blob: 85b301a88e7d2a193af53927c9b5946910e808f1 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <emmintrin.h>
#include <stdio.h>
#include "aom_dsp/x86/synonyms.h"
#include "aom_dsp/x86/sum_squares_sse2.h"
#include "config/aom_dsp_rtcd.h"
static INLINE __m128i xx_loadh_64(__m128i a, const void *b) {
const __m128d ad = _mm_castsi128_pd(a);
return _mm_castpd_si128(_mm_loadh_pd(ad, (double *)b));
}
static INLINE uint64_t xx_cvtsi128_si64(__m128i a) {
#if ARCH_X86_64
return (uint64_t)_mm_cvtsi128_si64(a);
#else
{
uint64_t tmp;
_mm_storel_epi64((__m128i *)&tmp, a);
return tmp;
}
#endif
}
static INLINE __m128i sum_squares_i16_4x4_sse2(const int16_t *src, int stride) {
const __m128i v_val_0_w = xx_loadl_64(src + 0 * stride);
const __m128i v_val_2_w = xx_loadl_64(src + 2 * stride);
const __m128i v_val_01_w = xx_loadh_64(v_val_0_w, src + 1 * stride);
const __m128i v_val_23_w = xx_loadh_64(v_val_2_w, src + 3 * stride);
const __m128i v_sq_01_d = _mm_madd_epi16(v_val_01_w, v_val_01_w);
const __m128i v_sq_23_d = _mm_madd_epi16(v_val_23_w, v_val_23_w);
return _mm_add_epi32(v_sq_01_d, v_sq_23_d);
}
uint64_t aom_sum_squares_2d_i16_4x4_sse2(const int16_t *src, int stride) {
const __m128i v_sum_0123_d = sum_squares_i16_4x4_sse2(src, stride);
__m128i v_sum_d =
_mm_add_epi32(v_sum_0123_d, _mm_srli_epi64(v_sum_0123_d, 32));
v_sum_d = _mm_add_epi32(v_sum_d, _mm_srli_si128(v_sum_d, 8));
return (uint64_t)_mm_cvtsi128_si32(v_sum_d);
}
uint64_t aom_sum_squares_2d_i16_4xn_sse2(const int16_t *src, int stride,
int height) {
int r = 0;
__m128i v_acc_q = _mm_setzero_si128();
do {
const __m128i v_acc_d = sum_squares_i16_4x4_sse2(src, stride);
v_acc_q = _mm_add_epi32(v_acc_q, v_acc_d);
src += stride << 2;
r += 4;
} while (r < height);
const __m128i v_zext_mask_q = xx_set1_64_from_32i(0xffffffff);
__m128i v_acc_64 = _mm_add_epi64(_mm_srli_epi64(v_acc_q, 32),
_mm_and_si128(v_acc_q, v_zext_mask_q));
v_acc_64 = _mm_add_epi64(v_acc_64, _mm_srli_si128(v_acc_64, 8));
return xx_cvtsi128_si64(v_acc_64);
}
#ifdef __GNUC__
// This prevents GCC/Clang from inlining this function into
// aom_sum_squares_2d_i16_sse2, which in turn saves some stack
// maintenance instructions in the common case of 4x4.
__attribute__((noinline))
#endif
uint64_t
aom_sum_squares_2d_i16_nxn_sse2(const int16_t *src, int stride, int width,
int height) {
int r = 0;
const __m128i v_zext_mask_q = xx_set1_64_from_32i(0xffffffff);
__m128i v_acc_q = _mm_setzero_si128();
do {
__m128i v_acc_d = _mm_setzero_si128();
int c = 0;
do {
const int16_t *b = src + c;
const __m128i v_val_0_w = xx_load_128(b + 0 * stride);
const __m128i v_val_1_w = xx_load_128(b + 1 * stride);
const __m128i v_val_2_w = xx_load_128(b + 2 * stride);
const __m128i v_val_3_w = xx_load_128(b + 3 * stride);
const __m128i v_sq_0_d = _mm_madd_epi16(v_val_0_w, v_val_0_w);
const __m128i v_sq_1_d = _mm_madd_epi16(v_val_1_w, v_val_1_w);
const __m128i v_sq_2_d = _mm_madd_epi16(v_val_2_w, v_val_2_w);
const __m128i v_sq_3_d = _mm_madd_epi16(v_val_3_w, v_val_3_w);
const __m128i v_sum_01_d = _mm_add_epi32(v_sq_0_d, v_sq_1_d);
const __m128i v_sum_23_d = _mm_add_epi32(v_sq_2_d, v_sq_3_d);
const __m128i v_sum_0123_d = _mm_add_epi32(v_sum_01_d, v_sum_23_d);
v_acc_d = _mm_add_epi32(v_acc_d, v_sum_0123_d);
c += 8;
} while (c < width);
v_acc_q = _mm_add_epi64(v_acc_q, _mm_and_si128(v_acc_d, v_zext_mask_q));
v_acc_q = _mm_add_epi64(v_acc_q, _mm_srli_epi64(v_acc_d, 32));
src += 4 * stride;
r += 4;
} while (r < height);
v_acc_q = _mm_add_epi64(v_acc_q, _mm_srli_si128(v_acc_q, 8));
return xx_cvtsi128_si64(v_acc_q);
}
uint64_t aom_sum_squares_2d_i16_sse2(const int16_t *src, int stride, int width,
int height) {
// 4 elements per row only requires half an XMM register, so this
// must be a special case, but also note that over 75% of all calls
// are with size == 4, so it is also the common case.
if (LIKELY(width == 4 && height == 4)) {
return aom_sum_squares_2d_i16_4x4_sse2(src, stride);
} else if (LIKELY(width == 4 && (height & 3) == 0)) {
return aom_sum_squares_2d_i16_4xn_sse2(src, stride, height);
} else if (LIKELY((width & 7) == 0 && (height & 3) == 0)) {
// Generic case
return aom_sum_squares_2d_i16_nxn_sse2(src, stride, width, height);
} else {
return aom_sum_squares_2d_i16_c(src, stride, width, height);
}
}
//////////////////////////////////////////////////////////////////////////////
// 1D version
//////////////////////////////////////////////////////////////////////////////
static uint64_t aom_sum_squares_i16_64n_sse2(const int16_t *src, uint32_t n) {
const __m128i v_zext_mask_q = xx_set1_64_from_32i(0xffffffff);
__m128i v_acc0_q = _mm_setzero_si128();
__m128i v_acc1_q = _mm_setzero_si128();
const int16_t *const end = src + n;
assert(n % 64 == 0);
while (src < end) {
const __m128i v_val_0_w = xx_load_128(src);
const __m128i v_val_1_w = xx_load_128(src + 8);
const __m128i v_val_2_w = xx_load_128(src + 16);
const __m128i v_val_3_w = xx_load_128(src + 24);
const __m128i v_val_4_w = xx_load_128(src + 32);
const __m128i v_val_5_w = xx_load_128(src + 40);
const __m128i v_val_6_w = xx_load_128(src + 48);
const __m128i v_val_7_w = xx_load_128(src + 56);
const __m128i v_sq_0_d = _mm_madd_epi16(v_val_0_w, v_val_0_w);
const __m128i v_sq_1_d = _mm_madd_epi16(v_val_1_w, v_val_1_w);
const __m128i v_sq_2_d = _mm_madd_epi16(v_val_2_w, v_val_2_w);
const __m128i v_sq_3_d = _mm_madd_epi16(v_val_3_w, v_val_3_w);
const __m128i v_sq_4_d = _mm_madd_epi16(v_val_4_w, v_val_4_w);
const __m128i v_sq_5_d = _mm_madd_epi16(v_val_5_w, v_val_5_w);
const __m128i v_sq_6_d = _mm_madd_epi16(v_val_6_w, v_val_6_w);
const __m128i v_sq_7_d = _mm_madd_epi16(v_val_7_w, v_val_7_w);
const __m128i v_sum_01_d = _mm_add_epi32(v_sq_0_d, v_sq_1_d);
const __m128i v_sum_23_d = _mm_add_epi32(v_sq_2_d, v_sq_3_d);
const __m128i v_sum_45_d = _mm_add_epi32(v_sq_4_d, v_sq_5_d);
const __m128i v_sum_67_d = _mm_add_epi32(v_sq_6_d, v_sq_7_d);
const __m128i v_sum_0123_d = _mm_add_epi32(v_sum_01_d, v_sum_23_d);
const __m128i v_sum_4567_d = _mm_add_epi32(v_sum_45_d, v_sum_67_d);
const __m128i v_sum_d = _mm_add_epi32(v_sum_0123_d, v_sum_4567_d);
v_acc0_q = _mm_add_epi64(v_acc0_q, _mm_and_si128(v_sum_d, v_zext_mask_q));
v_acc1_q = _mm_add_epi64(v_acc1_q, _mm_srli_epi64(v_sum_d, 32));
src += 64;
}
v_acc0_q = _mm_add_epi64(v_acc0_q, v_acc1_q);
v_acc0_q = _mm_add_epi64(v_acc0_q, _mm_srli_si128(v_acc0_q, 8));
return xx_cvtsi128_si64(v_acc0_q);
}
uint64_t aom_sum_squares_i16_sse2(const int16_t *src, uint32_t n) {
if (n % 64 == 0) {
return aom_sum_squares_i16_64n_sse2(src, n);
} else if (n > 64) {
int k = n & ~(64 - 1);
return aom_sum_squares_i16_64n_sse2(src, k) +
aom_sum_squares_i16_c(src + k, n - k);
} else {
return aom_sum_squares_i16_c(src, n);
}
}
// Accumulate sum of 16-bit elements in the vector
static AOM_INLINE int32_t mm_accumulate_epi16(__m128i vec_a) {
__m128i vtmp = _mm_srli_si128(vec_a, 8);
vec_a = _mm_add_epi16(vec_a, vtmp);
vtmp = _mm_srli_si128(vec_a, 4);
vec_a = _mm_add_epi16(vec_a, vtmp);
vtmp = _mm_srli_si128(vec_a, 2);
vec_a = _mm_add_epi16(vec_a, vtmp);
return _mm_extract_epi16(vec_a, 0);
}
// Accumulate sum of 32-bit elements in the vector
static AOM_INLINE int32_t mm_accumulate_epi32(__m128i vec_a) {
__m128i vtmp = _mm_srli_si128(vec_a, 8);
vec_a = _mm_add_epi32(vec_a, vtmp);
vtmp = _mm_srli_si128(vec_a, 4);
vec_a = _mm_add_epi32(vec_a, vtmp);
return _mm_cvtsi128_si32(vec_a);
}
uint64_t aom_var_2d_u8_sse2(uint8_t *src, int src_stride, int width,
int height) {
uint8_t *srcp;
uint64_t s = 0, ss = 0;
__m128i vzero = _mm_setzero_si128();
__m128i v_acc_sum = vzero;
__m128i v_acc_sqs = vzero;
int i, j;
// Process 16 elements in a row
for (i = 0; i < width - 15; i += 16) {
srcp = src + i;
// Process 8 columns at a time
for (j = 0; j < height - 7; j += 8) {
__m128i vsrc[8];
for (int k = 0; k < 8; k++) {
vsrc[k] = _mm_loadu_si128((__m128i *)srcp);
srcp += src_stride;
}
for (int k = 0; k < 8; k++) {
__m128i vsrc0 = _mm_unpacklo_epi8(vsrc[k], vzero);
__m128i vsrc1 = _mm_unpackhi_epi8(vsrc[k], vzero);
v_acc_sum = _mm_add_epi16(v_acc_sum, vsrc0);
v_acc_sum = _mm_add_epi16(v_acc_sum, vsrc1);
__m128i vsqs0 = _mm_madd_epi16(vsrc0, vsrc0);
__m128i vsqs1 = _mm_madd_epi16(vsrc1, vsrc1);
v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs0);
v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs1);
}
// Update total sum and clear the vectors
s += mm_accumulate_epi16(v_acc_sum);
ss += mm_accumulate_epi32(v_acc_sqs);
v_acc_sum = vzero;
v_acc_sqs = vzero;
}
// Process remaining rows (height not a multiple of 8)
for (; j < height; j++) {
__m128i vsrc = _mm_loadu_si128((__m128i *)srcp);
__m128i vsrc0 = _mm_unpacklo_epi8(vsrc, vzero);
__m128i vsrc1 = _mm_unpackhi_epi8(vsrc, vzero);
v_acc_sum = _mm_add_epi16(v_acc_sum, vsrc0);
v_acc_sum = _mm_add_epi16(v_acc_sum, vsrc1);
__m128i vsqs0 = _mm_madd_epi16(vsrc0, vsrc0);
__m128i vsqs1 = _mm_madd_epi16(vsrc1, vsrc1);
v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs0);
v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs1);
srcp += src_stride;
}
// Update total sum and clear the vectors
s += mm_accumulate_epi16(v_acc_sum);
ss += mm_accumulate_epi32(v_acc_sqs);
v_acc_sum = vzero;
v_acc_sqs = vzero;
}
// Process the remaining area using C
srcp = src;
for (int k = 0; k < height; k++) {
for (int m = i; m < width; m++) {
uint8_t val = srcp[m];
s += val;
ss += val * val;
}
srcp += src_stride;
}
return (ss - s * s / (width * height));
}
uint64_t aom_var_2d_u16_sse2(uint8_t *src, int src_stride, int width,
int height) {
uint16_t *srcp1 = CONVERT_TO_SHORTPTR(src), *srcp;
uint64_t s = 0, ss = 0;
__m128i vzero = _mm_setzero_si128();
__m128i v_acc_sum = vzero;
__m128i v_acc_sqs = vzero;
int i, j;
// Process 8 elements in a row
for (i = 0; i < width - 8; i += 8) {
srcp = srcp1 + i;
// Process 8 columns at a time
for (j = 0; j < height - 8; j += 8) {
__m128i vsrc[8];
for (int k = 0; k < 8; k++) {
vsrc[k] = _mm_loadu_si128((__m128i *)srcp);
srcp += src_stride;
}
for (int k = 0; k < 8; k++) {
__m128i vsrc0 = _mm_unpacklo_epi16(vsrc[k], vzero);
__m128i vsrc1 = _mm_unpackhi_epi16(vsrc[k], vzero);
v_acc_sum = _mm_add_epi32(vsrc0, v_acc_sum);
v_acc_sum = _mm_add_epi32(vsrc1, v_acc_sum);
__m128i vsqs0 = _mm_madd_epi16(vsrc[k], vsrc[k]);
v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs0);
}
// Update total sum and clear the vectors
s += mm_accumulate_epi32(v_acc_sum);
ss += mm_accumulate_epi32(v_acc_sqs);
v_acc_sum = vzero;
v_acc_sqs = vzero;
}
// Process remaining rows (height not a multiple of 8)
for (; j < height; j++) {
__m128i vsrc = _mm_loadu_si128((__m128i *)srcp);
__m128i vsrc0 = _mm_unpacklo_epi16(vsrc, vzero);
__m128i vsrc1 = _mm_unpackhi_epi16(vsrc, vzero);
v_acc_sum = _mm_add_epi32(vsrc0, v_acc_sum);
v_acc_sum = _mm_add_epi32(vsrc1, v_acc_sum);
__m128i vsqs0 = _mm_madd_epi16(vsrc, vsrc);
v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs0);
srcp += src_stride;
}
// Update total sum and clear the vectors
s += mm_accumulate_epi32(v_acc_sum);
ss += mm_accumulate_epi32(v_acc_sqs);
v_acc_sum = vzero;
v_acc_sqs = vzero;
}
// Process the remaining area using C
srcp = srcp1;
for (int k = 0; k < height; k++) {
for (int m = i; m < width; m++) {
uint16_t val = srcp[m];
s += val;
ss += val * val;
}
srcp += src_stride;
}
return (ss - s * s / (width * height));
}