvTxfm2dParam;
class AV1InvTxfm2d : public ::testing::TestWithParam<AV1InvTxfm2dParam> {
public:
void SetUp() override {
tx_type_ = GET_PARAM(0);
tx_size_ = GET_PARAM(1);
max_error_ = GET_PARAM(2);
max_avg_error_ = GET_PARAM(3);
}
void RunRoundtripCheck() {
int tx_w = tx_size_wide[tx_size_];
int tx_h = tx_size_high[tx_size_];
int txfm2d_size = tx_w * tx_h;
const FwdTxfm2dFunc fwd_txfm_func = libaom_test::fwd_txfm_func_ls[tx_size_];
const InvTxfm2dFunc inv_txfm_func = libaom_test::inv_txfm_func_ls[tx_size_];
double avg_abs_error = 0;
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count = 500;
for (int ci = 0; ci < count; ci++) {
DECLARE_ALIGNED(16, int16_t, input[64 * 64]) = { 0 };
ASSERT_LE(txfm2d_size, NELEMENTS(input));
for (int ni = 0; ni < txfm2d_size; ++ni) {
if (ci == 0) {
int extreme_input = input_base - 1;
input[ni] = extreme_input; // extreme case
} else {
input[ni] = rnd.Rand16() % input_base;
}
}
DECLARE_ALIGNED(16, uint16_t, expected[64 * 64]) = { 0 };
ASSERT_LE(txfm2d_size, NELEMENTS(expected));
if (TxfmUsesApproximation()) {
// Compare reference forward HT + inverse HT vs forward HT + inverse HT.
double ref_input[64 * 64];
ASSERT_LE(txfm2d_size, NELEMENTS(ref_input));
for (int ni = 0; ni < txfm2d_size; ++ni) {
ref_input[ni] = input[ni];
}
double ref_coeffs[64 * 64] = { 0 };
ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs));
ASSERT_EQ(tx_type_, static_cast<TxType>(DCT_DCT));
libaom_test::reference_hybrid_2d(ref_input, ref_coeffs, tx_type_,
tx_size_);
DECLARE_ALIGNED(16, int32_t, ref_coeffs_int[64 * 64]) = { 0 };
ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs_int));
for (int ni = 0; ni < txfm2d_size; ++ni) {
ref_coeffs_int[ni] = (int32_t)round(ref_coeffs[ni]);
}
inv_txfm_func(ref_coeffs_int, expected, tx_w, tx_type_, bd);
} else {
// Compare original input vs forward HT + inverse HT.
for (int ni = 0; ni < txfm2d_size; ++ni) {
expected[ni] = input[ni];
}
}
DECLARE_ALIGNED(16, int32_t, coeffs[64 * 64]) = { 0 };
ASSERT_LE(txfm2d_size, NELEMENTS(coeffs));
fwd_txfm_func(input, coeffs, tx_w, tx_type_, bd);
DECLARE_ALIGNED(16, uint16_t, actual[64 * 64]) = { 0 };
ASSERT_LE(txfm2d_size, NELEMENTS(actual));
inv_txfm_func(coeffs, actual, tx_w, tx_type_, bd);
double actual_max_error = 0;
for (int ni = 0; ni < txfm2d_size; ++ni) {
const double this_error = abs(expected[ni] - actual[ni]);
actual_max_error = AOMMAX(actual_max_error, this_error);
}
EXPECT_GE(max_error_, actual_max_error)
<< " tx_w: " << tx_w << " tx_h " << tx_h
<< " tx_type: " << tx_type_name[tx_type_];
if (actual_max_error > max_error_) { // exit early.
break;
}
avg_abs_error += compute_avg_abs_error<uint16_t, uint16_t>(
expected, actual, txfm2d_size);
}
avg_abs_error /= count;
EXPECT_GE(max_avg_error_, avg_abs_error)
<< " tx_w: " << tx_w << " tx_h " << tx_h
<< " tx_type: " << tx_type_name[tx_type_];
}
private:
bool TxfmUsesApproximation() {
if (tx_size_wide[tx_size_] == 64 || tx_size_high[tx_size_] == 64) {
return true;
}
return false;
}
int max_error_;
double max_avg_error_;
TxType tx_type_;
TxSize tx_size_;
};
static const int max_error_ls[TX_SIZES_ALL] = {
2, // 4x4 transform
2, // 8x8 transform
2, // 16x16 transform
4, // 32x32 transform
3, // 64x64 transform
2, // 4x8 transform
2, // 8x4 transform
2, // 8x16 transform
2, // 16x8 transform
3, // 16x32 transform
3, // 32x16 transform
5, // 32x64 transform
5, // 64x32 transform
2, // 4x16 transform
2, // 16x4 transform
2, // 8x32 transform
2, // 32x8 transform
3, // 16x64 transform
3, // 64x16 transform
};
static const double avg_error_ls[TX_SIZES_ALL] = {
0.002, // 4x4 transform
0.05, // 8x8 transform
0.07, // 16x16 transform
0.4, // 32x32 transform
0.3, // 64x64 transform
0.02, // 4x8 transform
0.02, // 8x4 transform
0.04, // 8x16 transform
0.07, // 16x8 transform
0.4, // 16x32 transform
0.5, // 32x16 transform
0.38, // 32x64 transform
0.39, // 64x32 transform
0.2, // 4x16 transform
0.2, // 16x4 transform
0.2, // 8x32 transform
0.2, // 32x8 transform
0.38, // 16x64 transform
0.38, // 64x16 transform
};
vector<AV1InvTxfm2dParam> GetInvTxfm2dParamList() {
vector<AV1InvTxfm2dParam> param_list;
for (int s = 0; s < TX_SIZES; ++s) {
const int max_error = max_error_ls[s];
const double avg_error = avg_error_ls[s];
for (int t = 0; t < TX_TYPES; ++t) {
const TxType tx_type = static_cast<TxType>(t);
const TxSize tx_size = static_cast<TxSize>(s);
if (libaom_test::IsTxSizeTypeValid(tx_size, tx_type)) {
param_list.push_back(
AV1InvTxfm2dParam(tx_type, tx_size, max_error, avg_error));
}
}
}
return param_list;
}
INSTANTIATE_TEST_SUITE_P(C, AV1InvTxfm2d,
::testing::ValuesIn(GetInvTxfm2dParamList()));
TEST_P(AV1InvTxfm2d, RunRoundtripCheck) { RunRoundtripCheck(); }
TEST(AV1InvTxfm2d, CfgTest) {
for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) {
int bd = libaom_test::bd_arr[bd_idx];
int8_t low_range = libaom_test::low_range_arr[bd_idx];
int8_t high_range = libaom_test::high_range_arr[bd_idx];
for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) {
for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
if (libaom_test::IsTxSizeTypeValid(static_cast<TxSize>(tx_size),
static_cast<TxType>(tx_type)) ==
false) {
continue;
}
TXFM_2D_FLIP_CFG cfg;
av1_get_inv_txfm_cfg(static_cast<TxType>(tx_type),
static_cast<TxSize>(tx_size), &cfg);
int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
av1_gen_inv_stage_range(stage_range_col, stage_range_row, &cfg,
static_cast<TxSize>(tx_size), bd);
libaom_test::txfm_stage_range_check(stage_range_col, cfg.stage_num_col,
cfg.cos_bit_col, low_range,
high_range);
libaom_test::txfm_stage_range_check(stage_range_row, cfg.stage_num_row,
cfg.cos_bit_row, low_range,
high_range);
}
}
}
}
typedef std::tuple<const LbdInvTxfm2dFunc> AV1LbdInvTxfm2dParam;
class AV1LbdInvTxfm2d : public ::testing::TestWithParam<AV1LbdInvTxfm2dParam> {
public:
void SetUp() override { target_func_ = GET_PARAM(0); }
void RunAV1InvTxfm2dTest(TxType tx_type, TxSize tx_size, int run_times,
int gt_int16 = 0);
private:
LbdInvTxfm2dFunc target_func_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1LbdInvTxfm2d);
void AV1LbdInvTxfm2d::RunAV1InvTxfm2dTest(TxType tx_type, TxSize tx_size,
int run_times, int gt_int16) {
FwdTxfm2dFunc fwd_func_ = libaom_test::fwd_txfm_func_ls[tx_size];
InvTxfm2dFunc ref_func_ = libaom_test::inv_txfm_func_ls[tx_size];
if (fwd_func_ == nullptr || ref_func_ == nullptr || target_func_ == nullptr) {
return;
}
const int bd = 8;
const int BLK_WIDTH = 64;
const int BLK_SIZE = BLK_WIDTH * BLK_WIDTH;
DECLARE_ALIGNED(16, int16_t, input[BLK_SIZE]) = { 0 };
DECLARE_ALIGNED(32, int32_t, inv_input[BLK_SIZE]) = { 0 };
DECLARE_ALIGNED(16, uint8_t, output[BLK_SIZE]) = { 0 };
DECLARE_ALIGNED(16, uint16_t, ref_output[BLK_SIZE]) = { 0 };
int stride = BLK_WIDTH;
int rows = tx_size_high[tx_size];
int cols = tx_size_wide[tx_size];
const int rows_nonezero = AOMMIN(32, rows);
const int cols_nonezero = AOMMIN(32, cols);
run_times /= (rows * cols);
run_times = AOMMAX(1, run_times);
const SCAN_ORDER *scan_order = get_default_scan(tx_size, tx_type);
const int16_t *scan = scan_order->scan;
const int16_t eobmax = rows_nonezero * cols_nonezero;
ACMRandom rnd(ACMRandom::DeterministicSeed());
int randTimes = run_times == 1 ? (eobmax + 500) : 1;
for (int cnt = 0; cnt < randTimes; ++cnt) {
const int16_t max_in = (1 << (bd)) - 1;
for (int r = 0; r < BLK_WIDTH; ++r) {
for (int c = 0; c < BLK_WIDTH; ++c) {
input[r * cols + c] = (cnt == 0) ? max_in : rnd.Rand8Extremes();
output[r * stride + c] = (cnt == 0) ? 128 : rnd.Rand8();
ref_output[r * stride + c] = output[r * stride + c];
}
}
fwd_func_(input, inv_input, stride, tx_type, bd);
// produce eob input by setting high freq coeffs to zero
const int eob = AOMMIN(cnt + 1, eobmax);
for (int i = eob; i < eobmax; i++) {
inv_input[scan[i]] = 0;
}
if (gt_int16) {
inv_input[scan[eob - 1]] = ((int32_t)INT16_MAX * 100 / 141);
}
aom_usec_timer timer;
aom_usec_timer_start(&timer);
for (int i = 0; i < run_times; ++i) {
ref_func_(inv_input, ref_output, stride, tx_type, bd);
}
aom_usec_timer_mark(&timer);
const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer));
aom_usec_timer_start(&timer);
for (int i = 0; i < run_times; ++i) {
target_func_(inv_input, output, stride, tx_type, tx_size, eob);
}
aom_usec_timer_mark(&timer);
const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer));
if (run_times > 10) {
printf("txfm[%d] %3dx%-3d:%7.2f/%7.2fns", tx_type, cols, rows, time1,
time2);
printf("(%3.2f)\n", time1 / time2);
}
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
uint8_t ref_value = static_cast<uint8_t>(ref_output[r * stride + c]);
if (ref_value != output[r * stride + c]) {
printf(" ");
}
ASSERT_EQ(ref_value, output[r * stride + c])
<< "[" << r << "," << c << "] " << cnt << " tx_size: " << cols
<< "x" << rows << " tx_type: " << tx_type_name[tx_type] << " eob "
<< eob;
}
}
}
}
TEST_P(AV1LbdInvTxfm2d, match) {
for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) {
for (int i = 0; i < (int)TX_TYPES; ++i) {
if (libaom_test::IsTxSizeTypeValid(static_cast<TxSize>(j),
static_cast<TxType>(i))) {
RunAV1InvTxfm2dTest(static_cast<TxType>(i), static_cast<TxSize>(j), 1);
}
}
}
}
TEST_P(AV1LbdInvTxfm2d, gt_int16) {
static const TxType types[] = { DCT_DCT, ADST_DCT, FLIPADST_DCT, IDTX,
V_DCT, H_DCT, H_ADST, H_FLIPADST };
for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) {
const TxSize sz = static_cast<TxSize>(j);
for (uint8_t i = 0; i < sizeof(types) / sizeof(types[0]); ++i) {
const TxType tp = types[i];
if (libaom_test::IsTxSizeTypeValid(sz, tp)) {
RunAV1InvTxfm2dTest(tp, sz, 1, 1);
}
}
}
}
TEST_P(AV1LbdInvTxfm2d, DISABLED_Speed) {
for (int j = 1; j < (int)(TX_SIZES_ALL); ++j) {
for (int i = 0; i < (int)TX_TYPES; ++i) {
if (libaom_test::IsTxSizeTypeValid(static_cast<TxSize>(j),
static_cast<TxType>(i))) {
RunAV1InvTxfm2dTest(static_cast<TxType>(i), static_cast<TxSize>(j),
10000000);
}
}
}
}
#if HAVE_SSSE3
extern "C" void av1_lowbd_inv_txfm2d_add_ssse3(const int32_t *input,
uint8_t *output, int stride,
TxType tx_type, TxSize tx_size,
int eob);
INSTANTIATE_TEST_SUITE_P(SSSE3, AV1LbdInvTxfm2d,
::testing::Values(av1_lowbd_inv_txfm2d_add_ssse3));
#endif // HAVE_SSSE3
#if HAVE_AVX2
extern "C" void av1_lowbd_inv_txfm2d_add_avx2(const int32_t *input,
uint8_t *output, int stride,
TxType tx_type, TxSize tx_size,
int eob);
INSTANTIATE_TEST_SUITE_P(AVX2, AV1LbdInvTxfm2d,
::testing::Values(av1_lowbd_inv_txfm2d_add_avx2));
#endif // HAVE_AVX2
#if HAVE_NEON
extern "C" void av1_lowbd_inv_txfm2d_add_neon(const int32_t *input,
uint8_t *output, int stride,
TX_TYPE tx_type, TX_SIZE tx_size,
int eob);
INSTANTIATE_TEST_SUITE_P(NEON, AV1LbdInvTxfm2d,
::testing::Values(av1_lowbd_inv_txfm2d_add_neon));
#endif // HAVE_NEON
} // namespace