| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "test/av1_txfm_test.h" |
| |
| #include <stdio.h> |
| |
| #include <memory> |
| #include <new> |
| |
| namespace libaom_test { |
| |
| const char *tx_type_name[] = { |
| "DCT_DCT", |
| "ADST_DCT", |
| "DCT_ADST", |
| "ADST_ADST", |
| "FLIPADST_DCT", |
| "DCT_FLIPADST", |
| "FLIPADST_FLIPADST", |
| "ADST_FLIPADST", |
| "FLIPADST_ADST", |
| "IDTX", |
| "V_DCT", |
| "H_DCT", |
| "V_ADST", |
| "H_ADST", |
| "V_FLIPADST", |
| "H_FLIPADST", |
| }; |
| |
| int get_txfm1d_size(TX_SIZE tx_size) { return tx_size_wide[tx_size]; } |
| |
| void get_txfm1d_type(TX_TYPE txfm2d_type, TYPE_TXFM *type0, TYPE_TXFM *type1) { |
| switch (txfm2d_type) { |
| case DCT_DCT: |
| *type0 = TYPE_DCT; |
| *type1 = TYPE_DCT; |
| break; |
| case ADST_DCT: |
| *type0 = TYPE_ADST; |
| *type1 = TYPE_DCT; |
| break; |
| case DCT_ADST: |
| *type0 = TYPE_DCT; |
| *type1 = TYPE_ADST; |
| break; |
| case ADST_ADST: |
| *type0 = TYPE_ADST; |
| *type1 = TYPE_ADST; |
| break; |
| case FLIPADST_DCT: |
| *type0 = TYPE_ADST; |
| *type1 = TYPE_DCT; |
| break; |
| case DCT_FLIPADST: |
| *type0 = TYPE_DCT; |
| *type1 = TYPE_ADST; |
| break; |
| case FLIPADST_FLIPADST: |
| *type0 = TYPE_ADST; |
| *type1 = TYPE_ADST; |
| break; |
| case ADST_FLIPADST: |
| *type0 = TYPE_ADST; |
| *type1 = TYPE_ADST; |
| break; |
| case FLIPADST_ADST: |
| *type0 = TYPE_ADST; |
| *type1 = TYPE_ADST; |
| break; |
| case IDTX: |
| *type0 = TYPE_IDTX; |
| *type1 = TYPE_IDTX; |
| break; |
| case H_DCT: |
| *type0 = TYPE_IDTX; |
| *type1 = TYPE_DCT; |
| break; |
| case V_DCT: |
| *type0 = TYPE_DCT; |
| *type1 = TYPE_IDTX; |
| break; |
| case H_ADST: |
| *type0 = TYPE_IDTX; |
| *type1 = TYPE_ADST; |
| break; |
| case V_ADST: |
| *type0 = TYPE_ADST; |
| *type1 = TYPE_IDTX; |
| break; |
| case H_FLIPADST: |
| *type0 = TYPE_IDTX; |
| *type1 = TYPE_ADST; |
| break; |
| case V_FLIPADST: |
| *type0 = TYPE_ADST; |
| *type1 = TYPE_IDTX; |
| break; |
| default: |
| *type0 = TYPE_DCT; |
| *type1 = TYPE_DCT; |
| assert(0); |
| break; |
| } |
| } |
| |
| double Sqrt2 = pow(2, 0.5); |
| double invSqrt2 = 1 / pow(2, 0.5); |
| |
| static double dct_matrix(double n, double k, int size) { |
| return cos(PI * (2 * n + 1) * k / (2 * size)); |
| } |
| |
| void reference_dct_1d(const double *in, double *out, int size) { |
| for (int k = 0; k < size; ++k) { |
| out[k] = 0; |
| for (int n = 0; n < size; ++n) { |
| out[k] += in[n] * dct_matrix(n, k, size); |
| } |
| if (k == 0) out[k] = out[k] * invSqrt2; |
| } |
| } |
| |
| void reference_idct_1d(const double *in, double *out, int size) { |
| for (int k = 0; k < size; ++k) { |
| out[k] = 0; |
| for (int n = 0; n < size; ++n) { |
| if (n == 0) |
| out[k] += invSqrt2 * in[n] * dct_matrix(k, n, size); |
| else |
| out[k] += in[n] * dct_matrix(k, n, size); |
| } |
| } |
| } |
| |
| // TODO(any): Copied from the old 'fadst4' (same as the new 'av1_fadst4' |
| // function). Should be replaced by a proper reference function that takes |
| // 'double' input & output. |
| static void fadst4_new(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t x0, x1, x2, x3; |
| tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; |
| |
| x0 = input[0]; |
| x1 = input[1]; |
| x2 = input[2]; |
| x3 = input[3]; |
| |
| if (!(x0 | x1 | x2 | x3)) { |
| output[0] = output[1] = output[2] = output[3] = 0; |
| return; |
| } |
| |
| s0 = sinpi_1_9 * x0; |
| s1 = sinpi_4_9 * x0; |
| s2 = sinpi_2_9 * x1; |
| s3 = sinpi_1_9 * x1; |
| s4 = sinpi_3_9 * x2; |
| s5 = sinpi_4_9 * x3; |
| s6 = sinpi_2_9 * x3; |
| s7 = x0 + x1 - x3; |
| |
| x0 = s0 + s2 + s5; |
| x1 = sinpi_3_9 * s7; |
| x2 = s1 - s3 + s6; |
| x3 = s4; |
| |
| s0 = x0 + x3; |
| s1 = x1; |
| s2 = x2 - x3; |
| s3 = x2 - x0 + x3; |
| |
| // 1-D transform scaling factor is sqrt(2). |
| output[0] = (tran_low_t)fdct_round_shift(s0); |
| output[1] = (tran_low_t)fdct_round_shift(s1); |
| output[2] = (tran_low_t)fdct_round_shift(s2); |
| output[3] = (tran_low_t)fdct_round_shift(s3); |
| } |
| |
| void reference_adst_1d(const double *in, double *out, int size) { |
| if (size == 4) { // Special case. |
| tran_low_t int_input[4]; |
| for (int i = 0; i < 4; ++i) { |
| int_input[i] = static_cast<tran_low_t>(round(in[i])); |
| } |
| tran_low_t int_output[4]; |
| fadst4_new(int_input, int_output); |
| for (int i = 0; i < 4; ++i) { |
| out[i] = int_output[i]; |
| } |
| return; |
| } |
| |
| for (int k = 0; k < size; ++k) { |
| out[k] = 0; |
| for (int n = 0; n < size; ++n) { |
| out[k] += in[n] * sin(PI * (2 * n + 1) * (2 * k + 1) / (4 * size)); |
| } |
| } |
| } |
| |
| static void reference_idtx_1d(const double *in, double *out, int size) { |
| double scale = 0; |
| if (size == 4) |
| scale = Sqrt2; |
| else if (size == 8) |
| scale = 2; |
| else if (size == 16) |
| scale = 2 * Sqrt2; |
| else if (size == 32) |
| scale = 4; |
| else if (size == 64) |
| scale = 4 * Sqrt2; |
| for (int k = 0; k < size; ++k) { |
| out[k] = in[k] * scale; |
| } |
| } |
| |
| void reference_hybrid_1d(double *in, double *out, int size, int type) { |
| if (type == TYPE_DCT) |
| reference_dct_1d(in, out, size); |
| else if (type == TYPE_ADST) |
| reference_adst_1d(in, out, size); |
| else |
| reference_idtx_1d(in, out, size); |
| } |
| |
| double get_amplification_factor(TX_TYPE tx_type, TX_SIZE tx_size) { |
| TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg; |
| av1_get_fwd_txfm_cfg(tx_type, tx_size, &fwd_txfm_flip_cfg); |
| const int tx_width = tx_size_wide[fwd_txfm_flip_cfg.tx_size]; |
| const int tx_height = tx_size_high[fwd_txfm_flip_cfg.tx_size]; |
| const int8_t *shift = fwd_txfm_flip_cfg.shift; |
| const int amplify_bit = shift[0] + shift[1] + shift[2]; |
| double amplify_factor = |
| amplify_bit >= 0 ? (1 << amplify_bit) : (1.0 / (1 << -amplify_bit)); |
| |
| // For rectangular transforms, we need to multiply by an extra factor. |
| const int rect_type = get_rect_tx_log_ratio(tx_width, tx_height); |
| if (abs(rect_type) == 1) { |
| amplify_factor *= pow(2, 0.5); |
| } |
| return amplify_factor; |
| } |
| |
| void reference_hybrid_2d(double *in, double *out, TX_TYPE tx_type, |
| TX_SIZE tx_size) { |
| // Get transform type and size of each dimension. |
| TYPE_TXFM type0; |
| TYPE_TXFM type1; |
| get_txfm1d_type(tx_type, &type0, &type1); |
| const int tx_width = tx_size_wide[tx_size]; |
| const int tx_height = tx_size_high[tx_size]; |
| |
| std::unique_ptr<double[]> temp_in( |
| new (std::nothrow) double[AOMMAX(tx_width, tx_height)]); |
| std::unique_ptr<double[]> temp_out( |
| new (std::nothrow) double[AOMMAX(tx_width, tx_height)]); |
| std::unique_ptr<double[]> out_interm( |
| new (std::nothrow) double[tx_width * tx_height]); |
| ASSERT_NE(temp_in, nullptr); |
| ASSERT_NE(temp_out, nullptr); |
| ASSERT_NE(out_interm, nullptr); |
| |
| // Transform columns. |
| for (int c = 0; c < tx_width; ++c) { |
| for (int r = 0; r < tx_height; ++r) { |
| temp_in[r] = in[r * tx_width + c]; |
| } |
| reference_hybrid_1d(temp_in.get(), temp_out.get(), tx_height, type0); |
| for (int r = 0; r < tx_height; ++r) { |
| out_interm[r * tx_width + c] = temp_out[r]; |
| } |
| } |
| |
| // Transform rows. |
| for (int r = 0; r < tx_height; ++r) { |
| reference_hybrid_1d(out_interm.get() + r * tx_width, temp_out.get(), |
| tx_width, type1); |
| for (int c = 0; c < tx_width; ++c) { |
| out[c * tx_height + r] = temp_out[c]; |
| } |
| } |
| |
| // These transforms use an approximate 2D DCT transform, by only keeping the |
| // top-left quarter of the coefficients, and repacking them in the first |
| // quarter indices. |
| // TODO(urvang): Refactor this code. |
| if (tx_width == 64 && tx_height == 64) { // tx_size == TX_64X64 |
| // Zero out top-right 32x32 area. |
| for (int col = 0; col < 32; ++col) { |
| memset(out + col * 64 + 32, 0, 32 * sizeof(*out)); |
| } |
| // Zero out the bottom 64x32 area. |
| memset(out + 32 * 64, 0, 32 * 64 * sizeof(*out)); |
| // Re-pack non-zero coeffs in the first 32x32 indices. |
| for (int col = 1; col < 32; ++col) { |
| memcpy(out + col * 32, out + col * 64, 32 * sizeof(*out)); |
| } |
| } else if (tx_width == 32 && tx_height == 64) { // tx_size == TX_32X64 |
| // Zero out right 32x32 area. |
| for (int col = 0; col < 32; ++col) { |
| memset(out + col * 64 + 32, 0, 32 * sizeof(*out)); |
| } |
| // Re-pack non-zero coeffs in the first 32x32 indices. |
| for (int col = 1; col < 32; ++col) { |
| memcpy(out + col * 32, out + col * 64, 32 * sizeof(*out)); |
| } |
| } else if (tx_width == 64 && tx_height == 32) { // tx_size == TX_64X32 |
| // Zero out the bottom 32x32 area. |
| memset(out + 32 * 32, 0, 32 * 32 * sizeof(*out)); |
| // Note: no repacking needed here. |
| } else if (tx_width == 16 && tx_height == 64) { // tx_size == TX_16X64 |
| // Note: no repacking needed here. |
| // Zero out right 32x16 area. |
| for (int col = 0; col < 16; ++col) { |
| memset(out + col * 64 + 32, 0, 32 * sizeof(*out)); |
| } |
| // Re-pack non-zero coeffs in the first 32x16 indices. |
| for (int col = 1; col < 16; ++col) { |
| memcpy(out + col * 32, out + col * 64, 32 * sizeof(*out)); |
| } |
| } else if (tx_width == 64 && tx_height == 16) { // tx_size == TX_64X16 |
| // Zero out the bottom 16x32 area. |
| memset(out + 16 * 32, 0, 16 * 32 * sizeof(*out)); |
| } |
| |
| // Apply appropriate scale. |
| const double amplify_factor = get_amplification_factor(tx_type, tx_size); |
| for (int c = 0; c < tx_width; ++c) { |
| for (int r = 0; r < tx_height; ++r) { |
| out[c * tx_height + r] *= amplify_factor; |
| } |
| } |
| } |
| |
| template <typename Type> |
| void fliplr(Type *dest, int width, int height, int stride) { |
| for (int r = 0; r < height; ++r) { |
| for (int c = 0; c < width / 2; ++c) { |
| const Type tmp = dest[r * stride + c]; |
| dest[r * stride + c] = dest[r * stride + width - 1 - c]; |
| dest[r * stride + width - 1 - c] = tmp; |
| } |
| } |
| } |
| |
| template <typename Type> |
| void flipud(Type *dest, int width, int height, int stride) { |
| for (int c = 0; c < width; ++c) { |
| for (int r = 0; r < height / 2; ++r) { |
| const Type tmp = dest[r * stride + c]; |
| dest[r * stride + c] = dest[(height - 1 - r) * stride + c]; |
| dest[(height - 1 - r) * stride + c] = tmp; |
| } |
| } |
| } |
| |
| template <typename Type> |
| void fliplrud(Type *dest, int width, int height, int stride) { |
| for (int r = 0; r < height / 2; ++r) { |
| for (int c = 0; c < width; ++c) { |
| const Type tmp = dest[r * stride + c]; |
| dest[r * stride + c] = dest[(height - 1 - r) * stride + width - 1 - c]; |
| dest[(height - 1 - r) * stride + width - 1 - c] = tmp; |
| } |
| } |
| } |
| |
| template void fliplr<double>(double *dest, int width, int height, int stride); |
| template void flipud<double>(double *dest, int width, int height, int stride); |
| template void fliplrud<double>(double *dest, int width, int height, int stride); |
| |
| int bd_arr[BD_NUM] = { 8, 10, 12 }; |
| |
| int8_t low_range_arr[BD_NUM] = { 18, 32, 32 }; |
| int8_t high_range_arr[BD_NUM] = { 32, 32, 32 }; |
| |
| void txfm_stage_range_check(const int8_t *stage_range, int stage_num, |
| int8_t cos_bit, int low_range, int high_range) { |
| for (int i = 0; i < stage_num; ++i) { |
| EXPECT_LE(stage_range[i], low_range); |
| ASSERT_LE(stage_range[i] + cos_bit, high_range) << "stage = " << i; |
| } |
| for (int i = 0; i < stage_num - 1; ++i) { |
| // make sure there is no overflow while doing half_btf() |
| ASSERT_LE(stage_range[i + 1] + cos_bit, high_range) << "stage = " << i; |
| } |
| } |
| } // namespace libaom_test |