| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| |
| #include "./aom_config.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| #include "av1/common/av1_loopfilter.h" |
| #include "av1/common/onyxc_int.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/seg_common.h" |
| |
| static const SEG_LVL_FEATURES seg_lvl_lf_lut[MAX_MB_PLANE][2] = { |
| { SEG_LVL_ALT_LF_Y_V, SEG_LVL_ALT_LF_Y_H }, |
| { SEG_LVL_ALT_LF_U, SEG_LVL_ALT_LF_U }, |
| { SEG_LVL_ALT_LF_V, SEG_LVL_ALT_LF_V } |
| }; |
| |
| static const int delta_lf_id_lut[MAX_MB_PLANE][2] = { |
| { 0, 1 }, { 2, 2 }, { 3, 3 } |
| }; |
| |
| typedef enum EDGE_DIR { VERT_EDGE = 0, HORZ_EDGE = 1, NUM_EDGE_DIRS } EDGE_DIR; |
| |
| // 64 bit masks for left transform size. Each 1 represents a position where |
| // we should apply a loop filter across the left border of an 8x8 block |
| // boundary. |
| // |
| // In the case of TX_16X16-> ( in low order byte first we end up with |
| // a mask that looks like this |
| // |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // |
| // A loopfilter should be applied to every other 8x8 horizontally. |
| static const uint64_t left_64x64_txform_mask[TX_SIZES] = { |
| 0xffffffffffffffffULL, // TX_4X4 |
| 0xffffffffffffffffULL, // TX_8x8 |
| 0x5555555555555555ULL, // TX_16x16 |
| 0x1111111111111111ULL, // TX_32x32 |
| 0x0101010101010101ULL, // TX_64x64 |
| }; |
| |
| // 64 bit masks for above transform size. Each 1 represents a position where |
| // we should apply a loop filter across the top border of an 8x8 block |
| // boundary. |
| // |
| // In the case of TX_32x32 -> ( in low order byte first we end up with |
| // a mask that looks like this |
| // |
| // 11111111 |
| // 00000000 |
| // 00000000 |
| // 00000000 |
| // 11111111 |
| // 00000000 |
| // 00000000 |
| // 00000000 |
| // |
| // A loopfilter should be applied to every other 4 the row vertically. |
| static const uint64_t above_64x64_txform_mask[TX_SIZES] = { |
| 0xffffffffffffffffULL, // TX_4X4 |
| 0xffffffffffffffffULL, // TX_8x8 |
| 0x00ff00ff00ff00ffULL, // TX_16x16 |
| 0x000000ff000000ffULL, // TX_32x32 |
| 0x00000000000000ffULL, // TX_64x64 |
| }; |
| |
| // 64 bit masks for prediction sizes (left). Each 1 represents a position |
| // where left border of an 8x8 block. These are aligned to the right most |
| // appropriate bit, and then shifted into place. |
| // |
| // In the case of TX_16x32 -> ( low order byte first ) we end up with |
| // a mask that looks like this : |
| // |
| // 10000000 |
| // 10000000 |
| // 10000000 |
| // 10000000 |
| // 00000000 |
| // 00000000 |
| // 00000000 |
| // 00000000 |
| static const uint64_t left_prediction_mask[BLOCK_SIZES_ALL] = { |
| 0x0000000000000001ULL, // BLOCK_4X4, |
| 0x0000000000000001ULL, // BLOCK_4X8, |
| 0x0000000000000001ULL, // BLOCK_8X4, |
| 0x0000000000000001ULL, // BLOCK_8X8, |
| 0x0000000000000101ULL, // BLOCK_8X16, |
| 0x0000000000000001ULL, // BLOCK_16X8, |
| 0x0000000000000101ULL, // BLOCK_16X16, |
| 0x0000000001010101ULL, // BLOCK_16X32, |
| 0x0000000000000101ULL, // BLOCK_32X16, |
| 0x0000000001010101ULL, // BLOCK_32X32, |
| 0x0101010101010101ULL, // BLOCK_32X64, |
| 0x0000000001010101ULL, // BLOCK_64X32, |
| 0x0101010101010101ULL, // BLOCK_64X64, |
| 0x0000000000000101ULL, // BLOCK_4X16, |
| 0x0000000000000001ULL, // BLOCK_16X4, |
| 0x0000000001010101ULL, // BLOCK_8X32, |
| 0x0000000000000001ULL, // BLOCK_32X8, |
| 0x0101010101010101ULL, // BLOCK_16X64, |
| 0x0000000000000101ULL, // BLOCK_64X16 |
| }; |
| |
| // 64 bit mask to shift and set for each prediction size. |
| static const uint64_t above_prediction_mask[BLOCK_SIZES_ALL] = { |
| 0x0000000000000001ULL, // BLOCK_4X4 |
| 0x0000000000000001ULL, // BLOCK_4X8 |
| 0x0000000000000001ULL, // BLOCK_8X4 |
| 0x0000000000000001ULL, // BLOCK_8X8 |
| 0x0000000000000001ULL, // BLOCK_8X16, |
| 0x0000000000000003ULL, // BLOCK_16X8 |
| 0x0000000000000003ULL, // BLOCK_16X16 |
| 0x0000000000000003ULL, // BLOCK_16X32, |
| 0x000000000000000fULL, // BLOCK_32X16, |
| 0x000000000000000fULL, // BLOCK_32X32, |
| 0x000000000000000fULL, // BLOCK_32X64, |
| 0x00000000000000ffULL, // BLOCK_64X32, |
| 0x00000000000000ffULL, // BLOCK_64X64, |
| 0x0000000000000001ULL, // BLOCK_4X16, |
| 0x0000000000000003ULL, // BLOCK_16X4, |
| 0x0000000000000001ULL, // BLOCK_8X32, |
| 0x000000000000000fULL, // BLOCK_32X8, |
| 0x0000000000000003ULL, // BLOCK_16X64, |
| 0x00000000000000ffULL, // BLOCK_64X16 |
| }; |
| // 64 bit mask to shift and set for each prediction size. A bit is set for |
| // each 8x8 block that would be in the top left most block of the given block |
| // size in the 64x64 block. |
| static const uint64_t size_mask[BLOCK_SIZES_ALL] = { |
| 0x0000000000000001ULL, // BLOCK_4X4 |
| 0x0000000000000001ULL, // BLOCK_4X8 |
| 0x0000000000000001ULL, // BLOCK_8X4 |
| 0x0000000000000001ULL, // BLOCK_8X8 |
| 0x0000000000000101ULL, // BLOCK_8X16, |
| 0x0000000000000003ULL, // BLOCK_16X8 |
| 0x0000000000000303ULL, // BLOCK_16X16 |
| 0x0000000003030303ULL, // BLOCK_16X32, |
| 0x0000000000000f0fULL, // BLOCK_32X16, |
| 0x000000000f0f0f0fULL, // BLOCK_32X32, |
| 0x0f0f0f0f0f0f0f0fULL, // BLOCK_32X64, |
| 0x00000000ffffffffULL, // BLOCK_64X32, |
| 0xffffffffffffffffULL, // BLOCK_64X64, |
| 0x0000000000000101ULL, // BLOCK_4X16, |
| 0x0000000000000003ULL, // BLOCK_16X4, |
| 0x0000000001010101ULL, // BLOCK_8X32, |
| 0x000000000000000fULL, // BLOCK_32X8, |
| 0x0303030303030303ULL, // BLOCK_16X64, |
| 0x000000000000ffffULL, // BLOCK_64X16 |
| }; |
| |
| // These are used for masking the left and above 32x32 borders. |
| static const uint64_t left_border = 0x1111111111111111ULL; |
| static const uint64_t above_border = 0x000000ff000000ffULL; |
| |
| // 16 bit masks for uv transform sizes. |
| static const uint16_t left_64x64_txform_mask_uv[TX_SIZES] = { |
| 0xffff, // TX_4X4 |
| 0xffff, // TX_8x8 |
| 0x5555, // TX_16x16 |
| 0x1111, // TX_32x32 |
| 0x0101, // TX_64x64, never used |
| }; |
| |
| static const uint16_t above_64x64_txform_mask_uv[TX_SIZES] = { |
| 0xffff, // TX_4X4 |
| 0xffff, // TX_8x8 |
| 0x0f0f, // TX_16x16 |
| 0x000f, // TX_32x32 |
| 0x0003, // TX_64x64, never used |
| }; |
| |
| // 16 bit left mask to shift and set for each uv prediction size. |
| static const uint16_t left_prediction_mask_uv[BLOCK_SIZES_ALL] = { |
| 0x0001, // BLOCK_4X4, |
| 0x0001, // BLOCK_4X8, |
| 0x0001, // BLOCK_8X4, |
| 0x0001, // BLOCK_8X8, |
| 0x0001, // BLOCK_8X16, |
| 0x0001, // BLOCK_16X8, |
| 0x0001, // BLOCK_16X16, |
| 0x0011, // BLOCK_16X32, |
| 0x0001, // BLOCK_32X16, |
| 0x0011, // BLOCK_32X32, |
| 0x1111, // BLOCK_32X64 |
| 0x0011, // BLOCK_64X32, |
| 0x1111, // BLOCK_64X64, |
| 0x0001, // BLOCK_4X16, |
| 0x0001, // BLOCK_16X4, |
| 0x0011, // BLOCK_8X32, |
| 0x0001, // BLOCK_32X8, |
| 0x1111, // BLOCK_16X64, |
| 0x0001, // BLOCK_64X16, |
| }; |
| |
| // 16 bit above mask to shift and set for uv each prediction size. |
| static const uint16_t above_prediction_mask_uv[BLOCK_SIZES_ALL] = { |
| 0x0001, // BLOCK_4X4 |
| 0x0001, // BLOCK_4X8 |
| 0x0001, // BLOCK_8X4 |
| 0x0001, // BLOCK_8X8 |
| 0x0001, // BLOCK_8X16, |
| 0x0001, // BLOCK_16X8 |
| 0x0001, // BLOCK_16X16 |
| 0x0001, // BLOCK_16X32, |
| 0x0003, // BLOCK_32X16, |
| 0x0003, // BLOCK_32X32, |
| 0x0003, // BLOCK_32X64, |
| 0x000f, // BLOCK_64X32, |
| 0x000f, // BLOCK_64X64, |
| 0x0001, // BLOCK_4X16, |
| 0x0001, // BLOCK_16X4, |
| 0x0001, // BLOCK_8X32, |
| 0x0003, // BLOCK_32X8, |
| 0x0001, // BLOCK_16X64, |
| 0x000f, // BLOCK_64X16 |
| }; |
| |
| // 64 bit mask to shift and set for each uv prediction size |
| static const uint16_t size_mask_uv[BLOCK_SIZES_ALL] = { |
| 0x0001, // BLOCK_4X4 |
| 0x0001, // BLOCK_4X8 |
| 0x0001, // BLOCK_8X4 |
| 0x0001, // BLOCK_8X8 |
| 0x0001, // BLOCK_8X16, |
| 0x0001, // BLOCK_16X8 |
| 0x0001, // BLOCK_16X16 |
| 0x0011, // BLOCK_16X32, |
| 0x0003, // BLOCK_32X16, |
| 0x0033, // BLOCK_32X32, |
| 0x3333, // BLOCK_32X64, |
| 0x00ff, // BLOCK_64X32, |
| 0xffff, // BLOCK_64X64, |
| 0x0001, // BLOCK_4X16, |
| 0x0001, // BLOCK_16X4, |
| 0x0011, // BLOCK_8X32, |
| 0x0003, // BLOCK_32X8, |
| 0x1111, // BLOCK_16X64, |
| 0x000f, // BLOCK_64X16 |
| }; |
| static const uint16_t left_border_uv = 0x1111; |
| static const uint16_t above_border_uv = 0x000f; |
| |
| static const int mode_lf_lut[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES |
| 1, 1, 0, 1, // INTER_MODES (GLOBALMV == 0) |
| 1, 1, 1, 1, 1, 1, 0, 1 // INTER_COMPOUND_MODES (GLOBAL_GLOBALMV == 0) |
| }; |
| |
| #if LOOP_FILTER_BITMASK |
| // 256 bit masks (64x64 / 4x4) for left transform size for Y plane. |
| // We use 4 uint64_t to represent the 256 bit. |
| // Each 1 represents a position where we should apply a loop filter |
| // across the left border of an 4x4 block boundary. |
| // |
| // In the case of TX_8x8-> ( in low order byte first we end up with |
| // a mask that looks like this (-- and | are used for better view) |
| // |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // ----------------- |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // |
| // A loopfilter should be applied to every other 4x4 horizontally. |
| // TODO(chengchen): make these tables static |
| const FilterMaskY left_txform_mask[TX_SIZES] = { |
| { { 0xffffffffffffffffULL, // TX_4X4, |
| 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL } }, |
| |
| { { 0x5555555555555555ULL, // TX_8X8, |
| 0x5555555555555555ULL, 0x5555555555555555ULL, 0x5555555555555555ULL } }, |
| |
| { { 0x1111111111111111ULL, // TX_16X16, |
| 0x1111111111111111ULL, 0x1111111111111111ULL, 0x1111111111111111ULL } }, |
| |
| { { 0x0101010101010101ULL, // TX_32X32, |
| 0x0101010101010101ULL, 0x0101010101010101ULL, 0x0101010101010101ULL } }, |
| |
| { { 0x0001000100010001ULL, // TX_64X64, |
| 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL } }, |
| }; |
| |
| // 256 bit masks (64x64 / 4x4) for above transform size for Y plane. |
| // We use 4 uint64_t to represent the 256 bit. |
| // Each 1 represents a position where we should apply a loop filter |
| // across the top border of an 4x4 block boundary. |
| // |
| // In the case of TX_8x8-> ( in low order byte first we end up with |
| // a mask that looks like this |
| // |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // ----------------- |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // |
| // A loopfilter should be applied to every other 4x4 horizontally. |
| const FilterMaskY above_txform_mask[TX_SIZES] = { |
| { { 0xffffffffffffffffULL, // TX_4X4 |
| 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL } }, |
| |
| { { 0x0000ffff0000ffffULL, // TX_8X8 |
| 0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL } }, |
| |
| { { 0x000000000000ffffULL, // TX_16X16 |
| 0x000000000000ffffULL, 0x000000000000ffffULL, 0x000000000000ffffULL } }, |
| |
| { { 0x000000000000ffffULL, // TX_32X32 |
| 0x0000000000000000ULL, 0x000000000000ffffULL, 0x0000000000000000ULL } }, |
| |
| { { 0x000000000000ffffULL, // TX_64X64 |
| 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| }; |
| |
| // 64 bit mask to shift and set for each prediction size. A bit is set for |
| // each 4x4 block that would be in the top left most block of the given block |
| // size in the 64x64 block. |
| const FilterMaskY size_mask_y[BLOCK_SIZES_ALL] = { |
| { { 0x0000000000000001ULL, // BLOCK_4X4 |
| 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x0000000000010001ULL, // BLOCK_4X8 |
| 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x0000000000000003ULL, // BLOCK_8X4 |
| 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x0000000000030003ULL, // BLOCK_8X8 |
| 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x0003000300030003ULL, // BLOCK_8X16 |
| 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x00000000000f000fULL, // BLOCK_16X8 |
| 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x000f000f000f000fULL, // BLOCK_16X16 |
| 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x000f000f000f000fULL, // BLOCK_16X32 |
| 0x000f000f000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x00ff00ff00ff00ffULL, // BLOCK_32X16 |
| 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x00ff00ff00ff00ffULL, // BLOCK_32X32 |
| 0x00ff00ff00ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x00ff00ff00ff00ffULL, // BLOCK_32X64 |
| 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL } }, |
| |
| { { 0xffffffffffffffffULL, // BLOCK_64X32 |
| 0xffffffffffffffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0xffffffffffffffffULL, // BLOCK_64X64 |
| 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL } }, |
| // Y plane max coding block size is 128x128, but the codec divides it |
| // into 4 64x64 blocks. |
| // BLOCK_64X128 |
| { { 0x0ULL, 0x0ULL, 0x0ULL, 0x0ULL } }, |
| // BLOCK_128X64 |
| { { 0x0ULL, 0x0ULL, 0x0ULL, 0x0ULL } }, |
| // BLOCK_128X128 |
| { { 0x0ULL, 0x0ULL, 0x0ULL, 0x0ULL } }, |
| |
| { { 0x0001000100010001ULL, // BLOCK_4X16 |
| 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x000000000000000fULL, // BLOCK_16X4 |
| 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x0003000300030003ULL, // BLOCK_8X32 |
| 0x0003000300030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x0000000000ff00ffULL, // BLOCK_32X8 |
| 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }, |
| |
| { { 0x000f000f000f000fULL, // BLOCK_16X64 |
| 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x000f000f000f000fULL } }, |
| |
| { { 0xffffffffffffffffULL, // BLOCK_64X16 |
| 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } } |
| }; |
| |
| // U/V plane max transform size is 32x32 (format 420). |
| // 64 bit masks (32x32 / 4x4) for left transform size for U/V plane. |
| // We use one uint64_t to represent the 64 bit. |
| // Each 1 represents a position where we should apply a loop filter |
| // across the left border of an 4x4 block boundary. |
| // |
| // In the case of TX_8x8-> ( in low order byte first we end up with |
| // a mask that looks like this |
| // |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| const FilterMaskUV left_txform_mask_uv[TX_SIZES - 1] = { |
| 0xffffffffffffffffULL, // TX_4X4 |
| 0x5555555555555555ULL, // TX_8X8 |
| 0x1111111111111111ULL, // TX_16X16 |
| 0x0101010101010101ULL, // TX_32X32 |
| }; |
| |
| // 64 bit masks (32x32 / 4x4) for above transform size for U/V plane. |
| // We use one uint64_t to represent the 64 bit. |
| // Each 1 represents a position where we should apply a loop filter |
| // across the top border of an 4x4 block boundary. |
| // |
| // In the case of TX_8x8-> ( in low order byte first we end up with |
| // a mask that looks like this |
| // |
| // 11111111 |
| // 00000000 |
| // 11111111 |
| // 00000000 |
| // 11111111 |
| // 00000000 |
| // 11111111 |
| // 00000000 |
| const FilterMaskUV above_txform_mask_uv[TX_SIZES - 1] = { |
| 0xffffffffffffffffULL, // TX_4X4 |
| 0x00ff00ff00ff00ffULL, // TX_8X8 |
| 0x000000ff000000ffULL, // TX_16X16 |
| 0x00000000000000ffULL, // TX_32X32 |
| }; |
| |
| // Y plane max coding block size is 128x128, but the codec divides it |
| // into 4 64x64 blocks. U/V plane follows the pattern and size is |
| // halved accordingly (format 420). |
| const FilterMaskUV size_mask_u_v[BLOCK_SIZES_ALL] = { |
| 0x0000000000000001ULL, // BLOCK_4X4 |
| 0x0000000000000101ULL, // BLOCK_4X8 |
| 0x0000000000000003ULL, // BLOCK_8X4 |
| 0x0000000000000303ULL, // BLOCK_8X8 |
| 0x0000000003030303ULL, // BLOCK_8X16, |
| 0x0000000000000f0fULL, // BLOCK_16X8 |
| 0x000000000f0f0f0fULL, // BLOCK_16X16 |
| 0x0f0f0f0f0f0f0f0fULL, // BLOCK_16X32, |
| 0x00000000ffffffffULL, // BLOCK_32X16, |
| 0xffffffffffffffffULL, // BLOCK_32X32, |
| 0xffffffffffffffffULL, // BLOCK_32X64, |
| 0xffffffffffffffffULL, // BLOCK_64X32, |
| 0xffffffffffffffffULL, // BLOCK_64X64, |
| 0xffffffffffffffffULL, // BLOCK_64X128, |
| 0xffffffffffffffffULL, // BLOCK_128X64, |
| 0xffffffffffffffffULL, // BLOCK_128X128, |
| 0x0000000001010101ULL, // BLOCK_4X16, |
| 0x000000000000000fULL, // BLOCK_16X4, |
| 0x0303030303030303ULL, // BLOCK_8X32, |
| 0x000000000000ffffULL, // BLOCK_32X8, |
| 0x0f0f0f0f0f0f0f0fULL, // BLOCK_16X64, |
| 0x00000000ffffffffULL, // BLOCK_64X16 |
| }; |
| |
| static LoopFilterMask *get_loop_filter_mask(AV1_COMMON *const cm, int mi_row, |
| int mi_col) { |
| assert(cm->lf.lfm != NULL); |
| const int sb_row = mi_row >> MAX_MIB_SIZE_LOG2; |
| const int sb_col = mi_col >> MAX_MIB_SIZE_LOG2; |
| return &cm->lf.lfm[sb_row * cm->lf.lfm_stride + sb_col]; |
| } |
| #endif // LOOP_FILTER_BITMASK |
| |
| static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) { |
| int lvl; |
| |
| // For each possible value for the loop filter fill out limits |
| for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) { |
| // Set loop filter parameters that control sharpness. |
| int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4)); |
| |
| if (sharpness_lvl > 0) { |
| if (block_inside_limit > (9 - sharpness_lvl)) |
| block_inside_limit = (9 - sharpness_lvl); |
| } |
| |
| if (block_inside_limit < 1) block_inside_limit = 1; |
| |
| memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH); |
| memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit), |
| SIMD_WIDTH); |
| } |
| } |
| static uint8_t get_filter_level(const AV1_COMMON *cm, |
| const loop_filter_info_n *lfi_n, |
| const int dir_idx, int plane, |
| const MB_MODE_INFO *mbmi) { |
| const int segment_id = mbmi->segment_id; |
| if (cm->delta_lf_present_flag) { |
| int delta_lf; |
| if (cm->delta_lf_multi) { |
| const int delta_lf_idx = delta_lf_id_lut[plane][dir_idx]; |
| delta_lf = mbmi->curr_delta_lf[delta_lf_idx]; |
| } else { |
| delta_lf = mbmi->current_delta_lf_from_base; |
| } |
| int base_level; |
| if (plane == 0) |
| base_level = cm->lf.filter_level[dir_idx]; |
| else if (plane == 1) |
| base_level = cm->lf.filter_level_u; |
| else |
| base_level = cm->lf.filter_level_v; |
| int lvl_seg = clamp(delta_lf + base_level, 0, MAX_LOOP_FILTER); |
| assert(plane >= 0 && plane <= 2); |
| const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir_idx]; |
| if (segfeature_active(&cm->seg, segment_id, seg_lf_feature_id)) { |
| const int data = get_segdata(&cm->seg, segment_id, seg_lf_feature_id); |
| lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); |
| } |
| |
| if (cm->lf.mode_ref_delta_enabled) { |
| const int scale = 1 << (lvl_seg >> 5); |
| lvl_seg += cm->lf.ref_deltas[mbmi->ref_frame[0]] * scale; |
| if (mbmi->ref_frame[0] > INTRA_FRAME) |
| lvl_seg += cm->lf.mode_deltas[mode_lf_lut[mbmi->mode]] * scale; |
| lvl_seg = clamp(lvl_seg, 0, MAX_LOOP_FILTER); |
| } |
| return lvl_seg; |
| } else { |
| return lfi_n->lvl[plane][segment_id][dir_idx][mbmi->ref_frame[0]] |
| [mode_lf_lut[mbmi->mode]]; |
| } |
| } |
| |
| void av1_loop_filter_init(AV1_COMMON *cm) { |
| assert(MB_MODE_COUNT == NELEMENTS(mode_lf_lut)); |
| loop_filter_info_n *lfi = &cm->lf_info; |
| struct loopfilter *lf = &cm->lf; |
| int lvl; |
| |
| lf->combine_vert_horz_lf = 1; |
| |
| // init limits for given sharpness |
| update_sharpness(lfi, lf->sharpness_level); |
| |
| // init hev threshold const vectors |
| for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) |
| memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH); |
| } |
| |
| // Update the loop filter for the current frame. |
| // This should be called before loop_filter_rows(), |
| // av1_loop_filter_frame() calls this function directly. |
| static void loop_filter_frame_init(AV1_COMMON *cm, int plane_start, |
| int plane_end) { |
| int filt_lvl[MAX_MB_PLANE], filt_lvl_r[MAX_MB_PLANE]; |
| int plane; |
| int seg_id; |
| // n_shift is the multiplier for lf_deltas |
| // the multiplier is 1 for when filter_lvl is between 0 and 31; |
| // 2 when filter_lvl is between 32 and 63 |
| loop_filter_info_n *const lfi = &cm->lf_info; |
| struct loopfilter *const lf = &cm->lf; |
| const struct segmentation *const seg = &cm->seg; |
| |
| // update sharpness limits |
| update_sharpness(lfi, lf->sharpness_level); |
| |
| filt_lvl[0] = cm->lf.filter_level[0]; |
| filt_lvl[1] = cm->lf.filter_level_u; |
| filt_lvl[2] = cm->lf.filter_level_v; |
| |
| filt_lvl_r[0] = cm->lf.filter_level[1]; |
| filt_lvl_r[1] = cm->lf.filter_level_u; |
| filt_lvl_r[2] = cm->lf.filter_level_v; |
| |
| for (plane = plane_start; plane < plane_end; plane++) { |
| if (plane == 0 && !filt_lvl[0] && !filt_lvl_r[0]) |
| break; |
| else if (plane == 1 && !filt_lvl[1]) |
| continue; |
| else if (plane == 2 && !filt_lvl[2]) |
| continue; |
| |
| for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) { |
| for (int dir = 0; dir < 2; ++dir) { |
| int lvl_seg = (dir == 0) ? filt_lvl[plane] : filt_lvl_r[plane]; |
| assert(plane >= 0 && plane <= 2); |
| const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir]; |
| if (segfeature_active(seg, seg_id, seg_lf_feature_id)) { |
| const int data = get_segdata(&cm->seg, seg_id, seg_lf_feature_id); |
| lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); |
| } |
| |
| if (!lf->mode_ref_delta_enabled) { |
| // we could get rid of this if we assume that deltas are set to |
| // zero when not in use; encoder always uses deltas |
| memset(lfi->lvl[plane][seg_id][dir], lvl_seg, |
| sizeof(lfi->lvl[plane][seg_id][dir])); |
| } else { |
| int ref, mode; |
| const int scale = 1 << (lvl_seg >> 5); |
| const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale; |
| lfi->lvl[plane][seg_id][dir][INTRA_FRAME][0] = |
| clamp(intra_lvl, 0, MAX_LOOP_FILTER); |
| |
| for (ref = LAST_FRAME; ref < REF_FRAMES; ++ref) { |
| for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) { |
| const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale + |
| lf->mode_deltas[mode] * scale; |
| lfi->lvl[plane][seg_id][dir][ref][mode] = |
| clamp(inter_lvl, 0, MAX_LOOP_FILTER); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| #if LOOP_FILTER_BITMASK |
| memset(lf->neighbor_sb_lpf_info.tx_size_y_above, TX_64X64, |
| sizeof(TX_SIZE) * MI_SIZE_64X64); |
| memset(lf->neighbor_sb_lpf_info.tx_size_y_left, TX_64X64, |
| sizeof(TX_SIZE) * MI_SIZE_64X64); |
| memset(lf->neighbor_sb_lpf_info.tx_size_uv_above, TX_64X64, |
| sizeof(TX_SIZE) * MI_SIZE_64X64); |
| memset(lf->neighbor_sb_lpf_info.tx_size_uv_left, TX_64X64, |
| sizeof(TX_SIZE) * MI_SIZE_64X64); |
| memset(lf->neighbor_sb_lpf_info.y_level_above, 0, |
| sizeof(uint8_t) * MI_SIZE_64X64); |
| memset(lf->neighbor_sb_lpf_info.y_level_left, 0, |
| sizeof(uint8_t) * MI_SIZE_64X64); |
| memset(lf->neighbor_sb_lpf_info.u_level_above, 0, |
| sizeof(uint8_t) * MI_SIZE_64X64); |
| memset(lf->neighbor_sb_lpf_info.u_level_left, 0, |
| sizeof(uint8_t) * MI_SIZE_64X64); |
| memset(lf->neighbor_sb_lpf_info.v_level_above, 0, |
| sizeof(uint8_t) * MI_SIZE_64X64); |
| memset(lf->neighbor_sb_lpf_info.v_level_left, 0, |
| sizeof(uint8_t) * MI_SIZE_64X64); |
| memset(lf->neighbor_sb_lpf_info.skip, 0, sizeof(uint8_t) * MI_SIZE_64X64); |
| #endif // LOOP_FILTER_BITMASK |
| } |
| |
| #if LOOP_FILTER_BITMASK |
| // A 64x64 tx block requires 256 bits to represent each 4x4 tx block. |
| // Every 4 rows is represented by one uint64_t mask. Hence, |
| // there are 4 uint64_t bitmask[4] to represent the 64x64 block. |
| // |
| // Given a location by (idx, idy), This function returns the index |
| // 0, 1, 2, 3 to select which bitmask[] to use. |
| // Then the pointer y_shift contains the shift value in the bit mask. |
| // Function returns y_shift; y_index contains the index. |
| // |
| // For example, idy is the offset of pixels, |
| // (idy >> MI_SIZE_LOG2) converts to 4x4 unit. |
| // ((idy >> MI_SIZE_LOG2) / 4) returns which uint64_t. |
| // After locating which uint64_t, (idy >> MI_SIZE_LOG2) % 4 is the |
| // row offset, and each row has 16 = 1 << stride_log2 4x4 units. |
| // Therefore, shift = (row << stride_log2) + (idx >> MI_SIZE_LOG2); |
| static int get_y_index_shift(int idx, int idy, int *y_index) { |
| // idy_unit = idy >> MI_SIZE_LOG2; |
| // idx_unit = idx >> MI_SIZE_LOG2; |
| // *y_index = idy_unit >> 2; |
| // rows = idy_unit % 4; |
| // stride_log2 = 4; |
| // shift = (rows << stride_log2) + idx_unit; |
| |
| *y_index = idy >> 4; |
| return ((idy & 12) << 2) | (idx >> 2); |
| } |
| |
| // Largest tx size of U/V plane is 32x32. |
| // We need one uint64_t bitmask to present all 4x4 tx block. |
| // ss_x, ss_y: subsampling. for 420 format, ss_x = 1, ss_y = 1. |
| // Each row has 8 = (1 << stride_log2) 4x4 units. |
| static int get_uv_index_shift(int idx, int idy) { |
| // stride_log2 = 3; |
| // idy_unit = (idy >> (MI_SIZE_LOG2 + ss_y)); |
| // idx_unit = (idx >> (MI_SIZE_LOG2 + ss_x)); |
| // shift = (idy_unit << stride_log2) + idx_unit; |
| return (idy & ~7) | (idx >> 3); |
| } |
| |
| static void check_mask_y(const FilterMaskY *lfm) { |
| #ifndef NDEBUG |
| int i; |
| for (i = 0; i < 4; ++i) { |
| assert(!(lfm[TX_4X4].bits[i] & lfm[TX_8X8].bits[i])); |
| assert(!(lfm[TX_4X4].bits[i] & lfm[TX_16X16].bits[i])); |
| assert(!(lfm[TX_4X4].bits[i] & lfm[TX_32X32].bits[i])); |
| assert(!(lfm[TX_4X4].bits[i] & lfm[TX_64X64].bits[i])); |
| assert(!(lfm[TX_8X8].bits[i] & lfm[TX_16X16].bits[i])); |
| assert(!(lfm[TX_8X8].bits[i] & lfm[TX_32X32].bits[i])); |
| assert(!(lfm[TX_8X8].bits[i] & lfm[TX_64X64].bits[i])); |
| assert(!(lfm[TX_16X16].bits[i] & lfm[TX_32X32].bits[i])); |
| assert(!(lfm[TX_16X16].bits[i] & lfm[TX_64X64].bits[i])); |
| assert(!(lfm[TX_32X32].bits[i] & lfm[TX_64X64].bits[i])); |
| } |
| #else |
| (void)lfm; |
| #endif |
| } |
| |
| static void check_mask_uv(const FilterMaskUV *lfm) { |
| #ifndef NDEBUG |
| int i; |
| for (i = 0; i < 4; ++i) { |
| assert(!(lfm[TX_4X4] & lfm[TX_8X8])); |
| assert(!(lfm[TX_4X4] & lfm[TX_16X16])); |
| assert(!(lfm[TX_4X4] & lfm[TX_32X32])); |
| assert(!(lfm[TX_8X8] & lfm[TX_16X16])); |
| assert(!(lfm[TX_8X8] & lfm[TX_32X32])); |
| assert(!(lfm[TX_16X16] & lfm[TX_32X32])); |
| } |
| #else |
| (void)lfm; |
| #endif |
| } |
| |
| static void check_loop_filter_masks(const LoopFilterMask *lfm) { |
| for (int i = 0; i < LOOP_FILTER_MASK_NUM; ++i) { |
| // Assert if we try to apply 2 different loop filters at the same position. |
| check_mask_y(lfm->lfm_info[i].left_y); |
| check_mask_y(lfm->lfm_info[i].above_y); |
| check_mask_uv(lfm->lfm_info[i].left_u); |
| check_mask_uv(lfm->lfm_info[i].above_u); |
| check_mask_uv(lfm->lfm_info[i].left_v); |
| check_mask_uv(lfm->lfm_info[i].above_v); |
| } |
| } |
| |
| // if superblock size is 128x128, we need to specify which lpf mask info. |
| int get_mask_idx_inside_sb(AV1_COMMON *const cm, int mi_row, int mi_col) { |
| if (cm->seq_params.mib_size == MI_SIZE_64X64) return 0; |
| const int r = (mi_row % cm->seq_params.mib_size) >> 4; |
| const int c = (mi_col % cm->seq_params.mib_size) >> 4; |
| return (r << 1) + c; |
| } |
| |
| static void setup_masks(AV1_COMMON *const cm, int mi_row, int mi_col, int plane, |
| int subsampling_x, int subsampling_y, TX_SIZE tx_size, |
| LoopFilterMask *lfm) { |
| if (mi_row == 0 && mi_col == 0) return; |
| |
| const int idx = mi_col << MI_SIZE_LOG2; |
| const int idy = mi_row << MI_SIZE_LOG2; |
| MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col; |
| const MB_MODE_INFO *const mbmi = mi[0]; |
| const int curr_skip = mbmi->skip && is_inter_block(mbmi); |
| int y_index = 0; |
| const int shift = plane ? get_uv_index_shift(idx, idy) |
| : get_y_index_shift(idx, idy, &y_index); |
| const int mask_idx = get_mask_idx_inside_sb(cm, mi_row, mi_col); |
| LoopFilterMaskInfo *const lfm_info = &lfm->lfm_info[mask_idx]; |
| |
| // decide whether current vertical/horizontal edge needs loop filtering |
| EDGE_DIR dir; |
| for (dir = VERT_EDGE; dir <= HORZ_EDGE; ++dir) { |
| const int row_or_col = dir == VERT_EDGE ? mi_col : mi_row; |
| if (row_or_col == 0) continue; // do not filter frame boundary |
| |
| MB_MODE_INFO **mi_prev = |
| (dir == VERT_EDGE) ? mi - (tx_size_wide_unit[tx_size] << subsampling_x) |
| : mi - ((tx_size_high_unit[tx_size] * cm->mi_stride) |
| << subsampling_y); |
| const MB_MODE_INFO *const mbmi_prev = mi_prev[0]; |
| const uint8_t level = get_filter_level(cm, &cm->lf_info, dir, plane, mbmi); |
| const uint8_t level_prev = |
| get_filter_level(cm, &cm->lf_info, dir, plane, mbmi_prev); |
| const int prev_skip = mbmi_prev->skip && is_inter_block(mbmi_prev); |
| const BLOCK_SIZE bsize = |
| ss_size_lookup[mbmi->sb_type][subsampling_x][subsampling_y]; |
| const int prediction_masks = dir == VERT_EDGE ? block_size_wide[bsize] - 1 |
| : block_size_high[bsize] - 1; |
| const int is_coding_block_border = !(row_or_col & prediction_masks); |
| const int is_edge = (level || level_prev) && |
| (!curr_skip || !prev_skip || is_coding_block_border); |
| if (is_edge) { |
| const TX_SIZE prev_tx_size = |
| plane ? av1_get_uv_tx_size(mbmi_prev, subsampling_x, subsampling_y) |
| : mbmi_prev->tx_size; |
| const TX_SIZE min_tx_size = |
| (dir == VERT_EDGE) |
| ? AOMMIN(txsize_horz_map[tx_size], txsize_horz_map[prev_tx_size]) |
| : AOMMIN(txsize_vert_map[tx_size], txsize_vert_map[prev_tx_size]); |
| assert(min_tx_size < TX_SIZES); |
| |
| // set mask on corresponding bit |
| if (dir == VERT_EDGE) { |
| switch (plane) { |
| case 0: |
| lfm_info->left_y[min_tx_size].bits[y_index] |= (1 << shift); |
| break; |
| case 1: lfm_info->left_u[min_tx_size] |= (1 << shift); break; |
| case 2: lfm_info->left_v[min_tx_size] |= (1 << shift); break; |
| default: assert(plane <= 2); |
| } |
| } else { |
| switch (plane) { |
| case 0: |
| lfm_info->above_y[min_tx_size].bits[y_index] |= (1 << shift); |
| break; |
| case 1: lfm_info->above_u[min_tx_size] |= (1 << shift); break; |
| case 2: lfm_info->above_v[min_tx_size] |= (1 << shift); break; |
| default: assert(plane <= 2); |
| } |
| } |
| } |
| } |
| } |
| |
| static void setup_tx_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col, |
| int blk_row, int blk_col, int plane_bsize, |
| TX_SIZE tx_size, int plane, int subsampling_x, |
| int subsampling_y, LoopFilterMask *lfm) { |
| MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col; |
| const MB_MODE_INFO *const mbmi = mi[0]; |
| // For Y plane: |
| // If intra block, tx size is univariant. |
| // If inter block, tx size follows inter_tx_size. |
| // For U/V plane: tx_size is always the largest size. |
| TX_SIZE plane_tx_size; |
| const int is_inter = is_inter_block(mbmi); |
| if (is_inter) { |
| plane_tx_size = plane |
| ? av1_get_uv_tx_size(mbmi, subsampling_x, subsampling_y) |
| : mbmi->inter_tx_size[av1_get_txb_size_index( |
| plane_bsize, blk_row, blk_col)]; |
| } else { |
| plane_tx_size = plane |
| ? av1_get_uv_tx_size(mbmi, subsampling_x, subsampling_y) |
| : mbmi->tx_size; |
| } |
| |
| if (plane) assert(plane_tx_size == tx_size); |
| |
| if (plane_tx_size == tx_size) { |
| setup_masks(cm, mi_row, mi_col, plane, subsampling_x, subsampling_y, |
| tx_size, lfm); |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[is_inter][tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| const int offsetr = blk_row + row; |
| const int offsetc = blk_col + col; |
| |
| if (mi_row + offsetr >= cm->mi_rows || mi_col + offsetc >= cm->mi_cols) |
| continue; |
| |
| setup_tx_block_mask(cm, mi_row, mi_col, offsetr, offsetc, plane_bsize, |
| sub_txs, plane, subsampling_x, subsampling_y, lfm); |
| } |
| } |
| } |
| } |
| |
| static void setup_fix_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col, |
| int block_width, int block_height, int plane, |
| int subsampling_x, int subsampling_y, |
| LoopFilterMask *lfm) { |
| MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col; |
| const MB_MODE_INFO *const mbmi = mi[0]; |
| |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const BLOCK_SIZE bsizec = |
| scale_chroma_bsize(bsize, subsampling_x, subsampling_y); |
| const BLOCK_SIZE plane_bsize = |
| ss_size_lookup[bsizec][subsampling_x][subsampling_y]; |
| TX_SIZE max_txsize = get_max_rect_tx_size(plane_bsize); |
| // The decoder is designed so that it can process 64x64 luma pixels at a |
| // time. If this is a chroma plane with subsampling and bsize corresponds to |
| // a subsampled BLOCK_128X128 then the lookup above will give TX_64X64. That |
| // mustn't be used for the subsampled plane (because it would be bigger than |
| // a 64x64 luma block) so we round down to TX_32X32. |
| if ((subsampling_x || subsampling_y) && |
| txsize_sqr_up_map[max_txsize] == TX_64X64) { |
| if (max_txsize == TX_16X64) |
| max_txsize = TX_16X32; |
| else if (max_txsize == TX_64X16) |
| max_txsize = TX_32X16; |
| else |
| max_txsize = TX_32X32; |
| } |
| |
| const BLOCK_SIZE txb_size = txsize_to_bsize[max_txsize]; |
| const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0]; |
| const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0]; |
| const BLOCK_SIZE max_unit_bsize = |
| ss_size_lookup[BLOCK_64X64][subsampling_x][subsampling_y]; |
| int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; |
| int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; |
| |
| mu_blocks_wide = AOMMIN(block_width, mu_blocks_wide); |
| mu_blocks_high = AOMMIN(block_height, mu_blocks_high); |
| |
| // Largest tx_size is 64x64, while superblock size can be 128x128. |
| // Here we ensure that setup_tx_block_mask process at most a 64x64 block. |
| for (int idy = 0; idy < block_height; idy += mu_blocks_high) { |
| for (int idx = 0; idx < block_width; idx += mu_blocks_wide) { |
| const int unit_height = AOMMIN(mu_blocks_high + idy, block_height); |
| const int unit_width = AOMMIN(mu_blocks_wide + idx, block_width); |
| for (int blk_row = idy; blk_row < unit_height; blk_row += bh) { |
| for (int blk_col = idx; blk_col < unit_width; blk_col += bw) { |
| setup_tx_block_mask(cm, mi_row, mi_col, blk_row, blk_col, plane_bsize, |
| max_txsize, plane, subsampling_x, subsampling_y, |
| lfm); |
| } |
| } |
| } |
| } |
| } |
| |
| static void setup_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int plane, int subsampling_x, |
| int subsampling_y, LoopFilterMask *lfm) { |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); |
| const BLOCK_SIZE subsize = get_subsize(bsize, partition); |
| const int hbs = mi_size_wide[bsize] / 2; |
| const int quarter_step = mi_size_wide[bsize] / 4; |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| int i; |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| setup_fix_block_mask(cm, mi_row, mi_col, bw, bh, plane, subsampling_x, |
| subsampling_y, lfm); |
| break; |
| case PARTITION_HORZ: |
| setup_fix_block_mask(cm, mi_row, mi_col, bw, bh >> 1, plane, |
| subsampling_x, subsampling_y, lfm); |
| if (mi_row + hbs < cm->mi_rows) |
| setup_fix_block_mask(cm, mi_row + hbs, mi_col, bw, bh >> 1, plane, |
| subsampling_x, subsampling_y, lfm); |
| break; |
| case PARTITION_VERT: |
| setup_fix_block_mask(cm, mi_row, mi_col, bw >> 1, bh, plane, |
| subsampling_x, subsampling_y, lfm); |
| if (mi_col + hbs < cm->mi_cols) |
| setup_fix_block_mask(cm, mi_row, mi_col + hbs, bw >> 1, bh, plane, |
| subsampling_x, subsampling_y, lfm); |
| break; |
| case PARTITION_SPLIT: |
| setup_block_mask(cm, mi_row, mi_col, subsize, plane, subsampling_x, |
| subsampling_y, lfm); |
| setup_block_mask(cm, mi_row, mi_col + hbs, subsize, plane, subsampling_x, |
| subsampling_y, lfm); |
| setup_block_mask(cm, mi_row + hbs, mi_col, subsize, plane, subsampling_x, |
| subsampling_y, lfm); |
| setup_block_mask(cm, mi_row + hbs, mi_col + hbs, subsize, plane, |
| subsampling_x, subsampling_y, lfm); |
| break; |
| case PARTITION_HORZ_A: |
| setup_fix_block_mask(cm, mi_row, mi_col, bw >> 1, bh >> 1, plane, |
| subsampling_x, subsampling_y, lfm); |
| setup_fix_block_mask(cm, mi_row, mi_col + hbs, bw >> 1, bh >> 1, plane, |
| subsampling_x, subsampling_y, lfm); |
| setup_fix_block_mask(cm, mi_row + hbs, mi_col, bw, bh, plane, |
| subsampling_x, subsampling_y, lfm); |
| break; |
| case PARTITION_HORZ_B: |
| setup_fix_block_mask(cm, mi_row, mi_col, bw, bh >> 1, plane, |
| subsampling_x, subsampling_y, lfm); |
| setup_fix_block_mask(cm, mi_row + hbs, mi_col, bw >> 1, bh >> 1, plane, |
| subsampling_x, subsampling_y, lfm); |
| setup_fix_block_mask(cm, mi_row + hbs, mi_col + hbs, bw >> 1, bh >> 1, |
| plane, subsampling_x, subsampling_y, lfm); |
| break; |
| case PARTITION_VERT_A: |
| setup_fix_block_mask(cm, mi_row, mi_col, bw >> 1, bh >> 1, plane, |
| subsampling_x, subsampling_y, lfm); |
| setup_fix_block_mask(cm, mi_row + hbs, mi_col, bw >> 1, bh >> 1, plane, |
| subsampling_x, subsampling_y, lfm); |
| setup_fix_block_mask(cm, mi_row, mi_col + hbs, bw >> 1, bh, plane, |
| subsampling_x, subsampling_y, lfm); |
| break; |
| case PARTITION_VERT_B: |
| setup_fix_block_mask(cm, mi_row, mi_col, bw >> 1, bh, plane, |
| subsampling_x, subsampling_y, lfm); |
| setup_fix_block_mask(cm, mi_row, mi_col + hbs, bw >> 1, bh >> 1, plane, |
| subsampling_x, subsampling_y, lfm); |
| setup_fix_block_mask(cm, mi_row + hbs, mi_col + hbs, bw >> 1, bh >> 1, |
| plane, subsampling_x, subsampling_y, lfm); |
| break; |
| case PARTITION_HORZ_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_row = mi_row + i * quarter_step; |
| if (i > 0 && this_mi_row >= cm->mi_rows) break; |
| |
| setup_fix_block_mask(cm, this_mi_row, mi_col, bw, bh >> 2, plane, |
| subsampling_x, subsampling_y, lfm); |
| } |
| break; |
| case PARTITION_VERT_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_col = mi_col + i * quarter_step; |
| if (i > 0 && this_mi_col >= cm->mi_cols) break; |
| |
| setup_fix_block_mask(cm, mi_row, this_mi_col, bw >> 2, bh, plane, |
| subsampling_x, subsampling_y, lfm); |
| } |
| break; |
| default: assert(0); |
| } |
| } |
| |
| // TODO(chengchen): if lossless, do not need to setup mask. But when |
| // segments enabled, each segment has different lossless settings. |
| void av1_setup_bitmask(AV1_COMMON *const cm, int mi_row, int mi_col, int plane, |
| int subsampling_x, int subsampling_y, |
| LoopFilterMask *lfm) { |
| assert(lfm != NULL); |
| |
| // set up bitmask for each superblock |
| setup_block_mask(cm, mi_row, mi_col, cm->seq_params.sb_size, plane, |
| subsampling_x, subsampling_y, lfm); |
| |
| // check if the mask is valid |
| check_loop_filter_masks(lfm); |
| |
| { |
| // place hoder: for potential special case handling. |
| // 64x64 (Y) or 32x32 (U/V) boundaries must be filtered. |
| const int num_64x64 = MAX_MIB_SIZE == MI_SIZE_64X64 ? 1 : 4; |
| if (plane == 0) { |
| for (int i = 0; i < num_64x64; ++i) { |
| for (int j = 0; j < 4; ++j) { |
| if (mi_col || i & 1) |
| lfm->lfm_info[i].left_y[TX_64X64].bits[j] |= |
| left_txform_mask[TX_64X64].bits[j]; |
| if (mi_row || i > 1) |
| lfm->lfm_info[i].above_y[TX_64X64].bits[j] |= |
| above_txform_mask[TX_64X64].bits[j]; |
| } |
| } |
| } else { |
| for (int i = 0; i < num_64x64; ++i) { |
| if (mi_col || i & 1) { |
| lfm->lfm_info[i].left_u[TX_32X32] |= left_txform_mask_uv[TX_32X32]; |
| lfm->lfm_info[i].left_v[TX_32X32] |= left_txform_mask_uv[TX_32X32]; |
| } |
| if (mi_row || i > 1) { |
| lfm->lfm_info[i].above_u[TX_32X32] |= above_txform_mask_uv[TX_32X32]; |
| lfm->lfm_info[i].above_v[TX_32X32] |= above_txform_mask_uv[TX_32X32]; |
| } |
| } |
| } |
| |
| // Let 16x16 hold 32x32 (Y/U/V) and 64x64(Y only). |
| // Even tx size is greater, we only apply max length filter, which is 16. |
| for (int i = 0; i < LOOP_FILTER_MASK_NUM; ++i) { |
| if (plane == 0) { |
| for (int j = 0; j < 4; ++j) { |
| lfm->lfm_info[i].left_y[TX_16X16].bits[j] |= |
| lfm->lfm_info[i].left_y[TX_32X32].bits[j]; |
| lfm->lfm_info[i].left_y[TX_16X16].bits[j] |= |
| lfm->lfm_info[i].left_y[TX_64X64].bits[j]; |
| lfm->lfm_info[i].above_y[TX_16X16].bits[j] |= |
| lfm->lfm_info[i].above_y[TX_32X32].bits[j]; |
| lfm->lfm_info[i].above_y[TX_16X16].bits[j] |= |
| lfm->lfm_info[i].above_y[TX_64X64].bits[j]; |
| } |
| } else if (plane == 1) { |
| lfm->lfm_info[i].left_u[TX_16X16] |= lfm->lfm_info[i].left_u[TX_32X32]; |
| lfm->lfm_info[i].above_u[TX_16X16] |= |
| lfm->lfm_info[i].above_u[TX_32X32]; |
| } else { |
| lfm->lfm_info[i].left_v[TX_16X16] |= lfm->lfm_info[i].left_v[TX_32X32]; |
| lfm->lfm_info[i].above_v[TX_16X16] |= |
| lfm->lfm_info[i].above_v[TX_32X32]; |
| } |
| } |
| } |
| } |
| #endif // LOOP_FILTER_BITMASK |
| |
| // This function ors into the current lfm structure, where to do loop |
| // filters for the specific mi we are looking at. It uses information |
| // including the block_size_type (32x16, 32x32, etc.), the transform size, |
| // whether there were any coefficients encoded, and the loop filter strength |
| // block we are currently looking at. Shift is used to position the |
| // 1's we produce. |
| // TODO(JBB) Need another function for different resolution color.. |
| static void build_masks(AV1_COMMON *const cm, |
| const loop_filter_info_n *const lfi_n, |
| const MB_MODE_INFO *mbmi, const int shift_y, |
| const int shift_uv, LOOP_FILTER_MASK *lfm) { |
| const BLOCK_SIZE block_size = mbmi->sb_type; |
| // TODO(debargha): Check if masks can be setup correctly when |
| // rectangular transfroms are used with the EXT_TX expt. |
| const TX_SIZE tx_size_y = txsize_sqr_map[mbmi->tx_size]; |
| const TX_SIZE tx_size_y_left = txsize_horz_map[mbmi->tx_size]; |
| const TX_SIZE tx_size_y_above = txsize_vert_map[mbmi->tx_size]; |
| const TX_SIZE tx_size_uv_actual = av1_get_uv_tx_size(mbmi, 1, 1); |
| const TX_SIZE tx_size_uv = txsize_sqr_map[tx_size_uv_actual]; |
| const TX_SIZE tx_size_uv_left = txsize_horz_map[tx_size_uv_actual]; |
| const TX_SIZE tx_size_uv_above = txsize_vert_map[tx_size_uv_actual]; |
| const int filter_level = get_filter_level(cm, lfi_n, 0, 0, mbmi); |
| uint64_t *const left_y = &lfm->left_y[tx_size_y_left]; |
| uint64_t *const above_y = &lfm->above_y[tx_size_y_above]; |
| uint64_t *const int_4x4_y = &lfm->int_4x4_y; |
| uint16_t *const left_uv = &lfm->left_uv[tx_size_uv_left]; |
| uint16_t *const above_uv = &lfm->above_uv[tx_size_uv_above]; |
| uint16_t *const int_4x4_uv = &lfm->left_int_4x4_uv; |
| int i; |
| |
| // If filter level is 0 we don't loop filter. |
| if (!filter_level) { |
| return; |
| } else { |
| const int w = num_8x8_blocks_wide_lookup[block_size]; |
| const int h = num_8x8_blocks_high_lookup[block_size]; |
| const int row = (shift_y >> MAX_MIB_SIZE_LOG2); |
| const int col = shift_y - (row << MAX_MIB_SIZE_LOG2); |
| |
| for (i = 0; i < h; i++) memset(&lfm->lfl_y[row + i][col], filter_level, w); |
| } |
| |
| // These set 1 in the current block size for the block size edges. |
| // For instance if the block size is 32x16, we'll set: |
| // above = 1111 |
| // 0000 |
| // and |
| // left = 1000 |
| // = 1000 |
| // NOTE : In this example the low bit is left most ( 1000 ) is stored as |
| // 1, not 8... |
| // |
| // U and V set things on a 16 bit scale. |
| // |
| *above_y |= above_prediction_mask[block_size] << shift_y; |
| *above_uv |= above_prediction_mask_uv[block_size] << shift_uv; |
| *left_y |= left_prediction_mask[block_size] << shift_y; |
| *left_uv |= left_prediction_mask_uv[block_size] << shift_uv; |
| |
| // If the block has no coefficients and is not intra we skip applying |
| // the loop filter on block edges. |
| if (mbmi->skip && is_inter_block(mbmi)) return; |
| |
| // Here we are adding a mask for the transform size. The transform |
| // size mask is set to be correct for a 64x64 prediction block size. We |
| // mask to match the size of the block we are working on and then shift it |
| // into place.. |
| *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y_above]) |
| << shift_y; |
| *above_uv |= |
| (size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv_above]) |
| << shift_uv; |
| |
| *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y_left]) |
| << shift_y; |
| *left_uv |= |
| (size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv_left]) |
| << shift_uv; |
| |
| // Here we are trying to determine what to do with the internal 4x4 block |
| // boundaries. These differ from the 4x4 boundaries on the outside edge of |
| // an 8x8 in that the internal ones can be skipped and don't depend on |
| // the prediction block size. |
| if (tx_size_y == TX_4X4) |
| *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y; |
| |
| if (tx_size_uv == TX_4X4) |
| *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv; |
| } |
| |
| // This function does the same thing as the one above with the exception that |
| // it only affects the y masks. It exists because for blocks < 16x16 in size, |
| // we only update u and v masks on the first block. |
| static void build_y_mask(AV1_COMMON *const cm, |
| const loop_filter_info_n *const lfi_n, |
| const MB_MODE_INFO *mbmi, const int shift_y, |
| LOOP_FILTER_MASK *lfm) { |
| const TX_SIZE tx_size_y = txsize_sqr_map[mbmi->tx_size]; |
| const TX_SIZE tx_size_y_left = txsize_horz_map[mbmi->tx_size]; |
| const TX_SIZE tx_size_y_above = txsize_vert_map[mbmi->tx_size]; |
| const BLOCK_SIZE block_size = mbmi->sb_type; |
| const int filter_level = get_filter_level(cm, lfi_n, 0, 0, mbmi); |
| uint64_t *const left_y = &lfm->left_y[tx_size_y_left]; |
| uint64_t *const above_y = &lfm->above_y[tx_size_y_above]; |
| uint64_t *const int_4x4_y = &lfm->int_4x4_y; |
| int i; |
| |
| if (!filter_level) { |
| return; |
| } else { |
| const int w = num_8x8_blocks_wide_lookup[block_size]; |
| const int h = num_8x8_blocks_high_lookup[block_size]; |
| const int row = (shift_y >> MAX_MIB_SIZE_LOG2); |
| const int col = shift_y - (row << MAX_MIB_SIZE_LOG2); |
| |
| for (i = 0; i < h; i++) memset(&lfm->lfl_y[row + i][col], filter_level, w); |
| } |
| |
| *above_y |= above_prediction_mask[block_size] << shift_y; |
| *left_y |= left_prediction_mask[block_size] << shift_y; |
| |
| if (mbmi->skip && is_inter_block(mbmi)) return; |
| |
| *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y_above]) |
| << shift_y; |
| |
| *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y_left]) |
| << shift_y; |
| |
| if (tx_size_y == TX_4X4) |
| *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y; |
| } |
| |
| // This function sets up the bit masks for the entire 64x64 region represented |
| // by mi_row, mi_col. |
| // TODO(JBB): This function only works for yv12. |
| void av1_setup_mask(AV1_COMMON *const cm, int mi_row, int mi_col, |
| MB_MODE_INFO **mi, int mode_info_stride, |
| LOOP_FILTER_MASK *lfm) { |
| assert(0 && "Not yet updated"); |
| int idx_32, idx_16, idx_8; |
| const loop_filter_info_n *const lfi_n = &cm->lf_info; |
| MB_MODE_INFO **mip = mi; |
| MB_MODE_INFO **mip2 = mi; |
| |
| // These are offsets to the next mi in the 64x64 block. It is what gets |
| // added to the mi ptr as we go through each loop. It helps us to avoid |
| // setting up special row and column counters for each index. The last step |
| // brings us out back to the starting position. |
| const int offset_32[] = { 4, (mode_info_stride << 2) - 4, 4, |
| -(mode_info_stride << 2) - 4 }; |
| const int offset_16[] = { 2, (mode_info_stride << 1) - 2, 2, |
| -(mode_info_stride << 1) - 2 }; |
| const int offset[] = { 1, mode_info_stride - 1, 1, -mode_info_stride - 1 }; |
| |
| // Following variables represent shifts to position the current block |
| // mask over the appropriate block. A shift of 36 to the left will move |
| // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left |
| // 4 rows to the appropriate spot. |
| const int shift_32_y[] = { 0, 4, 32, 36 }; |
| const int shift_16_y[] = { 0, 2, 16, 18 }; |
| const int shift_8_y[] = { 0, 1, 8, 9 }; |
| const int shift_32_uv[] = { 0, 2, 8, 10 }; |
| const int shift_16_uv[] = { 0, 1, 4, 5 }; |
| int i; |
| const int max_rows = AOMMIN(cm->mi_rows - mi_row, MAX_MIB_SIZE); |
| const int max_cols = AOMMIN(cm->mi_cols - mi_col, MAX_MIB_SIZE); |
| |
| av1_zero(*lfm); |
| assert(mip[0] != NULL); |
| |
| // TODO(jimbankoski): Try moving most of the following code into decode |
| // loop and storing lfm in the mbmi structure so that we don't have to go |
| // through the recursive loop structure multiple times. |
| switch (mip[0]->sb_type) { |
| case BLOCK_64X64: build_masks(cm, lfi_n, mip[0], 0, 0, lfm); break; |
| case BLOCK_64X32: |
| build_masks(cm, lfi_n, mip[0], 0, 0, lfm); |
| mip2 = mip + mode_info_stride * 4; |
| if (4 >= max_rows) break; |
| build_masks(cm, lfi_n, mip2[0], 32, 8, lfm); |
| break; |
| case BLOCK_32X64: |
| build_masks(cm, lfi_n, mip[0], 0, 0, lfm); |
| mip2 = mip + 4; |
| if (4 >= max_cols) break; |
| build_masks(cm, lfi_n, mip2[0], 4, 2, lfm); |
| break; |
| default: |
| for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) { |
| const int shift_y_32 = shift_32_y[idx_32]; |
| const int shift_uv_32 = shift_32_uv[idx_32]; |
| const int mi_32_col_offset = ((idx_32 & 1) << 2); |
| const int mi_32_row_offset = ((idx_32 >> 1) << 2); |
| if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows) |
| continue; |
| switch (mip[0]->sb_type) { |
| case BLOCK_32X32: |
| build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm); |
| break; |
| case BLOCK_32X16: |
| build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm); |
| if (mi_32_row_offset + 2 >= max_rows) continue; |
| mip2 = mip + mode_info_stride * 2; |
| build_masks(cm, lfi_n, mip2[0], shift_y_32 + 16, shift_uv_32 + 4, |
| lfm); |
| break; |
| case BLOCK_16X32: |
| build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm); |
| if (mi_32_col_offset + 2 >= max_cols) continue; |
| mip2 = mip + 2; |
| build_masks(cm, lfi_n, mip2[0], shift_y_32 + 2, shift_uv_32 + 1, |
| lfm); |
| break; |
| default: |
| for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) { |
| const int shift_y_32_16 = shift_y_32 + shift_16_y[idx_16]; |
| const int shift_uv_32_16 = shift_uv_32 + shift_16_uv[idx_16]; |
| const int mi_16_col_offset = |
| mi_32_col_offset + ((idx_16 & 1) << 1); |
| const int mi_16_row_offset = |
| mi_32_row_offset + ((idx_16 >> 1) << 1); |
| |
| if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows) |
| continue; |
| |
| switch (mip[0]->sb_type) { |
| case BLOCK_16X16: |
| build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16, |
| lfm); |
| break; |
| case BLOCK_16X8: |
| build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16, |
| lfm); |
| if (mi_16_row_offset + 1 >= max_rows) continue; |
| mip2 = mip + mode_info_stride; |
| build_y_mask(cm, lfi_n, mip2[0], shift_y_32_16 + 8, lfm); |
| break; |
| case BLOCK_8X16: |
| build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16, |
| lfm); |
| if (mi_16_col_offset + 1 >= max_cols) continue; |
| mip2 = mip + 1; |
| build_y_mask(cm, lfi_n, mip2[0], shift_y_32_16 + 1, lfm); |
| break; |
| default: { |
| const int shift_y_32_16_8_zero = shift_y_32_16 + shift_8_y[0]; |
| build_masks(cm, lfi_n, mip[0], shift_y_32_16_8_zero, |
| shift_uv_32_16, lfm); |
| mip += offset[0]; |
| for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) { |
| const int shift_y_32_16_8 = |
| shift_y_32_16 + shift_8_y[idx_8]; |
| const int mi_8_col_offset = |
| mi_16_col_offset + ((idx_8 & 1)); |
| const int mi_8_row_offset = |
| mi_16_row_offset + ((idx_8 >> 1)); |
| |
| if (mi_8_col_offset >= max_cols || |
| mi_8_row_offset >= max_rows) |
| continue; |
| build_y_mask(cm, lfi_n, mip[0], shift_y_32_16_8, lfm); |
| } |
| break; |
| } |
| } |
| } |
| break; |
| } |
| } |
| break; |
| } |
| // The largest loopfilter we have is 16x16 so we use the 16x16 mask |
| // for 32x32 transforms also. |
| lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32]; |
| lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32]; |
| lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32]; |
| lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32]; |
| |
| // We do at least 8 tap filter on every 32x32 even if the transform size |
| // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and |
| // remove it from the 4x4. |
| lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border; |
| lfm->left_y[TX_4X4] &= ~left_border; |
| lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border; |
| lfm->above_y[TX_4X4] &= ~above_border; |
| lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv; |
| lfm->left_uv[TX_4X4] &= ~left_border_uv; |
| lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv; |
| lfm->above_uv[TX_4X4] &= ~above_border_uv; |
| |
| // We do some special edge handling. |
| if (mi_row + MAX_MIB_SIZE > cm->mi_rows) { |
| const uint64_t rows = cm->mi_rows - mi_row; |
| |
| // Each pixel inside the border gets a 1, |
| const uint64_t mask_y = (((uint64_t)1 << (rows << MAX_MIB_SIZE_LOG2)) - 1); |
| const uint16_t mask_uv = |
| (((uint16_t)1 << (((rows + 1) >> 1) << (MAX_MIB_SIZE_LOG2 - 1))) - 1); |
| |
| // Remove values completely outside our border. |
| for (i = 0; i < TX_32X32; i++) { |
| lfm->left_y[i] &= mask_y; |
| lfm->above_y[i] &= mask_y; |
| lfm->left_uv[i] &= mask_uv; |
| lfm->above_uv[i] &= mask_uv; |
| } |
| lfm->int_4x4_y &= mask_y; |
| lfm->above_int_4x4_uv = lfm->left_int_4x4_uv & mask_uv; |
| |
| // We don't apply a wide loop filter on the last uv block row. If set |
| // apply the shorter one instead. |
| if (rows == 1) { |
| lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16]; |
| lfm->above_uv[TX_16X16] = 0; |
| } |
| if (rows == 5) { |
| lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00; |
| lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00); |
| } |
| } else { |
| lfm->above_int_4x4_uv = lfm->left_int_4x4_uv; |
| } |
| |
| if (mi_col + MAX_MIB_SIZE > cm->mi_cols) { |
| const uint64_t columns = cm->mi_cols - mi_col; |
| |
| // Each pixel inside the border gets a 1, the multiply copies the border |
| // to where we need it. |
| const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101ULL; |
| const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111; |
| |
| // Internal edges are not applied on the last column of the image so |
| // we mask 1 more for the internal edges |
| const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111; |
| |
| // Remove the bits outside the image edge. |
| for (i = 0; i < TX_32X32; i++) { |
| lfm->left_y[i] &= mask_y; |
| lfm->above_y[i] &= mask_y; |
| lfm->left_uv[i] &= mask_uv; |
| lfm->above_uv[i] &= mask_uv; |
| } |
| lfm->int_4x4_y &= mask_y; |
| lfm->left_int_4x4_uv &= mask_uv_int; |
| |
| // We don't apply a wide loop filter on the last uv column. If set |
| // apply the shorter one instead. |
| if (columns == 1) { |
| lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16]; |
| lfm->left_uv[TX_16X16] = 0; |
| } |
| if (columns == 5) { |
| lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc); |
| lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc); |
| } |
| } |
| // We don't apply a loop filter on the first column in the image, mask that |
| // out. |
| if (mi_col == 0) { |
| for (i = 0; i < TX_32X32; i++) { |
| lfm->left_y[i] &= 0xfefefefefefefefeULL; |
| lfm->left_uv[i] &= 0xeeee; |
| } |
| } |
| |
| // Assert if we try to apply 2 different loop filters at the same position. |
| assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8])); |
| assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4])); |
| assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4])); |
| assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16])); |
| assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_8X8])); |
| assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4])); |
| assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4])); |
| assert(!(lfm->left_int_4x4_uv & lfm->left_uv[TX_16X16])); |
| assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8])); |
| assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4])); |
| assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4])); |
| assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16])); |
| assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8])); |
| assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4])); |
| assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4])); |
| assert(!(lfm->above_int_4x4_uv & lfm->above_uv[TX_16X16])); |
| } |
| |
| typedef struct { |
| unsigned int m16x16; |
| unsigned int m8x8; |
| unsigned int m4x4; |
| } FilterMasks; |
| |
| static TX_SIZE get_transform_size(const MACROBLOCKD *const xd, |
| const MB_MODE_INFO *const mbmi, |
| const EDGE_DIR edge_dir, const int mi_row, |
| const int mi_col, const int plane, |
| const struct macroblockd_plane *plane_ptr) { |
| assert(mbmi != NULL); |
| if (xd->lossless[mbmi->segment_id]) return TX_4X4; |
| |
| TX_SIZE tx_size = (plane == AOM_PLANE_Y) |
| ? mbmi->tx_size |
| : av1_get_uv_tx_size(mbmi, plane_ptr->subsampling_x, |
| plane_ptr->subsampling_y); |
| assert(tx_size < TX_SIZES_ALL); |
| if ((plane == AOM_PLANE_Y) && is_inter_block(mbmi) && !mbmi->skip) { |
| const BLOCK_SIZE sb_type = mbmi->sb_type; |
| const int blk_row = mi_row & (mi_size_high[sb_type] - 1); |
| const int blk_col = mi_col & (mi_size_wide[sb_type] - 1); |
| const TX_SIZE mb_tx_size = |
| mbmi->inter_tx_size[av1_get_txb_size_index(sb_type, blk_row, blk_col)]; |
| assert(mb_tx_size < TX_SIZES_ALL); |
| tx_size = mb_tx_size; |
| } |
| |
| // since in case of chrominance or non-square transorm need to convert |
| // transform size into transform size in particular direction. |
| // for vertical edge, filter direction is horizontal, for horizontal |
| // edge, filter direction is vertical. |
| tx_size = (VERT_EDGE == edge_dir) ? txsize_horz_map[tx_size] |
| : txsize_vert_map[tx_size]; |
| return tx_size; |
| } |
| |
| typedef struct AV1_DEBLOCKING_PARAMETERS { |
| // length of the filter applied to the outer edge |
| uint32_t filter_length; |
| // deblocking limits |
| const uint8_t *lim; |
| const uint8_t *mblim; |
| const uint8_t *hev_thr; |
| } AV1_DEBLOCKING_PARAMETERS; |
| |
| // Return TX_SIZE from get_transform_size(), so it is plane and direction |
| // awared |
| static TX_SIZE set_lpf_parameters( |
| AV1_DEBLOCKING_PARAMETERS *const params, const ptrdiff_t mode_step, |
| const AV1_COMMON *const cm, const MACROBLOCKD *const xd, |
| const EDGE_DIR edge_dir, const uint32_t x, const uint32_t y, |
| const int plane, const struct macroblockd_plane *const plane_ptr) { |
| // reset to initial values |
| params->filter_length = 0; |
| |
| // no deblocking is required |
| const uint32_t width = plane_ptr->dst.width; |
| const uint32_t height = plane_ptr->dst.height; |
| if ((width <= x) || (height <= y)) { |
| // just return the smallest transform unit size |
| return TX_4X4; |
| } |
| |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| // for sub8x8 block, chroma prediction mode is obtained from the bottom/right |
| // mi structure of the co-located 8x8 luma block. so for chroma plane, mi_row |
| // and mi_col should map to the bottom/right mi structure, i.e, both mi_row |
| // and mi_col should be odd number for chroma plane. |
| const int mi_row = scale_vert | ((y << scale_vert) >> MI_SIZE_LOG2); |
| const int mi_col = scale_horz | ((x << scale_horz) >> MI_SIZE_LOG2); |
| MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col; |
| const MB_MODE_INFO *mbmi = mi[0]; |
| // If current mbmi is not correctly setup, return an invalid value to stop |
| // filtering. One example is that if this tile is not coded, then its mbmi |
| // it not set up. |
| if (mbmi == NULL) return TX_INVALID; |
| |
| const TX_SIZE ts = |
| get_transform_size(xd, mi[0], edge_dir, mi_row, mi_col, plane, plane_ptr); |
| |
| { |
| const uint32_t coord = (VERT_EDGE == edge_dir) ? (x) : (y); |
| const uint32_t transform_masks = |
| edge_dir == VERT_EDGE ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1; |
| const int32_t tu_edge = (coord & transform_masks) ? (0) : (1); |
| |
| if (!tu_edge) return ts; |
| |
| // prepare outer edge parameters. deblock the edge if it's an edge of a TU |
| { |
| const uint32_t curr_level = |
| get_filter_level(cm, &cm->lf_info, edge_dir, plane, mbmi); |
| const int curr_skipped = mbmi->skip && is_inter_block(mbmi); |
| uint32_t level = curr_level; |
| if (coord) { |
| { |
| const MB_MODE_INFO *const mi_prev = *(mi - mode_step); |
| if (mi_prev == NULL) return TX_INVALID; |
| const int pv_row = |
| (VERT_EDGE == edge_dir) ? (mi_row) : (mi_row - (1 << scale_vert)); |
| const int pv_col = |
| (VERT_EDGE == edge_dir) ? (mi_col - (1 << scale_horz)) : (mi_col); |
| const TX_SIZE pv_ts = get_transform_size( |
| xd, mi_prev, edge_dir, pv_row, pv_col, plane, plane_ptr); |
| |
| const uint32_t pv_lvl = |
| get_filter_level(cm, &cm->lf_info, edge_dir, plane, mi_prev); |
| |
| const int pv_skip = mi_prev->skip && is_inter_block(mi_prev); |
| const BLOCK_SIZE bsize = |
| ss_size_lookup[mbmi->sb_type][scale_horz][scale_vert]; |
| const int prediction_masks = edge_dir == VERT_EDGE |
| ? block_size_wide[bsize] - 1 |
| : block_size_high[bsize] - 1; |
| const int32_t pu_edge = !(coord & prediction_masks); |
| // if the current and the previous blocks are skipped, |
| // deblock the edge if the edge belongs to a PU's edge only. |
| if ((curr_level || pv_lvl) && |
| (!pv_skip || !curr_skipped || pu_edge)) { |
| const TX_SIZE min_ts = AOMMIN(ts, pv_ts); |
| if (TX_4X4 >= min_ts) { |
| params->filter_length = 4; |
| } else if (TX_8X8 == min_ts) { |
| if (plane != 0) |
| params->filter_length = 6; |
| else |
| params->filter_length = 8; |
| } else { |
| params->filter_length = 14; |
| // No wide filtering for chroma plane |
| if (plane != 0) { |
| params->filter_length = 6; |
| } |
| } |
| |
| // update the level if the current block is skipped, |
| // but the previous one is not |
| level = (curr_level) ? (curr_level) : (pv_lvl); |
| } |
| } |
| } |
| // prepare common parameters |
| if (params->filter_length) { |
| const loop_filter_thresh *const limits = cm->lf_info.lfthr + level; |
| params->lim = limits->lim; |
| params->mblim = limits->mblim; |
| params->hev_thr = limits->hev_thr; |
| } |
| } |
| } |
| |
| return ts; |
| } |
| |
| static void filter_block_plane_vert(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, |
| const int plane, |
| const MACROBLOCKD_PLANE *const plane_ptr, |
| const uint32_t mi_row, |
| const uint32_t mi_col) { |
| const int row_step = MI_SIZE >> MI_SIZE_LOG2; |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| uint8_t *const dst_ptr = plane_ptr->dst.buf; |
| const int dst_stride = plane_ptr->dst.stride; |
| const int y_range = (MAX_MIB_SIZE >> scale_vert); |
| const int x_range = (MAX_MIB_SIZE >> scale_horz); |
| for (int y = 0; y < y_range; y += row_step) { |
| uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride; |
| for (int x = 0; x < x_range;) { |
| // inner loop always filter vertical edges in a MI block. If MI size |
| // is 8x8, it will filter the vertical edge aligned with a 8x8 block. |
| // If 4x4 trasnform is used, it will then filter the internal edge |
| // aligned with a 4x4 block |
| const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; |
| const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; |
| uint32_t advance_units; |
| TX_SIZE tx_size; |
| AV1_DEBLOCKING_PARAMETERS params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| tx_size = |
| set_lpf_parameters(¶ms, ((ptrdiff_t)1 << scale_horz), cm, xd, |
| VERT_EDGE, curr_x, curr_y, plane, plane_ptr); |
| if (tx_size == TX_INVALID) { |
| params.filter_length = 0; |
| tx_size = TX_4X4; |
| } |
| |
| switch (params.filter_length) { |
| // apply 4-tap filtering |
| case 4: |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_vertical_4(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| cm->bit_depth); |
| else |
| aom_lpf_vertical_4(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| case 6: // apply 6-tap filter for chroma plane only |
| assert(plane != 0); |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_vertical_6(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| cm->bit_depth); |
| else |
| aom_lpf_vertical_6(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 8-tap filtering |
| case 8: |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_vertical_8(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| cm->bit_depth); |
| else |
| aom_lpf_vertical_8(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 14-tap filtering |
| case 14: |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_vertical_14(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| cm->bit_depth); |
| else |
| aom_lpf_vertical_14(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // no filtering |
| default: break; |
| } |
| // advance the destination pointer |
| advance_units = tx_size_wide_unit[tx_size]; |
| x += advance_units; |
| p += advance_units * MI_SIZE; |
| } |
| } |
| } |
| |
| static void filter_block_plane_horz(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, |
| const int plane, |
| const MACROBLOCKD_PLANE *const plane_ptr, |
| const uint32_t mi_row, |
| const uint32_t mi_col) { |
| const int col_step = MI_SIZE >> MI_SIZE_LOG2; |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| uint8_t *const dst_ptr = plane_ptr->dst.buf; |
| const int dst_stride = plane_ptr->dst.stride; |
| const int y_range = (MAX_MIB_SIZE >> scale_vert); |
| const int x_range = (MAX_MIB_SIZE >> scale_horz); |
| for (int x = 0; x < x_range; x += col_step) { |
| uint8_t *p = dst_ptr + x * MI_SIZE; |
| for (int y = 0; y < y_range;) { |
| // inner loop always filter vertical edges in a MI block. If MI size |
| // is 8x8, it will first filter the vertical edge aligned with a 8x8 |
| // block. If 4x4 trasnform is used, it will then filter the internal |
| // edge aligned with a 4x4 block |
| const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; |
| const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; |
| uint32_t advance_units; |
| TX_SIZE tx_size; |
| AV1_DEBLOCKING_PARAMETERS params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| tx_size = |
| set_lpf_parameters(¶ms, (cm->mi_stride << scale_vert), cm, xd, |
| HORZ_EDGE, curr_x, curr_y, plane, plane_ptr); |
| if (tx_size == TX_INVALID) { |
| params.filter_length = 0; |
| tx_size = TX_4X4; |
| } |
| |
| switch (params.filter_length) { |
| // apply 4-tap filtering |
| case 4: |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_horizontal_4(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, cm->bit_depth); |
| else |
| aom_lpf_horizontal_4(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 6-tap filtering |
| case 6: |
| assert(plane != 0); |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_horizontal_6(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, cm->bit_depth); |
| else |
| aom_lpf_horizontal_6(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 8-tap filtering |
| case 8: |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_horizontal_8(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, cm->bit_depth); |
| else |
| aom_lpf_horizontal_8(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 14-tap filtering |
| case 14: |
| if (cm->use_highbitdepth) |
| aom_highbd_lpf_horizontal_14(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, cm->bit_depth); |
| else |
| aom_lpf_horizontal_14(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // no filtering |
| default: break; |
| } |
| |
| // advance the destination pointer |
| advance_units = tx_size_high_unit[tx_size]; |
| y += advance_units; |
| p += advance_units * dst_stride * MI_SIZE; |
| } |
| } |
| } |
| |
| #if LOOP_FILTER_BITMASK |
| static INLINE enum lf_path get_loop_filter_path( |
| int plane, struct macroblockd_plane pd[MAX_MB_PLANE]) { |
| if (pd[plane].subsampling_y == 1 && pd[plane].subsampling_x == 1) |
| return LF_PATH_420; |
| else if (pd[plane].subsampling_y == 0 && pd[plane].subsampling_x == 0) |
| return LF_PATH_444; |
| else |
| return LF_PATH_SLOW; |
| } |
| |
| static void loop_filter_block_plane_vert(AV1_COMMON *const cm, |
| struct macroblockd_plane *pd, int pl, |
| int mi_row, int mi_col, |
| enum lf_path path, |
| LoopFilterMask *lf_mask) { |
| MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col; |
| switch (path) { |
| case LF_PATH_420: |
| av1_filter_block_plane_ss00_ver(cm, pd, pl, mi_row, lf_mask); |
| break; |
| case LF_PATH_444: |
| av1_filter_block_plane_ss11_ver(cm, pd, pl, mi_row, lf_mask); |
| break; |
| case LF_PATH_SLOW: |
| av1_filter_block_plane_non420_ver(cm, pd, mi, mi_row, mi_col, pl); |
| break; |
| } |
| } |
| |
| static void loop_filter_block_plane_horz(AV1_COMMON *const cm, |
| struct macroblockd_plane *pd, int pl, |
| int mi_row, int mi_col, |
| enum lf_path path, |
| LoopFilterMask *lf_mask) { |
| MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col; |
| switch (path) { |
| case LF_PATH_420: |
| av1_filter_block_plane_ss00_hor(cm, pd, pl, mi_row, lf_mask); |
| break; |
| case LF_PATH_444: |
| av1_filter_block_plane_ss11_hor(cm, pd, pl, mi_row, lf_mask); |
| break; |
| case LF_PATH_SLOW: |
| av1_filter_block_plane_non420_hor(cm, pd, mi, mi_row, mi_col, pl); |
| break; |
| } |
| } |
| #endif // LOOP_FILTER_BITMASK |
| |
| static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, AV1_COMMON *cm, |
| MACROBLOCKD *xd, int start, int stop, |
| int plane_start, int plane_end) { |
| struct macroblockd_plane *pd = xd->plane; |
| const int col_start = 0; |
| const int col_end = cm->mi_cols; |
| int mi_row, mi_col; |
| int plane; |
| |
| for (plane = plane_start; plane < plane_end; plane++) { |
| if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1])) |
| break; |
| else if (plane == 1 && !(cm->lf.filter_level_u)) |
| continue; |
| else if (plane == 2 && !(cm->lf.filter_level_v)) |
| continue; |
| |
| #if LOOP_FILTER_BITMASK |
| enum lf_path path = get_loop_filter_path(plane, pd); |
| |
| if (cm->lf.combine_vert_horz_lf) { |
| // filter all vertical and horizontal edges in every super block |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
| for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { |
| // filter vertical edges |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, |
| mi_col, plane, plane + 1); |
| |
| LoopFilterMask *lf_mask = get_loop_filter_mask(cm, mi_row, mi_col); |
| av1_setup_bitmask(cm, mi_row, mi_col, plane, pd[plane].subsampling_x, |
| pd[plane].subsampling_y, lf_mask); |
| loop_filter_block_plane_vert(cm, pd, plane, mi_row, mi_col, path, |
| lf_mask); |
| |
| // filter horizontal edges |
| if (mi_col - MAX_MIB_SIZE >= 0) { |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, |
| mi_row, mi_col - MAX_MIB_SIZE, plane, |
| plane + 1); |
| |
| LoopFilterMask *lf_mask = |
| get_loop_filter_mask(cm, mi_row, mi_col - MAX_MIB_SIZE); |
| loop_filter_block_plane_horz(cm, pd, plane, mi_row, |
| mi_col - MAX_MIB_SIZE, path, lf_mask); |
| } |
| } |
| // filter horizontal edges |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, |
| mi_col - MAX_MIB_SIZE, plane, plane + 1); |
| |
| LoopFilterMask *lf_mask = |
| get_loop_filter_mask(cm, mi_row, mi_col - MAX_MIB_SIZE); |
| loop_filter_block_plane_horz(cm, pd, plane, mi_row, |
| mi_col - MAX_MIB_SIZE, path, lf_mask); |
| } |
| } else { |
| // filter all vertical edges in every super block |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
| for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, |
| mi_col, plane, plane + 1); |
| |
| LoopFilterMask *lf_mask = get_loop_filter_mask(cm, mi_row, mi_col); |
| av1_setup_bitmask(cm, mi_row, mi_col, plane, pd[plane].subsampling_x, |
| pd[plane].subsampling_y, lf_mask); |
| loop_filter_block_plane_vert(cm, pd, plane, mi_row, mi_col, path, |
| lf_mask); |
| } |
| } |
| |
| // filter all horizontal edges in every super block |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
| for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, |
| mi_col, plane, plane + 1); |
| |
| LoopFilterMask *lf_mask = get_loop_filter_mask(cm, mi_row, mi_col); |
| loop_filter_block_plane_horz(cm, pd, plane, mi_row, mi_col, path, |
| lf_mask); |
| } |
| } |
| } |
| #else |
| if (cm->lf.combine_vert_horz_lf) { |
| // filter all vertical and horizontal edges in every 128x128 super block |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
| for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { |
| // filter vertical edges |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, |
| mi_col, plane, plane + 1); |
| filter_block_plane_vert(cm, xd, plane, &pd[plane], mi_row, mi_col); |
| // filter horizontal edges |
| if (mi_col - MAX_MIB_SIZE >= 0) { |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, |
| mi_row, mi_col - MAX_MIB_SIZE, plane, |
| plane + 1); |
| filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row, |
| mi_col - MAX_MIB_SIZE); |
| } |
| } |
| // filter horizontal edges |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, |
| mi_col - MAX_MIB_SIZE, plane, plane + 1); |
| filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row, |
| mi_col - MAX_MIB_SIZE); |
| } |
| } else { |
| // filter all vertical edges in every 128x128 super block |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
| for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, |
| mi_col, plane, plane + 1); |
| filter_block_plane_vert(cm, xd, plane, &pd[plane], mi_row, mi_col); |
| } |
| } |
| |
| // filter all horizontal edges in every 128x128 super block |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
| for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, |
| mi_col, plane, plane + 1); |
| filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row, mi_col); |
| } |
| } |
| } |
| #endif // LOOP_FILTER_BITMASK |
| } |
| } |
| |
| void av1_loop_filter_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
| MACROBLOCKD *xd, int plane_start, int plane_end, |
| int partial_frame) { |
| int start_mi_row, end_mi_row, mi_rows_to_filter; |
| |
| start_mi_row = 0; |
| mi_rows_to_filter = cm->mi_rows; |
| if (partial_frame && cm->mi_rows > 8) { |
| start_mi_row = cm->mi_rows >> 1; |
| start_mi_row &= 0xfffffff8; |
| mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); |
| } |
| end_mi_row = start_mi_row + mi_rows_to_filter; |
| loop_filter_frame_init(cm, plane_start, plane_end); |
| loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row, plane_start, |
| plane_end); |
| } |