| /* |
| * Copyright (c) 2019, Alliance for Open Media. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <algorithm> |
| #include <ostream> |
| |
| #include "third_party/googletest/src/googletest/include/gtest/gtest.h" |
| |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "test/acm_random.h" |
| #include "test/register_state_check.h" |
| #include "test/util.h" |
| |
| namespace { |
| |
| using libaom_test::ACMRandom; |
| |
| using HadamardFunc = void (*)(const int16_t *a, ptrdiff_t a_stride, |
| tran_low_t *b); |
| // Low precision version of Hadamard Transform |
| using HadamardLPFunc = void (*)(const int16_t *a, ptrdiff_t a_stride, |
| int16_t *b); |
| // Low precision version of Hadamard Transform 8x8 - Dual |
| using HadamardLP8x8DualFunc = void (*)(const int16_t *a, ptrdiff_t a_stride, |
| int16_t *b); |
| |
| template <typename OutputType> |
| void Hadamard4x4(const OutputType *a, OutputType *out) { |
| OutputType b[8]; |
| for (int i = 0; i < 4; i += 2) { |
| b[i + 0] = (a[i * 4] + a[(i + 1) * 4]) >> 1; |
| b[i + 1] = (a[i * 4] - a[(i + 1) * 4]) >> 1; |
| } |
| |
| out[0] = b[0] + b[2]; |
| out[1] = b[1] + b[3]; |
| out[2] = b[0] - b[2]; |
| out[3] = b[1] - b[3]; |
| } |
| |
| template <typename OutputType> |
| void ReferenceHadamard4x4(const int16_t *a, int a_stride, OutputType *b) { |
| OutputType input[16]; |
| OutputType buf[16]; |
| for (int i = 0; i < 4; ++i) { |
| for (int j = 0; j < 4; ++j) { |
| input[i * 4 + j] = static_cast<OutputType>(a[i * a_stride + j]); |
| } |
| } |
| for (int i = 0; i < 4; ++i) Hadamard4x4(input + i, buf + i * 4); |
| for (int i = 0; i < 4; ++i) Hadamard4x4(buf + i, b + i * 4); |
| |
| // Extra transpose to match C and SSE2 behavior(i.e., aom_hadamard_4x4). |
| for (int i = 0; i < 4; i++) { |
| for (int j = i + 1; j < 4; j++) { |
| OutputType temp = b[j * 4 + i]; |
| b[j * 4 + i] = b[i * 4 + j]; |
| b[i * 4 + j] = temp; |
| } |
| } |
| } |
| |
| template <typename OutputType> |
| void HadamardLoop(const OutputType *a, OutputType *out) { |
| OutputType b[8]; |
| for (int i = 0; i < 8; i += 2) { |
| b[i + 0] = a[i * 8] + a[(i + 1) * 8]; |
| b[i + 1] = a[i * 8] - a[(i + 1) * 8]; |
| } |
| OutputType c[8]; |
| for (int i = 0; i < 8; i += 4) { |
| c[i + 0] = b[i + 0] + b[i + 2]; |
| c[i + 1] = b[i + 1] + b[i + 3]; |
| c[i + 2] = b[i + 0] - b[i + 2]; |
| c[i + 3] = b[i + 1] - b[i + 3]; |
| } |
| out[0] = c[0] + c[4]; |
| out[7] = c[1] + c[5]; |
| out[3] = c[2] + c[6]; |
| out[4] = c[3] + c[7]; |
| out[2] = c[0] - c[4]; |
| out[6] = c[1] - c[5]; |
| out[1] = c[2] - c[6]; |
| out[5] = c[3] - c[7]; |
| } |
| |
| template <typename OutputType> |
| void ReferenceHadamard8x8(const int16_t *a, int a_stride, OutputType *b) { |
| OutputType input[64]; |
| OutputType buf[64]; |
| for (int i = 0; i < 8; ++i) { |
| for (int j = 0; j < 8; ++j) { |
| input[i * 8 + j] = static_cast<OutputType>(a[i * a_stride + j]); |
| } |
| } |
| for (int i = 0; i < 8; ++i) HadamardLoop(input + i, buf + i * 8); |
| for (int i = 0; i < 8; ++i) HadamardLoop(buf + i, b + i * 8); |
| |
| // Extra transpose to match SSE2 behavior (i.e., aom_hadamard_8x8 and |
| // aom_hadamard_lp_8x8). |
| for (int i = 0; i < 8; i++) { |
| for (int j = i + 1; j < 8; j++) { |
| OutputType temp = b[j * 8 + i]; |
| b[j * 8 + i] = b[i * 8 + j]; |
| b[i * 8 + j] = temp; |
| } |
| } |
| } |
| |
| template <typename OutputType> |
| void ReferenceHadamard8x8Dual(const int16_t *a, int a_stride, OutputType *b) { |
| /* The source is a 8x16 block. The destination is rearranged to 8x16. |
| * Input is 9 bit. */ |
| ReferenceHadamard8x8(a, a_stride, b); |
| ReferenceHadamard8x8(a + 8, a_stride, b + 64); |
| } |
| |
| template <typename OutputType> |
| void ReferenceHadamard16x16(const int16_t *a, int a_stride, OutputType *b, |
| bool shift) { |
| /* The source is a 16x16 block. The destination is rearranged to 8x32. |
| * Input is 9 bit. */ |
| ReferenceHadamard8x8(a + 0 + 0 * a_stride, a_stride, b + 0); |
| ReferenceHadamard8x8(a + 8 + 0 * a_stride, a_stride, b + 64); |
| ReferenceHadamard8x8(a + 0 + 8 * a_stride, a_stride, b + 128); |
| ReferenceHadamard8x8(a + 8 + 8 * a_stride, a_stride, b + 192); |
| |
| /* Overlay the 8x8 blocks and combine. */ |
| for (int i = 0; i < 64; ++i) { |
| /* 8x8 steps the range up to 15 bits. */ |
| const OutputType a0 = b[0]; |
| const OutputType a1 = b[64]; |
| const OutputType a2 = b[128]; |
| const OutputType a3 = b[192]; |
| |
| /* Prevent the result from escaping int16_t. */ |
| const OutputType b0 = (a0 + a1) >> 1; |
| const OutputType b1 = (a0 - a1) >> 1; |
| const OutputType b2 = (a2 + a3) >> 1; |
| const OutputType b3 = (a2 - a3) >> 1; |
| |
| /* Store a 16 bit value. */ |
| b[0] = b0 + b2; |
| b[64] = b1 + b3; |
| b[128] = b0 - b2; |
| b[192] = b1 - b3; |
| |
| ++b; |
| } |
| |
| if (shift) { |
| b -= 64; |
| // Extra shift to match aom_hadamard_16x16_c and aom_hadamard_16x16_avx2. |
| for (int i = 0; i < 16; i++) { |
| for (int j = 0; j < 4; j++) { |
| OutputType temp = b[i * 16 + 4 + j]; |
| b[i * 16 + 4 + j] = b[i * 16 + 8 + j]; |
| b[i * 16 + 8 + j] = temp; |
| } |
| } |
| } |
| } |
| |
| template <typename OutputType> |
| void ReferenceHadamard32x32(const int16_t *a, int a_stride, OutputType *b, |
| bool shift) { |
| ReferenceHadamard16x16(a + 0 + 0 * a_stride, a_stride, b + 0, shift); |
| ReferenceHadamard16x16(a + 16 + 0 * a_stride, a_stride, b + 256, shift); |
| ReferenceHadamard16x16(a + 0 + 16 * a_stride, a_stride, b + 512, shift); |
| ReferenceHadamard16x16(a + 16 + 16 * a_stride, a_stride, b + 768, shift); |
| |
| for (int i = 0; i < 256; ++i) { |
| const OutputType a0 = b[0]; |
| const OutputType a1 = b[256]; |
| const OutputType a2 = b[512]; |
| const OutputType a3 = b[768]; |
| |
| const OutputType b0 = (a0 + a1) >> 2; |
| const OutputType b1 = (a0 - a1) >> 2; |
| const OutputType b2 = (a2 + a3) >> 2; |
| const OutputType b3 = (a2 - a3) >> 2; |
| |
| b[0] = b0 + b2; |
| b[256] = b1 + b3; |
| b[512] = b0 - b2; |
| b[768] = b1 - b3; |
| |
| ++b; |
| } |
| } |
| |
| template <typename OutputType> |
| void ReferenceHadamard(const int16_t *a, int a_stride, OutputType *b, int bw, |
| int bh, bool shift) { |
| if (bw == 32 && bh == 32) { |
| ReferenceHadamard32x32(a, a_stride, b, shift); |
| } else if (bw == 16 && bh == 16) { |
| ReferenceHadamard16x16(a, a_stride, b, shift); |
| } else if (bw == 8 && bh == 8) { |
| ReferenceHadamard8x8(a, a_stride, b); |
| } else if (bw == 4 && bh == 4) { |
| ReferenceHadamard4x4(a, a_stride, b); |
| } else if (bw == 8 && bh == 16) { |
| ReferenceHadamard8x8Dual(a, a_stride, b); |
| } else { |
| GTEST_FAIL() << "Invalid Hadamard transform size " << bw << bh << std::endl; |
| } |
| } |
| |
| template <typename HadamardFuncType> |
| struct FuncWithSize { |
| FuncWithSize(HadamardFuncType f, int bw, int bh) |
| : func(f), block_width(bw), block_height(bh) {} |
| HadamardFuncType func; |
| int block_width; |
| int block_height; |
| }; |
| |
| using HadamardFuncWithSize = FuncWithSize<HadamardFunc>; |
| using HadamardLPFuncWithSize = FuncWithSize<HadamardLPFunc>; |
| using HadamardLP8x8DualFuncWithSize = FuncWithSize<HadamardLP8x8DualFunc>; |
| |
| template <typename OutputType, typename HadamardFuncType> |
| class HadamardTestBase |
| : public ::testing::TestWithParam<FuncWithSize<HadamardFuncType>> { |
| public: |
| HadamardTestBase(const FuncWithSize<HadamardFuncType> &func_param, |
| bool do_shift) { |
| h_func_ = func_param.func; |
| bw_ = func_param.block_width; |
| bh_ = func_param.block_height; |
| shift_ = do_shift; |
| } |
| |
| void SetUp() override { rnd_.Reset(ACMRandom::DeterministicSeed()); } |
| |
| // The Rand() function generates values in the range [-((1 << BitDepth) - 1), |
| // (1 << BitDepth) - 1]. This is because the input to the Hadamard transform |
| // is the residual pixel, which is defined as 'source pixel - predicted |
| // pixel'. Source pixel and predicted pixel take values in the range |
| // [0, (1 << BitDepth) - 1] and thus the residual pixel ranges from |
| // -((1 << BitDepth) - 1) to ((1 << BitDepth) - 1). |
| virtual int16_t Rand() = 0; |
| |
| void CompareReferenceRandom() { |
| const int kMaxBlockSize = 32 * 32; |
| const int block_size = bw_ * bh_; |
| |
| DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize]); |
| DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]); |
| memset(a, 0, sizeof(a)); |
| memset(b, 0, sizeof(b)); |
| |
| OutputType b_ref[kMaxBlockSize]; |
| memset(b_ref, 0, sizeof(b_ref)); |
| |
| for (int i = 0; i < block_size; ++i) a[i] = Rand(); |
| ReferenceHadamard(a, bw_, b_ref, bw_, bh_, shift_); |
| API_REGISTER_STATE_CHECK(h_func_(a, bw_, b)); |
| |
| // The order of the output is not important. Sort before checking. |
| std::sort(b, b + block_size); |
| std::sort(b_ref, b_ref + block_size); |
| EXPECT_EQ(memcmp(b, b_ref, sizeof(b)), 0); |
| } |
| |
| void CompareReferenceExtreme() { |
| const int kMaxBlockSize = 32 * 32; |
| const int block_size = bw_ * bh_; |
| const int kBitDepth = 8; |
| DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize]); |
| DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]); |
| memset(b, 0, sizeof(b)); |
| |
| OutputType b_ref[kMaxBlockSize]; |
| memset(b_ref, 0, sizeof(b_ref)); |
| for (int i = 0; i < 2; ++i) { |
| const int sign = (i == 0) ? 1 : -1; |
| for (int j = 0; j < block_size; ++j) a[j] = sign * ((1 << kBitDepth) - 1); |
| |
| ReferenceHadamard(a, bw_, b_ref, bw_, bh_, shift_); |
| API_REGISTER_STATE_CHECK(h_func_(a, bw_, b)); |
| |
| // The order of the output is not important. Sort before checking. |
| std::sort(b, b + block_size); |
| std::sort(b_ref, b_ref + block_size); |
| EXPECT_EQ(memcmp(b, b_ref, sizeof(b)), 0); |
| } |
| } |
| |
| void VaryStride() { |
| const int kMaxBlockSize = 32 * 32; |
| const int block_size = bw_ * bh_; |
| |
| DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize * 8]); |
| DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]); |
| memset(a, 0, sizeof(a)); |
| for (int i = 0; i < block_size * 8; ++i) a[i] = Rand(); |
| |
| OutputType b_ref[kMaxBlockSize]; |
| for (int i = 8; i < 64; i += 8) { |
| memset(b, 0, sizeof(b)); |
| memset(b_ref, 0, sizeof(b_ref)); |
| |
| ReferenceHadamard(a, i, b_ref, bw_, bh_, shift_); |
| API_REGISTER_STATE_CHECK(h_func_(a, i, b)); |
| |
| // The order of the output is not important. Sort before checking. |
| std::sort(b, b + block_size); |
| std::sort(b_ref, b_ref + block_size); |
| EXPECT_EQ(0, memcmp(b, b_ref, sizeof(b))); |
| } |
| } |
| |
| void SpeedTest(int times) { |
| const int kMaxBlockSize = 32 * 32; |
| DECLARE_ALIGNED(16, int16_t, input[kMaxBlockSize]); |
| DECLARE_ALIGNED(16, OutputType, output[kMaxBlockSize]); |
| memset(input, 1, sizeof(input)); |
| memset(output, 0, sizeof(output)); |
| |
| aom_usec_timer timer; |
| aom_usec_timer_start(&timer); |
| for (int i = 0; i < times; ++i) { |
| h_func_(input, bw_, output); |
| } |
| aom_usec_timer_mark(&timer); |
| |
| const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer)); |
| printf("Hadamard%dx%d[%12d runs]: %d us\n", bw_, bh_, times, elapsed_time); |
| } |
| |
| protected: |
| ACMRandom rnd_; |
| |
| private: |
| HadamardFuncType h_func_; |
| int bw_; |
| int bh_; |
| bool shift_; |
| }; |
| |
| class HadamardLowbdTest : public HadamardTestBase<tran_low_t, HadamardFunc> { |
| public: |
| HadamardLowbdTest() : HadamardTestBase(GetParam(), /*do_shift=*/true) {} |
| // Use values between -255 (0xFF01) and 255 (0x00FF) |
| int16_t Rand() override { |
| int16_t src = rnd_.Rand8(); |
| int16_t pred = rnd_.Rand8(); |
| return src - pred; |
| } |
| }; |
| |
| TEST_P(HadamardLowbdTest, CompareReferenceRandom) { CompareReferenceRandom(); } |
| |
| TEST_P(HadamardLowbdTest, CompareReferenceExtreme) { |
| CompareReferenceExtreme(); |
| } |
| |
| TEST_P(HadamardLowbdTest, VaryStride) { VaryStride(); } |
| |
| TEST_P(HadamardLowbdTest, DISABLED_SpeedTest) { SpeedTest(1000000); } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| C, HadamardLowbdTest, |
| ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_c, 4, 4), |
| HadamardFuncWithSize(&aom_hadamard_8x8_c, 8, 8), |
| HadamardFuncWithSize(&aom_hadamard_16x16_c, 16, 16), |
| HadamardFuncWithSize(&aom_hadamard_32x32_c, 32, 32))); |
| |
| #if HAVE_SSE2 |
| INSTANTIATE_TEST_SUITE_P( |
| SSE2, HadamardLowbdTest, |
| ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_sse2, 4, 4), |
| HadamardFuncWithSize(&aom_hadamard_8x8_sse2, 8, 8), |
| HadamardFuncWithSize(&aom_hadamard_16x16_sse2, 16, 16), |
| HadamardFuncWithSize(&aom_hadamard_32x32_sse2, 32, 32))); |
| #endif // HAVE_SSE2 |
| |
| #if HAVE_AVX2 |
| INSTANTIATE_TEST_SUITE_P( |
| AVX2, HadamardLowbdTest, |
| ::testing::Values(HadamardFuncWithSize(&aom_hadamard_16x16_avx2, 16, 16), |
| HadamardFuncWithSize(&aom_hadamard_32x32_avx2, 32, 32))); |
| #endif // HAVE_AVX2 |
| |
| // TODO(aomedia:3314): Disable NEON unit test for now, since hadamard 16x16 NEON |
| // need modifications to match C/AVX2 behavior. |
| #if HAVE_NEON |
| INSTANTIATE_TEST_SUITE_P( |
| NEON, HadamardLowbdTest, |
| ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_neon, 4, 4), |
| HadamardFuncWithSize(&aom_hadamard_8x8_neon, 8, 8), |
| HadamardFuncWithSize(&aom_hadamard_16x16_neon, 16, 16), |
| HadamardFuncWithSize(&aom_hadamard_32x32_neon, 32, 32))); |
| #endif // HAVE_NEON |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| class HadamardHighbdTest : public HadamardTestBase<tran_low_t, HadamardFunc> { |
| protected: |
| HadamardHighbdTest() : HadamardTestBase(GetParam(), /*do_shift=*/true) {} |
| // Use values between -4095 (0xF001) and 4095 (0x0FFF) |
| int16_t Rand() override { |
| int16_t src = rnd_.Rand12(); |
| int16_t pred = rnd_.Rand12(); |
| return src - pred; |
| } |
| }; |
| |
| TEST_P(HadamardHighbdTest, CompareReferenceRandom) { CompareReferenceRandom(); } |
| |
| TEST_P(HadamardHighbdTest, VaryStride) { VaryStride(); } |
| |
| TEST_P(HadamardHighbdTest, DISABLED_Speed) { |
| SpeedTest(10); |
| SpeedTest(10000); |
| SpeedTest(10000000); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| C, HadamardHighbdTest, |
| ::testing::Values( |
| HadamardFuncWithSize(&aom_highbd_hadamard_8x8_c, 8, 8), |
| HadamardFuncWithSize(&aom_highbd_hadamard_16x16_c, 16, 16), |
| HadamardFuncWithSize(&aom_highbd_hadamard_32x32_c, 32, 32))); |
| |
| #if HAVE_NEON |
| INSTANTIATE_TEST_SUITE_P( |
| NEON, HadamardHighbdTest, |
| ::testing::Values( |
| HadamardFuncWithSize(&aom_highbd_hadamard_8x8_neon, 8, 8), |
| HadamardFuncWithSize(&aom_highbd_hadamard_16x16_neon, 16, 16), |
| HadamardFuncWithSize(&aom_highbd_hadamard_32x32_neon, 32, 32))); |
| #endif // HAVE_NEON |
| |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| // Tests for low precision |
| class HadamardLowbdLPTest : public HadamardTestBase<int16_t, HadamardLPFunc> { |
| public: |
| HadamardLowbdLPTest() : HadamardTestBase(GetParam(), /*do_shift=*/false) {} |
| // Use values between -255 (0xFF01) and 255 (0x00FF) |
| int16_t Rand() override { |
| int16_t src = rnd_.Rand8(); |
| int16_t pred = rnd_.Rand8(); |
| return src - pred; |
| } |
| }; |
| |
| TEST_P(HadamardLowbdLPTest, CompareReferenceRandom) { |
| CompareReferenceRandom(); |
| } |
| |
| TEST_P(HadamardLowbdLPTest, VaryStride) { VaryStride(); } |
| |
| TEST_P(HadamardLowbdLPTest, DISABLED_SpeedTest) { SpeedTest(1000000); } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| C, HadamardLowbdLPTest, |
| ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_c, 8, 8), |
| HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_c, 16, |
| 16))); |
| |
| #if HAVE_SSE2 |
| INSTANTIATE_TEST_SUITE_P( |
| SSE2, HadamardLowbdLPTest, |
| ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_sse2, 8, 8), |
| HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_sse2, 16, |
| 16))); |
| #endif // HAVE_SSE2 |
| |
| #if HAVE_AVX2 |
| INSTANTIATE_TEST_SUITE_P(AVX2, HadamardLowbdLPTest, |
| ::testing::Values(HadamardLPFuncWithSize( |
| &aom_hadamard_lp_16x16_avx2, 16, 16))); |
| #endif // HAVE_AVX2 |
| |
| #if HAVE_NEON |
| INSTANTIATE_TEST_SUITE_P( |
| NEON, HadamardLowbdLPTest, |
| ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_neon, 8, 8), |
| HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_neon, 16, |
| 16))); |
| #endif // HAVE_NEON |
| |
| // Tests for 8x8 dual low precision |
| class HadamardLowbdLP8x8DualTest |
| : public HadamardTestBase<int16_t, HadamardLP8x8DualFunc> { |
| public: |
| HadamardLowbdLP8x8DualTest() |
| : HadamardTestBase(GetParam(), /*do_shift=*/false) {} |
| // Use values between -255 (0xFF01) and 255 (0x00FF) |
| int16_t Rand() override { |
| int16_t src = rnd_.Rand8(); |
| int16_t pred = rnd_.Rand8(); |
| return src - pred; |
| } |
| }; |
| |
| TEST_P(HadamardLowbdLP8x8DualTest, CompareReferenceRandom) { |
| CompareReferenceRandom(); |
| } |
| |
| TEST_P(HadamardLowbdLP8x8DualTest, VaryStride) { VaryStride(); } |
| |
| TEST_P(HadamardLowbdLP8x8DualTest, DISABLED_SpeedTest) { SpeedTest(1000000); } |
| |
| INSTANTIATE_TEST_SUITE_P(C, HadamardLowbdLP8x8DualTest, |
| ::testing::Values(HadamardLP8x8DualFuncWithSize( |
| &aom_hadamard_lp_8x8_dual_c, 8, 16))); |
| |
| #if HAVE_SSE2 |
| INSTANTIATE_TEST_SUITE_P(SSE2, HadamardLowbdLP8x8DualTest, |
| ::testing::Values(HadamardLP8x8DualFuncWithSize( |
| &aom_hadamard_lp_8x8_dual_sse2, 8, 16))); |
| #endif // HAVE_SSE2 |
| |
| #if HAVE_AVX2 |
| INSTANTIATE_TEST_SUITE_P(AVX2, HadamardLowbdLP8x8DualTest, |
| ::testing::Values(HadamardLP8x8DualFuncWithSize( |
| &aom_hadamard_lp_8x8_dual_avx2, 8, 16))); |
| #endif // HAVE_AVX2 |
| |
| #if HAVE_NEON |
| INSTANTIATE_TEST_SUITE_P(NEON, HadamardLowbdLP8x8DualTest, |
| ::testing::Values(HadamardLP8x8DualFuncWithSize( |
| &aom_hadamard_lp_8x8_dual_neon, 8, 16))); |
| #endif // HAVE_NEON |
| |
| } // namespace |